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Abstract 20 

 21 

Lockdown and the associated massive reduction in people’s mobility imposed by SARS-22 

CoV-2 mitigation measures across the globe provide a unique sensitivity experiment to 23 

investigate impacts on carbon and air pollution emissions. We present an integrated observational 24 

analysis based on long-term in-situ multispecies eddy flux measurements, allowing to quantify 25 

near real time changes of urban surface emissions for key air quality and climate tracers. During 26 

the first European SARS-CoV-2 wave we find that the emission reduction of classic air pollutants 27 

decoupled from CO2 and was significantly larger. These differences can only be rationalized by 28 

the different nature of urban combustion sources, and point towards a systematic bias of 29 

extrapolated urban NOx emissions in state-of the art emission models. The analysis suggests that 30 

European policies, shifting residential, public and commercial energy demand towards cleaner 31 

combustion, have helped to improve air quality more than expected, and that the urban NOx flux 32 

remains to be dominated (e.g. >90%) by traffic. 33 

 34 

 35 

  36 
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Introduction 37 

 38 

Managing air pollution and climate change are among the most important environmental 39 

challenges of modern society. As urban population continues to grow, emissions from 40 

metropolitan areas play an increasingly important role. For example, European cities already host 41 

about 74% of the population (UN, 2019) and are a major contributor to air pollutant and 42 

greenhouse gas emissions. Urban growth, along with socioeconomic development, and without 43 

mitigation can lead to substantial increases in anthropogenic emissions. Many cities are 44 

committing to sustainable development goals, and improvement of air pollution and mitigation of 45 

climate change are emerging as key sustainability priorities across the globe. Quantifying the 46 

diversity of urban emissions is often one of the most uncertain components of complex 47 

atmospheric models, and development of a robust predictive capability requires accurate data and 48 

careful evaluation of bottom-up emissions (Blain et al., 2019; NAS, 2016). 49 

During the last two decades Europe’s policy to reduce mid-term carbon emissions has 50 

fostered the proliferation of Diesel driven vehicles (EU-EUR-Lex, 2008). While soot emissions 51 

can be successfully removed with a Diesel particulate filter, the reduction of NOx from Diesel 52 

exhaust has been more challenging, and was at the center of “Dieselgate” (Franco, V., Posada 53 

Sanches, F., German, J., Mock, 2014). As a consequence, European NOx concentrations have 54 

declined less rapidly than elsewhere (Carslaw and Rhys-Tyler, 2013; Im et al., 2015; Karl et al., 55 

2017), and put the EU-28 emission target for NOx reductions (2005-2030: -63%) in jeopardy (EU-56 

EUR-Lex, 2008). Nitrogen oxides have therefore emerged as a primary public health concern 57 

(Anenberg et al., 2017). European suppression measures due to the SARS-CoV2 outbreak provide 58 

a unique opportunity to track drastic changes in urban mobility during the lockdown phase, and 59 

combined with eddy flux methods allow investigating the sensitivity towards emission changes 60 

directly.  61 

After the initial SARS—CoV2 emergence in China in late 2019, the World Health 62 

Organization declared the outbreak a global pandemic on March 11 2020. Worldwide measures to 63 

mitigate or suppress exponential growth of SARS-CoV2 have resulted in an unprecedented global 64 

intervention on mobility and industrial activity (WHO, 2020), allowing to study a number of 65 

environmental aspects (e.g. Liu et al., 2020b; Schiermeier, 2020; Quéré et al., 2020). A growing 66 

number of studies document regional and global air composition (e.g. Menut et al., 2020; Bao and 67 

Zhang, 2020) changes with respect to lockdown measures, including remote sensing observations 68 

and aspects of adequate data processing strategies (e.g. Liu et al., 2020a; Sussmann and Rettinger, 69 

2020). 70 
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In Europe, most countries have implemented suppression strategies involving a more or 71 

less extensive lockdown of public life. At the beginning of the pandemic, the level of suppression 72 

varied among different countries, with some imposing very early (‘China’ like) lockdown 73 

measures (e.g. Austria), others shifting from gradual social distancing measures to a lockdown 74 

after re-consideration of alternative strategies (e.g. the UK). Depending on the magnitude of the 75 

outbreak, European countries put increasingly stringent measures in place. The extent of different 76 

lockdown measures has been assessed early on via cell phone activity tracking. For example, 77 

Google mobility reports published in March 2020, suggested an 80% reduction of retail and 78 

recreational activities across Europe. Traffic count data show a 60% reduction of urban mobility 79 

due to a state-wide quarantine in the state of Tirol early during the pandemic. Such a drastic 80 

mobility reduction during the suppression period allows performing a granular assessment of 81 

processes impacting emissions and the distribution of air pollutant and climate gases.  82 

A direct and quantitative way to assess air pollutant and climate gas emission changes can 83 

be based on the eddy covariance method (Aubinet et al., 2012; Dabberdt et al., 1993). Briefly, in 84 

its simplest form for stationary conditions and neglecting horizontal advection, the turbulent 85 

surface - atmosphere flux (measured at height h) can represent the diffusive flux at the surface: 86 

(w′c′̅̅ ̅̅ ̅)
h
= −D(

∂c̅

∂z
)
0
,          (1) 87 

 88 

where w’ represents the vertical fluctuation of wind speed, D the molecular diffusion coefficient, 89 

and c’ the concentration fluctuation. The turbulent flux at the measurement height h (left side) 90 

equals the diffusive surface flux (right side), which we are usually interested in. Brackets denote 91 

the averaging interval. The ensemble average is typically 30 minutes. Eddy covariance 92 

measurements  have been extensively used in atmospheric sciences (Foken and Wichura, 1996; 93 

Oncley et al., 2007; Patton et al., 2011) and biogeochemistry (Aubinet et al., 2012; Baldocchi et 94 

al., 1988; Fowler et al., 2009; Rannik et al., 2012) (e.g. Ameriflux: https://ameriflux.lbl.gov/; 95 

Euroflux: http://www.europe-fluxdata.eu/icos). The method has also become more tractable for 96 

reactive trace gases such as NMVOC (Karl et al., 2001; Rinne et al., 2001; Spirig et al., 2005) or 97 

NOx (Lee et al., 2015), and has been used at urban sites (Christen, 2014; Langford et al., 2009; 98 

Velasco et al., 2005; Squires et al., 2020). Urban eddy covariance methods can monitor 99 

aggregated emission changes in real time. Here we build on a set of long-term multispecies flux 100 

and concentration datasets for NOx, O3, aromatic NMVOC, and CO2 (Karl et al., 2020). Being 101 

inspired by early empirical persistence models used in atmospheric chemistry and ecology, we 102 

propose a new quantitative way for the analysis of urban fluxes during an intervention experiment 103 

by combining eddy covariance data  with a boosted regression tree model (Duffy and Helmbold, 104 

https://ameriflux.lbl.gov/
http://www.europe-fluxdata.eu/icos
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2002). This method allows to directly assess changes of surface fluxes for different trace gases in 105 

response to the SARS-CoV2 lockdown and rebounding effects.   106 

 107 

Methods 108 

 109 

Eddy covariance 110 

 111 

Here we analyze air quality data based on the eddy covariance method (e.g. Aubinet et al., 112 

2012; Dabberdt et al., 1993), which represents the most direct meteorological method to 113 

determine surface emissions (Baldocchi et al., 1988; Fowler et al., 2009). The method is widely 114 

established in biogeosciences (e.g. Euroflux, http://www.europe-fluxdata.eu/icos (last access: 18 115 

December 2020), Ameriflux, https://ameriflux.lbl.gov/ (last access: 18 December 2020). A 116 

number of studies investigated eddy fluxes of chemical species and aerosols in urban settings 117 

(Nemitz et al., 2008; Velasco et al., 2009; Rantala et al., 2016; Lee et al., 2015; Karl et al., 2017;  118 

Vaughan et al., 2017; Striednig et al., 2019). Briefly, the method relies on the conservation 119 

equation of a scalar, which under homogenous conditions can be simplified to  120 

 121 

∂C

∂t
+

∂F

∂z
= S,           (2) 122 

 123 

where dC/dt represents the storage term, dF/dz the measured vertical turbulent flux as in eq. 1 and 124 

S sources and sinks between the surface and height z. 125 

 126 

Integration of eq. 2 yields 127 

 128 

∫
∂C

∂t
dz + (w′c′̅̅ ̅̅ ̅)

h

h

0
= (w′c′̅̅ ̅̅ ̅)

0
: = Fs ,       (3) 129 

 130 

where h is the measurement height (39 m above street level), and Fs represents the surface flux. In 131 

this context the turbulent flux term usually dominates the left hand side. The storage term 132 

typically accounted for 5-7% of the fluxes on average, and we consider it a minor component in 133 

our analysis. Similarly we neglect advection fluxes. We take advantage of the fact that our 134 

analysis is based on relative changes of different air pollutant fluxes normalized by a boosted 135 

regression tree model. Any systematic bias therefore cancels out under the assumption of 136 

comparable source distribution verified by the emission inventory. The datasets are analyzed with 137 
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the innFLUX code (Striednig et al., 2019), which outputs standard parameters used for filtering 138 

flux data as described by Foken and Wichura (1996). In addition to raw data filters (spike 139 

removals, weather flags), we applied standard criteria using u* and the stationarity criterion for all 140 

species (Foken and Wichura, 1996). We specifically do not apply tests on integral turbulence as 141 

parameterizations for urban areas are not available/accurate. After applying the above mentioned 142 

filters 73% of the flux data were used for the training dataset, and 82% of the flux data were used 143 

for the intervention period. Systematic errors due to attenuation caused by slow sensor response 144 

was assessed previously (Karl et al., 2017). It is considered minor due to the large eddy size 145 

above the urban roughness layer and for the trace gases considered here is on the order of 2-5 %. 146 

A detailed description of errors and data treatment for this site was published by (Striednig et al., 147 

2019). 148 

 149 

 150 

Flux footprint and IAO observations 151 

 152 

A site description of the Innsbruck Atmospheric Observatory (IAO), instrumentation and 153 

site validation were previously described extensively (Karl et al., 2020). The flux footprint (Fig 1) 154 

was calculated according to Kljun et al. (2015). For the measurement - inventory comparison we 155 

mapped the two-dimensional climatological footprint (March-May) onto the spatially 156 

disaggregated Austrian EMIKAT emission inventory (www.emikat.at). The relative seasonal 157 

variability was accounted for by scaling total yearly traffic emissions to measured seasonal traffic 158 

activity (Land Tirol, AT), and total yearly RCP emissions to measured seasonal NG consumption 159 

(TIGAS, AT, https://www.tigas.at/). The land surface distribution within the flux footprint (Fig. 160 

S1) is dominated by roads and building surfaces with a fraction between 70-88% depending on 161 

the wind sector. For comparisons the district level emission distribution from the inventory was 162 

mapped onto the land surface distribution and then weighted according to the footprint function. 163 

Traffic counts used in the data comparisons were based on a conductive loop measuring 164 

directional traffic flows along Innrain provided by the Land Tirol, a main street dissecting the flux 165 

tower footprint and considered representative of traffic activity surrounding the flux tower. The 166 

inductive loop provides rudimentary information on light vs heavy duty vehicles and suggests that 167 

95% of traffic is caused by vehicles <3.5t. We assume that all fuel types used for heating 168 

appliances and warm water consumption track relative changes of NG consumption, which is 169 

largely a function of base load and degree heating days (Fig. S2). Since many commercial 170 

buildings (e.g. shops, restaurants, retail) are not clearly separable from residential buildings in 171 

European cities (e.g. upper floors are used for housing and ground floor houses shops or 172 

https://www.tigas.at/
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restaurants using shared heating), it is hard to clearly separate the RCP into individual 173 

components in the urban core. Overall, heating energy supply in the RCP sector is comprised of 174 

district heating (8.7%), oil (34.5%), natural gas (34%), biomass (16%), electricity (6.1%), and 175 

alternative sources (0.7%).   176 

NOx measurements were based on a dual channel chemiluminescence instrument (CLD 177 

899 Y; Ecophysics). The instrument was operated in flux mode acquiring data at about 5Hz. A 178 

NO standard was periodically introduced for calibration. Zeroing was performed once a day close 179 

to midnight. The chemiluminescent instrument is equipped with a metal oxide (ie. molybdenum) 180 

converter. It has been shown (Steinbacher et al., 2007) that this can result in an overestimation of 181 

NO2 due to decomposition of NOy species. For Innsbruck we have evaluated the accuracy using 182 

side by side measurements with a cavity ring down spectrometer in 2015 (Karl et al., 2017). Both 183 

independent techniques agreed to within 6%, confirming that this problem plays a minor role for 184 

polluted sites. CO2, and H2O were measured with a closed path eddy covariance system (CPEC 185 

200; short inlet, enclosed IRGA design; Campbell Scientific) along with  three dimensional 186 

winds. Calibration for CO2 was performed once a day. Aromatic NMVOC (ie. benzene, toluene, 187 

xylenes+ethylbenzene, and C9 benzenes) were measured with a PTR-TOFMSx6000 mass 188 

spectrometer (IONICON, AT), operated in hydronium mode at standard conditions in the drift 189 

tube of about 112 Townsend. The instrument was set up to sample ambient air from a turbulently 190 

purged 3/8” Teflon line. Zero calibrations were performed by providing NMVOC free air from a 191 

continuously purged catalytical converter though a setup of software controlled solenoid valves. 192 

In addition, daily calibrations were performed using known quantities of a suite of NMVOC from 193 

a 1ppm calibration gas standard (Apel & Riemer, USA) that were added to the NMVOC free air 194 

and dynamically diluted into low ppbv mixing ratios. Errors arising from analytical uncertainty 195 

mainly stem from calibration proceedures. For NMVOC these are estimated as 10% for aromatic 196 

NMVOC compounds based on a calibration standard, similarly the uncertainty of NOx is 2%, and 197 

for CO2 5%, respectively.  198 

This study builds on long-term NOx and CO2 flux measurements that run operationally 199 

since June 1st 2018. NMVOC fluxes were measured during a field campaign from March 11th 200 

2019 to April 9th 2019, and during the SARS-CoV2 lockdown, when measurements started on 201 

March 16th 2020. The NMVOC analysis presented in this paper spans from March 16th 2020 to 202 

May 1st 2020. 203 

 204 

 205 

 206 
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Boosted regression tree model 207 

Statistical persistence and regression models have a long history in atmospheric chemistry 208 

(Robeson and Steyn, 1990) to predict empirical trends of pollutants (e.g. ozone), that factor in 209 

meteorological and chemical processes. These approaches have been used to forecast local 210 

surface ozone (Cobourn, 2007; Prybutok et al. 2000) and more recently trends of other 211 

atmospheric pollutants (Grange and Carslaw, 2019). Here we developed a boosted regression tree 212 

model using machine learning that is widely used in ecological modeling (Elith et al., 2008): for 213 

each variable we based the model on the following key astronomical and environmental driving 214 

variables: day of year (DOY), time of day (TOD), weekday/holiday (WDY), cartesian wind 215 

vectors (NS- and WE-direction), temperature (T), relative humidity (RH), global radiation (GR) 216 

and pressure (P). The model is setup using the machine learning toolbox in Matlab (Mathworks 217 

Inc, USA) and trained for individual datasets until February 29th 2020 or during key reference 218 

periods (SI Table S1). The model performance was assessed by comparing predicted and 219 

observed quantities using reference datasets (SI Table S2). To obtain a quantitative measure of 220 

emission changes, the differences between observed and predicted fluxes are integrated from the 221 

beginning of the lockdown period. As the predicted and observed quantities diverge, the 222 

integrated relative difference serves as a quantitative measure of emission (or activity) alteration 223 

(e.g. reduction). 224 

 225 

Multispecies Pollutant Model 226 

Based on two major and distinct urban pollution sources (ie. road traffic and energy 227 

production in the residential, public and commercial sectors) proportional contributions to the 228 

observed flux changes can be attributed based on a two end member mixing model: Traffic 229 

emissions are primarily related to exhaust from internal combustion engines. The Austrian 230 

passenger car fleet is comprised of 43% gasoline and 55% Diesel driven cars (Statistik, Austria, 231 

2020, www.statistik.at ), with the latter being a key player for urban NOx emissions. The second 232 

significant emission source stems from fossil energy production in the residential, public and 233 

commercial sectors with a significant contribution of natural gas combustion. In its simplest form 234 

we can therefore aggregate the observed flux changes into two main emission source categories 235 

using a two end member mixing model: 236 

 237 

δF(s)

F(s)
= as ∗

δT

T
+ bs ∗

δR

R
+ ε,          (4) 238 

 239 

http://www.statistik.at/
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where 
δF(s)

F(s)
  is the measured relative flux difference between the boosted regression tree model 240 

output and the actual flux observations of species s (e.g. NOx, CO2, aromatic NMVOC), 
δT

T
 is the 241 

traffic load difference determined from traffic count data, 
δR

R
 is the residential energy consumption 242 

change, as and bs are proportionality terms, and ε is an error term. The proportionality terms (as 243 

and bs ) represent the area weighted emission factors of the fleet average traffic (as) and  RCP 244 

sector (bs). By definition as + bs := 1, if only two sources are considered. 245 

 246 

Results 247 

 248 

The urban NO-NO2-O3 triad: Due to the short atmospheric lifetime (e.g. up to 7 h 249 

(Laughner and Cohen, 2019)) nitrogen oxides can serve as a gage to assess air pollution changes 250 

as their atmospheric concentrations rapidly respond to shifting surface fluxes. The  quantitative 251 

assessment of NOx emissions based on ambient air concentrations however remains challenging 252 

due to non-linearities within the NO-NO2-O3 triad in polluted regions (Lenschow et al., 2016). 253 

Under sun-light conditions and high NOx pollution the cycling between the NO-NO2-O3 triad is 254 

described by the following  reaction sequence: 255 

 256 

NO2 + hν → NO + O           (5) 257 

O + O2 → O3            (6) 258 

NO + O3 → NO2 + O2          (7) 259 

 260 

The chemical timescale of the NOx triad (eq 5 to 7)  can be derived (Lenschow and Delany, 1987) 261 

as 262 

τ =
2

√[j2+k3
2([O3]−[NO])

2+2j∙k3([O3]+[NO]+2∙[NO2])]

      (8) 263 

 264 

For typical conditions encountered during this study, this equates to timescales of about 265 

100 s, comparable to the vertical turbulent exchange time in cities. Due to the rapid 266 

interconversion, the partitioning between NO and NO2 is typically dominated by fast chemistry, 267 

and the bulk of NO2 in the urban atmosphere is produced secondarily via the reaction of NO and 268 

O3. In the urban atmosphere this leads to a non-linear relationship between NO2 and NOx 269 

concentrations as depicted in Fig. 2. A repartitioning can be observed during the suppression 270 

phase for example, when the NO2 to NOx trajectory moves from an urban NOx saturated regime to 271 

a more NOx limited regime. During the SARS-CoV2 lockdown this shift was more pronounced 272 
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than for typical weekend-weekday variations (Fig 2 B,C). As a consequence the relationship 273 

between changes of  NOx fluxes and NO2 concentrations becomes a non-linear function of NOx 274 

concentrations when moving from NOx saturated to NOx limited conditions. Data from a nearby 275 

air quality station support these conclusions showing significantly different NOx concentrations 276 

during the 2020 lockdown compared to the previous 5 years (ie. a 50% reduction of NOx), but no 277 

significant change for Ox (:= NO2+O3) based on the z hypothesis test. This chemical repartitioning 278 

and vertical redistribution in the surface layer needs to be accounted for when quantifying 279 

changing NOx emissions from concentrations. A more quantitative picture of changing NOx 280 

emissions can be obtained from direct flux measurements that are intrinsically linked to surface 281 

emissions (Vaughan et al., 2016). 282 

Fig. 3 gives an overview of NOx and CO2 fluxes which have been continuously measured 283 

at the study site in Central Europe since 2018. In addition, we have performed regular field 284 

campaigns augmenting these long-term datasets with NMVOC flux measurements (Karl et al., 285 

2020). While atmospheric concentrations of primary air pollutants often exhibit strong surface 286 

maxima due to inversion layers during winter and spring, the corresponding emission fluxes 287 

typically track urban emission source activity and reflect changes in emission strengths and flux 288 

footprint.  Turbulent fluxes typically exhibit midday maxima, reflecting increases in urban 289 

emission sources, which in the case of nitrogen oxides closely follow traffic load patterns (Karl et 290 

al., 2017). Urban CO2 fluxes follow these general trends, but are to some extent less pronounced 291 

(e.g. weekend-weekday effect). During the vegetation period, CO2 emission fluxes can be 292 

suppressed (Ward et al., 2015) due to photosynthetic uptake by urban plants. For Innsbruck, we 293 

have assessed this effect previously and find that within the flux footprint the contribution of 294 

vegetation is relatively small (ie. only about 10% of the urban surface within the flux footprint is 295 

covered by plants). Urban CO2 fluxes are therefore primarily controlled by combustion processes. 296 

The flux site is situated in a valley with two dominant wind sectors, which cover a typical inner 297 

city residential and business district (Fig. 1) with no significant industrial activities. In order to 298 

quantitatively investigate emission flux changes in response to SARS-CoV2 intervention 299 

measures, we implemented a boosted regression tree model to define a business as usual scenario 300 

of the observed fluxes (Duffy and Helmbold, 2002). The model allows factoring in differences in 301 

weather patterns (e.g. meteorological variations such as temperature, wind direction and flux 302 

footprint etc.), and describes changes that can be primarily attributed to the intervention itself. 303 

Accounting for seasonal differences is key to an accurate analysis of emission alterations due to 304 

lockdown measures. The essential time period of pre and post-lockdown measures in Europe 305 

spans from March to about May 2020. Weather patterns in Europe can be particularly variable 306 
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during this period as the continent transitions from winter to summer. The climate of Tyrol is 307 

fairly representative of central Europe, where the transitional period between March to May can 308 

exhibit significant synoptic variability. For example, average monthly temperatures in March 309 

2020 were about 0.9 K colder than in 2019. April and May 2020 tended to be 1.8 and 3.2 K 310 

warmer than 2019. Warmer temperatures in spring 2020 resulted in 24% fewer degree heating 311 

days (DHT) than in the year 2019 (SI). Consistent with these observations, natural gas 312 

consumption in Tirol (SI) was reported to be 25% lower during this period than in 2019. We can 313 

quantify changes of the observed fluxes due to the lockdown intervention in spring 2020  by 314 

referencing actual flux measurements to results from a trained boosted regression tree model (Fig. 315 

4). 316 

Shortly after the European SARS-CoV2 outbreak first sparked in Italy, which was among 317 

the first European countries, the greater part of the Alps was under lockdown by Mid-March to 318 

inhibit cross-border transmission. Tyrol implemented extensive measures of shelter in place and a 319 

state wide quarantine (QA) on top of the Austrian lockdown (LO) on March 16th, one week after 320 

all Universities closed. At the same time, European wide measures of border control impacted all 321 

major north-south transport corridors to Italy. These measures resulted in massively reduced local 322 

mobility in combination with significant disruptions of one of the major transport routes across 323 

the Alps. As a consequence, average traffic loads in Innsbruck decreased by ~64%. The traffic 324 

data allow partitioning traffic into ‘all vehicles’, ‘truck-similar vehicles’, ‘HDV’ and ‘semi trailer 325 

trucks’. The reductions were 64% (all vehicles), 40% (truck-similar vehicles), 35% (HDV) and 326 

21% (semi trailer trucks). Since it is an inner-city location the fraction of passenger cars 327 

dominate. In absolute numbers, the distribution is dominated by passenger cars (<3.5t) amounting 328 

to 95% of all traffic, with the remainder attributed to the truck categories. The Austrian rate of 329 

infections reached a peak of 900 newly confirmed cases per day in Mid-March and started to 330 

decline at the end of March. Along with efforts to reduce SARS-CoV2 transmission, the shelter in 331 

place legislation resulted in a rapid decline of NOx, CO2 and aromatic NMVOC (benzene, 332 

toluene, xylenes+ethylbenzene, and C9 benzenes) fluxes (Fig. 4 A) reaching significantly lower 333 

emission fluxes relative to the “business as usual”  scenario. The cumulative reduction of surface 334 

emissions of air pollutants (NOx and aromatic NMVOC) closely follows traffic (Fig. 4 B and C), 335 

declining by about 64% during the lock-down period. At the end of the Austrian Lockdown, 336 

traffic counts and integrated emissions of NOx, and aromatic NMVOC were -64 %, -59%, and -337 

56% lower compared to the business as usual scenario. This is significantly lower than the 338 

observed reduction of CO2 fluxes leveling out at about -38%. Notably benzene emissions also 339 

declined less pronounced than toluene and higher aromatic NMVOC, which track NOx and traffic 340 
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loads more closely. These different sensitivities indicate a non-linear relationship between the 341 

reduction of carbon dioxide and air pollution gases due to different urban combustion sources. 342 

Particularly reductions of NOx and CO2 exhibit quite different emission trajectories during the 343 

lockdown phase (Fig. 5). The observed reduction of air pollution gases, such as NOx, is 344 

significantly larger than estimated by early bottom-up model predictions for expected NOx to CO2 345 

emission changes (Quéré et al., 2020). Can these observations be reconciled with bottom-up 346 

emission projections?  347 

 348 

 349 

Discussion 350 

Our analysis indicates that the reduction of classic air pollutant emissions during the 351 

SARS-CoV2 lockdown was more significant than that of CO2 which comes as surprise. 352 

Comparable to most European countries, Austrian specific bottom up emission models typically 353 

attribute 40% of CO2 emissions to traffic and 19% to the residential, commercial and public 354 

(RCP) sector (UBA, 2019). For NOx,  Austrian and European bottom-up emission projections 355 

predict similar contributions (ie. 58% from traffic and 12% from the RCP sector). In its simplest 356 

form, by using a two member pollutant model, we can test these assumptions in more detail, and 357 

compare our observations with an Austrian state of the art emission model (www.emikat.at) used 358 

for national emission reporting. For the analysis we take advantage of the fact that the seasonal 359 

influence on pollutant fluxes is factored in by referencing the flux analysis to the trained boosted 360 

regression tree model. Further, measured relative reductions of vehicle counts are assumed to 361 

represent the decrease of traffic activity reasonably well. We are then left with constraining the 362 

intervention specific changes in the RCP sector. We argue that these must not have changed 363 

much, because (a) heating appliances are primarily driven by temperature (Liu et al., 2020b) 364 

(accounted for by our analysis) (b) changes in electricity needs do not enter the local pollutant 365 

budget, and (c) less time spent in commercial/public buildings was compensated by more time in 366 

residential buildings. Google mobility reports (Alphabet Inc., 2020) based on cellphone tracking 367 

suggest a 20% increase in time spent in the residential sector  and a 30% decrease in the 368 

commercial/public sector for Tyrol during the lockdown period. The energy mix in Innsbruck for 369 

heating demand is partitioned in residential and ‘other’ (Land Tirol). The relative contributions to 370 

the energy mix for heating in these two broad categories are comparable. In the residential sector 371 

it is comprised of 9% district heating, 34% oil, 34% natural gas, 16 % biomass, 6 % electricity 372 

and the remainder (1%) attributed to alternative energy. The category ‘other’ (i.e. everything else) 373 

is comprised of 4% district heating, 37% oil, 42% gas, 11% biomass, 4% electricity, and the 374 

http://www.emikat.at/
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remainder (2%) attributed to alternative energy.  Liu et al. (2020) estimated a decline of 375 

commercial and residential emissions by 3.6%,  Le Quéré et al. (2020) assumed an increase of 376 

residential emissions by 4% and a decrease in the public sector by 33% for Europe. As a 377 

conservative estimate we bracket changes in the RCP sector activity between 0 and  -20%, with a 378 

best estimate based on the local Google mobility index (-10%). The observed  flux changes can 379 

then be partitioned into NOx emissions from vehicular traffic ( 94−11
+2 %) and the RCP sector 380 

(6−2
+11%) accordingly. For CO2, benzene, toluene and the sum of aromatic NMVOC we calculate  381 

59−10
+7 %, 70−7

+5%, 94−11
+2 %, and 87−11

+2 % arising from vehicular traffic emissions, and 41−11
+7 %,  382 

30−8
+5%, 6−1

+11%, and 13−3
+2% respectively, coming from the RCP sector. These results suggest that 383 

NOx is dominated by vehicular traffic emissions and that CO2 is partitioned more equally between 384 

the traffic and RCP sectors. In contrast, urban NMVOC emissions are generally more diverse 385 

(Karl et al., 2018). Here we investigate aromatic NMVOC, that are closely linked to combustion 386 

processes and fossil fuel use (EPA, 1998). We observe that toluene and higher aromatic 387 

NMVOCs closely track reductions of NOx emissions and vehicular traffic activity. Benzene 388 

declined less readily, suggesting that benzene emissions could be more prevalent from the RCP 389 

sector. Speciated NMVOC emission factors from residential gas and oil combustion are still quite 390 

uncertain, but recent reports from shale gas operations in the US for example indicate a higher 391 

contribution of benzene than toluene emissions from natural gas combustion when compared to 392 

traffic sources (Gilman et al., 2013; Halliday et al., 2016; Helmig et al., 2014).  393 

After mapping NOx and CO2 emissions from a spatially disaggregated emission model on 394 

the seasonal flux footprint (SI), the observationally inferred results from above can be compared 395 

to the relative attribution of inventory based emission projections. As for NOx and CO2, the 396 

official local bottom up emission inventory apportions 78% of NOx fluxes coming from vehicular 397 

traffic, and 21%  from the RCP sector. For CO2 these relative contributions are 54% (traffic 398 

sector) and 46% (RCP sector), respectively. These inventory based results are roughly in line with 399 

a recently published bottom-up assessment for CO2 emissions (Quéré et al., 2020). We also find 400 

that CO2 fluxes are consistent with the relative emission attribution in the inventory, but that NOx 401 

emissions are significantly overestimated from the RCP sector (e.g. 21% vs 6%) in favor of traffic 402 

(Fig. 4). This suggests cleaner NOx combustion sources in the RCP sector and higher NOx 403 

emissions from the traffic sector. 404 

The European gas demand has increased significantly over the past decades (European 405 

Commission, 2020). As an example, consumption of natural gas increased by about a factor of 4 406 

in Austria (Statistik Austria, 2019) since 1965, and has expanded to 9 billion m3. Across Europe 407 

growing demand has increased dependence on gas imports, triggering fierce competition between 408 
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major gas producing nations (European Commission, 2020). Apart from the power sector, 409 

residential demand has contributed significantly to the overall consumption growth across Europe 410 

(European Commission, 2020). While residential gas consumption per inhabitant varies quite 411 

drastically across European countries, many countries have invested in developing the residential 412 

sector towards a higher fraction of natural gas by fuel subsidy policies. Particularly urban areas, 413 

where gas infrastructure is in place, have seen significant growth. As an example, the residential 414 

energy sector has seen a doubling of the natural gas share for space heating appliances in Western 415 

Austria over the last 9 years (Statistik Austria, 2019). In parallel, oil and solid fuel consumption 416 

have decreased by about 40% in the residential sector over the same period. On average, gas 417 

represents about a third of the final energy consumption in the residential sector in Austria and 418 

across Europe (European Commission, 2020). One of the reasons for promoting natural gas 419 

through subsidies in the past was that gas combustion releases about 25% less CO2 than oil and 420 

40% less than solid fuels (IEA, 2020). In addition to more efficient energy production, natural gas 421 

combustion releases less air toxics, such as NOx, CO, NMVOC and SO2,  when compared to 422 

biomass and other solid fuels (EEA, 2019). However, emissions from the RCP sector are quite 423 

uncertain and often rely on TIER I upscaling methodology (Blain et al., 2019; EEA, 2019). As the 424 

European community is committed to transitioning to a carbon-neutral economy (OECD, 2015), 425 

the air quality benefit from natural gas in the residential sector needs to be considered, 426 

particularly when introducing renewable alternatives such as wood and pellet combustion on a 427 

large scale. Our data suggest that the air quality benefit for the release of reactive nitrogen in the 428 

RCP sector might have been underestimated in bottom-up emission inventories used for policy 429 

making. Official inventory data show that the increase of natural gas combustion in the RCP 430 

played a significant role in Europe’s energy policy. Wood combustion on the other hand would 431 

release significant amounts of reactive nitrogen in the gas and aerosol phase depending on fuel N 432 

content (Roberts et al., 2020). While pellet combustion is considered cleaner than wood 433 

combustion, TIER I emission factors for NOx are still about twice as high compared to natural gas 434 

combustion, and the release of aerosols is of particular concern (EEA, 2019). When transitioning 435 

to a climate neutral economy, the air quality penalty arising from some renewables needs to be 436 

sustainable. From the present analysis we find that the biggest gain for the reduction of urban NOx 437 

in Europe remains in the mobility sector, and that NOx emissions from the RCP sector are 438 

significantly lower than expected. Europe’s push towards a Diesel driven car fleet has helped to 439 

curb CO2 emissions in the mobility sector, but created excess emissions of nitrogen oxides. While 440 

the extent of cheating devices used in cars to simulate lower than actual NOx emissions is still 441 

unravelling, aggressive reductions of nitrogen oxides are needed to meet Europe’s air quality 442 
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goals (EU-EUR-Lex, 2008). A significant NOx emission reduction in the mobility sector could 443 

help counteract potential increases of air pollutants from promoted renewables such as biomass 444 

combustion in the future. Urban eddy flux methods present a top down methodology allowing to 445 

quantify and test urban sustainability goals of air pollution and climate gas emissions. In 446 

combination with an intervention experiment as shown here they can provide a unique and 447 

independent verification method of anticipated air quality and climate policy targets. 448 

 449 
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 687 

Figures 688 

 689 
 690 

Fig. 1: Flux footprint surrounding the IAO tower plotted on top of a gridded landuse map derived 691 

from OpenStreetMap (© OpenStreetMap contributors 2020. Distributed under a Creative 692 

Commons BY-SA License). 693 
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 695 
 696 

Fig. 2 (A): Time series of ambient NO2 and NOx mixing ratios before and during the lockdown. 697 

Shaded gray vertical bars indicate weekends. The gray vertical solid line depicts the start 698 

of lockdown measures on March 16th 2020; (B): NO2 vs NOx during weekdays (Tuesday 699 

to Thursday); (C):  NO2 vs NOx on Sundays 700 
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 701 
Fig. 3 Diurnal variations of CO2 (A) and NOx (B) fluxes since 2018. 702 
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 704 

 705 
Fig. 4. Observed changes of air pollutant fluxes, CO2 flux and traffic during the course of the first 706 

SARS-CoV2 wave: (A) Normalized traffic counts, daily infection rate and daily average 707 

flux reduction. (B) Cumulative reduction of NOx, and CO2 fluxes and traffic activity. (C) 708 

Cumulative reduction of aromatic VOCs (AVOC), toluene (TOL) and benzene (BEN) 709 

fluxes. Red vertical lines indicate the start of University closure, Austrian Lockdown 710 

(LO), school closure (SCL) and quarantine (QA) in the state of Tyrol. Green vertical lines 711 

show the lifting of mobility restrictions. Light shaded areas represent the uncertainty of 712 

the boosted regression tree model analysis (SI). 713 
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 715 

 716 
Fig. 5. Daily change of CO2 and NOx fluxes during the lockdown period. Flux observations are 717 

depicted by the blue dots. Emission model projections are represented by the solid orange 718 

line (Austrian emission inventory) and the dashed red line (Quéré et al., 2020). 719 
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