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Abstract. In this research, we reveal the inter-connection between lightning strokes, reversal of the electric field, ionospheric 25 

disturbances, and a sodium layer (NaS), based on the joint observations by a Temperature/Wind (T/W) lidar, an ionosonde, 

an atmospheric electric mill, a fluxgate magnetometer, and the World Wide Lightning Location Network (WWLLN). Our 

results suggest that lightning strokes could trigger or amplify the formation of a NaS layer in a descending sporadic E layer 

(ES), through a mechanism that involves overturning of the electric field. A conjunction between the lower and upper 

atmospheres could be established by these inter-connected phenomena, and the key processes could be suggested as follows: 30 

lightning strokes →overturning of electric field →ES generating NaS.  
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1 Introduction 

The upper mesosphere-lower thermosphere (MLT) is the interface region for momentum and energy exchanges 

between the Earth’s low atmosphere and outer space. However, on account of the limitations of detection methods, this 

region remains the least known part of our planet’s atmosphere (Wang, 2010). Fortunately, the metal layers (especially the 

sodium layer), which located between about 80 ~ 110 km, could possibly act as a window to detect the MLT parameters by 5 

means of fluorescence resonance lidars (Gardner et al., 1986; Gong et al., 2002; Gong et al., 1997). With an active chemical 

property, the large resonant backscatter cross section, and high abundance of sodium atoms, the sodium layer has been 

widely observed and studied all over the world (Marsh et al., 2013; Collins et al., 2002; Plane, 2003; Plane et al., 1999). The 

sporadic sodium layer (SSL or NaS), with the neutral sodium density that could double within several minutes, is the most 

fantastic phenomenon observed from the sodium layer. Since first reported in 1978 (Clemesha et al., 1978), many 10 

mechanisms, involving meteor injection (Clemesha et al., 1980), dust reservoir (von Zahn et al., 1987), recombination of 

ions and electrons in sporadic E layer (ES) (Cox and Plane, 1998), and high temperature theory (Zhou et al., 1993), have all 

been proposed. Because the NaS is suggested to have a connection to so many atmospheric parameters, the metric or 

phenomenon could be appropriate in acting as a tracer for studying inter-connection between the middle and upper 

atmospheres. Up to now, a large number of observations report a diversity of the NaS features, but the exact mechanism for 15 

NaS is probably still uncertain (Collins et al., 2002; Cox et al., 1993; Daire et al., 2002; Gardner et al., 1995; Qiu et al., 2015; 

Zhou and Mathews, 1995; Zhou et al., 1993).  

Among all the proposed mechanisms, the ES theory is supported by abundant observations and results from numerical 

simulations (Cox and Plane, 1998; Daire et al., 2002; Dou et al., 2009; Dou et al., 2010; Gardner et al., 1993; Gong et al., 

2002; Kane et al., 2001; Kane et al., 1993; Kane et al., 1991; Kirkwood and Nilsson, 2000; Kwon et al., 1988; Mathews et al., 20 

1993; Miyagawa et al., 1999; Nagasawa and Abo, 1995; Nesse et al., 2008; Shibata et al., 2006; Williams et al., 2006). The 

key process of ES theory is the recombination of ions and electrons in the ES layer while descending to lower altitudes (Cox 

and Plane, 1998; Daire et al., 2002). The ES layer is mainly influenced by the vertical wind shear (Abdu et al., 2003; 

Clemesha et al., 1998; Haldoupis et al., 2004; Mathews, 1998; Šauli and Bourdillon, 2008; Wakabayashi and Ono, 2005), the 

geomagnetic field (Resende et al., 2013; Resende and Denardini, 2012; Zhang et al., 2015; Denardini et al., 2016), and the 25 

electric field (Abdu et al., 2003; Damtie et al., 2003; Haldoupis et al., 2004; Kirkwood and Nilsson, 2000; Kirkwood and von 

Zahn, 1991; Macdougall and Jayachandran, 2005; Matuura et al., 2013; Nygren et al., 2006; Parkinson et al., 1998; 

Takahashi et al., 2015; Voiculescu et al., 2006; Wakabayashi and Ono, 2005; Wan et al., 2001; Wilkinson et al., 1993). In 

the Northern Hemisphere, the ES layer would descend to a lower altitude during southward electric field (Abdu et al., 2003; 

Damtie et al., 2003; Haldoupis et al., 2004; Kirkwood and Nilsson, 2000; Kirkwood and von Zahn, 1991; Macdougall and 30 

Jayachandran, 2005; Nygrén et al., 2006; Parkinson et al., 1998; Takahashi et al., 2015; Voiculescu et al., 2006; 

Wakabayashi and Ono, 2005; Wan et al., 2001; Wilkinson et al., 1993), and observations in the polar cap suggest the electric 

field reversal have an influence on the probability of ES occurrences (Macdougall and Jayachandran, 2005).  
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On the other hand, the atmospheric electric circuit is a closed loop (Driscoll et al., 1992; Jánský and Pasko, 2014; Lv et 

al., 2004; Roble and Hays, 1979; Rycroft and Harrison, 2012; Rycroft et al., 2000; Suparta and Fraser, 2012; Tinsley, 2000), 

like a capacitor with a positive plate (e.g., the ionosphere) and a negative plate (e.g., the ground), and dielectric medium 

between them (e.g., the neutral atmosphere). Then the global atmospheric electric circuit formed in the capacitor, with the 

lightning phenomena generating an upward current (with the atmospheric electric field intensity E<0) and returning a 5 

downward current (E>0) under fair weather condition. Nowadays increasing and emerging evidences are pointing to the 

close link between the upper atmosphere (e.g., the positive plate) and lower atmosphere (e.g., the negative plate) (Harrison et 

al., 2010; Rycroft, 2006). For example, thunderstorm occurring in the lower atmosphere is suggested to have a direct impact 

on the ES layer based on recent observational results (Bortnik et al., 2006; Christos, 2018; Cummer et al., 2009; Curtius et al., 

2006; Davis and Johnson, 2005; Davis and Lo, 2008; England et al., 2006; Fukunishi et al., 1996; Girish and Eapen, 2008; 10 

Haldoupis et al., 2012; Immel et al., 2013;  Kumar et al., 2009; Kuo and Lee, 2015; Lay et al., 2015; Mangla et al., 2016; 

Maruyama, 2006; Pasko et al., 2002; Rodger et al., 2001; Rycroft, 2006; Sátori et al., 2013; Sentman and Wescott, 1995; 

Shao et al., 2013; Sharma et al., 2004; Su et al., 2003; Surkov et al., 2006; Yu et al., 2015) or even the sodium layer (Yu et 

al., 2017). The possible carriers or phenomena connecting the thunderstorm to the upper atmosphere are suggested to be 

atmospheric tides (England et al., 2006; Haldoupis et al., 2004; Immel et al., 2013), planetary waves (Lv et al., 2004), gravity 15 

waves (Davis and Johnson, 2005; Kumar et al., 2009; Lay et al., 2015;  Shao et al., 2013), transient luminous event (TLEs) 

(Cummer et al., 2009; Fukunishi et al., 1996; Haldoupis et al., 2012; Pasko, 2008; Pasko et al., 2002; Sentman and Wescott, 

1995; Sharma et al., 2004; Su et al., 2003), the solar activity (Zhang et al., 2020), and also the electric fields (Bortnik et al., 

2006; Davis and Johnson, 2005; Davis and Lo, 2008; Immel et al., 2013; Kuo and Lee, 2015; Maruyama, 2006; Rycroft, 

2006; Sátori et al., 2013; Shao et al., 2013). 20 

In this research, we apply five joint observations for our case studies and statistical works: (1) One T/W lidar at Hefei 

(31.8°N, 117.2°E), providing observations of sodium density, mesopause temperature and zonal wind; (2) An ionosonde in 

Wuhan (30.5°N，114.6°E), detecting the ES and ionospheric echoes in different modes; (3) An atmospheric electric mill 

(30.5°N, 114.5°E), giving simultaneous electric field variations; (4) A fluxgate magnetometer (30.5°N, 114.5°E), probing the 

H, D, and Z magnetic field components; and (5) The World Wide Lightning Location Network (WWLLN), observing the 25 

location and power of a lightning stroke. The purpose of this study is to examine the possibility of NaS acting as a practical 

robust tracer for the conjunction between the upper and lower atmospheres. Our results suggest that lightning strokes may 

have an influence on the lower ionosphere leading to the occurrence of NaS, with the atmospheric electric field probably 

playing an important role. 
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2 Observations and results 

2.1 An NaS event during the overturning of electric field 

A sporadic sodium layer is detected on the night of June 3rd, 2013, by the T/W lidar (Li et al., 2012). The peak density 

observed by the west beam of the T/W lidar is 8650 cm-3. This NaS event occurs much higher above the centroid height of 

sodium layer (normally at about 92 km) (Qiu et al., 2016). Fig. 1a shows the sodium density begins to increase at about 5 

13:20 UT, while the largest intensity of sodium enhancement occurs from about 14:20 UT, with a peak density located 

around 97.65 km at 14:37 UT. The simultaneous temperature observation by the T/W lidar reveals this NaS occurs in a cold 

region (Fig. 1b), so the high temperature mechanism appears to be inapplicable for this event.  

On the other hand, the zonal wind exhibits a suitable wind shear for creating those sporadic E layers, with a westward 

wind above and an eastward wind below (Fig. 1c). The ES layer is predicted to form around the border of the wind shear. 10 

Observations by the ionosonde at Wuhan indeed show active sporadic E layers on that day (Fig. 2a and b). The ES series 

keep travelling/propagating downward starting around 6:30 UT, and decreased to a minimum value while the NaS occurs 

coincidently on about 13:20 UT. Thus this NaS is better explained by the ES mechanism, in accord with our previous study 

which shows that a NaS higher than 96 km tends to be controlled by the ES mechanism (Qiu et al., 2016). Although the 

content of sodium ions in ES layers seemed to have insufficient concentration (von Zahn et al., 1989), it has also been 15 

proposed that the ions could be concentrated by the wind shear effectively (Clemesha et al., 1999; Cox and Plane, 1998; 

Nesse et al., 2008). On the other hand, laboratory results show that the ligand complexes of Na+∙X would form and thus 

speed up the recombination of ions in the mesopause condition (Collins et al., 2002; Cox and Plane, 1998; Daire et al., 2002). 

The calculated reaction rate suggests the formation of cluster ions is enhanced at lower temperatures, in accordance with the 

cold region observed in Fig. 1c where the sporadic sodium layer occurs. 20 

More details about the atmospheric parameters are shown in Fig. 3. The time series of sodium density on the peak 

height display a sharp enhancement from 14:20 UT (marked by the vertical red dashed line in Fig. 3a). The atmospheric 

electric field detected by the mill exhibits an overturning at around 14:20 UT, alternating from downward direction to 

upward (Fig. 3b). It can be clearly observed that the enhancement of sodium density occurs coincidentally with the 

overturning of electric field, as highlighted by the vertical red dashed line in Fig. 3. A nearby fluxgate magnetometer 25 

provides the horizontal magnetic field H (nT) (Fig. 3c), showing disturbances at 14:15 UT. The total magnetic intensity B 

could be deduced by the H, Z, and D components (𝐵 = √𝐻2 + 𝐷2 + 𝑍2) from fluxgate magnetometer observations (the 

calculated values are plotted in Fig. 3d).  

It is worth noting that the overturning of atmospheric electric field discussed here is theoretically rough, since the 

electric field at the lower ionosphere will be modulated as well (e.g., with a value of several mV/m [Seyler et al., 2004)]). 30 

Nevertheless, model simulations from the electrodynamics show that the upward electric field in upper atmosphere is 

proportional to the source current in the troposphere (Driscoll et al., 1992), and that the upward current would continue 

transmitting to the heights of 100~130 km of the dynamo region where ES occurs most frequently (Rycroft et al., 2012). The 
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model, based on rocket observations, shows that the atmospheric electric field has a similar scale and the same polarity from 

the ground to the altitude of ionosphere (Abdu et al., 2003). Thus, the electric field detected by a ground-based mill could 

reasonably be a reflection of the actual situation in the lower ionosphere, at least for the trends and tendencies of variations.  

 

2.2 Possible influences by the atmospheric electric circuit  5 

The atmospheric electric circuit is formed by the ionosphere and ground surface with the dielectric medium (e.g., the 

neutral atmosphere) sandwiched between them (Driscoll et al., 1992; Harrison, 2020; Jánský and Pasko, 2014; Lv et al., 

2004; Roble and Hays, 1979; Rycroft and Harrison, 2012; Rycroft et al., 2000; Rycroft et al., 2012; Rycroft et al., 2007; 

Suparta and Fraser, 2012; Tinsley, 2000). The lightning phenomena and thunderstorms, acting as the electric generator for 

the circuit, drive an upward current to the ionosphere. In fair weather regime, the electric field directs downward to the earth 10 

surface (E > 0), making a closed global electric circuit (see Fig. A1 in Appendix). The electric field could vary through two 

distinct ways as follows: The first one is the changing magnetic field explained by the Faraday’s law (e.g. , ∇ × �⃗� = −
𝜕�⃗� 

𝜕𝑡
). 

However, observations by the fluxgate magnetometer show that there is just a small disturbance of magnetic field during the 

overturning of electric field. The other way is the electrostatic induction following the Coulomb’s law (�⃗� =
1

4𝜋𝜀0

𝑄

𝑟2 �̂�). The 

connection between the lightning stroke and the overturning of electric field could be explained by a classic thunderstorm 15 

charge model through the electric imaging method based on the Coulomb’s law (i.e., this model could be supported by a 

classic electrodynamics textbook written by D.J. Griffiths, 1999). A typical thundercloud (e.g., pairs of (Q1, −Q2) or (−Q3, 

Q4) in Fig. A1), with a dipole of positive charge located above a negative charge part, would produce an upward electric 

field toward the ionosphere (see more details in Appendix A).  

According to the observations from WWLLN, we find two regions (red ovals A and B in Fig. 4) with heavy lightning 20 

activities during the period of the NaS. Before the NaS occurrences, there were only a few powerful lightnings detected 

within about (25.1°N ~ 35.8°N) and (113.8°E ~ 118.1°E) during the period of 12 UT to 13:15 UT (just one strong stroke 

with a power of 43720.25 kW happening on 12:17 UT, at 25.7229°N and 117.3955°E). The continuous strongest lightnings 

with a power larger than 104 kW occur from 13:19 UT to 15:43 UT, mainly concentrating in two areas centered around 

(35.8°N, 118.1°E) and (25.1°N, 113.8°E). After 15:45 UT, no strong strokes were detected again within this area. Thus, the 25 

pairs of (Q1, −Q2) and (−Q3, Q4) could be referred to the lightning area of part A and B in Fig. 4. Since thunderstorms could 

trigger the breakdown process within a rather large area (Leblanc et al., 2008) and influenced the ionosphere with around 

more than 800 km range horizontally away from the lightning center (Johnson and Davis, 2006; Johnson et al., 1999), the 

whole area above might undergo a breakdown easily around Q1 ~ Q4 (e.g., the whole shadow zone in Fig. 4, involving the 

two strongest lightning areas and the two observing stations). 30 

In previous studies, lightning strokes in lower atmosphere were reported to cause a reduction of electrons of the 

ionosphere (Shao et al., 2013), and in reverse an enhancement of sodium density in the metal layer (Yu et al., 2017). Those 
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two scenarios are in accord with our current results presented above, with a depletion of ES and a consequential occurrence 

of NaS. Although such an idea/picture has been proposed long time ago (Griffiths, 1999), this is the first time that one can 

apply the imaging method for observing thunderstorms to explain the link between upper and lower atmospheres through an 

overturning of upward electric field. 

Furthermore, the results from different channels of Wuhan ionosonde exhibit extraordinary echoes in different modes 5 

during the lightning period (Fig. 5a to 5l). (a) ~ (c): From 13:15 UT to 13:45 UT, the echoes gradually increase. Note that the 

powerful lightning period begins on 13:15 UT as well, with the sodium density enhancement occurring on about 13:20 UT. 

(d) ~ (g): Most intense echo signals occur during 14:00 UT to 14:45 UT, while the largest intensity of sodium enhancement 

begins at 14:20 UT and the sodium density peaks at 14:40 UT. The overturning of electric field also occurs at 14:20 UT. (h) 

~ (j): From 15:00 UT to 15:30 UT, the signals weaken gradually; (k) ~ (l): The echoes vanish after 15:45 UT. Afterwards, no 10 

strong stroke detected again in the discussed area. Meanwhile, the ionospheric echoes diminish after 15:45 UT, and the 

overturning of electric field also recovers at about 15:30 UT. Thus, in this case the ionospheric echoes and the lightning 

activities exhibit an obvious synchronous behavior.  

3 Discussions 

Normally, the mid-latitude ES layers would be brought down gradually by tidal fluctuations (Mathews, 1998). The ES theory 15 

predicts that when a series of ES layers descend below 100 km, metal ions will be depleted through many chemical reactions 

involving ions and electrons (Cox and Plane, 1998). The main chemical reactions and corresponding rate coefficients for the 

sodium species under the mesopause condition are summarized in Table 1 (Cox and Plane, 1998; Jiao et al., 2017; Plane et 

al., 2015; Plane, 2004; Yuan et al., 2019). Application of reaction branching probabilities to reactions  3 to 11 yields the 

following first-order rate coefficients for the neutralization rates of Na+ ions (Plane, 2004): 20 

 

              𝑘(𝑁𝑎+ → 𝑁𝑎) = 𝑘3[𝑁2][𝑀] × 𝑃𝑟(𝑁𝑎+ ∙ 𝑁2 → 𝑁𝑎) + 𝑘4[𝐶𝑂2][𝑀] 

                = 𝑘3[𝑁2][𝑀] (
𝑘11[𝑒−]+𝑘5[𝐶𝑂2]

𝑘11[𝑒−]+𝑘5[𝐶𝑂2]+𝑘6[𝑂]×𝑃𝑟(𝑁𝑎𝑂+→𝑁𝑎+)
) + 𝑘4[𝐶𝑂2][𝑀] 

= 𝑘3[𝑁2][𝑀](
𝑘11[𝑒

−] + 𝑘5[𝐶𝑂2]

𝑘11[𝑒
−] + 𝑘5[𝐶𝑂2] + 𝑘6[𝑂] (

𝑘7[𝑂] + 𝑘9[𝑂2]
𝑘6[𝑂] + 𝑘8[𝑁2] + 𝑘9[𝑂2] + 𝑘10[𝐶𝑂2] + 𝑘11[𝑒

−]
)
) + 𝑘4[𝐶𝑂2][𝑀] 

where Pr denotes the branching probability. The first-order conversion rate of k (Na+→Na) can be computed as a function of 25 

height using typical values for N2, O2, O, CO2 from a WACCM-Na model (Yuan et al., 2019). The results are given in 
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Figure 6. The simulation results show an inflection point of k (Na+→Na) comes out at around 100 km, and below that 

altitude, the sodium ions would recombine with electrons efficiently through cycling chemical reactions under a large k value. 

Then the production rate of Na could be obtained from d[Na]/dt = k (Na+→Na)[Na+] (Plane, 2004). The number density of 

electrons 𝑛𝑒 could be retrieved through fo𝐸𝑆 =
𝜔𝑝𝑒

2𝜋
= (

𝑛𝑒𝑒
2

4𝜋2𝑚𝑒𝜀0
)

1

2
≈ 9√10−6𝑛𝑒, with foES in MHz and ne in cm-3(Bittencourt, 

2004). The foES observed at 14:45 UT equals to 5.75 MHz, indicating 𝑛𝑒 ≈ 1.24 × 104𝑓𝑜𝐸𝑆
2  = 4.1 × 105(𝑐𝑚−3). If the 5 

positive ions are mostly composed of metal ions, with an observed ratio of [Na+] to be 7.41 × 10−2 (Kopp, 1997), the 

estimated [Na+] equates to 3.03 × 104𝑐𝑚−3. The approximate value of k (Na+→Na) below 100 km is equal to  10−4𝑠−1. 

Then the production rate of Na d[Na]/dt = k (Na+→Na)[Na+] equals to 3.03 cm-3s-1, in accord with the required source 

strength of sodium atoms of 3 sodium atoms cm-3s-1 for the formation of NaS (Cox et al., 1993). 

Overall, this ES mechanism is most widely accepted. Figure 2(b) shows ES descending near 100 km at about 13:20 UT. 10 

Then the ES depletes, and a moderate enhancement of Na occurs from 13:30 UT to 14:00 UT (shown in Figure 1(a) and 3(a)). 

This increase in sodium density exhibits no obvious peak, which could probably be in accord with a normally descending ES 

governed by tides. In comparison, the peak profile of the NaS shows intense enhancement and sharp peak, indicating a 

distinct mechanism.  

On the other hand, a link between the reverse electric field and ES variations could be established through the 15 

acceleration of electrons. In classical electromagnetism, positive particles will move along the direction of electric field, and 

negative particles do the opposite (Griffiths, 1999). Since metal ions are much heavier than electrons, the ions would drag 

electrons to move/drift together; a process known as the bipolar diffusion (Griffiths, 1999). So during the initial phase under 

a quasi-equilibrium condition, the ions and electrons would co-move downward together along a southward electric field. In 

a partially ionized plasma, the characteristic frequencies for ions and electrons are associated with the collisions of the 20 

plasma particles with stationary neutrals (e.g., the electron–neutral collision frequency νen and the ion–neutral collision 

frequency νin). The collision frequency νsn for scattering of the plasma species s by the neutrals is 

                                                          𝜈𝑠𝑛 = 𝑛𝑛𝜎𝑠
𝑛𝑉𝑇𝑠 ,                                                               (Shukla and Mamun, 2002) 

where 𝑛𝑛 is the neutral number density, 

     𝜎𝑠
𝑛  is the scattering cross section (which is typically of the order of 5 × 10−15 cm2 and depends weakly on the 25 

temperature 𝑇𝑠), 

     and 𝑉𝑇𝑠 = (𝑘𝐵𝑇𝑠 𝑚𝑠⁄ )1 2⁄  is the thermal speed of the species s.      

Then under a nonequilibrium phase (e.g., at the point of the electric field overturning), each plasma species has a different 

relaxation time 𝜏 =
1

𝜈
  (the time needed for reestablishing equilibrium again through collisions). The relaxation time for ions 
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and electrons would be quite different in a partially ionized plasma with the electrons responding much faster than the 

heavier sodium ions do (since  𝑚𝑖 ≫ 𝑚𝑒 ). This discrepancy would cause a charge separation temporarily. The single 

electrons move opposite along the electric field, which means during the upward electric field they would be rapidly 

accelerated downward, while the ions could be regarded as essentially remaining unchanged. The electrons would reverse 

rapidly before the ions can respond similar to the velocity overshoot effect for electrons. During the relaxation phase, the 5 

recombination between electrons and ions would probably be triggered through collisions, because the relative impact 

velocity increases and the long-range attraction between the ion and electron becomes less effective. 

Based on the above results, a possible mechanism for NaS could be suggested by the following four steps: (1) Strong 

lightning strokes produce an upward atmospheric electric field toward the ionosphere; (2) The reverse of electric field would 

cause a temporary charge separation, leading to a trigger of recombination between electrons and ions; (3) When the ES 10 

descends below about 100 km, the sodium ions would recombine with electrons much more efficiently through cycling 

chemical reactions under a large k (Na+→Na) value; (4) The ES layers generate the formation of NaS. Thus, we propose that 

there would probably be a connection between the lightning strokes, overturning of the electric field, ionospheric 

disturbances, and also the NaS. A link between the lower and upper atmospheres could be established by carefully studying 

and examining these phenomena. However, we caution that the key processes for our proposed step (2) remained still quite 15 

uncertain. A more in-depth modelling study concerning both plasma and neutral molecules is needed in the future.  

4 Conclusions 

In this research, we study the conjunction between the lower and upper atmospheres, through the phenomena and 

processes of lightning strokes, overturning of the atmospheric electric field, ionospheric disturbance, plasma drift velocity 

reversal, and the formation and dissipation of sporadic sodium layer. The main findings of our results are summarized as 20 

follows: 

1. The NaS event discussed in the present case study shows a close relationship with ES activities rather than conforming 

with the prescriptions from the competing high temperature theory. 

2. The atmospheric electric field exhibits an overturning, opposite to the fair-weather downward field in the global 

circuit, in coincident with the depletion of ES and the consequent production of NaS.  25 

3. A typical thunderstorm, with a positive charge located above a negative charge layer, is shown to produce an upward 

electric field toward the ionosphere. Two regions with heavy lightning activities nearby are found during the overturning of 

the atmospheric electric field. 

4. Observations by the ionosonde exhibit extraordinary echoes during the lightning period and the temporal property of 

the echoes behaved synchronously with lightning activities.  30 

5. WACCM-Na model simulation results show that the calculated first-order rate coefficient k (Na+→Na) could 

probably explain the efficient recombination of Na+→Na in this NaS case study. 
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Our results support a physical connection between the lightning strokes, overturning of the electric field, ionospheric 

disturbances, and possibly the NaS phenomenon as well. A link between the lower and upper atmospheres could be 

established by the monitoring of NaS and related phenomena as follows: lightning strokes →overturning of electric field 

→ES generating NaS.  

 5 

 

Appendix A: Calculations for the induced upward electric field in the global electric circuit 

 

Figure A1: A diagram illustrates the global electric circuit. Part A: The atmospheric electric field under fair weather with a 

downward field returning from the ionosphere. Part B: The dynamo area, with thunderstorms generating an upward electric field 10 
towards the ionosphere. The electric field intensity 𝑬⊥  could be deduced through the electric imaging method. Part C: The 

deduced vertical electric field intensity at any point P within the thundercloud. Part D: The calculated 𝑬⊥ based on the electric 

imaging method. 

Suppose there is positive charge Q1 at the top of a thunderstorm, with a distance of d1 above the ground; and a negative 

charge―Q2 at the bottom with a distance of d2. Since the ground surface could be regarded as an infinite conducting plane, it 15 

would generate an induced charge. The boundary conditions here is:  

                                                                     U = 0    at  z=0                                

                                                                     U→0    at  infinity 

Under the uniqueness theorem, we can remove the ground surface if we put the postulated image charges of −Q1 and Q2 to 

the corresponding mirror points. Then for an arbitrary point P near the boundary, the vertical electric field equals to the 20 
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following expression according to the Coulomb’s law: 

                                               𝐸⊥ =
1

4𝜋𝜀0
[

2𝑄1ℎ1

(𝑑1
2+ℎ1

2)
3

2⁄
−

2𝑄2ℎ2

(𝑑2
2+ℎ2

2)
3

2⁄
] .                                                                  (Griffiths, 1999) 

In the simplest case, when Q1 equals to Q2 and d1=d2=d, 𝑬⊥ varies with the distance d. If Q2 is larger than Q1 (Q2 > Q1 > 0), 

and the negative charge −Q2 is more closed to the observing point P (d2 < d1), 𝑬⊥ would acquire negative values (e.g., with 

the upward direction). A brief simulation result is shown by part D, exhibiting a persistent negative values for  𝑬⊥. 5 

 

 

Data availability  

The data sets of three kinds of instruments at Wuhan (the ionosonde, electric mill and the fluxgate magnetometer) are 

publicly available from the Chinese Meridian Project database at http://data.meridianproject.ac.cn/. The access to the sodium 10 

density and temperature data by the USTC T/W lidar is referred to National Space Science Data Center, National Science & 

Technology Infrastructure of China (http://www.nssdc.ac.cn). The lightning location and power data can be downloaded 

from the World- Wide Lightning Location Network (http://wwlln.net/).  
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Figure 1: Observations on June 3rd, 2013, by the USTC T/W lidar. (a) The sodium density profile of the west beam by T/W lidar. A 

moderate increase of sodium density appears at about 13:20 UT, while the largest intensity of sodium enhancement begins at about 

14:20 UT. The sodium density peaks at 14:37 UT around 97.65 km. (b) Temperature profile observed by the T/W lidar, showing a 

cold region where the NaS occurs. (c)The zonal wind detected by the T/W lidar, exhibiting a suitable wind shear for the creation or 5 
formation of ES. 
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Figure 2: Sporadic E layers observed by the ionosonde at Wuhan (30.5°N，114.6°E). (a) The time series of the critical frequency 

for ES (foES). The ES layers travel/propagate downward starting around 6:30 UT, and decreased to a minimum value at about 

13:20 UT. (b) The visual height of ES (h’ES). The vertical blue dotted line annotates the beginning of the NaS around 13:20 UT, and 

the vertical red dashed line points out the time when the most intense sodium enhancement starts on 14:20 UT. 5 
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Figure 3: Observations of some atmospheric parameters and some deduced results. (a) Time series of sodium density variations at 

peak height 97.65 km, observed by the west beam of the T/W lidar. The sodium density begins to increase at about 14:20 UT. (b) 

Atmospheric electric field variations, exhibiting a synchronous overturning from 14:20 UT with the enhancement of sodium 

density (also pointed out by the vertical red dashed line). Note that there is another overturning peaking at 15:15 UT, without 5 
another NaS being produced, which could be explained by a depletion of ions in the ES. The electric field recovers at about 15:30 

UT. (c) Horizontal magnetic field observed by the fluxgate magnetometer. (d) The deduced magnetic induction intensity from 

observations of (H, D, Z) components by the fluxgate magnetometer (𝑩 = √𝑯𝟐 + 𝑫𝟐 + 𝒁𝟐).  
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Figure 4: The lightning strokes are detected by WWLLN. The continuous strongest lightnings with a power larger than 104 kW 

occur from 13:19 UT to 15:43 UT, mainly concentrating around areas within (35.8ºN, 118.1ºE) and (25.1ºN, 113.8ºE), respectively.  
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Figure 5: Extraordinary echoes by Wuhan ionosonde in different modes: (a) ~ (c): From 13:15 UT to 13:45 UT, the echoes 

gradually increase. Note that the powerful lightning period begins on 13:15 UT as well, with the sodium density enhancement and 

the ES depletion occurring on about 13:20 UT. (d) ~ (g): Most intense echo signals occur during 14:00 UT to 14:45 UT, while the 

largest intensity of sodium enhancement begins at 14:20 UT and the sodium density peaks at 14:40 UT. The overturning of electric 5 
field also occurs at 14:20 UT. (h) ~ (j): From 15:00 UT to 15:30 UT, the signals weaken gradually. (k) ~ (l): The echoes vanish after 

15:45 UT. Afterwards, no strong stroke detected again within the discussed area. Meanwhile, the ionospheric echoes diminish after 

15:45 UT, and the overturning of electric field also recovers at about 15:30 UT. 
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Figure 6:  WACCM-Na Model simulation results, with the x-axis in logarithmic coordinate. (a) Constituents of the species used for 

calculating k (Na+→Na). The number densities of CO2, O2, O, the total atmosphere density M and 𝑵𝟐 ≈ [𝑴] − [𝑶𝟐] − [𝑶] are 

derived from Yuan et al., 2019. The number density of electrons equals to 𝒏𝒆 ≈ 𝟏. 𝟐𝟒 × 𝟏𝟎𝟒𝒇𝒐𝑬𝑺
𝟐 (𝒄𝒎−𝟑). (b) The calculated first-

order rate coefficient k (Na+→Na), indicating much more efficient recombination below about 100 km. 5 
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Table 1: Ion-molecule reaction rate coefficients for Na summarized from previous reports (Cox and Plane, 1998; Jiao et al., 2017; 

Plane et al., 2015; Plane, 2004; Yuan et al., 2019). 

 

No. Reaction Rate Coefficienta 

1 𝑵𝒂 + 𝑶𝟐
+ → 𝑵𝒂+ + 𝑶𝟐 𝟐. 𝟕 × 𝟏𝟎−𝟗 

2 𝑵𝒂 + 𝑵𝑶+ → 𝑵𝒂+ + 𝑵𝑶 𝟖. 𝟎 × 𝟏𝟎−𝟏𝟎 

3 𝑵𝒂+ + 𝑵𝟐(+𝑴 = 𝑵𝟐 & 𝑶𝟐) → 𝑵𝒂+ ∙ 𝑵𝟐 𝟒. 𝟖 × 𝟏𝟎−𝟑𝟎(𝑻 ∕ 𝟐𝟎𝟎𝑲)−𝟐.𝟐 

4 𝑵𝒂+ + 𝑪𝑶𝟐(+𝑴) → 𝑵𝒂+ ∙ 𝑪𝑶𝟐 𝟑. 𝟕 × 𝟏𝟎−𝟐𝟗(𝑻 ∕ 𝟐𝟎𝟎𝑲)−𝟐.𝟖𝟒 

5 𝑵𝒂+ ∙ 𝑵𝟐 + 𝑪𝑶𝟐 → 𝑵𝒂+ ∙ 𝑪𝑶𝟐 + 𝑵𝟐 𝟔. 𝟎 × 𝟏𝟎−𝟏𝟎 

6 𝑵𝒂+ ∙ 𝑵𝟐 + 𝑶 → 𝑵𝒂𝑶+ + 𝑵𝟐 𝟒. 𝟎 × 𝟏𝟎−𝟏𝟎 

7 𝑵𝒂𝑶+ + 𝑶 → 𝑵𝒂+ + 𝑶𝟐 𝟏. 𝟎 × 𝟏𝟎−𝟏𝟏 

8 𝑵𝒂𝑶+ + 𝑵𝟐 → 𝑵𝒂+ ∙ 𝑵𝟐 + 𝑶 𝟏. 𝟎 × 𝟏𝟎−𝟏𝟐 

9 𝑵𝒂𝑶+ + 𝑶𝟐 → 𝑵𝒂+ + 𝑶𝟑 𝟓. 𝟎 × 𝟏𝟎−𝟏𝟐 

10 𝑵𝒂𝑶+ + 𝑪𝑶𝟐 → 𝑵𝒂+ ∙ 𝑪𝑶𝟐 + 𝑶 𝟔. 𝟎 × 𝟏𝟎−𝟏𝟎 

11 𝑵𝒂+ ∙ 𝑿 (𝑿 = 𝑶,𝑵𝟐, 𝑪𝑶𝟐) + 𝒆− → 𝑵𝒂 + 𝑿 𝟏. 𝟎 × 𝟏𝟎−𝟔(𝟐𝟎𝟎𝑲 ∕ 𝑻)𝟎.𝟓 

a Units: bimolecular reactions, cm3 molecule-1 s-1; termolecular reactions, cm6 molecule-2 s-1 
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