1 Supplementary Material for

2 Towards understanding the mechanisms of new particle formation

in the Eastern Mediterranean

- 4 Rima Baalbaki¹, Michael Pikridas², Tuija Jokinen¹, Tiia Laurila¹, Lubna Dada¹, Spyros Bezantakos², Lauri
- 5 Ahonen¹, Kimmo Neitola^{1,2}, Anne Maisser², Elie Bimenyimana², Aliki Christodoulou^{2,3}, Florin Unga²,
- 6 Chrysanthos Savvides⁴, Katrianne Lehtipalo^{1,5}, Juha Kangasluoma¹, George Biskos², Tuukka Petäjä¹, Veli-
- 7 Matti Kerminen¹, Jean Sciare², Markku Kulmala¹
- ¹Institute for Atmospheric and Earth System Research (INAR) / Physics, Faculty of Science, University of
 Helsinki, P.O. Box 64, Helsinki, 00014, Finland
- ²Climate & Atmosphere Research Centre (CARE-C), The Cyprus Institute, P.O. Box 27456, Nicosia, CY 1645, Cyprus
- 12 ³IMT Lille Douai, Université de Lille, SAGE Département Sciences de L'Atmosphère et Génie de
- 13 L'Environnement, 59000, Lille, France
- ⁴Ministry of Labour, Welfare and Social Insurance, Department of Labour Inspection (DLI), Nicosia, Cyprus
- 15 ⁵Finnish Meteorological Institute, Helsinki, Finland
- 16 Correspondence to: rima.baalbaki@helsinki.fi

17 1. Data availability

18 Table S1. Availability of hourly data (%) from the three particle measuring instruments.

Month	PSM	NAIS	SMPS
January	72.8	93.4	16.1
February	96.4	94.5	94.6
March	83.6	96.4	75.1
April	83.3	100.0	99.7
May	67.6	99.7	91.5
June	43.5	100.0	55.7
July	41.5	100.0	81.0
August	77.4	100.0	96.1
September	93.5	99.9	98.5
October	90.3	100.0	96.8
November	80.0	99.9	1.7
December	100.0	100.0	0.0

19 2. PSM setup, operation and data handling

20 2.1. PSM core sampling inlet

21 The PSM inlet design was first introduced by Kangasluoma et al. (2016). It is a simple design encompassing

22 a 6-mm tube fitted inside a 10-mm tube using a Swagelok T piece (Figure S1). In normal operating conditions,

the 3rd outlet of the T-piece is connected to vacuum which enables drawing higher flow through the 10-mm

tube than the PSM flow, allowing the PSM to sample from the middle of this flow and thus minimizing losses

25 caused by diffusion to the inlet walls (Figure S1a). During the background measurements, the 3rd outlet is

26 connected to particle-free pressurized air with a high enough flow rate allowing the PSM to sample this particle

Figure S1. A schematic of the PSM core sampling inlet during normal operation (a) and during background measurements (b).

30 2.2. PSM diluter

31 We used a prototype diluter which was designed at the University of Helsinki and later commercialized by Airmodus under the name "Airmodus nanoparticle diluter" (AND). The diluter has a cylindrical shape made 32 33 of three modules. The first module, from the air-sampling side, serves as a switchable ion filter which removes 34 charged ions and particles up to a certain size and allows the measurement of neutral particles only. In this 35 study the ion filter was turned off. The second module is a core sampling piece radially connected to a vacuum source which draws 5 lpm excess flow from the sampling air. The third module constitutes the dilution module 36 37 where clean dry air is introduced radially into the sampled air flow. The differential pressure across the dilution 38 unit is continuously monitored and is kept constant by a feedback mechanism to a PID controlled proportional 39 valve which determines the dilution flow required to keep the dilution ratio constant. The design of the diluter was made as compact as possible to reduce losses and optimize penetration efficiency. Additionally, the 40 dilution flow was monitored with a TSI flow meter and was used along with the pressure measurements to 41 42 determine and correct for the real-time dilution factor.

43 2.3. nCNC (PSM+CPC) inversion

- 44 In principle, the PSM is a mixing-type condensation particle counter but without the measuring optics. It uses
- diethylene glycol (DEG) to grow nano-sized particles (~1-3 nm) up to around 90 nm. Subsequently, these
- 46 particles enter the CPC and are further grown with butanol to sizes measurable by the CPC optical detector. In
- the first stage, the mixing ratio of DEG vapour with sample flow is scanned by continuously incrementing then
- decrementing the saturator flow between 0.1 and 1.3 liters per minute (lpm) while keeping the sample flow

49 constant. By varying the mixing ratio, the particle cut-off size is changed (i.e., at higher mixing ratio, smaller 50 particles are activated and grown thus lower cut-off is achieved). Therefore, the nCNC measures the total 51 particle concentration above a certain diameter and inversion algorithms are required to retrieve the size 52 distribution below 3 nm. The two most popular methods to invert PSM data are the kernel function method

and the step inversion method. The expectation-maximization (EM) method has been recently recommended

over the kernel method because it is less sensitive to random errors (Cai et al., 2018;Chan et al., 2020). Here,
we compare the kernel method and the EM method using PSM data from the whole measurement period. Data

56 pretreatment before inversion was done similarly for the two methods and included a:

- 57 1) Diagnostic check that identifies and removes erroneous data based on instrument diagnostics and flags.
- 58 2) Background subtraction: the instrumental background of the PSM was continuously monitored with daily automated random background (zero) checks. The background was subtracted from the measured data except in the cases were the background was very high (> 10% of the measured concentrations) then the corresponding data was deemed unusable until the background decreased to normal levels.
- 62 3) Correction for the time-delay between PSM and CPC which is typically ~5 seconds.
- 4) Noise filtering procedure achieved by applying a 6th order median filter on the one second resolution data.
- 5) Quality check using the method suggested by Chan et al. (2020).
- 6) Minimization of the inversion matrix using a saturator flow inversion window of 0.08 lpm which
 67 minimized the saturator flow (corresponding to cut-off diameter) scans from ~120 to 16 per one68 direction of the scan.
- 69 7) While pre-averaging before the inversion step is recommended for noisy data, here we did not pre-average in order to capture the fast variations in the data.
- 8) The minimized cut-offs matrix is differentiated to retrieve the concentration in each size bin which is
 the input for the kernel inversion method. This step is not necessary for the EM method which takes
 the cut-off matrix as input (the varying total particle concentration at each saturator flow rate). Further
 explanation about the theoretical approach of each inversion method can be found in Cai et al. (2018).

75 During the inversion step, four kernels corresponding to four size channels (dp), with the following diameters: 76 1.1 nm, 1.3nm, 1.5 nm, and 2.4 nm were used with the kernel inversion method whereas 50 kernels between 77 1.1 nm and 2.4 nm were used for the EM inversion method. The kernels are Gaussian-shaped and represent 78 the derivative of the laboratory-derived detection efficiency curves with respect to the saturator flow rate. The 79 median (μ) of the kernel function at each dp is equal to the saturator flow having half maximum detection 80 efficiency at this diameter, whereas the width i.e. standard deviation (σ) is equal to $p_1/(d_p+q_1)$ where p_1 and q_1 81 are fitting parameters derived from the calibration curve. An example of PSM calibration curve data is shown 82 in Figure 1 from Cai et al. (2018). Note that the actual input to the EM method is the detection efficiency 83 curves rather than the kernels.

After the inversion step, inverted data was transformed from dN/dd_P to $dN/dlogd_P$ and averaged to longer times: five minutes and one hour. The comparison of the inversion methods was made by comparing the total $dN/dlogd_P$ concentration from the kernel and EM methods to each other. The two methods were reasonably comparable using the one hour resolution data (Figure S2), although there is some scatter at low total concentrations, and the 5 min average data revealed sometimes considerable deviations. Here, we mainly use 1 hour resolution data for the presented analysis thus we chose to use the data from the kernel inversion method because it gave better uniformity for the particle size distribution below 3 nm.

Total dNdlogDp using E&M method (cm⁻³)

- 91 Figure S2. Comparison between total dN/dlogDp concentrations (cm⁻³) between 1.1 and 2.4 nm computed
- 92 from PSM data using the Kernel inversion method and the E&M method. Each data point represents one
- hour time resolution. Blue points represent data with global radiation lower than 50 W.m⁻² (night-time data).
- Green points represent data with global radiation higher than 50 $W.m^{-2}$ (day-time data). The red line
- 95 represents the 1:1 line.

96 **3.** NAIS inlet penetration efficiency

97 Figure S3. Penetration efficiency through the NAIS inlet based on a turbulent or laminar flow calculations.

98 4. SMPS hygroscopicity corrections

99 The "ambient" SMPS particle size distribution was back calculated from the dry distribution using the 100 hygroscopicity model of Petters and Kreidenweis (2007). This model relies on the Köhler theory which describes the equilibrium between the droplet phase and vapor phase. The traditional Köhler equation (Eq. S1)

links the equilibrium size of the growing aerosol particle, its chemical composition and water content to theambient water vapor saturation ratio (S) (Köhler, 1936).

104

$$S = \frac{P_{w,eq}}{P_{w,sat}} = \frac{RH(D)}{100} = a_w \exp\left(\frac{4\sigma M_w}{RT\rho_w D}\right) \qquad \qquad Eq.S1$$

105 Where:

106 • $P_{w,eq}$ is the equilibrium vapor pressure of water over the droplet surface (Pa)

- 107 $P_{w,sat}$ is the saturation vapor pressure over a pure flat water surface (Pa)
- 108 a_w is the activity of water in solution (unitless)
- 109 M_w is the molecular weight of water $(kg.mol^{-1})$
- 110 σ is the surface tension of the solution air interface (N. m^{-1})
- 111 ρ_w is the density of water $(kg.m^{-3})$
- 112 D is the diameter of the droplet (m)

113 Petters and Kreidenweis (2007) introduced a single hygroscopicity parameter (κ) which described the water 114 activity (a_w) and the difference in the densities and molar masses of water and the dry material:

$$\frac{1}{a_w} = 1 + \kappa \frac{V_{dry}}{V_w} \qquad \qquad Eq.S2$$

116 Where :

115

117 • V_{dry} is the volume of the dry aerosol particle

118 • V_w is the volume of water

119 Assuming additive volumes, the Köhler equation can be reformulated to the κ -Köhler equation which can also 120 written in the form of hygroscopic growth factor (HGF) which is defined as the ratio between wet particle

121 diameter $(D_{p,wet})$ and dry particle diameter $(D_{p,dry})$:

122
$$\frac{RH(D)}{100} = \frac{D_{p,wet}^{3} - D_{p,dry}^{3}}{D_{p,wet}^{3} - D_{p,dry}^{3}(1-\kappa)} \exp\left(\frac{4\sigma M_{w}}{RT\rho_{w}D_{p,wet}}\right) \qquad Eq.S3$$

123 In this study average seasonal values of κ were retrieved from hygroscopic tandem differential mobility 124 analyzer (HTDMA) measurements performed in parallel to our study (Table S2). The hygroscopic κ values 125 for each SMPS size bin were extrapolated from the HTDMA size resolved measurements by linear regression. 126 The particle size distributions at ambient RH conditions was then calculated using equation S3, by

incorporating the respective κ values per size bin, and the measured size distribution at dry conditions.

128 Next, the ambient (real) particle diameter was calculated from κ by solving equation S3, which was later used 129 to calculate the real particle size distribution (before drying).

To show an example of the effect of humidity corrected particle size distribution on NPF-related parameters, we compared the dry condensation sink to that calculated when the particle sizes were assumed to be equilibrated to the ambient RH. This comparison shows that the actual condensation sink is sometimes up to 3.5 times higher than the dry condensation sink but on average it is between 1.1 and 1.3 times higher than the

134 dry one (Figure S4).

	HTDMA derived Kappa						
Diameter (nm)	Spring	Summer	Fall	Winter	Average		
30	0.19	0.23	0.14	0.16	0.18		
80	0.19	0.28	0.17	0.15	0.2		
160	0.22	0.26	0.21	0.22	0.23		

135 Table S2. HTDMA derived kappa (κ) parameter.

Figure S4. The top panel shows the effect of particle hygroscopic growth factor (GF) on condensation sink (CS) calculations presented as the ratio between condensation sink calculated from the "ambient"
distribution and condensation sink calculated from the "dry" distribution. The bottom and top edges of the box plot represent 25% and 75% percentiles. The whiskers extend to the most extreme data points not

140 considered outliers, and the outliers are plotted individually using the '+' symbol. The bottom panel shows

141 median RH (%) with 25^{th} and 75^{th} percentiles.

145

142 5. Identification of days with high dust loading

The method proposed by Drinovec et al. (2020) permits the calculation mineral dust concentrations with hightime resolution using the following equation

$$Mineral \, dust_{PM_{10-1}} = \frac{b_{abs,VI} - b_{abs,PM_1}}{EF \times MAC} \qquad Eq.S4$$

146 Where $b_{abs,VI}$ is the absorption coefficient (at 370nm) measured by the aethalometer (model AE33, Magee 147 Scientific, USA) coupled to a virtual impactor (VI), b_{abs,PM_1} is the absorption coefficient (at 370nm) measured 148 by a second AE33 Aethalometer sampling through a PM₁ sharp-cut cyclone, EF is the enhancement factor of 149 the VI and MAC is the mass absorption cross section for dust. The last two coefficients were used as 150 determined experimentally by Drinovec et al. (2020) where additional information about the method and the 151 instruments used can be found.

- 152 From the mineral dust daily time series we defined a daily threshold above which a day is considered having
- 153 high dust loading (Table S3). When aethalometer measurements were not available, coarse particle mass
- 154 loading (PM₁₀ PM_{2.5}), determined by a Tapered Element Oscillating Microbalance (TEOM), was used to

identify dust days. Additional information about the TEOM used can be found in Pikridas et al. (2018). The

- threshold for coarse PM was defined based on the linear regression between coarse PM and mineral dust
- 157 concentration.

6-Feb-18	21-Mar-18	26-Apr-18	22-May-18	23-Oct-18
7-Feb-18	22-Mar-18	27-Apr-18	23-May-18	24-Oct-18
8-Feb-18	23-Mar-18	1-May-18	24-May-18	31-Oct-18
9-Feb-18	24-Mar-18	2-May-18	8-Jun-18	1-Nov-18
10-Feb-18	25-Mar-18	3-May-18	9-Jun-18	2-Nov-18
5-Mar-18	26-Mar-18	4-May-18	23-Jul-18	3-Nov-18
6-Mar-18	27-Mar-18	5-May-18	24-Jul-18	4-Nov-18
7-Mar-18	28-Mar-18	6-May-18	18-Oct-18	24-Jan-19
8-Mar-18	19-Apr-18	7-May-18	19-Oct-18	25-Jan-19
20-Mar-18	20-Apr-18	21-May-18	21-Oct-18	26-Jan-19

158 Table S3. List of dates with high dust loading

159 6. Time range of Daytime conditions (global radiation $> 50 \text{ W m}^{-2}$)

160 Figure S5. Monthly range of time of day having global radiation > 50 W. m⁻².

161 7. Diurnal cycle of particle mode concentrations

162 Figure S6. The diurnal cycle (at radiation >50 W. m⁻²) of particle number concentration of Cluster mode (a), 163 Nucleation mode (b), Aitken mode (c), and Accumulation mode (d). The shaded areas with black dashed 164 boundaries represent the 25th and 75th percentile limits while the solid line represents the median and the 165 squares indicate the mean. Notice the difference in the y-scale between the top and bottom plots.

166 8. Example of event classes

167 Figure S7. Examples of class Ia (a), class Ib (b), class II (c), bump (d), undefined (e) and non-events (f).

168 9. NPF specific parameters

169 Table S4. Monthly values of observed formation rates $(cm^{-3} s^{-1})$ during NPF events calculated within the event

170 duration using hourly data.

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	All
	Mean	11.03	21.74	26.18	42.23	8.95		4.99	11.01	11.95	5.69	7.70		20.34
	SD	19.43	41.37	43.77	93.81	11.24		5.88	15.55	17.03	7.12	3.82		51.11
I15	25 th	2.32	2.92	3.54	4.37	2.80		0.90	1.90	1.20	0.71	4.77		2.24
$(\text{cm}^{-3} \text{ s}^{-1})$	Median	4.90	10.31	10.01	10.12	4.48		2.14	4.22	6.70	3.15	8.15		6.45
	75 th	9.47	23.11	31.40	41.29	9.74		7.20	12.60	17.49	7.57	10.64		18.41
	90 th	30.01	50.89	70.69	108.72	24.61		14.44	30.82	24.32	17.53	11.66		49.84
	Ν	28	84	140	150	91		31	33	60	108	4		729
	Mean	2.73	5.52	8.13	9.72	4.48	4.45	5.91	3.89	6.06	2.51	2.77		6.17
	SD	4.17	5.91	10.99	17.18	5.84	6.26	9.95	5.49	8.55	4.81	1.97		10.65
	25 th	0.45	1.46	1.60	1.55	0.81	0.76	0.53	0.46	0.36	0.28	1.45		0.79
J_3 (cm ⁻³ s ⁻¹)	Median	1.65	3.81	3.62	3.85	2.03	1.46	2.46	1.08	2.15	0.63	2.42		2.53
(0111 5)	75 th	2.55	7.51	9.99	11.00	5.64	6.35	5.47	6.13	8.54	2.19	4.09		6.82
	90 th	7.35	14.27	20.18	23.77	10.59	11.21	19.81	12.75	17.38	6.69	5.45		16.91
	Ν	28	83	134	166	109	31	47	36	60	96	4		794
	Mean	0.79	1.81	1.57	1.73	1.75	0.55	2.13	0.69	1.37	0.79	1.01		1.47
J7 (cm ⁻³ s ⁻¹)	SD	0.87	2.02	1.75	2.83	2.11	0.57	4.43	1.16	2.05	0.79	0.43		2.26
	25 th	0.21	0.46	0.31	0.30	0.20	0.20	0.10	0.08	0.21	0.17	0.70		0.22
	Median	0.46	1.38	0.94	0.67	1.04	0.37	0.49	0.23	0.61	0.53	1.15		0.65
	75 th	1.21	2.31	2.23	2.12	2.19	0.76	1.79	0.77	1.64	1.33	1.33		1.86
	90 th	2.07	3.88	4.02	4.04	5.35	1.25	6.90	2.40	3.41	2.03	1.35		3.81
	Ν	26	83	130	163	103	31	49	37	57	93	4		776

Figure S8. Comparison of growth rates measured in this study to growth rates measured at 12 European sites(Manninen et al., 2010).

Figure S9. The median (a) and mean (b) averages of the diurnal size segregated condensation sink (s⁻¹)
computed over the whole measurement period of this study.

Table S5. Seasonal comparison between condensation sink ($\times 10^{-3}$ s⁻¹) measured at Finokalia, Crete and CAO (Mean, Median and Standard deviation computed from daily medians).

		Finokalia		CAO			
	Ka	livitis et al. (20	19)	This Study			
	Mean	Median	SD	Mean	Median SD		
Winter	4.3	3.5	2.9	12.18	9.11	8.35	
Spring	5.8	5.5	3.0	14.07	12.97	7.86	
Summer	9.1	9.0	3.1	10.65	7.84	9.39	
Autumn	6.5	6.0	3.4	5.16	4.97	2.15	

177 Figure S10. The monthly diurnal cycle of condensation sink (s⁻¹) during event (blue) and non-event (green)

days. The shaded areas represent 25^{th} to 75^{th} percentile while the solid line represents the median.

10. The relation between some parameters and NPF events

180 Figure S11. Month wind roses during event and non-event days.

181 Figure S12. (a) Monthly variation of $PM_{2.5}$ (μ g.m⁻³). (b) Monthly variation of $PM_{2.5}$ (μ g.m⁻³) separated

between event (blue) and non-event (green) days. The bottom and top edges of the box plots indicate the 25th
 and 75th percentiles, respectively. The central mark indicates the median. The whiskers extend to the most

extreme data points not considered outliers, and the outliers are plotted individually using the '+' symbol.

185 Data presented have daily time resolution.

Figure S13. (a) Monthly variation of PM_{10} (µg.m⁻³). (b) Monthly variation of PM_{10} (µg.m⁻³) separated between event (blue) and non-event (green) days. The bottom and top edges of the box plots indicate the 25th

188 and 75th percentiles, respectively. The central mark indicates the median. The whiskers extend to the most

189 extreme data points not considered outliers, and the outliers are plotted individually using the '+' symbol.

190 Data presented have daily time resolution

191 **References**

- Cai, R., Yang, D., Ahonen, L. R., Shi, L., Korhonen, F., Ma, Y., Hao, J., Petäjä, T., Zheng, J., Kangasluoma, J.,
 and Jiang, J.: Data inversion methods to determine sub-3 nm aerosol size distributions using the particle
 size magnifier, Atmospheric Measurement Techniques, 11, 4477-4491, https://doi.org/10.5194/amt-114477-2018, 2018.
- 196 Chan, T., Cai, R., Ahonen, L. R., Liu, Y., Zhou, Y., Vanhanen, J., Dada, L., Chao, Y., Liu, Y., Wang, L., Kulmala,
- M., and Kangasluoma, J.: Assessment of particle size magnifier inversion methods to obtain particle size
 distribution from atmospheric measurements, Atmospheric measurement Techniques Discussions, 2020, 1 21, https://doi.org/10.5194/amt-2019-465, 2020.
- 200 Drinovec, L., Sciare, J., Stavroulas, I., Bezantakos, S., Pikridas, M., Unga, F., Savvides, C., Višić, B., Remškar,
- 201 M., and Močnik, G.: A new optical-based technique for real-time measurements of mineral dust
- concentration in PM10 using a virtual impactor, Atmospheric Measurement Techniques, 13, 3799-3813,
 https://doi.org/10.5194/amt-13-3799-2020, 2020.
- 204 Kalivitis, N., Kerminen, V. M., Kouvarakis, G., Stavroulas, I., Tzitzikalaki, E., Kalkavouras, P., Daskalakis, N.,
- 205 Myriokefalitakis, S., Bougiatioti, A., Manninen, H. E., Roldin, P., Petäjä, T., Boy, M., Kulmala, M., Kanakidou,
- 206 M., and Mihalopoulos, N.: Formation and growth of atmospheric nanoparticles in the eastern
- Mediterranean: results from long-term measurements and process simulations, Atmospheric Chemistry
 and Physics, 19, 2671-2686, https://doi.org/10.5194/acp-19-2671-2019, 2019.
- 209 Kangasluoma, J., Franchin, A., Duplissy, J., Ahonen, L., Korhonen, F., Attoui, M., Mikkilä, J., Lehtipalo, K.,
- 210 Vanhanen, J., Kulmala, M., and Petäjä, T.: Operation of the Airmodus A11 nano Condensation Nucleus
- 211 Counter at various inlet pressures and various operation temperatures, and design of a new inlet system,
- 212 Atmospheric Measurement Techniques, 9, 2977-2988, https://doi.org/10.5194/amt-9-2977-2016, 2016.
- Köhler, H.: The nucleus in and the growth of hygroscopic droplets, Transactions of the Faraday Society, 32,
 1152-1161, https://doi.org/10.1039/TF9363201152, 1936.
- 215 Manninen, H. E., Nieminen, T., Asmi, E., Gagné, S., Häkkinen, S., Lehtipalo, K., Aalto, P., Vana, M., Mirme, A.,
- 216 Mirme, S., Hõrrak, U., Plass-Dülmer, C., Stange, G., Kiss, G., Hoffer, A., Törő, N., Moerman, M., Henzing, B.,
- de Leeuw, G., Brinkenberg, M., Kouvarakis, G. N., Bougiatioti, A., Mihalopoulos, N., O'Dowd, C., Ceburnis,
- 218 D., Arneth, A., Svenningsson, B., Swietlicki, E., Tarozzi, L., Decesari, S., Facchini, M. C., Birmili, W., Sonntag,
- A., Wiedensohler, A., Boulon, J., Sellegri, K., Laj, P., Gysel, M., Bukowiecki, N., Weingartner, E., Wehrle, G.,
- 220 Laaksonen, A., Hamed, A., Joutsensaari, J., Petäjä, T., Kerminen, V. M., and Kulmala, M.: EUCAARI ion
- spectrometer measurements at 12 European sites analysis of new particle formation events, Atmospheric
- 222 Chemistry and Physics, 10, 7907-7927, https://doi.org/10.5194/acp-10-7907-2010, 2010.
- 223 Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud
- condensation nucleus activity, Atmospheric Chemistry and Physics, 7, 1961-1971,
- 225 https://doi.org/10.5194/acp-7-1961-2007, 2007.
- 226 Pikridas, M., Vrekoussis, M., Sciare, J., Kleanthous, S., Vasiliadou, E., Kizas, C., Savvides, C., and
- 227 Mihalopoulos, N.: Spatial and temporal (short and long-term) variability of submicron, fine and sub-10 µm
- 228 particulate matter (PM1, PM2.5, PM10) in Cyprus, Atmospheric Environment, 191, 79-93,
- 229 https://doi.org/10.1016/j.atmosenv.2018.07.048, 2018.
- 230