Supplement of

Measurement report: Source characteristics of water-soluble organic carbon in PM_{2.5} at two sites in Japan, as assessed by long-term observation and stable carbon isotope ratio

Nana Suto and Hiroto Kawashima

Correspondence to: Nana Suto (nsuto@jari.or.jp) and Hiroto Kawashima@akitapu.ac.jp)

Figure S1. Sampling locations at the Japan Automobile Research Institute (Tsukuba, Ibaraki) and Akita Prefectural University (Yurihonjo, Akita). This map plots the sampling locations on a standard map provided by the Geospatial Information Authority of Japan.

Sampling site	Site type	Particle	Sampling period	n	Analytical method	$\delta^{13}C_{WSOC}$ (‰)		
		size				Average \pm SD	Range	Keterence
Tsukuba, Japan	Suburban	PM _{2.5}	Jul 2017–Jul 2019	62	Wet oxidation/IRMS	-25.2 ± 1.1	-26.7 to -21.8	This study
Yurihonjo, Japan	Rural	PM _{2.5}	Aug 2017–Jul 2019	45	Wet oxidation/IRMS	-24.6 ± 2.4	-28.4 to -19.8	This study
Delhi, India	Urban	PM _{2.5}	Jan–Mar 2016	7	Combustion-EA/IRMS	-25.4 ± 1.0	_	Dasari et al. (2019)
Bhola, Bangladesh	Rural	PM _{2.5}	Jan–Mar 2016	12	Combustion-EA/IRMS	-24.2 ± 0.6	_	Dasari et al. (2019)
Hanimaadhoo, Maldives	Rural	$PM_{1.0}$	Jan–Mar 2016	15	Combustion-EA/IRMS	-20.9 ± 0.6	_	Dasari et al. (2019)
Seoul, Korea	Urban	TSP	Mar 2015–Jan 2016	78	TOC analyzer/IRMS	-24.0 ± 1.5	-27.5 to -21.0	Han et al. (2020)
Nanjing, China	Suburban	PM _{2.5}	Jan 2015	_	GasBench/IRMS	_	-26.24 to -23.35	Zhang et al. (2019)
Beijing, China	Urban	PM _{2.5}	Jan, Jun, 2013	10	Combustion-EA/IRMS	-22.51 ± 0.49	_	Yan et al. (2017)
						-25.40 ± 0.46	_	Yan et al. (2017)
Hanimaadhoo, Maldives	Rural	PM _{2.5}	Feb–Mar 2012	14	Combustion-EA/IRMS	-20.8 ± 0.7	-22.13 to -19.64	Bosch et al. (2014)
Jeju, Korea	Rural	TSP/PM _{2.5}	Mar 2011	10	Combustion-EA/IRMS	-	_	Kirillova et al. (2014a)
New Delhi, India	Urban	PM _{2.5}	Oct 2010–Mar 2011	20	Combustion-EA/IRMS	-24.1 ± 0.9	-26.3 to -22.4	Kirillova et al. (2014b)
Sapporo, Japan	Rural	TSP	Sep 2009–Oct 2010	21	Combustion-EA/IRMS	-24.2 ± 1.59	-26.7 to -21.2	Pavuluri and Kawamura (2017)
Sapporo, Japan	Forest	TSP	Jun 2009–Dec 2010	_	Combustion-EA/IRMS	-	_	Miyazaki et al. (2012)
Stockholm, Sweden	Forest	TSP	Aug-Oct 2009	3	Combustion-EA/IRMS	-	-25.6 to -25.1	Kirillova et al. (2010)
Hanimaadhoo, Maldives	Rural	TSP	Jan 2008–Apr 2009	12	Combustion-EA/IRMS	-18.4 ± 0.5	-20.8 to -17.5	Kirillova et al. (2013)
Sinhagad, India	Rural	TSP	Jan 2008–Apr 2009	12	Combustion-EA/IRMS	-20.4 ± 0.5	-23.7 to -19.8	Kirillova et al. (2013)
Millbrook, USA	Rural	TSP	Mar, May, Aug 2007	3	Combustion-EA/IRMS	-24.7	-25.1 to -24.4	Wozniak et al. (2012b)
Harcum, USA	Rural	TSP	Feb, Apr, Aug 2007	3	Combustion-EA/IRMS	-25.4	-26.1 to -24.8	Wozniak et al. (2012b)
Millbrook, USA	Rural	TSP	May 2006–May 2007	9	Combustion-EA/IRMS	-25.2 ± 0.2	-26.0 to -23.9	Wozniak et al. (2012a)
Harcum, USA	Rural	TSP	Jun 2006–Jun 2007	10	Combustion-EA/IRMS	-25.3 ± 0.6	-27.4 to -21.1	Wozniak et al. (2012a)

Table S1. $\delta^{13}C_{WSOC}$ in PM_{2.5} determined in the present and other published studies.

Supplement S1 Water-soluble ion analysis

A portion of each quartz fiber filter (1.44 cm^2) was extracted in 3 mL of Milli-Q water under ultrasonic agitation for 15 min. The extract was filtered through a syringe filter (Chromatodisc Type A 0.45 µm, GL Sciences, Japan) to remove insoluble materials. Anion concentrations were determined in the filtrate using an IonPac AS17-C column and IonPac AG17-C guard column (Thermo Fisher Scientific Inc.), with a 1–40 mM gradient of potassium hydroxide as the eluent. Cation concentrations were determined using a CS12A column and CG12A guard column (Thermo Fisher Scientific Inc.), with 20 mM methanesulfonic acid as the eluent. Calibration curves were prepared using cation mixed standard solution 2 and anion mixed standard solution 4 (Kanto Chemical Co., Inc., Tokyo, Japan). The coefficient of determination was >0.999 for all compounds, and the detection limits were 4 ppb (Cl⁻), 5 ppb (NO₂⁻), 12 ppb (NO₃⁻), 8 ppb (SO4²⁻), 8 ppb (Na⁺), 5 ppb (NH4⁺), 15 ppb (K⁺), 15 ppb (Mg²⁺), and 20 ppb (Ca²⁺). These values were comparable to those used in other research (Shen et al., 2009).

References

- Bosch, C., Andersson, A., Kirillova, E. N., Budhavant, K., Tiwari, S., Praveen, P. S., Russell, L. M., Beres, N. D., Ramanathan, V., and Gustafsson, Ö.: Source-diagnostic dual-isotope composition and optical properties of water-soluble organic carbon and elemental carbon in the South Asian outflow intercepted over the Indian Ocean, J. Geophys. Res., 119, 11743-11759, https://doi.org/10.1002/2014JD022127, 2014.
- Dasari, S., Andersson, A., Bikkina, S., Holmstrand, H., Budhavant, K., Satheesh, S., Asmi, E., Kesti, J., Backman, J., Salam, A., Bisht, D. S., Tiwari, S., Hameed, Z., and Gustafsson, Ö.: Photochemical degradation affects the light absorption of water-soluble brown carbon in the South Asian outflow, Sci. Adv., 5, eaau8066, https://doi.org/10.1126/sciadv.aau8066, 2019.
- Han, H., Kim, G., Seo, H., Shin, K.-H., and Lee, D.-H.: Significant seasonal changes in optical properties of brown carbon in the midlatitude atmosphere, Atmos. Chem. Phys., 20, 2709-2718, https://doi.org/10.5194/acp-20-2709-2020, 2020.
- Kirillova, E. N., Sheesley, R. J., Andersson, A., and Gustafsson, Ö.: Natural Abundance ¹³C and ¹⁴C Analysis of Water-Soluble Organic Carbon in Atmospheric Aerosols, Anal. Chem., 82, 7973-7978, https://doi.org/10.1021/ac1014436, 2010.
- Kirillova, E. N., Andersson, A., Sheesley, R. J., Kruså, M., Praveen, P. S., Budhavant, K., Safai, P. D., Rao, P. S. P., and Gustafsson, Ö.: ¹³C- and ¹⁴C-based study of sources and atmospheric processing of water-soluble organic carbon (WSOC) in South Asian aerosols, J. Geophys. Res., 118, 614-626, https://doi.org/10.1002/jgrd.50130, 2013.
- Kirillova, E. N., Andersson, A., Han, J., Lee, M., and Gustafsson, Ö.: Sources and light absorption of watersoluble organic carbon aerosols in the outflow from northern China, Atmos. Chem. Phys., 14, 1413-1422, https://doi.org/10.5194/acp-14-1413-2014, 2014a.
- Kirillova, E. N., Andersson, A., Tiwari, S., Srivastava, A. K., Bisht, D. S., and Gustafsson, Ö.: Water-soluble organic carbon aerosols during a full New Delhi winter: Isotope-based source apportionment and optical properties, J. Geophys. Res., 119, 3476-3485, https://doi.org/10.1002/2013jd020041, 2014b.
- Miyazaki, Y., Fu, P. Q., Kawamura, K., Mizoguchi, Y., and Yamanoi, K.: Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest, Atmos. Chem. Phys., 12, 1367-1376, https://doi.org/10.5194/acp-12-1367-2012, 2012.
- Pavuluri, C. M., and Kawamura, K.: Seasonal changes in TC and WSOC and their ¹³C isotope ratios in Northeast Asian aerosols: land surface–biosphere–atmosphere interactions, Acta Geochim., 36, 355-358, https://doi.org/10.1007/s11631-017-0157-3, 2017.
- Shen, Z., Cao, J., Arimoto, R., Han, Z., Zhang, R., Han, Y., Liu, S., Okuda, T., Nakao, S., and Tanaka, S.: Ionic composition of TSP and PM_{2.5} during dust storms and air pollution episodes at Xi'an, China, Atmos. Environ., 43, 2911-2918, https://doi.org/10.1016/j.atmosenv.2009.03.005, 2009.
- Wozniak, A. S., Bauer, J. E., and Dickhut, R. M.: Characteristics of water-soluble organic carbon associated with aerosol particles in the eastern United States, Atmos. Environ., 46, 181-188, https://doi.org/10.1016/j.atmosenv.2011.10.001, 2012a.
- Wozniak, A. S., Bauer, J. E., Dickhut, R. M., Xu, L., and McNichol, A. P.: Isotopic characterization of aerosol organic carbon components over the eastern United States, J. Geophys. Res., 117, D13303,

https://doi.org/10.1029/2011JD017153, 2012b.

- Yan, C., Zheng, M., Bosch, C., Andersson, A., Desyaterik, Y., Sullivan, A. P., Collett, J. L., Zhao, B., Wang, S., He, K., and Gustafsson, O.: Important fossil source contribution to brown carbon in Beijing during winter, Sci. Rep., 7, 43182, https://doi.org/10.1038/srep43182, 2017.
- Zhang, W., Zhang, Y.-L., Cao, F., Xiang, Y., Zhang, Y., Bao, M., Liu, X., and Lin, Y.-C.: High time-resolved measurement of stable carbon isotope composition in water-soluble organic aerosols: method optimization and a case study during winter haze in eastern China, Atmos. Chem. Phys., 19, 11071-11087, https://doi.org/10.5194/acp-19-11071-2019, 2019.