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Abstract. The sources and seasonal trends of water-soluble organic carbon (WSOC) in carbonaceous aerosols are of significant 

interest. From July 2017 to July 2019, we collected samples of PM2.5 (particulate matter, aerodynamic diameter < 2.5 μm) 

from one suburban and one rural site in Japan. The average δ13CWSOC was −25.2 ± 1.1‰ and −24.6 ± 2.4‰ at the suburban 10 

site and rural site, respectively. At the suburban site, the δ13CWSOC was consistent with the δ13C of burned C3 plants, and a high 

correlation was found between WSOC concentrations and non-sea-salt potassium concentrations; these results suggest that the 

main source of WSOC at this site was biomass burning of rice straw. At the rural site, the average δ13CWSOC was significantly 

heavier from autumn to spring (−23.9 ± 2.1‰) than in summer (−27.4 ± 0.7‰) (p < 0.01). The δ13CWSOC from autumn to spring 

was consistent with that of biomass burning of rice straw, whereas that in summer was considered to reflect mainly the 15 

formation of secondary organic aerosols from biogenic VOCs. The heaviest δ13CWSOC (−21.3 ± 1.9‰) was observed from 

February to April 2019, which may be explained by long-range transport of C4 plant burning such as corn from overseas. Thus, 

the present study indicates that δ13CWSOC is potentially useful for elucidating the sources and atmospheric processes that 

contribute to seasonal variations of WSOC concentration. 

1 Introduction 20 

Particulate matter (PM) has deleterious effects on human health and contributes to climate change (Pope et al., 1995; 

Lohmann and Feichter, 2005). A major component of PM2.5 (particulate matter, aerodynamic diameter < 2.5 μm) is 

carbonaceous aerosol, which comprises organic carbon (OC) and elemental carbon (EC) (Chow et al., 1993; Malm et al., 2004; 

Pöschl, 2005). The OC in carbonaceous aerosol can be further classified as water-insoluble organic carbon (WIOC) and water-

soluble organic carbon (WSOC) (Sullivan and Weber, 2006). WIOC is produced mainly by the combustion of fossil fuels and 25 

contains compounds such as alkanes (Pöschl, 2005). WSOC is emitted primarily from combustion processes, industrial process, 

and natural sources; it can also be formed through secondary processes such as homogeneous gas-phase or heterogeneous 

aerosol-phase oxidation (Claeys et al., 2004; Koch et al., 2007; Schichtel et al., 2008). WSOC accounts for 20%–80% of the 

total OC in carbonaceous aerosol depending on the location and season (Decesari et al., 2001; Sullivan et al., 2004; Du et al., 
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2014; Duarte et al., 2015; Zhang et al., 2019). In addition, an average of 74% of all WSOC is contained in fine particles (Yu 30 

et al., 2004). WSOC is hygroscopic and therefore it enhances the capability of aerosols to act as cloud condensation nuclei, 

which affects climate change (Padró et al., 2010; Asa-Awuku et al., 2011). Therefore, source contributions of WSOC have 

been of significant interest for decades. A common approach for estimating the source contributions of WSOC is the use of a 

positive matrix factorization model. Using this approach, the annual contributions of biomass burning and secondary processes 

to WSOC in Beijing, China, were estimated to be 40% and 54%, respectively (Du et al., 2014). Similarly, in Helsinki, Finland, 35 

the contribution of secondary organic aerosols (SOAs) to WSOC is reported to be high in summer (78%) but low in winter 

(28%) (Saarikoski et al., 2008). WSOC is known to contain various oxygenated compounds, including dicarboxylic acids, 

ketocarboxylic acids, aliphatic aldehydes, alcohols, saccharides, saccharide anhydrides, aromatic acids, phenols, amines, 

amino acids, organic nitrates, and organic sulfates (Duarte et al., 2007; Pietrogrande et al., 2013; Timonen et al., 2013; Chalbot 

et al., 2014; Duarte et al., 2015). However, the precise molecular composition of WSOC is poorly understood because of the 40 

large number of compounds involved and the difficulties involved in identifying the individual components. 

The stable carbon isotope ratio (δ13C) of carbonaceous aerosols can provide useful information about a sample of PM 

(e.g., Widory et al., 2004; Fisseha et al., 2009; Cao et al., 2011; Gensch et al., 2014). For example, because EC is unreactive, 

it is possible to identify its source directly from the δ13C of its aerosols (e.g., Kawashima and Haneishi, 2012; Zhao et al., 

2018). In contrast, because OC reacts in the atmosphere, its δ13C provides information not only about the source of the PM but 45 

also about any atmospheric processing it has undergone (e.g., Cao et al., 2011; Ni et al., 2018). In recent years, some groups 

have examined the δ13C of WSOC (δ13CWSOC) in PM (Kirillova et al., 2010; Kirillova et al., 2013; Suto and Kawashima, 2018; 

Zhang et al., 2019). In addition, various approaches have been used; for example, the δ13CWSOC of ambient aerosols has been 

examined by means of wet oxidation with GasBench/isotope-ratio mass spectrometry (IRMS) (Fisseha et al., 2006) and by 

means of combustion with an elemental analyzer/IRMS (EA/IRMS) (Kirillova et al., 2010). Recent advances have afforded 50 

highly sensitive analytical methods for determining δ13CWSOC values that use wet oxidation with liquid chromatography/IRMS 

(LC/IRMS) (Suto and Kawashima, 2018), GasBench/IRMS (Zhang et al., 2019), or total organic carbon analyzer/IRMS (Han 

et al., 2020); however, combustion-based approaches remain the most widely used. 

The δ13CWSOC of particles of various sizes collected at various times of the year in East Asia (Miyazaki et al., 2012; 

Kirillova et al., 2014a; Pavuluri and Kawamura, 2017; Yan et al., 2017; Suto and Kawashima, 2018; Zhang et al., 2019; Han 55 

et al., 2020), South Asia (Kirillova et al., 2013; Bosch et al., 2014; Kirillova et al., 2014b; Dasari et al., 2019), Europe (Fisseha 

et al., 2006; Fisseha et al., 2009; Kirillova et al., 2010), and the United States (Wozniak et al., 2012a; Wozniak et al., 2012b) 

have been reported (Table S1 in the Supplement). For example, the δ13C of total carbon (δ13CTC) and δ13CWSOC of total 

suspended particles (TSP) was observed from September 2009 to October 2010 in Hokkaido, Japan (Pavuluri and Kawamura, 

2017). Both δ13CTC and δ13CWSOC were heavier in winter than in summer, demonstrating seasonal variation. The authors 60 

concluded that the reason why δ13CWSOC was heavy in winter was because of the greater release of 13C by fossil fuel combustion 

and biomass burning. Similarly, Kirillova et al. (2013) collected TSP samples from January 2008 to April 2009 in Sinhagad, 

India, and Hanimaadhoo Island, Maldives. The average δ13CWSOC was −20.4 ± 0.5‰ in Sinhagad and −18.4 ± 0.5‰ in 
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Hanimaadhoo Island, which are heavier than values reported in other studies. In addition, aerosols reaching Hanimaadhoo 

Island after long-range, over-ocean transport were enriched by 3‰–4‰ in δ13CWSOC relative to the aerosols collected in 65 

Sinhagad. Based on these findings, Kirillova et al. (2013) reported for the first time that this enrichment of δ13C was an effect 

related to the aging of OC during long-range transport of aerosol. Recent study reported that the enrichment of δ13CWSOC 

between source site (Delhi, India) and receptor site (Hanimaadhoo Island, Maldives) is caused by aging effect during long-

range transport (Dasari et al., 2019).  

The combustion method, which is widely used at present, requires more pretreatment time because samples of PM 70 

are extracted, dehydrated with a freeze drier, dried, and then measured by EA/IRMS. The wet oxidation/IRMS method 

described above do not require a drying stage during sample preparation; therefore, the total analysis time is markedly reduced 

compared with the combustion method. In addition, this newer approach is highly sensitive, so only small amounts of sample 

are needed compared to the combustion method. However, despite these improved approaches and the significant interest in 

the seasonal trends and source apportionment of WSOC, no studies have examined the change of δ13CWSOC in PM2.5 over a 75 

long period of time to understand seasonal variability. As mentioned above, the small particle size PM2.5 contains large number 

of WSOC, further investigations are needed. Here, we investigated the seasonal trends of WSOC at one suburban site and one 

rural site in Japan. Samples of PM2.5 were collected from July 2017 to July 2019 at both sites, and δ13CTC and δ13CWSOC values, 

as well as carbon component and water-soluble ion concentrations, were determined. We then characterized the source of 

WSOC and any atmospheric processes it had undergone using isotope-based approaches. We believe that this is the first report 80 

of the use of the wet oxidation/IRMS method (Suto and Kawashima, 2018) for long-term observation of δ13CWSOC. 

2 Materials and experimental methods 

2.1 Sampling sites and sample collection 

Samples of PM2.5 were collected at one suburban site and one rural site in Japan (Fig. S1 in the Supplement). The 

suburban site (Tsukuba, 36°4'N, 140°4'E) was on the rooftop of a 25-m-high building at the Japan Automobile Research 85 

Institute in Tsukuba City, Ibaraki Prefecture, Japan. Tsukuba is a suburban city located in the inland Kanto plain approximately 

60 km northeast of the Tokyo metropolitan area. This site is surrounded by residential areas and forests, and there is a road in 

front of the building. PM2.5 samples were collected approximately every 10 days from 19 July 2017 to 12 July 2019. The rural 

site (Yurihonjo, 39°23'N, 140°4'E) was on the campus of Akita Prefectural University in Yurihonjo City, Akita Prefecture, 

Japan. Yurihonjo is located 370 km northwest of Tsukuba and about 5 km away from the coast. The sampling site had no local 90 

pollutant sources such as large factories. Every year from December to February, the site is covered with several centimetres 

of snow (Japan Meteorological, 2019). PM2.5 samples were collected approximately every 14 days from 11 August 2017 to 5 

July 2019. 

At both sites, the PM2.5 samples were collected by using high-volume samplers (HV-1000F, Sibata Scientific 

Technology, Saitama, Japan) equipped with a PM2.5 impactor (HV-1000-PM2.5, Sibata Scientific Technology) at a flow rate of 95 
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approximately 1000 L min−1. The samples were collected on quartz fiber filters (20.3 × 25.4 cm, 2500QAT-UP, Pallflex, 

Putnam, USA) that had been prebaked at 550 °C for 4 h before use. After sampling, the filters were kept in a freezer at −30 °C. 

A total of 107 PM2.5 samples (62 samples from Tsukuba and 45 samples from Yurihonjo) were collected. PM2.5 mass 

concentration was analyzed gravimetrically by using an electronic balance before and after sampling. 

2.2 Stable carbon isotope ratio analysis 100 

Determination of δ13CTC was performed at the Japan Automobile Research Institute using EA/IRMS (EA IsoLink, 

Thermo Fisher Scientific, Bremen, Germany; Delta V Advantage, Thermo Fisher Scientific, respectively). Portions of quartz 

filter (5–10 mg) were packed into a tin cup. The samples were combusted instantaneously with oxygen in the EA, and the 

carbon was converted to CO2 via an oxidation/reduction tube of the EA. The oxidation/reduction tube and the packed column 

were maintained at 1020 °C and 60 °C, respectively. The flow rate of ultra-high-purity helium during the analysis was 180 mL 105 

min−1. The CO2 from the EA was ionized, and the δ13C value was determined by means of IRMS; data acquisition was 

performed with Isodat software (ver. 3.0, Thermo Fisher Scientific). 

Determination of δ13CWSOC was performed at Akita Prefectural University using the wet oxidation/IRMS method 

(Kawashima et al., 2018; Suto and Kawashima, 2018). A portion of each quartz  fiber filter (14.13 cm2) was extracted in 5 mL 

of Milli-Q water under ultrasonic agitation for 30 min. The extract was filtered through a syringe filter (Chromatodisc Type A 110 

0.45 μm, GL Sciences, Japan) to remove insoluble material. The PM2.5 samples were not decarbonated before δ13CWSOC 

analysis because the difference between the δ13CWSOC with and without hydrochloric acid pretreatment was within 0.2‰. A 

high-performance liquid chromatography (HPLC) system (Shimadzu Co.) was coupled to the IRMS instrument (Isoprime, 

Elementar UK, Manchester, UK) via a LiquiFace interface (Elementar UK). The HPLC system consisted of a column pump 

(LC-10ADvp), oxidation pump (LC-10ADvp), post-column pump (LC-10ADvp), autosampler (SIL-10ADvp), degasser 115 

(DGU-14A), and UV detector (SPD-10ADvp). The injection volume was 100 μL. The HPLC flow rate (without column), the 

sodium peroxodisulfate flow rate, and the post-column flow rate were 0.5, 0.4, and 0.3 mL min−1, respectively. Sodium 

peroxodisulfate (0.5 M) and phosphoric acid (0.2 M) were mixed and then degassed in an ultrasonic bath for 1 h. One run took 

about 6 min. The trap current was set at 300 µA. The limits of detection (precision, <±0.3‰; accuracy, <±0.3‰) for 

levoglucosan and oxalic acid were 1111 and 1133 ngC, respectively. 120 

The IRMS instrument and the data acquisition system were controlled by IonVantage NT software (ver. 1.5.4.0., 

Isoprime). The HPLC system was controlled by LCsolution software (ver. 1.25, Shimadzu Co.). 

Stable carbon isotope ratios are expressed in δ notation in permil (‰) 

δ C13  [‰] = (
R( 𝐶13 / 𝐶12 )

sample

R( 𝐶13 / 𝐶12 )
std

 − 1)      (1) 

where R(13C/12C)sample and R(13C/12C)std (= 0.0111802) are the 13C/12C ratios for the sample and the standard (Vienna 125 

Pee Dee Belemnite), respectively. For all samples, the EA/IRMS and wet oxidation/IRMS data were measured in triplicate. 
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A two-point linear calibration was carried out for δ13C (Coplen et al., 2006). For EA/IRMS, δ13CTC values and three 

internal laboratory standards were calculated by using the following international isotopic standards: IAEA-CH-3 (cellulose, 

δ13C = −24.724‰), IAEA-600 (caffeine, δ13C = −27.771‰), and USGS24 (graphite, δ13C = −16.049‰). These standards were 

obtained from the International Atomic Energy Agency (Vienna, Austria). As a check of instrumental stability, an isotope 130 

working standard (L-alanine, SI Science Co., Tokyo, Japan; δ13C = −19.9‰) was analyzed after every nine samples. For wet 

oxidation/IRMS, δ13C values were calculated by means of a two-point linear calibration method from international isotope 

standards of sucrose (IAEA-CH-6, δ13C = −10.449‰), and three internal laboratory standards for D-(+)-arabitol (δ13C = –

23.6‰), levoglucosan (δ13C = –25.8‰), and oxalic acid (δ13C = –28.7‰) obtained from EA/IRMS. Ultrapure water was 

prepared with a Milli-Q system (18.2 MΩ.cm; Millipore, Bedford, MA). To check instrumental stability, the laboratory 135 

standard of levoglucosan was analyzed after every nine samples. The average-1SD for δ13CTC and δ13CWSOC was 0.12‰ 

(<0.46‰) and 0.09‰ (<0.50‰), respectively, for all samples examined in the present study. 

2.3 Chemical analysis 

For determination of OC and EC concentrations, a portion of each quartz  fiber filter (0.53 cm2) was examined using 

a thermal-optical carbon analyzer (Model 2001, Desert Research Institute), and the samples were processed according to the 140 

IMPROVE Thermal Desorption/Optical Reflectance method with a 550 °C, split for OC and EC (Chow et al., 2001). The 

limits of detection for OC and EC were determined as three times the standard deviation of a blank filter, and they were 0.02 

μg m−3 and 0.02 μg m−3, respectively. These limits of detection were sufficiently low (Yamagami et al., 2019). For 

determination of WSOC concentrations, a portion of each quartz  fiber filter (1.58 cm2) was extracted with 8 mL of ultrapure 

water for 30 min at room temperature. The water extracts were passed through a polyvinylidene difluoride filter (pore size 145 

0.20 μm, GE Healthcare, USA) to remove insoluble materials, and then the filtrate was analyzed using a total organic carbon 

analyzer (TOC-L, Shimadzu, Kyoto, Japan). The limit of detection was determined as three times the standard deviation of a 

blank filter, and it was 0.03 μg m−3, which was sufficiently low (Du et al., 2014). Quantification of the major water-soluble 

ions anions (Cl−, NO2
−, NO3

−, SO4
2−) and cations (Na+, NH4

+, K+, Mg2+, Ca2+) was achieved by ion chromatography (Integrion 

RFIC; Thermo Fisher Scientific Inc., Sunnyvale, CA, USA). Details of water-soluble ion analysis method are described in 150 

Supplement S1. 

3 Results and Discussion 

3.1 Mass concentrations of PM2.5 at the study sites 

The average mass concentrations of PM2.5 during the observation period were 19.7 ± 8.2 μg m−3 (range, 7.1–46.6 μg 

m−3) in Tsukuba and 11.2 ± 4.7 μg m−3 (5.7–23.4 μg m−3) in Yurihonjo (Table 1). The average mass concentration of PM2.5 in 155 

Tsukuba was higher than the air quality standard for the annual average of Japan (15 μg m−3) by the Ministry of the 

Environment and that at other residential sites across Japan (annual average in 2018, 11.2 μg m−3) (Ministry of the Environment, 
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2019). In Yurihonjo, the average mass concentration of PM2.5 was lower than the air quality standard for the annual average 

of Japan, and it was comparable with that at other residential sites across Japan. 

A previous study reviewed the annual PM2.5 concentrations in 45 global megacities in 2013 (Cheng et al., 2016). The 160 

five most-polluted megacities were Delhi, India; Cairo, Egypt; and Xi'an, Tianjin, and Chengdu, China (PM2.5 annual average 

concentration, 89–143 μg m−3). The five least-polluted megacities were Toronto, Canada; Miami, Philadelphia, and New York, 

United States; and Madrid, Spain (PM2.5 annual average concentration, 7–10 μg m−3). The mass concentration of PM2.5 at both 

sites in the present study was much closer to that determined for the least-polluted megacities than that determined for the 

most-polluted megacities. The mass concentrations of PM2.5 in Tsukuba and Yurihonjo were significantly higher in winter and 165 

spring than in summer and autumn (p < 0.01). The mass concentrations of PM2.5 were consistent with the seasonal variation 

for nearby sites of Atmospheric Environmental Regional Observation System (AEROS) provided by the Ministry of the 

Environment (Ministry of the Environment, 2021). 

3.2 Concentrations of EC, OC, and WSOC, and OC/EC and WSOC/OC ratios 

The concentrations of EC, OC, and WSOC, and the OC/EC and WSOC/OC ratios, at the study sites are summarized 170 

in Table 1. The concentrations of the carbon components (EC, WIOC, and WSOC) by season are shown in Fig. 1. The sum of 

EC and organic matter (1.6 × OC concentration) (Turpin and Lim, 2001) accounted for an average of 32% of the PM2.5 mass 

concentration in Tsukuba and 25% in Yurihonjo. Thus, the contribution was slightly higher at Tsukuba than at Yurihonjo. The 

average EC concentration during the observation period was 0.9 ± 0.4 μg m−3 (0.4–2.4 μg m−3) in Tsukuba and 0.3 ± 0.1 μg 

m−3 (0.2–0.6 μg m−3) in Yurihonjo. These values are comparable to those reported for Nagoya (1.1 μg m−3) (Yamagami et al., 175 

2019) and Niigata (0.5 μg m−3) (Li et al., 2018), Japan, and lower than that reported for Xi'an, China (7.6 μg m−3) (Zhao et al., 

2018). The EC concentration contributed an average of 5% to the PM2.5 mass concentration in Tsukuba and 3% in Yurihonjo. 

Currently, EC concentrations in Japan are decreasing as a result of Japanese government regulations on emissions from diesel 

vehicles (Yamagami et al., 2019). The average OC concentration during the observation period was 3.2 ± 1.4 μg m−3 (1.0–6.6 

μg m−3) in Tsukuba and 1.5 ± 0.8 μg m−3 (0.6–4.2 μg m−3) in Yurihonjo. The OC concentration contributed an average of 28% 180 

to the PM2.5 mass concentration in Tsukuba and 22% in Yurihonjo. The higher percentage contribution to the PM2.5 mass 

concentration from OC than EC was in agreement with compared to other studies (Contribution of OC and EC concentration 

in PM2.5 concentration: 20% and 6% in Korea) (Park and Cho, 2011). 

The OC/EC ratio is an indicator of the source of carbonaceous particles (Chow et al., 1996). The average OC/EC ratio 

was 3.8 ± 1.4 in Tsukuba and 5.1 ± 1.9 in Yurihonjo. The higher OC/EC ratio at the rural site (Yurihonjo) than at the suburban 185 

site (Tsukuba) was comparable with the results of other studies (Ho et al., 2006; Zhang et al., 2008). This was likely because 

primary emissions, such as EC, are low at rural sites, meaning that the OC is larger in comparison. The high OC/EC ratio is 

due to the formation of secondary organic aerosols and biomass burning (Chow et al., 1996). 

The average WSOC concentration during the observation period was 1.2 ± 0.4 μg m−3 (0.4–2.4 μg m−3) in Tsukuba 

and 0.8 ± 0.5 μg m−3 (0.3–2.6 μg m−3) in Yurihonjo. These values were similar to those reported for Sapporo (1.0 μg m−3) 190 
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(Pavuluri and Kawamura, 2017) and Maebashi (2.3 μg m−3) (Kumagai et al., 2009), Japan, but lower than those reported for 

Beijing, China (7.2 μg m−3) (Du et al., 2014), and Gwangju, South Korea (3.7 μg m−3) (Park and Cho, 2011). The WSOC 

concentration at Tsukuba was significantly higher in autumn and winter than in spring and summer (p < 0.01), whereas that in 

Yurihonjo was significantly higher in spring than in the other seasons (p < 0.05). The average WSOC/OC ratio was 0.4 ± 0.1 

in Tsukuba and 0.5 ± 0.1 in Yurihonjo. This is consistent with previous studies that showed that the average WSOC/OC ratio 195 

was higher at rural sites than at urban sites (Kumagai et al., 2009; Ram and Sarin, 2010). This is also the same as the trend we 

found for OC/EC ratio in the present study. 

3.3 δ13CTC and δ13CWSOC 

To our knowledge, this is the first report of a two-year-long observation of δ13CTC and δ13CWSOC in PM2.5 at two sites 

simultaneously. δ13CWSOC values reported from previous studies conducted at various sampling sites and examining various 200 

particle sizes are summarized in Table S1. In the present study, the average δ13CTC was −25.7 ± 0.7‰ (−26.9 to −24.0‰) in 

Tsukuba and −24.7 ± 1.6‰ (−27.3 to −20.4‰) in Yurihonjo (Table 1 and Fig. 2). Previous studies have reported the average 

δ13CTC of TSP in Sapporo, Japan (−24.8‰ ± 0.68‰) (Pavuluri and Kawamura, 2017), and of PM2.5 in Sanjiang Plain, China 

(−24.2‰) (Cao et al., 2016), and these values are comparable to our present values. 

In the present study, the average δ13CWSOC was −25.2 ± 1.1‰ (−26.7 to −21.8‰) in Tsukuba and −24.6 ± 2.4‰ (−28.4 205 

to −19.8‰) in Yurihonjo (Table 1 and Fig. 2). The δ13CWSOC of PM2.5, which was the particle size examined in the present 

study, was −25.4‰ ± 1.0‰ in Delhi, India (Dasari et al., 2019), and −24.2‰ ± 0.6‰ in Bhola, Bangladesh (Dasari et al., 

2019), which are very close to our δ13CWSOC values. The δ13CWSOC of TSP was −24.2‰ ± 1.59‰ in Sapporo, Japan (Pavuluri 

and Kawamura, 2017), −24.0‰ ± 1.5‰ in Seoul, South Korea (Han et al., 2020), −25.2‰ ± 0.2‰ in Millbrook, USA 

(Wozniak et al., 2012a), and similar values were obtained for particles of different sizes. In these previous studies, most of the 210 

average δ13CWSOC values were in the range of −25‰ to −24‰ regardless of particle size, although there were some heavy 

values such as those for Hanimaadhoo Island, Maldives (−18.4‰ ± 0.5‰), and Sinhagad, India (−20.4‰ ± 0.5‰) (Kirillova 

et al., 2013). 

3.4 Seasonal variations in δ13CTC and δ13CWSOC in PM2.5 

δ13CTC and δ13CWSOC at Tsukuba showed no other clear seasonal variation, but they became slightly heavy from 215 

February to April 2019 (Fig. 2a). In contrast, the δ13CTC and δ13CWSOC at Yurihonjo were heaver from autumn to spring than 

in summer (Fig. 2b), and they showed a significant seasonal variation (δ13CTC; p < 0.01, δ13CWSOC; p < 0.01) compared to those 

in Tsukuba. In addition, δ13CWSOC became heavier from February to April 2019 as in Tsukuba. At both study sites, δ13CWSOC 

was usually heavier than δ13CTC, but in summer δ13CWSOC was comparable to or lighter than δ13CTC (Tsukuba; p < 0.01, 

Yurihonjo; p < 0.01).  220 

 The seasonal trends of δ13CTC and δ13CWSOC observed in the present study were compared with those reported from 

previous long-term observations. No seasonal variation for δ13CWSOC in the suburban site, Tsukuba is comparable with that in 
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TSP in Seoul, South Korea, from March 2015 to January 2016 (Han et al., 2020). Similarly, clearly trend for heavier in winter 

than in summer for δ13CTC and δ13CWSOC in the rural site, Yurihonjo is comparable with that in TSP reported for Sapporo, Japan, 

from September 2009 to October 2010 (Pavuluri and Kawamura, 2017). In both Yurihonjo and Sapporo, it was observed that 225 

δ13CWSOC is usually heavier than δ13CTC and that this tendency is reversed in summer. Together, these findings imply that 

δ13CWSOC shows a weak seasonal trend in suburban or urban sites such as Tsukuba and Seoul, but a clear seasonal trend in rural 

sites such as Yurihonjo and Sapporo. 

 The variations (difference between maximum and minimum value) of δ13CTC and δ13CWSOC were 2.9‰ and 4.9‰ in 

Tsukuba and 7.0‰ and 8.6‰ in Yurihonjo, respectively. The variation of δ13CWSOC was larger than that of δ13CTC at both sites, 230 

with both variations larger in Yurihonjo. In previous studies, the variation of δ13CTC was reported as 2.5‰ in Sapporo (Pavuluri 

and Kawamura, 2017), and that of δ13CWSOC was reported as 5.5‰ in Sapporo (Pavuluri and Kawamura, 2017), and 6.5‰ in 

Seoul (Han et al., 2020). The variation of δ13CEC of PM2.5 was only 1.6‰ in Japan (Kawashima and Haneishi, 2012) and 3.7‰ 

in China (Ni et al., 2018; Zhao et al., 2018). In the present study and these previous studies, the variation of δ13CWSOC was 

larger than that of δ13CEC, regardless of sampling site. The reason for this is likely that δ13CWSOC is affected not only by the 235 

source characteristics but also by atmospheric processing. The reasons underlying the seasonal trend observed for δ13CWSOC 

are further discussed in Sections 3.5.1 and 3.5.2. 

3.5 Determination of seasonal trends and sources of WSOC using δ13CWSOC 

3.5.1 Seasonal trends and sources of WSOC in Tsukuba 

The average WSOC concentration in Tsukuba was significantly higher in autumn and winter than in spring and 240 

summer (p < 0.01), and EC concentrations showed a similar significant seasonal trend (p < 0.01) (Table 1). Table 2 shows the 

correlation coefficients between WSOC concentrations and three other parameters—δ13CWSOC, EC concentration, and non-sea-

salt potassium concentration (nss-K+)—for each season and for the whole year. The EC concentration is a tracer of combustion 

(Bond et al., 2007). The nss-K+ is a tracer of biomass burning that excludes K+ from seawater (nss-K+ = [K+] − 0.0335 × [Na+]) 

(Lai et al., 2007). A weak correlation (r = 0.18) was found between the annual average WSOC concentration and annual 245 

average δ13CWSOC. The strong correlation that was found between the annual average WSOC concentration and annual average 

EC concentration (r = 0.71) suggests that the WSOC at this suburban site is from combustion sources (e.g., fossil fuel and/or 

biomass burning). The strong correlations that were observed between WSOC concentrations and nss-K+ for every season 

(autumn, r = 0.96; winter, r = 0.83; spring, r = 0.85; summer r = 0.77; all p < 0.01) further suggests that the WSOC at this site 

is a result of biomass burning. The dominant annual source for WSOC was consistent with that reported in Seoul by Han et al. 250 

(2020). 

The average δ13CWSOC was −25.2 ± 1.1‰ in Tsukuba (Table 1). Because C3 and C4 plants have different metabolic 

pathways, their δ13C values range from −34‰ to −24‰ for C3 plants and from −19‰ to −6‰ for C4 plants (Smith and Epstein, 

1971). When C3 plants are burned in the laboratory, there is no difference between the δ13C of the produced particles and that 
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of the original C3 plants (Turekian et al., 1998; Das et al., 2010). However, the particles produced by burning C4 plants are 255 

3.5‰ lighter than the original C4 plants (Turekian et al., 1998). Therefore, the δ13C of C4 plants was estimated to be −22.5 to 

−9.5‰. The δ13C of C3 and C4 plant burning has been estimated to be −34.7 to −25.1‰ and −19.3 to −16.1‰, respectively 

(Kawashima and Haneishi, 2012; Garbaras et al., 2015; Guo et al., 2016). Thus, the average δ13CWSOC at Tsukuba indicates 

that the burning of C3 plant biomass is the dominant source of WSOC at this site. Indeed, rice, a C3 plant, is Japan’s largest 

crop followed by barley and wheat (Ministry of Agriculture Forestry and Fisheries, 2018). In Ibaraki Prefecture, where 260 

Tsukuba City is located, the crop acreage and harvest of rice was 68,400 ha and 358,400 tons in 2018 were the largest in the 

Kanto Region (Ministry of Agriculture Forestry and Fisheries, 2018). In addition, according to a field investigation, biomass 

burning in Tsukuba is predominantly the burning of rice straw and rice hulls from September to October (Tomiyama et al. 

(2017). Using radiocarbon analysis, which can distinguish between biogenic and anthropogenic sources, a higher proportion 

of OC in PM2.5 collected in Tokyo, Japan, in 2014 was reported to be biogenic from autumn to winter than in summer (Hoshi 265 

and Saito, 2020). 

The main chemical component generated by the breakdown of cellulose by biomass burning is levoglucosan, which 

can be used as a tracer of biomass burning (Simoneit et al., 1999). The δ13C of levoglucosan emitted from the burning of C3 

plants such as peanut, mulberry, China fir, Chinese red pine, Chinese guger tree, and Chestnut are reported to range from 

−26.05 to −22.60‰, with that from rice straw reported to be −24.26 ± 0.09‰ (Sang et al., 2012). The average δ13CWSOC in 270 

Tsukuba was very close to this previously reported δ13C of levoglucosan from the burning of rice straw. However, levoglucosan 

accounts for only about 3.8% of the WSOC in urban areas of Japan (Kumagai et al., 2010). Therefore, it is difficult to accurately 

identify the sources of WSOC using only the δ13C values of levoglucosan. Further research is needed to determine the δ13C of 

the components of WSOC other than levoglucosan. 

3.5.2 Seasonal trends and sources of WSOC in Yurihonjo 275 

In Yurihonjo, the correlation between WSOC concentrations and EC concentrations was highest in winter (r = 0.87, 

p < 0.01), followed by autumn (r = 0.83, p < 0.01) and spring (r = 0.64, p < 0.05), and lowest in summer (r = 0.24) (Table 2). 

This suggests that WSOC at this rural site was mainly from combustion sources in autumn and spring. In addition, the 

correlation between WSOC concentrations and nss-K+ concentrations and was very high in autumn (r = 0.93), winter (r = 

0.99), and spring (r = 0.80; all p < 0.01) but not in summer (r = 0.40). These strong correlations from autumn to spring suggest 280 

that during that time the WSOC came mainly from combustion sources such as biomass burning. The average δ13CWSOC at 

Yurihonjo for autumn and spring, −23.9 ± 2.1‰, suggests that biomass burning of C3 biomass such as rice straw and rice hulls 

may be the dominant source of WSOC, as was found in Tsukuba. 

In Akita Prefecture, where Yurihonjo is located, the crop acreage of rice was 87,700 ha in 2018, and the rice harvest 

was 491,100 tons (Ministry of Agriculture Forestry and Fisheries, 2018). From February to April 2019, the δ13CWSOC was the 285 

heaviest (−21.3 ± 1.9‰), and WSOC concentrations were markedly increased compared with the previous months (average, 

1.5 ± 0.7 μg m−3) (Fig. 1b and Fig. 2b). A moderate correlation between WSOC concentrations and δ13CWSOC values was 
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observed for this time period (r = 0.54, p = 0.27). This δ13CWSOC value indicates a heavy δ13C source such as C4 plants (e.g., 

corn and grass), but no evidence of burning of C4 plants during this period was observed around the sampling site at Yurihonjo. 

Northeast China is the largest producer of corn in China (MWCACP, 2019), and biomass burning is used for heating in winter 290 

(Chen et al., 2017). Satellite imagery revealed a number of fire spots in that part of China from February to April 2019 (NASA, 

2017) (Figure S2 in the Supplement). Backward air-mass trajectories showed that air masses at Yurihonjo during this period 

originated mainly from areas in northeast China (Fig. S3 in the Supplement). Consistent with this finding, Uranishi et al. (2020) 

reported from an analysis using the Community Multiscale Air Quality model that particles from biomass burning in northeast 

China were transported to Akita Prefecture in February and March 2019. The correlation between Na+ and Cl− concentrations 295 

was highest from winter to spring 2019 in Yurihonjo (r = 0.98, p < 0.01), suggesting the influence of sea salt. Recently, aerosol 

photochemical aging during long-range transport has been shown to selectively enrich the 13C content in organic aerosols, 

leading to heavier δ13C values (Kirillova et al., 2013; Bosch et al., 2014; Dasari et al., 2019; Zhang et al., 2019). In a field 

study, the isotope fractionation values for δ13CWSOC were estimated to be enriched by 3‰–4‰ because of aging during 

transport (Kirillova et al., 2013). The combination of isotopic ratio and concentration measurements (Fig. 1 and Fig. 2) together 300 

with the evidence of prevailing biomass burning activities (Fig. S2) and the results of the backward trajectory analysis (Fig. 

S3) suggest that the heavier δ13CWSOC from February to April 2019 at Yurihonjo was the result of C4 plant combustion rather 

than aging during long-range transport. 

The δ13CWSOC in summer was very light (−27.4‰) compared with the average value for the observation period. A 

weak correlation between WSOC concentrations and EC concentrations in summer (r = 0.24; Table 2) suggests that the WSOC 305 

is derived from a non-combustion source. In general, the formation of WSOC involves atmospheric reactions such as the 

formation of SOAs, which are formed by oxidation of anthropogenic and biogenic VOCs (Heo et al., 2013). Aliphatic 

hydrocarbons (e.g., alkanes and alkenes) and aromatics (e.g., benzene, toluene, ethylbenzene, and xylene) emitted from solvent 

evaporation and vehicle emissions are important anthropogenic VOCs and precursors of SOAs (Chen et al., 2010). The δ13C 

values for alkanes in tunnel, gas station, underground garage, and refinery air samples are reported to range from −28.6 ± 1.8‰ 310 

to −27.3 ± 2.1‰ (Rudolph et al., 2002). Toluene and xylene are the aliphatic hydrocarbons with the highest annual emissions 

in Japan (Japan Ministry of Economy Trade and Industry, 2020). The δ13C of toluene and xylene for gas station and vehicle 

emissions are reported to range from −27.7‰ to −23.8‰ (Rudolph et al., 2002; Kawashima and Murakami, 2014). Because 

VOCs in the atmosphere are oxidized by photochemical oxidants, the δ13C values of the residual VOCs become heavier via 

isotopic fractionation (Rudolph et al., 2000; Anderson et al., 2004); in other words, secondary production tends to result in a 315 

lighter δ13C for SOA in the atmosphere. In a laboratory-based experiment, the δ13C of SOA particles formed by photooxidation 

of toluene was 3‰ to 6‰ lighter than that of the precursor toluene, depending on the degree of oxidation (Irei et al., 2006; Irei 

et al., 2011). Assuming that this isotopic fractionation of toluene applies also to all other potential components, the δ13C of the 

emission source of VOCs at Yurihonjo would be approximately −24.4 to −21.4‰, as calculated by subtracting 3‰ to 6‰ 

from the average δ13CWSOC in Yurihonjo during summer (−27.4‰). This estimated δ13C value of VOCs is heavier than those 320 
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previously reported for anthropogenic VOCs. Therefore, anthropogenic VOCs were not considered to be the dominant source 

of WSOC at Yurihonjo. 

At the global scale, biogenic VOC emissions are more than an order of magnitude greater than those of anthropogenic 

VOCs (Farina et al., 2010). Biogenic VOCs include isoprene, monoterpenes, and sesquiterpenes released from vegetation, 

with isoprene producing the most SOA (Atkinson and Arey, 1998). The oxidation product of isoprene is 2-methyltetrol, which 325 

is widely used as an organic tracer to evaluate the production of SOA from isoprene (Claeys et al., 2004). The average δ13C of 

2-methyltetrol in aerosols in four forests in Sichuan Province, China, was −27.36‰ (−28.23 to −26.46‰) (Li et al., 2019). 

This average δ13C of 2-methyltetrol is close to the δ13CWSOC detected in summer in Yurihonjo, suggesting the components 

produced by secondary reaction of biogenic VOCs make a large contribution to the WSOC in Yurihonjo during the summer. 

From a field study conducted in a forest in northern Japan, Miyazaki et al. (2012) reported that the lightest δ13CWSOC values 330 

(average −25.6 ± 0.7‰) were observed from June to September; the authors concluded from positive matrix factorization 

modelling data that biogenic SOAs (isoprene SOA and α-/β-pinene) were the dominant source of WSOC in the summer, which 

is consistent with the findings of the present study. 

4 Conclusion 

The WSOC concentration, δ13CTC, and δ13CWSOC of PM2.5 were observed at one suburban and one rural site in Japan 335 

over a two-year period. The average WSOC concentration during the observation period was 1.2 ± 0.4 μg m−3 (0.4–2.4 μg 

m−3) at the suburban site and 0.8 ± 0.5 μg m−3 (0.3–2.6 μg m−3) at the rural site. The δ13CWSOC was −25.2 ± 1.1‰ (−26.7 to 

−21.8‰) at the suburban site and −24.6 ± 2.4‰ (−28.4 to −19.8‰) at the rural site. The δ13CTC and δ13CWSOC at the suburban 

site showed no clear seasonal variations, but they were slightly heavier from February to April 2019. In contrast, the δ13CTC 

and δ13CWSOC at the rural site were heaver from autumn to spring than in summer, and they showed a significant seasonal 340 

variation (δ13CTC, p < 0.01; δ13CWSOC, p < 0.01). Using δ13CWSOC, carbon components, and water-soluble ions, the main source 

of WSOC at the suburban site was concluded to be local biomass burning of rice straw. At the rural site, the δ13CWSOC from 

autumn to spring was concluded to reflect mainly the biomass burning of rice straw, whereas that in summer was considered 

to reflect mainly the formation of secondary organic aerosols from biogenic VOCs. The heaviest δ13CWSOC (−21.3 ± 1.9‰) 

was from February to April 2019 and may reflect long-range transport of particles resulting from the overseas burning of C4 345 

plants such as corn. Thus, we were able to use a δ13CWSOC-based approach to understand the sources and atmospheric processes 

that contribute to the WSOC concentrations at the two study sites. 

 

 

 350 
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Figure 1: Concentrations of EC, WIOC, and WSOC of PM2.5 from July 2017 to July 2019 in (a) Tsukuba, Ibaraki, and 

(b) Yurihonjo, Akita, Japan. 645 
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Figure 2: δ13CTC and δ13CWSOC of PM2.5 from July 2017 to July 2019 in (a) Tsukuba, Ibaraki, and (b) Yurihonjo, Akita, 

Japan. 680 
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Table 1. Seasonal average concentrations of PM2.5, EC, OC, and WSOC; OC/EC and WSOC/OC ratios; and δ13CTC and 

δ13CWSOC values for PM2.5, in Tsukuba and Yurihonjo, Japan. 

 685 

Tsukuba 

 

Yurihonjo 

 

 690 

 

 

 

 

 695 

 

 

Compound 

Season (average ± SD) 
Average 

(n = 62) 
Spring 

(n = 18) 

Summer 

(n = 13) 

Autumn 

(n = 16) 

Winter 

(n = 15) 

PM2.5 (μg m−3) 23.5 ± 7.7 14.4 ± 4.1 16.5 ± 7.2 23.0 ± 8.9 19.7 ± 8.2 

EC (μg m−3) 0.7 ± 0.2 0.7 ± 0.3 1.1 ± 0.5 1.0 ± 0.4 0.9 ± 0.4 

OC (μg m−3) 3.2 ± 1.0 1.8 ± 0.8 3.4 ± 1.4 4.2 ± 1.2 3.2 ± 1.4 

WSOC (μg m−3) 1.2 ± 0.3 0.8 ± 0.4 1.3 ± 0.5 1.4 ± 0.4 1.2 ± 0.4 

OC/EC 4.5 ± 1.6 2.7 ± 0.6 3.5 ± 1.2 4.4 ± 0.8 3.8 ± 1.4 

WSOC/OC 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.0 0.3 ± 0.1 0.4 ± 0.1 

δ13CTC (‰) −25.3 ± 0.7 −25.8 ± 0.4 −26.0 ± 0.5 −25.7 ± 0.9 −25.7 ± 0.7 

δ13CWSOC (‰) −24.4 ± 1.0 −25.9 ± 0.4 −25.7 ± 0.6 −25.1 ± 1.4 −25.2 ± 1.1 

Compound 

Season (average ± SD) 
Average 

(n = 45) 
Spring 

(n = 12) 

Summer 

(n = 9) 

Autumn 

(n = 11) 

Winter 

(n = 13) 

PM2.5 (μg m−3) 15.8 ± 4.2 8.6 ± 2.4 8.1 ± 1.2 11.4 ± 5.1 11.2 ± 4.7 

EC (μg m−3) 0.4 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 

OC (μg m−3) 2.2 ± 0.6 1.3 ± 0.3 1.3 ± 0.5 1.1 ± 1.0 1.5 ± 0.8 

WSOC (μg m−3) 1.2 ± 0.4 0.7 ± 0.2 0.7 ± 0.3 0.6 ± 0.6 0.8 ± 0.5 

OC/EC 6.6 ± 2.1 5.5 ± 1.5 4.2 ± 1.2 4.1 ± 1.5 5.1 ± 1.9 

WSOC/OC 0.6 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 0.5 ± 0.1 

δ13CTC (‰) −24.4 ± 1.6 −26.2 ± 0.7 −25.3 ± 1.3 −23.5 ± 1.2 −24.7 ± 1.6 

δ13CWSOC (‰) −23.8 ± 2.0 −27.4 ± 0.7 −25.5 ± 2.0 −22.6 ± 1.3 −24.6 ± 2.4 
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Table 2. Correlation (r) between WSOC concentration and the stated parameters. 

 

 700 

 Tsukuba Yurihonjo 

Season δ13CWSOC EC nss-K+ δ13CWSOC EC nss-K+ 

Spring 0.36 0.73 0.85 0.63 0.64 0.80 

Summer −0.14 0.84 0.77 0.17 0.24 0.40 

Autumn −0.45 0.75 0.96 0.65 0.83 0.93 

Winter 0.29 0.68 0.83 0.77 0.87 0.99 

Annual 0.18 0.71 0.88 0.44 0.72 0.87 


