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Abstract. 

Air pollution harms human health and the environment. Several regulatory efforts and different actions have been taken in 

the last decades by authorities. Air quality trend analysis represents a valid tool in assessing the impact of these actions taken 10 

both at national and local levels. This paper presents for the first time the capability of the Italian national chemical transport 

model, AMS-MINNI, in capturing the observed concentration trends of three air pollutants, NO2, inhalable particles having 

diameter less than 10 micrometres (PM10) and O3, in Italy over the period 2003-2010. We firstly analyse the model 

performance finding it in line with the state of the art of regional air quality modelling. The modelled trends result in a 

general significant downward trend for the three pollutants and, in comparison with observations, the values of the simulated 15 

trends were of a similar magnitude for NO2 (in the range -3.0 - -0.5 g m
-3

 yr
-1

), while a smaller range of trends was found 

than those observed for PM10 (-1.5 - -0.5 g m
-3

 yr
-1

) and O3-maximum daily 8-hour average concentration (-2.0 - -0.5 g 

m
-3

 yr
-1

). As a general result, we find a good agreement between modelled and observed trends; moreover, the model 

provides a greater spatial coverage and  statistical significance of pollutant concentration trends with respect to observations, 

in particular for NO2. We also conduct a qualitative attempt to correlate the temporal concentration trends to meteorological 20 

and emission variability. Since no clear tendency in yearly meteorological anomalies (temperature, precipitation, 

geopotential height) was observed for the period investigated, we focus the discussion of concentration trends on emission 

variations. We point out that, due to the complex links between precursors emissions and air pollutant concentrations, 

emission reductions do not always result in a corresponding decrease in atmospheric concentrations, especially for those 

pollutants that are formed in the atmosphere such as O3 and the major fraction of PM10. These complex phenomena are still 25 

uncertain and their understanding is of the utmost importance in planning future policies for reducing air pollution and its 

impacts on health and ecosystems. 
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1 Introduction 

Air pollution represents one of the main environmental challenges of modern society. Numerous studies have already 

demonstrated the adverse effects on health (Pope III et al., 2020; WHO, 2019; Pope III and Dockery, 2006; Cohen et al., 30 

2017) and environment (EEA, 2020; Feng et al., 2019), as well as on climate (Watts et al., 2019; Fuzzi et al., 2015), society 

and economy (Lanzi and Dellink, 2019; OECD, 2016). The adverse impact on health of fine particulate matter results in 

premature deaths due to ischemic heart disease, strokes, lung cancer, chronic obstructive pulmonary disease and respiratory 

infections (Apte et al., 2018; Rajagopalan et al., 2018). 

Efforts aimed at reducing air pollution have been ongoing for decades, namely in the framework of the Convention on Long-35 

Range Transboundary Air Pollution drawn up under the United Nations Economic Commission for Europe, leading to a 

general decrease of air pollutant concentrations in Europe (Maas and Grennfelt, 2016). The trends in concentrations are 

useful to verify if and to what degree environmental regulations establishing limits for pollutant emissions, e.g. the 

Gothenburg protocol (UNECE, 1979) and the European Directive on National Emission Ceilings (EC, 2016), have been 

effective and efficient in improving air quality at national and local level. Several European studies addressed this topic, 40 

focussing on the entire continent (Colette et al., 2011, 2016, 2017a; Wilson et al., 2012; Guerreiro et al., 2014; Yan et al., 

2018) and on single countries (Sicard et al, 2009; Cattani et al., 2014; Querol et al., 2014; Carnell et al., 2019; Velders et al., 

2020). The studies were carried out using observed and/or modelled concentrations. The best approach should be the one 

which integrates both of these sources of information. Indeed, the observed concentrations provide an actual air quality 

evaluation, though at sparse locations and sometimes with poor temporal coverage, while the modelled concentrations offer a 45 

comprehensive spatial and temporal coverage, although they have intrinsic uncertainties in describing the complex processes 

of atmospheric chemistry and physics (Iversen, 1993).  

For Europe, Colette et al. (2011) performed an assessment of nitrogen dioxide (NO2), particulate matter with diameter of 10 

µm or less (PM10) and ozone (O3) concentrations trends over the 1998-2007 decade, using 6 regional and global chemical 

transport models (CTMs). The simulated trends were evaluated against observed ones at background monitoring stations 50 

located in major anthropogenic emission hotspots. This comparison showed that the primary pollutants trends were generally 

well reproduced by simulations, with lower performance for O3 which is a secondary pollutant produced in the atmosphere. 

Wilson et al. (2012) also investigated the O3 trends over Europe using the CHIMERE model between 1996 and 2005. The 

data collected in 158 rural background stations showed that the model reproduces well the European-averaged O3 trend of 

the annual 5th percentiles but failed to reproduce the positive trend in the observed 95th percentiles. Another European-wide 55 

study was conducted by Yan et al. (2018) for the period 1995-2012 using the global chemical transport model EMAC. The 

results showed that the model successfully captured the observed temporal variability in O3 mean concentrations at EMEP 

background stations, as well as the contrast in the trends of 95th percentile (decreasing) and 5th percentile (increasing). 

Solberg et al. (2015) and Colette et al. (2017b) provided reviews of scientific papers which compare modelled to observed 

trends in Europe. In the EURODELTA-Trends multi-model exercise at European scale, Colette et al. (2017a) investigated 60 
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the period 1990-2010 with 8 chemical transport models (including the AMS-MINNI, Atmospheric Modelling System of the 

Italian National Integrated Model to support the international negotiation on atmospheric pollution, Mircea et al., 2014; 

Vitali et al., 2019). The authors showed the time variability of PM10, PM2.5 (Tsyro et al., 2017), organic aerosols and 

precursor gases (Ciarelli et al., 2019) and O3 (Mar et al., 2016; Colette et al., 2017b). In particular, the EURODELTA-Trends 

study, by analysing emissions, intercontinental inflow and meteorological variability, confirmed that the reduction of 65 

European anthropogenic emissions plays a fundamental role in the modelled net reduction of ambient air pollution. 

Italy is affected by air pollution at the highest levels recorded in Europe (EEA, 2020). Despite this evidence, even if the 

above mentioned studies over the European area include Italy in their investigations of long-term air quality trends, few 

analyses focussing on the Italian territory are available. Most of the available trend analyses rely on measured concentrations 

of single pollutants at single monitoring stations (Casale et al., 2000; Cristofanelli et al., 2015; Gilardoni et al., 2020) or in 70 

distinct urban areas (Cadum et al., 1999; Cattani et al., 2010; Gualtieri et al., 2014; Pozzer et al., 2019) and administrative 

regions (Carugno et al., 2017; Masiol et al., 2017; Lonati and Cernuschi, 2020). Some works cover the whole Po Valley, in 

Northern Italy, which is a well-known regional hot-spot for air pollution (Putaud et al., 2014; Bigi and Ghermandi, 2016). 

Currently, the studies by Cattani et al. (2014; 2018) are the only Italian-wide analyses and they are based on measured 

concentrations available from the National Air Quality database (BRACE, 2013). In particular, Cattani et al. (2014) show 75 

significant reduction trends in concentrations of carbon monoxide (CO) and benzene (C6H6), linearly related with emission 

reductions, a large number of stations measuring PM10 and NO2 decreasing trends and low statistical significance in O3 

trends, which indicates that no clear trend exists in measured ozone concentrations. So far, to the authors’ knowledge, there 

is not a modelling study exploring concentration trends and their relations with emission changes over time covering the 

whole Italian territory. 80 

This paper evaluates the trends of three air pollutants (NO2, PM10, O3) in Italy, over the period 2003-2010, using the AMS-

MINNI air quality model. The evaluation of CTM capabilities to reproduce the trends of pollutants increases the reliability 

of their application in assessing air quality and supporting air quality plans, especially for models regularly used in national 

regulatory assessments, as requested by Air Quality (EC, 2008) and National Emission Ceilings (EC, 2016) directives but 

also for other scientific studies. The analysis is based on statistical methods widely used in literature, for the sake of 85 

comparability with other investigations on air quality trends. The ability of the model to reproduce the concentration trends 

is evaluated through the comparison with independent data available from the National Air Quality database (BRACE). 

Moreover, in order to identify the potential efficacy of mitigation policies in reducing air pollution, concentration trends 

were qualitatively compared with variations in meteorology and anthropogenic emissions.  
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2 Data and methods 90 

2.1 Air quality measurements 

The air quality monitoring data considered in the present work derive from BRACE in which data from regional/local 

monitoring networks were collected for the formal submission to the European Environment Agency (EEA), in the 

framework of the reciprocal exchange of information and data from networks and individual stations measuring ambient air 

pollution within the Member States (EC, 1997). BRACE fed the European database Airbase (Airbase, 2020) with data from 95 

2002 to 2012, thus covering the period investigated in this study.  

Several processing steps were applied to the raw BRACE database in order to adapt the database to model validation 

requirements and to verify station reported metadata, in particular concerning geographical coordinates (Piersanti et al., 

2012). 

In the present work, in order to analyse the concentration trends, we selected only stations covering the 100% of the 100 

investigated years with at least 75% of valid data per year. The two thresholds for time coverage were chosen according to 

the legal requirements on yearly time series stated in the Air Quality Directive (EC, 2008) and also widely adopted in 

scientific literature (Colette et al., 2011; Colette et al., 2016), for a robust analysis. The threshold of 100% of the investigated 

years is a more stringent criterion with respect to other studies, generally adopting a less stringent criterion (e.g. 75% is set in 

Colette et al. (2011), corresponding in same cases to 8 years). Our choice guarantees that the trend analysis is always based 105 

on an 8-year period, which can be considered quite robust. Indeed, several studies are available in literature, presenting trend 

analysis over similar or shorter periods (Zhai et al., 2019; Dufour et al., 2018; Sheng et al., 2018). Of course, data covering a 

longer period would strengthen our findings. Anyway, in this first study over Italy, the choice of the period to investigate 

was determined by the availability of coherent model results that have the same model setup for the years 2003 to 2010. 

More specifically, in the following years, AMS-MINNI simulations adopted a different setup (spatial domain, chemical 110 

mechanism, boundary conditions), that clearly affects time series homogeneity. The pollutants considered are NO2, PM10 

and O3 due to their large monitoring coverage in the period of interest. Particulate matter with diameter less than 2.5 µm 

(PM2.5) could not be included in the analysis, as the data coverage from BRACE started in 2007 (Uccelli et al., 2017). Time 

resolution is given in hours (for NO2 and O3) and days (for PM10). 

The number of the air quality monitoring stations that satisfied the chosen criteria is reported in Table 2. In Appendix S1 of 115 

the Supplementary Material (SM), Figure S1 represents the 20 Italian administrative regions and Figures S2-S4 the locations 

of all sites that passed the selection criteria, by station type (background - BKG, traffic - TRA, industrial - IND) and the 

background sites by zone type (rural, suburban, urban). The model spatial resolution of 4 km is not sufficient to describe 

TRA and IND stations with the same skills of BKG stations, nevertheless for the sake of completeness we chose to include 

them in the validation.  120 
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2.2 Model simulations 

The air quality modelling system used for our simulations is AMS-MINNI (Mircea et al., 2014, 2016; D’Elia et al., 2009, 

2018; Ciucci et al., 2016) which includes a meteorological prognostic model (RAMS), a chemical transport model (FARM), 

an emission processor model (EMMA) and a meteorological diagnostic processor (SURFPRO).  125 

The three-dimensional Eulerian chemical transport model FARM (Flexible Air Quality Regional Model, http://www.farm-

model.org; Gariazzo et al., 2007; Silibello et al., 2008; Kukkonen et al., 2012) describes the transport, turbulent dispersion, 

formation and destruction of the pollutants in the atmosphere. The mesoscale non-hydrostatic meteorological model RAMS 

(Regional Atmospheric Modelling System; Cotton et al., 2003) generates the required input meteorological fields. Another 

fundamental AMS-MINNI component is the emission processor, the Emission Manager EMMA (Arianet, 2014), which 130 

prepares the hourly gridded emissions by breaking down annual data from emission inventories in space and time. Moreover, 

the diagnostic module SURFPRO (Arianet, 2011), computes the Planetary Boundary Layer (PBL) scale parameters, 

horizontal and vertical diffusivity coefficients, deposition velocities for different chemical compounds and natural emissions, 

using meteorological fields from RAMS and orographic and land use data. 

The main features of the AMS-MINNI simulation setup used to carry out the simulations are synthetized in Table 1. 135 

 

Table 1. Main features of the AMS-MINNI simulation setup. 

Chemical Transport Model Simulation 

Model and version FARM version 4.7  

Horizontal resolution 4 km 

Vertical layers 16 terrain-following layers 

Vertical extent 10000 m 

First layer depth  40 m 

Gas-phase chemistry SAPRC99 (Carter, 2000) 

SIA module ISORROPIA v1.7 (Fountoukis et al., 2007) 

SOA module SORGAM module (Schell et al., 2001) 

Aerosol model AERO3 (Binkowski and Roselle, 2003) 

In-cloud sulphate chemistry Simplified S(IV) to S(VI) formation (Seinfeld and Pandis, 1998) 

Boundary Conditions Eurodelta (Colette et al., 2017a) 

Meteorological Simulation 

Model and version RAMS version 6.0  

Horizontal resolution 12 km and 4 km (two way nesting) 

Vertical 32 levels (sigma coordinate) from 30 m above ground level to lower stratosphere 

Radiation 
Chen and Cotton (1983) long/shortwave model – cloud processes considering all 

condensate as liquid 

Convection Modified Kuo scheme (Tremback,1990) 

Lower Boundary LEAF-2, Land Ecosystem–Atmosphere Feedback model (Walko et al., 2000) 

Turbulence Closure Mellor-Yamada level 2.5 scheme – ensemble–averaged TKE (Mellor and Yamada, 1982) 

http://www.farm-model.org/
http://www.farm-model.org/
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Cloud Microphysics 
Bulk microphysics parameterization: cloud water, rain, pristine ice, snow, aggregates, 

graupel, and hail, or certain subsets of these (Walko et al., 1995) 

Boundary conditions 
GFS analyses at 0.5° horizontal resolution (https://wwdata/model-datasets/global-

forcastw.ncdc.noaa.gov/data-access/model--system-gfs) 

Data Assimilation Nudging on pre-analysed fields 

Emission Processing 

Anthropogenic Emissions 

Software and version 
EMMA version 6.0  

Anthropogenic emissions 

Inventories 

National Emission Inventories of Italy and neighbouring countries reported to the 

European Monitoring and Evaluation Programme of the UNECE Convention on Long-

range Transboundary Air Pollution  

Biogenic model e Soil-NO MEGAN v2.04 (Guenther et al., 2006) 

Saharan dust None 

Sea salt Zhang et al. (2005) 

Windblown dust Vautard et al. (2005) 

Dust traffic suspension Amato et al. (2012); Padoan et al. (2018) 

 

More details about the anthropogenic emissions and the meteorological data are reported in paragraph 2.3 and 2.4, 

respectively.  140 

A complete description of the standard configuration of the modelling system can be found in Vitali et al. (2019). 

2.3 Anthropogenic emissions 

Emission data used as input for AMS-MINNI simulations derive from the national emission inventories covering the period 

from 1990 to 2015, elaborated by ISPRA (Italian Institute for Environmental Protection and Research, Taurino et al., 2017) 

available in 2017. Figure 1 shows the emission variation for SOX (sulphur oxides), NOX (nitrogen oxides), PM2.5, PM10, 145 

NMVOC (non-methane volatile organic compounds) and NH3 (ammonia) for the period 2003-2010 considered in the present 

work. The variation over the whole period, 1990-2015, by SNAP nomenclature (Selective Nomenclature for Air Pollution, 

see Table S1 of Appendix S2 in the SM) for the selected pollutants is reported in the SM (Appendix S2, Figs. S5-S7). 

SOX emissions show the highest reduction, -58% in the period 2003-2010, followed by NOX (-29%) due to a large decrease 

in combustion from energy and road transport sectors, respectively. NMVOC emission reduction is driven by the road 150 

transport and solvent use sectors, while NH3 emissions show a very slight decrease. PM2.5 and PM10 emissions increase 

from 2005 to 2008 due to an increase in biomass combustion in the residential sector (SNAP code 02) (IIR, 2021). 

The estimated emissions at national level need to be further disaggregated in space, before being assigned to the AMS-

MINNI grid at 4 km spatial resolution. A provincial distribution (NUTS3 level, where NUTS stands for Nomenclature of 

territorial units for statistics, the hierarchical system for dividing up the territory of the European Union, 155 

https://ec.europa.eu/eurostat/web/nuts/background) is provided by ISPRA every 5 years; hence it was available for both the 

years 2005 and 2010. For the purposes of this work, the 2005 NUTS3 disaggregation was used for the years 2003, 2004, 

2005, 2006 and 2007, while the 2010 NUTS3 disaggregation for 2008, 2009 and 2010. Finally, hourly and speciated gridded 

https://ec.europa.eu/eurostat/web/nuts/background
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emissions on the AMS-MINNI grid were produced by means of EMMA processor. The spatial allocation of NUTS3 

emissions to the 4 km grid of the MINNI model relied for point sources on geographic coordinates of each facility (for 160 

example, large combustion plants) and for diffuse/linear sources on spatial layers used as proxy variables, like population 

density (for residential heating and urban traffic), georeferenced road networks (for rural and highway traffic), land-use (for 

agriculture). 

2.4 Meteorological simulations 

The meteorological simulations required by AMS-MINNI were elaborated making use of the RAMS model whose main 165 

features are summarized in Table 1. The hourly meteorological fields produced by RAMS, such as temperature, wind speed, 

relative humidity and precipitation play an important role in determining the level of air pollution concentrations. In trend 

analysis, it is important to establish the role of the emissions and the meteorology in influencing air pollutant concentration 

trends. It is out of the scope of the present paper to attribute a relative weight to these factors in determining the analysed 

concentration trends, but, as a first approximation, we can consider that it could be reasonably attributed to emission trends 170 

rather than to a clear tendency in meteorology. In fact, looking at the anomalies (referred to 1981-2010 climatology) of some 

meteorological fields for the considered years (2003-2010) computed from NCEP/NCAR reanalyses (National Centers for 

Environmental Prediction/National Center for Atmospheric Research, Kalnay et al., 1996), it is worth noting that no clear 

tendency is shown. In Appendix S3 of the SM, yearly maps for temperature at 850hPa (T850), precipitation and 500hPa 

geopotential height (Z500) anomalies are reported, together with the near surface temperature trend computed from the 175 

Copernicus Climate Data Store (CDS, http://climate.copernicus.eu/climate-data-store). 

2.5 Trend methodology 

The detection and calculation of trends in measured and simulated concentrations were performed using the “openair” 

package (Carslaw and Ropkins, 2012), specifically designed for air pollution data analysis developed for the open source R 

software (version used v.3.6.1, http://www.R-project.org). The presence of a monotonic increasing or decreasing trend was 180 

estimated using the non-parametric Mann-Kendall trend test together with the Theil-Sen’s method for estimating the slope of 

a linear trend (as a concentration variation per year) (Mann, 1945; Theil, 1950; Sen, 1968; Kendall, 1975), adopting the 

deseasonalisation option. The calculated trends were considered as statistically significant if the significance level (i.e., the 

p-value of the Mann-Kendall test) is lower than 0.05 (p<0.05). This method does not require assumptions about the data 

distribution, it is not sensitive to outliers and it has been used in several studies, for example in the EMEP Task Force on 185 

Measurements and Modelling during the Eurodelta experiment (Colette et al., 2016) and in the EEA air quality trend reports 

(EEA, 2009; 2020). Temporal trends were calculated considering monthly averages of the pollutant concentrations at each 

monitoring stations. Table 2 summarizes the number of stations, grouped per type, with significant and non-significant 

trends both for observations and modelled estimates. 

 190 

http://climate.copernicus.eu/climate-data-store
http://www.r-project.org/
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Table 2. Number of stations considered in the trend analysis for the period 2003-2010 separated into background (BKG), traffic 

(TRA), industrial (IND) and classified as statistically significant (p<0.05) for observed, simulated and both observed and simulated 

trends. 

  Number of stations 
Observations: number of 

stations with p<0.05 

Simulations: number of 

stations with p<0.05 

Number of stations where 

both obs and sim with p<0.05 

Pollutant BKG TRA IND Tot BKG TRA IND Tot BKG TRA IND Tot BKG TRA IND Tot 

NO2 36 33 4 73 26 19 2 47 32 33 3 68 22 19 1 42 

PM10 14 16 2 32 12 13 2 27 7 6 1 14 5 5 1 11 

O3 – conc: 

All year 

53 8 4 65 

23 3 4 30 19 3 1 23 6 1 1 8 

O3 – conc: 

Apr-Sep 
30 7 3 40 21 3 2 26 11 3 2 16 

O3 – MDA8: 

All year 
26 4 4 34 31 5 4 40 15 3 4 22 

O3 – MDA8: 

Apr-Sep 
33 6 4 43 35 5 4 44 22 4 4 30 

O3 – AOT40: 

Apr-Sep 
32 6 3 41 32 4 4 40 20 4 3 27 

O3 – 

SOMO35 
21 2 3 26 8 1 1 10 3 0 1 4 

3 Results and discussion 

3.1 Model validation results 195 

Before inspecting the capability of AMS-MINNI to capture the trends of pollutant concentration, a comprehensive 

evaluation of the model results was carried out.  

Comparisons between time series of observed and modelled values were performed on the same set of monitoring stations 

satisfying the selection criteria used for the trends analysis (i.e. with at least 75% of valid data per year covering all the 8 

years from 2003 to 2010, see Table 2).  200 

For all the pollutants included in the trend analysis, annual time series of daily values were used for the comparison, this 

metric being considered the most appropriate one for model performances assessment (Colette et al., 2011). For O3, in 

addition to daily values, the MDA8 metric (maximum daily 8-hour average concentration), calculated for the period from 

April to September, was considered as well, since it turned out to be the most suitable metric for O3 trends analysis within 

the context of this study (see Section 3.2.3).  205 

As recommended by literature on model validation (Chang and Hanna, 2004), a comprehensive set of statistical indices was 

computed in order to quantify, from different points of view, the agreement between modelled and observed values. 
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Here, for the sake of brevity, only three out of all the computed statistical metrics are presented: Mean Bias (MB), Root 

Mean Square Error (RMSE) and the correlation coefficient (corr); see Appendix S4 in the SM for their formulations. These 

indices were chosen because they globally capture several features of model performance in terms of amplitude, phase and 210 

bias. Moreover, such indicators are frequently used in model evaluation studies (Simon et al., 2012), namely those 

previously cited on temporal trends. Indeed, in Colette et al. (2011), which we consider as a reference for the present 

evaluation, model validation is based on the same subset of these three statistical indices. Values of MB, RMSE and corr for 

each pollutant are presented here as an average over the 8 years period and over all the available stations, classified 

according to their type (BKG, TRA, IND) and, for BKG stations, by zone type (rural, suburban, urban). 215 

Results are shown in Fig. 2 for daily values of NO2 (upper left panel), PM10 (upper right panel), O3 (lower left panel) and 

for MDA8 of O3 (lower right panel). 

Overall, model performance is in line with the results obtained by analogous modelling systems (e.g. Solazzo et al., 2012; 

Pirovano et al., 2012; Badia and Jorba, 2015; Bessagnet et al., 2016), especially when applied at similar spatial resolution 

(e.g. Chemel et al., 2010; Pay et al., 2014). More specifically, in Table S2 of Appendix S4 in the SM, the statistical score 220 

values are reported together with the outcomes of Colette et al. (2011), used hereafter as a reference for an explicit 

comparison of the performances. 

As far as NO2 daily values are concerned (upper left panel of Fig. 2), RMSE and corr values, ranging from 10.8 to 28.6 µg 

m
-3

 and from 0.578 to 0.689, respectively, with BKG stations scoring best, are in line with Colette et al. (2011). According to 

MB, negative values, between -22.4 and -4.2 µg m
-3

,
 
are obtained for all station types, stressing a general underestimation of 225 

NO2 concentration values. Anyway, underestimation is generally lower than in Colette et al. (2011) at BKG stations, getting 

worse at TRA sites. This feature is commonly expected in chemical transport model applications at regional scale and it can 

be ascribed to the intrinsic difficulties of regional models in capturing, at their resolution, high gradients in spatial 

concentration variability (Schaap et al., 2015). This hypothesis is confirmed by the evidence that model performance 

(according to both RMSE and MB) deteriorates with decreasing spatial representativeness of monitoring sites; in particular, 230 

absolute values of MB (i.e. underestimations) increase passing from rural to urban environments and even more at TRA 

stations.  

AMS-MINNI tends to underestimate PM10 daily values too, which is common for regional models, as shown by negative 

values of MB in the upper right panel of Fig. 2. However, underestimation does not seem to increase with decreasing spatial 

representativeness of sites, and can be attributable to the well-known difficulties of air quality models to take into account all 235 

the contributions to PM10 concentration (Solazzo et al., 2012; Im et al., 2015). In particular, it is worth noting that, in the 

present AMS-MINNI simulations, the contribution of Saharan dust was not included and this could be the main reason for 

the underestimation at rural sites. As far as MB and corr are concerned, simulated PM10 concentrations are overall in 

agreement with observations, with values ranging from -12.8 to -3.9 μg m
-3

 and from 0.453 to 0.630, respectively. 

AMS-MINNI O3 daily values (lower left panel of Fig. 2) are in line with the findings of Colette et al. (2011) concerning both 240 

the general overestimation of O3 concentration levels and the range of values of the statistical indices (21.7 - 25.7 µg m
-3

 for 
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RMSE, 2.2 - 18.6 µg m
-3

 for MB and 0.683 - 0.822 for corr). More specifically, Table S2 shows that, for background 

stations, similar RMSE values are obtained, together with generally lower MB values and better correlation values. Similarly 

to the performance for NO2, the MB of O3 concentrations changes with the spatial representativeness of monitoring sites, i.e. 

as NO2 underestimation increases passing from rural to urban environments, O3 overestimation increases, since close to NO2 245 

sources the titration process acts as an O3 sink (Seinfeld and Pandis, 1998). 

Model performance in reproducing MDA8 of O3 for the period from April to September (lower right panel of Fig. 2) is 

similar to that for daily concentrations, evaluated throughout the whole year, apart from the negative (albeit small) MB value 

obtained at rural stations. With respect to daily values, correlation for MDA8 (0.712 - 0.853) is generally better, as is MB 

(lower absolute values). With regards to RMSE (24.4 - 25.1 μg m
-3

) the values are worse at BKG stations and slightly better 250 

at IND and TRA sites. Nevertheless, it is worth noting that, when assessing O3 performance, higher biases in concentration 

estimates could be expected when using the MDA8 metric, instead of daily average, since concentration levels are higher 

too. Indeed, higher MDA8 concentration values are expected when compared with daily values for two reasons: i) maximum 

values are taken into account instead of average ones; ii) only the warm period (April-September) is considered here, when 

higher O3 values are generally observed. 255 

Globally, AMS-MINNI performs quite well, with the results being in line with the performances of state of the art of air 

quality models, when operating at the regional scale, when considering both the values of the statistical indices used for the 

comparison and the general tendency to overestimate O3 and to underestimate NO2 and PM10. 

3.2 Trend analysis 

From the concentration fields provided by AMS-MINNI simulations, data were extracted at each monitoring station to 260 

compare observed trends (OT) and simulated trends (ST). 

In the following paragraphs, for each of the pollutants considered and for the whole set of stations described in Table 2, an 

analysis of observed and simulated trends is discussed examining different parameters. For each pollutant, we present:  

 the overall distribution of stations with statistically significant/not significant trends, with their sign, for both 

observations (OT) and simulated (ST) values, in order to evaluate model performance in reproducing temporal 265 

trends in measured concentrations (Figs. 3, 7, 11); 

 the time series of observed and simulated monthly average concentrations (averaged over all stations for each 

station type) (Figs. 4 (a), 5 (a), 8 (a), 9 (a), 12 (a), 13 (a)); 

 scatter plots of observed/simulated slopes, by station type (Figs. 4 (b), 5 (b), 8 (b), 9 (b), 12 (b), 13 (b)); 

 maps of simulated slopes at each grid point, in comparison with the spatial distribution of observed slopes by 270 

station type, in order to provide a more detailed description of the results, since observed and simulated slopes are 

presented according to their spatial distribution and geographical context. Moreover, simulated quantities are 

provided not only at monitoring sites but at every grid point of the computational domain, to fully exploit model 

capabilities at their best in terms of both spatial coverage and variability (Figs. 6, 10, 14). 
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In Appendix S5 of the SM the observed and simulated slopes (both in terms of µg m
-3 

yr
-1

 and % yr
-1

) are reported for each 275 

pollutant and for each station with a significant trend (p<0.05).  

3.2.1 NO2 

Out of 73 monitoring stations, 47(68) have a statistically significant OT(ST) whereas 42 result to have both significant 

observed and simulated trends. Figure 3 shows that all STs are negative (93% significant), whereas 79% of the OTs were 

negative (58% significant; 21% non-significant) and 21% were positive (7% significant; 14% non-significant). Figures 4 (a) 280 

and 5 (a) show that the model reproduces monthly values better at BKG sites than at TRA and IND stations, while the intra-

annual variability is well reproduced for all types of stations. This result confirms the good model performance for daily 

values at BKG stations (Fig. 2). 

The scatter plots of Figs. 4 (b) and 5 (b) show an overall good agreement for BKG sites with statistically significant trends, 

while, as expected, performance is worse at TRA sites where the absolute values of the simulated slopes are mostly lower 285 

than the observed ones. 

Figure 6 shows that model simulations provide coverage and information in parts of the domain where observations are 

completely absent in the considered period, i.e. in the Southern part of Italy. Overall, at BKG stations the model captures 

both the sign and the variability of the slopes better, while it is worse at TRA stations. The map of the simulated slopes not 

only has a wider coverage but also shows a greater area with significant trends compared with observations. 290 

3.2.2 PM10 

The well-known underestimation of PM10 concentrations when simulated by regional models, already discussed in Section 

3.1, and the poor quality of the observation network, shown by the low number of stations fulfilling the selection criteria, 

greatly influenced the trend estimates. Out of 32 monitoring stations, 27(14) have a statistically significant OT(ST) while 11 

have both observed and modelled significant trends. The fraction of all the sites with statistically significant observed trends, 295 

shown in Fig. 7, is 84% compared with only 44% for the ST. The simulated monthly mean time series illustrated in panel (a) 

of both Figs. 8 and 9 for BKG and TRA/IND stations, respectively, show a general underestimation of observed 

concentrations, with performances improving slightly from 2007 onwards. Focussing on sites where both observed and 

simulated trends are statistically significant, Figures 8 (b) and 9 (b) show that the model succeeds in capturing not only the 

sign of all the observed trends, but also the slopes at many sites, even if the absolute values are underestimated, especially at 300 

the industrial site. This result is confirmed by the maps in Fig. 10, which show a general agreement at most of the available 

monitoring stations. Although to a lesser extent when compared with NO2 and O3, the simulated statistically significant 

trends for PM10 cover a wider area with respect to observations especially in the Northern area and in the Sardegna island 

where no observations are available at all. A poor coverage of significant trends in both model and observations occurs in 

some areas of Central and Southern Italy, where the model estimates larger areas of significant trends, especially for the 305 

Puglia region and Sicilia island.  
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3.2.3 O3 

As underlined in Lefohn et al. (2017; 2018) and Colette et al. (2017b), the choice of the O3 metrics is of the utmost 

importance since each indicator could show a different trend. In our analysis, both effect-based indicators (AOT40 and 

SOMO35) and process-based indicators (MDA8) were computed and analysed. The different metrics explored are: the mean 310 

O3 concentration (O3 avg); the maximum daily 8-hour average concentration (MDA8); the accumulated amount of ozone 

over the threshold value of 40 ppb (AOT40) calculated from April to September (Apr-Sep) and the sum of the daily maxima 

of 8-hour running average over 35 ppb (SOMO35) for the whole year. Concerning O3 avg and MDA8 metrics, analyses were 

carried out for both the entire year and from April to September. The number of stations with increasing and decreasing 

trends and their significance depends on the metric used (Table 2 and Fig. 11). The fraction of stations with significant trends 315 

also varies between the observed and modelled datasets. Annual metrics (O3 avg, MDA8 and SOMO35) have a lower 

fraction of significant trends than the metrics calculated in Apr-Sep. For the purpose of our analysis, i.e. to show the capacity 

of the AMS-MINNI in capturing the air pollution trends through a comparison of observations and simulations, we preferred 

to focus on the MDA8 indicator calculated in the warm period (Apr-Sep), when higher O3 values are generally recorded. 

Indeed, the MDA8 calculated in the period Apr-Sep has the highest number of stations with significant trend among all 320 

indicators. 

The fraction of stations with significant trend is comparable between observations and simulations, 66% and 68% 

respectively, but when looking at the sign of the trend, we found out that all significant simulated trends are decreasing, 

while the 39% of significant observed trends are increasing. The monthly mean shows a good agreement for BKG stations 

(Fig. 12 (a)) and a slight overestimation for both IND and TRA stations (Fig. 13 (a)). The scatter plots (panel (b) of both 325 

Figs. 12 and 13) show a higher variability for observed trends than for those simulated.  

When looking at the spatial distribution, Figure 14 shows a large area of significant simulated slopes, ranging from -2.0 g 

m
-3

 yr
-1

 to -0.5 g m
-3

 yr
-1 

with an area of non-significant ST in the North-Eastern area. The comparison with observations is 

particularly interesting for BKG stations, for which there are more stations available. As already pointed out, the model does 

not reproduce the observed positive trends, but the model has a good agreement with the significant decreasing OT, although 330 

with a lower variability. Moreover, there are some areas, especially in Central and Southern Italy, where the model shows a 

significant trend, whereas monitoring sites are not available at all or the OT is not significant.  

3.3. Discussion 

Our analysis shows that AMS-MINNI is capable of reproducing observed trends albeit with some differences between the 

pollutants studied. Although a quantitative analysis of the influence of variations in emissions and meteorology on 335 

concentration trends was not performed, we present a preliminary qualitative attempt to compare the temporal concentration 

trends to variation in emissions, having already observed (see Section 2.4) that there is no clear tendency in the meteorology. 
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The nitrogen oxides (NOX) that are most relevant for air pollution (namely NO and NO2) are mostly emitted during fossil 

fuel combustion processes, and in particular by road transport. In our analysis, the road transport sector represents almost the 

50% of all the total emitted NOX (see Fig. S5 of Appendix S2 of the SM). The decrease of NO2 concentrations is almost 340 

consistent with the decrease in NOX emissions, since NO2 concentrations are directly linked to primary emissions (Colette et 

al., 2011; Henschel et al., 2015) and mainly driven, in our case, by a reduction in emissions from the road transport sector. 

Despite the underestimation of absolute values of background concentrations, AMS-MINNI adequately reproduces the 

observed trends at a national scale (Fig. 4 (b)), demonstrating its potential for supporting reduction policies of background 

pollution. On the other hand, besides underestimating concentrations at traffic stations like many state of the art CTMs, the 345 

decreasing concentrations trends observed at traffic stations is underestimated (Fig. 5 (b)). This indicates that the model is 

either misrepresenting the decrease of emissions, or the model is not responding correctly to the changes in emissions. 

Moreover, the spatial resolution can limit the model's ability to capture large concentration gradients, typical of the urban 

environment, and this may be the reason for failure of the model to capture the positive trends. As an interesting example, 

from Fig. 6 (lower right panel) it turns out that the traffic station with the highest positive observed slope (as showed in Fig. 350 

5 (b)) is located in Florence, Toscana region. The comparison of lower right and upper left panels of Fig. 6 shows that this 

traffic monitoring site, (airbase code IT0861A, see Table S3 of Appendix S5 in the SM), is located between two urban BKG 

sites that have non-significant OT. The three monitoring points are located within about 4 km (i.e. in the same cell of the 

computational domain). This is a feature that the model is not able to capture; indeed, in this area simulated trends are not 

significant or decreasing. Something similar occurs in most of the cases with positive OT. Most of these points are very close 355 

to other monitoring sites where the opposite behaviour (negative slopes) is observed; see for example the couple of BKG 

sites in Lombardia surrounded by other BKG sites where the opposite sign is found, or the IND site located in Eastern 

Liguria very close to a TRA site with a decreasing trend. Therefore, when designing mitigation scenarios at local urban 

scale, these results suggest that a regional scale CTM like AMS-MINNI needs to be integrated with high resolution models.  

Concerning PM and O3, given their secondary nature, a direct link between emissions and atmospheric concentrations is not 360 

expected (Guerreiro et al., 2014). 

PM10 is both primarily emitted and secondarily generated in the atmosphere from reactions of chemical precursors (NOX, 

SOX, NH3, NMVOC). Therefore, observed concentrations reflect these and other contributions, like long-range transport, 

including Saharan dust, in variable fractions depending on the site. The national emissions of primary PM10 (Fig. 1) are 

stable for the first four years (apart from 2004), then grow for four years and diminish in the last period, resulting in a final 365 

increase of 13% from 2003 to 2010. On the other hand, the emissions of all four mentioned precursors decrease at different 

rates. These contrasting trends in emissions could partly explain the large areas of non-significant trends shown in Fig. 10, 

whereas the areas with the higher simulated decrease correspond mainly to industrial and traffic areas, underlying the 

significant efforts in reducing emissions from the industrial and road transport sectors. The few stations available for the 

comparison show a nice model skill in reproducing observed negative trends, even on TRA stations. This could be a 370 

preliminary confirmation of the fitness of AMS-MINNI for the purpose of supporting emission reduction planning, even 
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though further evaluations of model trends are needed, especially for more recent time intervals. Moreover, the observed 

biases in concentrations, especially at the beginning of the time series (Figs. 8 (a) and 9 (a)), suggest that further insights are 

needed to investigate how the change of model performances could affect the trend estimates. 

O3 is a secondary pollutant produced in the troposphere by the chemical reactions of its precursors, such as NOX and 375 

NMVOC, while CH4 and CO become more important at a wider scale (Guerreiro et al., 2014).  

The number of cited studies focussing on O3 indicates how critical this pollutant is when exploring relations between 

temporal trends of emissions and concentrations, given the complex photochemistry, showing sometimes a discrepancy 

between the emission decrease of O3 precursors and the variation of O3 concentrations (Colette et al., 2011; Guerreiro et al., 

2014; Querol et al., 2014). This is particularly important in Mediterranean areas, which are susceptible to ozone-related 380 

impacts (De Marco et al., 2019) due to climatological conditions that are more favourable for O3 formation. The national 

emissions of the main ozone precursors follow a similar descending trend in the 8 years considered, thus there has been little 

change in the ratio between them, which is the main driver of the chemical equilibrium for O3 formation (Seinfeld and 

Pandis, 1998; Sillman, 1999). This could partly explain (Fig. 14) why the model gives not significant or close to zero trends 

in Northern Italy, especially in the Po Valley, a well-known air pollution hot spot, densely populated and with high 385 

anthropogenic emissions. In the same region, where most of the monitoring stations are concentrated, different behaviours of 

OT are observed: negative slopes (especially in the Western part), not significant trends and positive slopes in some stations, 

mainly located in complex orographic contexts or near to the coastline, where the transport of O3 from the sea, caused by sea 

breeze circulation (Monteiro et al., 2016), together with precursor emission by nearby harbours, could lead to local peculiar 

features. Similar findings can be found in the literature, as for example in Guerreiro et al. (2014) or in Colette et al. (2011), 390 

who noticed in particular that different models had different behaviours. On a national level, Cattani et al. (2014), focussed 

on observations throughout the Italian territory in the period 2003-2012, showed that it is not possible to estimate a general 

significant statistical trend (although with a different reference metric, i.e. SOMO0 calculated from April to September), 

regardless of the type or the area of the stations, and that there are discrepancies in significant trend between adjacent 

stations. Moreover, as already mentioned, the choice of the O3 metrics can influence the trend estimate. Overall, in our 395 

analysis, AMS-MINNI underestimates the absolute value of the descending OT at background stations. This result is driven 

by North-Western monitoring locations, where further work is needed to analyse the quality of local emission estimates and 

external contributions to ozone concentrations. 

4 Conclusions 

The present work aims to assess for the first time the capability of the Italian chemical transport model AMS-MINNI of 400 

capturing the trends of three pollutants, namely NO2, PM10 and O3. The analysis for O3 was carried out using different 

metrics, both for observations and simulations. We firstly conducted a thorough analysis of the model skill considering some 

statistical score parameters most commonly used in the literature. This analysis confirms that the model performance is in 
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line with the state of the art for regional model applications. Statistical indicators are as good as other CTMs in literature and 

a similar behaviour to that of most regional models was observed concerning the general tendency to overestimate O3 and to 405 

underestimate NO2 and PM10. The trend evaluation was performed using the non-parametric Mann-Kendall trend test 

together with the Theil-Sen’s method for the estimation of the slopes and an in-depth comparison between observed and 

AMS-MINNI modelled trends was carried out. Comparing the sign of modelled and observed trends we found a good 

agreement for almost all sites. Our main result is a general downward simulated trend for the three pollutants. With respect 

to observations, modelled slopes show the same magnitude for NO2 (in the range -3.0 - -0.5 g m
-3

 yr
-1

), while a smaller 410 

variability is detected for PM10 (-1.5 - -0.5 g m
-3

 yr
-1

) and O3-MDA8 (-2.0 - -0.5 g m
-3

 yr
-1

). The reason for the 

discrepancy for PM10 could be attributed to the well-known underestimation of modelled PM10 concentrations. The results 

for O3 could be influenced by the poor quality of the monitoring network data in the period we considered, together with the 

well-documented difficulties of models in capturing O3 concentration trends, given its non-linear dependence on precursors 

emissions.   415 

Model capabilities in terms of both spatial coverage and variability are illustrated by the maps for the three pollutants, 

showing larger area for significant simulated trends compared with those observed, with a larger coverage for NO2 and O3-

MDA8 and a smaller one for PM10. For all pollutants, almost the entire domain of Northern Italy has significant simulated 

trends. Even for Southern Italy, where in general a low coverage of significant modelled PM10 trends is obtained, there are 

areas with significant simulated trends where there are no observations. It is also worth noting that in the major islands, 420 

Sardegna and Sicilia, the simulated trends give useful information, filling the gap due to a sparse or absent monitoring 

network. 

Moreover, a qualitative comparison between the temporal concentration trends and the meteorological and emission 

variations was carried out too. Since we do not observe a clear tendency in meteorological anomalies, concentrations trends 

were discussed in connection with emission variations. Indeed, it was pointed out that, due to the complex links between 425 

precursor emissions and air pollutant concentrations, emission reductions do not always result in a corresponding decrease in 

atmospheric concentrations, especially for secondary pollutants like PM10 and O3. Studies on air pollutant trends are 

relevant to evaluate the impact of the actions taken to reduce emissions in different environmental policies both at national 

and local levels. The evaluation of the AMS-MINNI capability to reproduce the trends of pollutants increases the reliability 

of its application in assessing air quality and supporting air quality plans, especially for its use in national regulatory 430 

assessments. Indeed, our analysis demonstrates the good agreement between modelled and observed trends and the added 

value of the model in increasing both the coverage and the significance of air concentration trends with respect to 

observations. Model performance is best for NO2, while for the others, especially O3, the issue is more challenging. 

Moreover, the capability to interpret past air quality trends is fundamental in understanding the efficacy of already applied 

air quality policies and measures and in planning further actions. As demonstrated, the understanding of complex 435 

interactions is still uncertain and represents a gap to be filled since it is of the utmost importance in planning future policies 

aimed at reducing air pollution and its impacts on health and ecosystems.  
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The present analysis may be applied to other pollutants, especially substances of potential concerns for health (e.g. PM2.5). 

Moreover, it can be considered a reference for other studies in complex geographical conditions such as the Italian territory, 

that represents an interesting environmental framework, due to its complex orography, resulting in peculiar meteorological 440 

conditions, the great variety of natural and anthropogenic contexts, and the presence of the Po Valley, a well-known air 

pollution hot spot. 
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Appendix A: list of acronyms 

AMS = Atmospheric Modelling System 445 

BKG = Background 

BRACE = Banca Dati e Metadati di Qualità dell’aria (National Air Quality database) 

corr = correlation coefficient 

CTM = Chemical Transport Model 

ECMWF = European Centre For Medium-Range Weather Forecast 450 

EEA = European Environmental Agency 

EMAC = ECHAM/MESSy Atmospheric Chemistry 

EMEP = European Monitoring and Evaluation Programme 

FARM = Flexible Air Quality Regional Model 

IND = Industrial 455 

ISPRA = Istituto Superiore per la Protezione e Ricerca Ambientale (Italian Institute for Environmental Protection and 

Research) 

MB = Mean Bias 

MDA8 = Maximum Daily 8-hour Average 

MINNI = Modello Integrato Nazionale a supporto della Negoziazione Internazionale sui temi dell’ Inquinamento 460 

atmosferico (Italian National Integrated Model to support the international negotiation on atmospheric pollution) 

NO2 = nitrogen dioxide 

NUTS = Nomenclature of territorial units for statistics 

O3 = ozone 

OECD = Organization for Economic Co-operation and Development 465 

OT = Observed Trends 

PBL = Planetary Boundary Layer 

PM10 = particulate matter with diameter of 10 m or less 

RAMS = Regional Atmospheric Modelling System 

RMSE = Root Mean Square Error 470 

SIA = Secondary Inorganic Aerosol 

SM = Supplementary Material 

SNAP = Selective Nomenclature for Air Pollution 

SOA = Secondary Organic Aerosol 

ST = Simulated Trends 475 

SURFPRO = SURFace-atmosphere interface PROcessor 
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TRA = Traffic 

WHO = World Health Organization  

WMO = World Meteorological Organization 

Code and data availability 480 

The meteorological model RAMS v6.0 is freely available at http://www.atmet.com/software/rams_soft.shtml. The chemical 

transport model FARM v4.7.0 is freely available at https://hpc-forge.cineca.it upon request to ARIANET s.r.l. 

(http://www.aria-net.it). The emission software emma6 is available on charge upon request to ARIANET s.r.l. All the codes 

can be provided confidentially for the editor and reviewers in order to enable peer review. All the modelled data (gridded 

emissions, meteorological and concentrations fields at 4 km resolution) and the trend analysis calculations are available upon 485 

request to the authors. Observation data are publicly available from the BRACE website 

(http://www.brace.sinanet.apat.it/web/struttura.html). 
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Figure 1: Italian anthropogenic emissions, from 2003 to 2010 relative to 2003, , elaborated from ISPRA emission data set described 

in Taurino et al. (2017). 830 
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Figure 2: Summary of model performance evaluated at all valid Italian monitoring stations during 2003-2010. The statistical 

scores are based on annual time series of daily average values of NO2 (upper left panel), PM10 (upper right panel) and O3 (lower 835 
left panel) and on MDA8 of O3, calculated for the period Apr-Sep (lower right panel). 
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Figure 3: Percentage of sites where statistically significant upward trends (dark red), not significant upward trends (hashed dark 

red), significant downward trends (dark blue) and not significant downward trends (hashed dark blue) were obtained for NO2 840 
observations and simulated data.  

 

 

Figure 4: (a) Observed (solid line) and simulated (dashed line) monthly means of NO2 concentrations (in g m-3) for all the 

background monitoring stations. (b) Scatter plot of observed and simulated slopes (in g m-3 yr-1) at each individual station. Sites 845 
where significant slopes are estimated for both observations and simulated data are indicated with a filled symbol. 
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Figure 5: (a) Observed (solid line) and simulated (dashed line) monthly means of NO2 concentrations (in g m-3) for all the traffic 

(black diamond) and industrial (pink square) monitoring stations. (b) Scatter plot of observed and simulated slopes (in g m-3 yr-1) 850 
at each individual station. Sites where significant slopes are estimated for both observations and simulated data are indicated with 

a filled symbol. 

 



33 

 

 

Figure 6: Slopes of NO2 (g m-3 yr-1) observed at background (BKG – upper left panel), industrial (IND – lower left panel) and 855 
traffic (TRA – lower right panel) stations and simulated (upper right panel) slopes at each grid point. The grey symbols refer to 

not significant trends for both the observations and the simulated data. 
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Figure 7: Percentage of sites where statistically significant upward trends (dark red), not significant upward trends (hashed dark 860 
red), significant downward trends (dark blue) and not significant downward trends (hashed dark blue) were obtained for PM10 

observations and simulated data.  

 

 

Figure 8: (a) Observed (solid line) and simulated (dashed line) monthly means of PM10 concentrations (in g m-3) for all the 865 
background monitoring stations. (b) Scatter plot of observed and simulated slopes (in g m-3 yr-1) at each individual station. Sites 

where significant slopes are estimated for both observations and simulated data are indicated with a filled symbol. 
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Figure 9: (a) Observed (solid line) and simulated (dashed line) monthly means of PM10 concentrations (in g m-3) for all the traffic 870 
(black diamond) and industrial (pink square) monitoring stations. (b) Scatter plot of observed and simulated slopes (in g m-3 yr-1) 

at each individual station. Sites where significant slopes are estimated for both observations and simulated data are indicated with 

a filled symbol. 
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Figure 10: Slopes of PM10 (g m-3 yr-1) observed at background (BKG – upper left panel), industrial (IND – lower left panel) and 

traffic (TRA – lower right panel) stations and simulated (upper right panel) slopes at each grid point. The grey symbols refer to 

not significant trends for both the observations and the simulated data. 880 
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Figure 11: Percentage of sites where statistically significant upward trends (dark red), not significant upward trends (hashed dark 

red), significant downward trends (dark blue) and not significant downward trends (hashed dark blue) were obtained for different 

observed and simulated metrics for O3.  

 885 

 

Figure 12: (a) Observed (solid line) and simulated (dashed line) monthly means of O3-MDA8 concentrations (in g m-3) for all the 

background monitoring stations. (b) Scatter plot of observed and simulated slopes (in g m-3 yr-1) for O3-MDA8 in the period 

April/September at each individual station. Sites where significant slopes are estimated for both observations and simulated data 

are indicated with a filled symbol. 890 
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Figure 13: (a) Observed (solid line) and simulated (dashed line) monthly means of O3-MDA8 concentrations (in g m-3) for all the 

traffic (black diamond) and industrial (pink square) monitoring stations. (b) Scatter plot of observed and simulated slopes (in g 

m-3 yr-1) for MDA8 in the period April/September at each individual station. Sites where significant slopes are estimated for both 

observations and simulated data are indicated with a filled symbol. 895 
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Figure 14: Slopes of O3-MDA8 (g m-3 yr-1) observed at background (BKG – upper left panel), industrial (IND – lower left panel) 900 
and traffic (TRA – lower right panel) stations and simulated (upper right panel) slopes at each grid point. The grey symbols refer 

to not significant trends for both the observations and the simulated data. 


