1	Measurement report: Exploring the NH ₃ behaviors at urban and suburban Beijing:
2	Comparison and implications
3	Ziru Lan ^a , Weili Lin ^a , Weiwei Pu ^b , Zhiqiang Ma ^{b,c}
4	^a College of Life and Environmental Sciences, Minzu University of China, Beijing 100081;
5	^b Environmental Meteorological Forecast Center of Beijing-Tianjin-Hebei, Beijing, 100089, China;
6 7	^c Beijing Shangdianzi Regional Atmosphere Watch Station, Beijing, 101507, China Correspondence: Weili Lin (<u>linwl@muc.edu.cn</u>)
8	ABSTRACT
9	Ammonia (NH ₃) plays an important role in particulate matter formation, and hence its atmospheric level
10	is relevant to human health and climate change. Due to different relative distributions of NH ₃ sources,
11	the concentrations of atmospheric NH3 may behave differently in urban and rural areas. However, few
12	parallel long-term observations of NH3 to reveal the different behaviors of the NH3 concentrations at the
13	urban and rural sites in a same region. In this study, online ammonia analyzers were used to continuously
14	observe atmospheric NH ₃ concentrations at an urban site and a suburban site in Beijing from January 13,
15	2018, to January 13, 2019. The observed mixing ratio of NH_3 averaged 21 ± 14 ppb (range: 1.6–133 ppb)
16	at the urban site and 22 ± 15 ppb (range: 0.8–199 ppb) at the suburban site. The NH ₃ mixing ratios at the
17	urban and suburban sites exhibited similar seasonal variations, with high values in summer and spring
18	and low values in autumn and winter. The hourly mean NH3 mixing ratios at the urban site were highly
19	correlated ($R = 0.849$, $P < 0.01$) with those at the suburban site. However, the average diurnal variations
20	in the NH3 mixing ratios at the urban and suburban sites differed significantly, which implies the different
21	contributions of NH3 sources and sinks at the urban and suburban sites. In addition to the emission
22	sources, meteorological factors were closely related to the changes in the NH ₃ concentrations. For the
23	same temperature (relative humidity) at the urban and suburban sites, the NH ₃ mixing ratios increased $1 / 31$

24	with relative humidity (temperature). Relative humidity was the factor with the strongest influence on
25	the NH ₃ mixing ratio in different seasons at the two sites. The relationships between the NH ₃
26	concentrations and temperature (relative humidity) varied from season to season and showed differences
27	between the urban and suburban sites. The reasons for the different relationships need to be investigated
28	in future studies. Higher wind speed mainly from the northwest sector lowered the NH3 mixing ratios at
29	both sites. Similar with other primary pollutants in Beijing, the NH3 mixing ratios were high under
30	impacts of air masses from the south sector.

- 31 Keywords: NH₃; variations; simultaneous observation
- 32

33 1. Introduction

34 Ammonia (NH₃) is the most abundant alkaline trace gas in the atmosphere (Meng et al., 2017). An 35 excessive NH₃ concentration directly harms the ecosystem; causes water eutrophication and soil 36 acidification; and leads to forest soil erosion, biodiversity reduction, and carbon uptake variations 37 (Pearson and Stewart, 1993; Reay et al., 2008; Van Breemen et al., 1983; Erisman et al., 2007). NH₃ can 38 react with acidic gases to form ammonium salts, which might significantly influence the mass 39 concentration and composition of particulate matter (Wu et al., 2009). As major components of fine 40 particle, ammonium salts contribute largely to the scattering of solar radiation and hence influence 41 climate change (Charlson et al., 1991). Therefore, atmospheric NH₃ is one of the key species relevant to 42 human health, ecosystem and climate change. 43 After the implementation of policies such as the 12th Five-Year Plan for the Key Regional Air 44 Pollution Prevention and Control in Key Regions (Ministry of Ecology and Environment of the People's 45 Republic of China, 2012) and the Air Pollution Prevention and Control Action Plan (General Office of 46

47 the emissions of sulfur dioxide (SO_2) and nitrogen oxide (NO_x) , which are key precursors of fine particles. 48 However, the pollution caused by fine particles is still serious (Krotkov et al., 2016; UN Environment, 49 2019), particularly in winter in the North China Plain, where excess NH₃ promote the haze formation 50 through heterogeneous reactions (Ge et al., 2019). Studies have indicated that when the SO_2 and NO_x 51 concentrations are reduced to a certain extent, reducing NH₃ emissions is the most economical and 52 effective method to decrease the PM_{2.5} concentration (Pinder et al., 2008). In China, the main 53 anthropogenic sources of NH₃ are livestock and poultry feces (54%) and fertilizer volatilization (33%) 54

the State Council, PRC, 2013), China, especially the capital city Beijing, has been effectively controlling

(Huang et al., 2012). Moreover, the atmospheric NH₃ concentration in China has increased with the

55 expansion of agricultural activities, control of SO₂ and NO_x, and increase in temperature (Warner et al.,

55

2017). This increase in the NH₃ concentration might weaken the effectiveness of SO₂ and NO_x emission
control in reducing PM_{2.5} pollution (Fu et al., 2017).

58 The North China Plain is a region with high NH₃ emission (Zhang et al., 2017), and Beijing has one 59 of the highest NH₃ concentrations in the world (Chang et al., 2016b; Pan et al., 2018). Compared with 60 studies on pollutants such as SO₂ and NO_x, considerably fewer studies have been conducted on the NH₃ 61 concentration in Beijing. Chang et al. (2016a) collected gaseous NH₃ samples during the 2014 APEC 62 summit (October 18 to November 29, 2014) in the Beijing urban area and concluded that the overall 63 contributions of traffic, garbage, livestock, and fertilizers to the NH₃ concentration were 20.4%, 25.9%, 64 24.0%, and 29.7%, respectively. According the data from Huang et al (2012), the NH₃ emissions in 65 Beijing were from livestock and poultry farming (34.55%), nitrogen-fixing plants (33.57%), fertilizer 66 use (13.06%), household garbage treatment (8.29%), traffic emissions (5.20%), industrial emissions 67 (0.14%), biomass combustion (0.42%), and agricultural soil (0.84%). Zhang (2016) measured the NH₃ 68 concentrations in urban and rural areas of Beijing from January to July 2014 and found that NH₃ 69 concentration in urban areas was approximately 65% higher than that in rural areas. Meng et al. (2011) 70 reported that the highest NH₃ concentration in Beijing occurred in summer and the lowest one occurred 71 in winter, and their results indicated traffic to be a significant source of NH₃ in urban areas. Zhang et al. 72 (2018) reported the vertical variability of NH₃ in urban Beijing based on one-year passive sampling in 73 2016/2017 and concluded that local sources such as traffic emissions were important contributors to 74 urban NH₃. Meng et al. (2020) investigated the significant increase in winter NH₃ and its contribution to 75 the increasing nitrate in PM_{2.5} from 2009 to 2016, and they also concluded that vehicles exhaust was an 76 important contributor to NH₃ in urban Beijing in winter.

Currently, NH₃ is not included in the routine environmental monitoring operation in China. Research data on NH₃ monitoring, particularly on the synchronous observations of NH₃ concentrations with a high temporal resolution in urban and suburban areas, are relatively scarce. In this study, high-time-resolution observations of NH₃ were obtained simultaneously at an urban site and a suburban site in Beijing. The variation characteristics and influencing factors of the NH₃ concentration were analyzed with meteorological data to provide a scientific basis for NH₃ pollution control in Beijing.

- 83 2. Materials and methods
- 84 2.1. Measurement sites

From January 2018 to January 2019, continuous and simultaneous observations of atmospheric NH₃ were conducted at an urban site and a suburban site in Beijing. The urban site was located on the roof of the Science and Technology Building of Minzu University of China (39.95°N, 116.32°E, altitude: 102 m) and the suburban site was in the Changping Meteorological Station (40°13'N, 116°13'E, altitude: 77 m). The suburban site is in the NW direction relative to the urban site and the shortest distance between these two sites is approximately 32 km (Figure 1). More farm land and glass land are around the suburban site than the urban site.

93

Fig. 1. Location of the observation sites, the topography, and land use of Beijing city.

96	NH3 concentrations were measured using two NH3 analyzers (Ammonia Analyzer-Economical, Los
97	Gatos Research Inc., USA), which have the minimum detection limit of <0.2 ppb and the maximum drift
98	of 0.2 ppb/24hrs. The NH ₃ analyzers were deployed in air-conditioning rooms. These analyzers use off-
99	axis integrated cavity output spectroscopy (OA-ICOS) technology, which is a fourth-generation cavity-
100	enhanced absorption technique, to simultaneously measure NH3 and water vapor (H2O) in the atmosphere.
101	The incident laser beam of the OA-ICOS technology deviates from the optical axis, which differs from
102	the traditional coaxial incidence mode. The axial incidence mode of the OA-ICOS technology can
103	increase the optical path, stimulate additional high-order transverse modes, effectively suppress the noise
104	of the cavity mode, reduce the cross interferences and errors due to contaminants existing in the cavity,
105	and improve the detection sensitivity (Baer et al., 2002; Baer et al., 2012). The analyzer method is a
106	quasi-absolute measurement, which theoretically does not require calibration. However, to ensure the
107	comparability of the obtained data with other monitoring data, NH3 standard gas (Beijing AP BAIF Gases
108	Industry Co., Ltd.) was used for comparison measurement before the observation. The recorded
109	concentrations were revised with respect to the reference NH ₃ concentration in the standard gas mixture.
110	Ambient air was drained at >0.4 L/min through Teflon lines (1/4'OD) from a manifold. The lengths
111	of the Teflon lines were designed as short as possible (less than 2 m from the manifold). Particulate
112	matters were filtered by Teflon membranes with a pore size less than 5 μ m. Since NH ₃ easily "sticks" to
113	surfaces (like inside walls of tubes), heated sample lines were suggested by many measurement studies.
114	However, according our test (Fig. S1) in the lab, when heating (70°C) was on, there did have a peak
115	lasting 5-6 min minutes and then deceasing to the normal levels in ambient air, which means a new
116	balancing process has been established in less than 10 min. This suggests that heating is not necessarily

117 a solution for NH₃ sticking. Keeping the relatively stable balance between adsorption and desorption of 118 NH₃ in the sampling system is important. When tested using air of different humidity, only very sharply 119 changes of humidity obviously influenced and changed the balance, and a new balance needed tens of 120 minutes to reestablished (Fig. S2). Under the normal weather conditions, humidity changes in a relatively 121 smoothing way unless a quickly changing weather system, like rain, is approaching. The minute-level 122 data were converted into hourly averages in the data analysis process and the hourly resolution can 123 smooth the effect to some extent caused by variations in humidity and temperature during the observation. 124 The balancing idea was also used to carry out multi-point calibrations on NH₃ analyzers (Fig. S3). 125 A high mixing ratio (e.g. 400 ppb or higher) of NH₃ mixing gases were firstly produced by a dynamic 126 diluter and measured by the NH₃ analyzers overnight. After the signals reached the stable level, other 127 lower span values were switched in turn. At each span point, the measurement time was lasting at least 128 40 minutes or longer. Then a linear regression function was obtained with R² higher than 0.999. 129 Nowadays, NH₃ in compressed gas cylinder is also trustworthy, as confirmed by the comparison with the 130 NH₃ standard in a permeation tube (Fig. S4). 131 Totally, 7645 and 8342 valid hourly mean observations were obtained for the urban (Haidian) and 132 suburban (Changping) sites, respectively. In addition, the urban and suburban meteorological data

- 133 (temperature, relative humidity, wind direction, and wind speed) during the sampling period were
- 134 obtained from the Haidian Meteorological Observation Station and Changping Meteorological Station,
- 135 respectively.
- 136 **3. Results and discussion**
- 137 3.1. Overall variations in the NH₃ mixing ratios

138 Fig. 2 displays the time-series variations in the NH₃ mixing ratios, temperatures, and relative

139 humidity at the urban and suburban sites in Beijing. At the urban site, the mean $\pm 1\sigma$, median, maximum, 140 and minimum values of the hourly average NH₃ mixing ratio during the observation period were 21 ± 14 141 ppb, 17 ppb, 133 ppb and 1.6 ppb, respectively. At the suburban site, the corresponding values were 22 142 \pm 15 ppb, 18 ppb, 199 ppb, and 0.8 ppb, respectively. The annual average and range of the NH₃ mixing 143 ratio at the suburban site were marginally higher than those at the urban site. The characteristics of the 144 weekly smoothed data indicate that the NH₃ variations and temperature/humidity fluctuations at the two 145 sites were practically consistent, which suggests that both sites were under the influence of similar 146 weather systems. The hourly mean NH_3 concentrations at the urban site were significantly correlated (R 147 = 0.849, P < 0.01) with those at the suburban site.

Fig. 2. Temporal variations in the hourly average NH₃ mixing ratios, temperatures (*T*) and relative humidity (*RH*) at the urban and suburban
 stations in Beijing. Continuous thick lines were smoothed with 168 points (7 days) by using the Savitzky–Golay method.

152 Table 1 shows the comparison of atmospheric NH₃ concentrations (ppb) observed in different areas.

153	Meng et al. (2011) obtained an average NH ₃ mixing ratio of 22.8 ± 16.3 ppb for the period 2008-2010 in
154	Beijing urban area, which is very close to our result $(21 \pm 14 \text{ ppb})$ for 2018-2019. Therefore, the annual
155	average NH ₃ mixing ratio in urban Beijing did not change significantly from 2008 to 2019. Moreover,
156	results from this study and Meng et al. (2011) indicate that the NH ₃ concentrations at the urban and
157	suburban sites were higher than those in the background areas. The observed NH ₃ concentrations in
158	Beijing were higher than those in northwest China (Meng et al., 2010) and the Yangtze River Delta region
159	(Chang et al., 2019). The average annual NH ₃ concentration in the urban area of Shanghai, a mega city
160	in the Southeast China (31° N), was approximately 50% lower than that in urban Beijing. This might be
161	related to the fact that the North China Plain, in which Beijing is located, is one of the most intensive
162	agricultural production regions in China. The differences in the soil properties of Beijing and Shanghai
163	may be another reason because the loss of soil NH3 can increase with an increase in the soil pH (Ju et al.,
164	2009). Shanghai and its surrounding areas are dominated by acidic soil of paddy fields (Zhao et al., 2009),
165	whereas Beijing is dominated by the alkaline soils of dry land (Wei et al., 2013). In addition, the climate
166	in Beijing is much drier than in Shanghai so that less atmospheric NH3 in Beijing can be removed than
167	in Shanghai by wet deposition.

168 Table 1. Comparison of the atmospheric NH₃ concentrations (ppb) observed in different areas.

Period	Location	Methodology	Types	Concentration	Reference
2010 01 2010 01	D		Urban	20.8±13.7	
2018.01-2019.01	Beijing, CN	Online monitor	Suburban	21.9±14.9	This study
2008.02-2010.07	D	Desciences la	Urban	22.8±16.3	Marca de 1. 2011
2007.01-2010.07	Beijing, CN	Passive sampler	Background	10.2±10.8	Meng et al., 2011
2014 5 2015 6	Shanahai CN	Dessing sounds.	Urban	7.8	Change et al. 2010
2014.5-2015.6	Shanghai, CN	Passive sampler	Suburban	6.8	Chang et al. 2019
2006 04 2007 04	Vi'an CN	Possive compler	Urban	18.6	Cap et al. 2009
2000.04-2007.04	AI all, CIV	i assive sampler	Suburban	20.3	Ca0 et al. 2009
2017.12-2018.2	Hebei, CN	Online monitor	Rural	16.7±19.7	He et al. 2020
2008	Qinghai, CN	Passive sampler	Rural	4.1±2.2	Meng et al. 2010

2002 7 2011 0	Taxanta CA	Dessing secondar	Urban	2.3-3.0	Un et al. 2014
2003.7-2011.9	Toronio, CA	Passive sampler	Rural	0.1-4	Hu et al. 2014
2016 4 2017 10	New Verla LIC		Urban	2.2-3.2	7k av at al. 2010
2016.4-2017.10	New York, US	Active and passive system	Rural	0.6-0.8	Znou et al. 2019
2017 12	Tokyo IP	semi-continuous microflow	Urban	41	Osada et al. 2019
2017.12	1000,01	analytical system	Orban	7.1	03ada et al. 2017
2013.1-2015.12	Delhi, IN	Automatic analyzer	Urban	53.4±14.9	Saraswati et al., 2019
2012.10-2013.9	Jaunpur, IN	Glass flask sampling	Suburban	51.6±22.8	Singh and Kulshrestha, 2014
2008.1-2009.2	Bamako, MLI	Passive sampler	Urban	46.7	Adon et al., 2016
2006.3-2017.4	Edmonton, CA	Online monitor	Urban	2.4±0.6	Yao et al., 2016
2010.9-2011.8	Seoul, KR	Online monitor	Urban	10.9±4.25	Phan et al., 2013
2004.3-2004.7	Munster, DE	Wet denuder	Urban	5.2	Vogt et al., 2005

170	Table 1 also shows observational results of atmospheric NH ₃ from some other countries. The NH ₃
171	mixing ratios in the United States (Edgerton et al., 2007; Nowak et al., 2006; Zhou et al. 2019), Scotland
172	(Burkhardt et al., 1998), Canada (Hu et al., 2014), Japan (Osada et al., 2019), and Germany (Vogt et al.,
173	2005) were 0.23–13 ppb, 1.6–2.3 ppb, 0.1–4 ppb, 4.1 ppb, and 5.2 ppb, respectively. These values are
174	considerably lower than those in Beijing. However, Delhi, India (Saraswati et al., 2019), exhibited higher
175	NH ₃ mixing ratio (53.4±14.9 ppb) than Beijing did. This result might be attributed to the well-developed
176	livestock breeding activities in Delhi. This comparison indicates that in the decade before 2019, the NH_3
177	concentration in Beijing did not change considerably, but it is of the highest in big cities in China and
178	much higher than those observed in developed countries in America, Europe and Asia.
179	3.2. Seasonal variations
180	Fig. 3 displays the monthly statistics for the NH ₃ mixing ratios at the urban and suburban sites in
181	Beijing. The seasonal variations in the NH ₃ mixing ratios were very similar at the urban and suburban
182	sites, with higher mixing ratios in the spring and summer and low ones in the autumn and winter. The
183	daily mean concentrations fluctuated considerably in the spring, particularly in April. The highest mean

184	NH_3 concentrations at the urban and suburban sites were 42 ± 17 ppb and 42 ± 8.2 ppb, respectively. Both
185	occurred in July, when the NH3 concentrations fluctuated considerably as well. On average, the seasonal
186	$ m NH_3$ mixing ratios at the urban and suburban sites can be arranged as follows: summer > spring > autumn >
187	winter. The main grain crops in the rural area of Beijing are corn and wheat. Corn is categorized as spring
188	corn and summer corn, which are sown in April and June, respectively. Usually, a large amount of base
189	fertilizer is applied when planting corn and the topdressing after 2 months. Wheat is sown from
190	September to October, and the topdressing is applied in the following spring. The volatilization of
191	nitrogen fertilizers can cause an increase in atmospheric NH3 mixing ratios and its fluctuations in
192	fertilization seasons (Zhang et al., 2016). In addition, the high temperature in summer should also be
193	responsible to the high NH ₃ mixing ratios in this season. An increase in the temperature can increase the
194	biological activity and thus enhance the NH3 production and emission. High temperature is also
195	conducive for the volatilization of the urea and diammonium phosphate applied to crops. Moreover, the
196	equilibrium among ammonium nitrate particles, gaseous NH ₃ , and nitric acid is transferred to the gas
197	phase at high temperature, which increases the NH3 concentration (Behera et al., 2013). Sewage treatment,
198	household garbage, golf courses, and human excreta are crucial NH3 sources that are easily neglected
199	(Pu et al., 2020). The relatively low NH ₃ concentrations in the autumn and winter might be caused by the
200	decrease in NH ₃ emission in the soil and vegetation, the decrease in the NH ₄ NO ₃ decomposition capacity
201	at low temperatures, and the reduced human activities caused by a large floating population returning to
202	their native locations outside Beijing during the Spring Festival (Liao et al., 2014). In the spring and
203	summer, the NH3 mixing ratios at the suburban site were higher than those at the urban site, which might
204	be related to the higher agricultural activity around the suburban site. In the autumn and winter, the NH3
205	mixing ratios at the urban site were marginally higher than those at the suburban site. In the autumn and

winter seasons, the influences of agricultural activities on the NH₃ concentration were weakened, whereas the influences of other sources (such as traffic sources) were enhanced. According to Wang et al. (2019), the traffic NH₃ emission per unit area in Haidian (urban site) was three times higher than that in Changping (suburban site). This difference in traffic source emissions might have resulted in higher NH₃ concentrations at the urban site than at the suburban site in the autumn and winter.

212

Fig. 3. Monthly statistical variation in the NH3 mixing ratios at the urban and suburban sites in Beijing.

21	4	-	Table 2.	NH ₃	mixing	ratios	(ppb)	measured	at the	urban	and	suburban	sites in	Beijing.
							VEE - /							

Site	Time period	Mean	Standard deviation	Minimum	Median	Maximum
	Annual	21	14	1.6	17	133
	Spring	25	16	1.9	21	101
Urban	Summer	32	12	5.0	30	133
	Autumn	16	7.5	3.8	15	41

	Winter	11	6.7	1.6	9.9	42
	Annual	22	15	0.8	18	198
	Spring	29	16	6.8	26	180
Suburban	Summer	35	12	12.1	33	199
	Autumn	15	6.8	4.1	13	55
	Winter	9.2	4.5	0.8	8.4	29

216 *3.3. Diurnal variations*

Figure 4 displays the average diurnal variations in the NH₃ and H₂O mixing ratios in different seasons at the urban and suburban sites in Beijing. Ambient NH₃ exhibited different diurnal behaviors in

219 different seasons.

Fig. 4. Average diurnal variations in the NH₃ and H₂O mixing ratios in different seasons at the urban and suburban sites in Beijing.

222

In spring, the average diurnal variations in the NH₃ mixing ratio were similar at the urban and suburban sites. The diurnal variations exhibited a single-peak pattern with high values in the daytime and low values at night. The NH₃ mixing ratio began to increase in the morning, reached its maximum value 226 at 16:00, and then decreased gradually. The lowest mixing ratios at the urban and suburban sites occurred 227 at 03:00 and 09:00, respectively. The NH₃ mixing ratio began to increase earlier at the urban site than at 228 the suburban site. A plausible explanation to the earlier increase in the NH₃ emission at the urban site is 229 the traffic emission in the morning rush hours. In spring, the mixing ratio of NH₃ was higher at the 230 suburban site than that at the urban site, with an average difference of 4.1 ppb and a maximum difference 231 of 6.1 ppb. The average diurnal amplitude of the NH₃ mixing ratio at the suburban site was 5.3 ppb, 232 which was higher than that (2.6 ppb) at the urban site. At the urban site, the average diurnal variations in 233 the NH₃ and H₂O mixing ratios exhibited nearly opposite trends. The H₂O mixing ratio had high values 234 in the night and low values in the day. At the suburban site, the variation characteristics of NH₃ and H₂O 235 were very similar; however, the peak NH₃ concentration occurred 5 hours earlier than the peak H₂O 236 concentration. In spring, in contrast to the NH₃ mixing ratio, the H₂O mixing ratio at the urban site was 237 1279 ppm higher than that at the suburban site.

238 The diurnal variation in the NH₃ mixing ratio at the suburban site in summer was similar to that in 239 spring. This phenomenon was also observed in the rural areas of Shanghai by Chang et al. (2019). The 240 diurnal variations of NH₃ at the suburban site were considerably affected by the temperature and the 241 contribution from volatile NH₃ sources. However, the diurnal summer variation of NH₃ at the urban site 242 was completely different from that at the suburban site. The summer level of NH₃ at the urban site was 243 obviously lower during the daytime and evening than that at the suburban site, increased gradually from 244 21:00 to levels higher its suburban counterpart, dropped after reaching its peak value at 7:00, and then 245 reached its lowest value at 14:00. The diurnal pattern (with a peak in early morning) has been observed 246 in other areas, such as rural (Ellis et al., 2011), urban (Gong et al., 2011), and steppe areas located far 247 away from human activity (Wentworth et al., 2016). Kuang et al. (2020) believed that such diurnal pattern

248	of NH ₃ was caused by the evaporation of dew in the morning, which resulted in the release of NH ₃
249	originally stored in the droplets. A lag was observed between the changes in the NH_3 and H_2O
250	concentrations in the early morning, which supported the hypothesis of Kuang et al (2020). In addition,
251	the increase in the NH ₃ concentration in the morning might have been caused by the breakup of the
252	boundary layer formed at night. The downward mixing of air with a higher NH ₃ concentration in the
253	residual layer led to a morning increase in the NH ₃ concentration on the ground (Bash et al., 2010). In
254	summer, the NH ₃ concentrations at the suburban site were significantly higher than those at the urban
255	site during the daytime and first half of the night. The average diurnal amplitude of the NH_3 concentration
256	was 7.5 ppb and 3.7 ppb at the urban and suburban sites, respectively. Similar to the situation in spring
257	the H ₂ O concentrations at the urban site were significantly higher than those at the suburban site in the
258	summer.
259	In autumn, the NH ₃ concentration at the suburban site was relatively stable and remained nearly all
260	the time lower than that at the urban site, which showed low values during the day and high values during
261	the night, with a peak at midnight and a minimum (about 2.0 ppb lower than the peak) at 17:00. The H_2O
262	concentration was marginally lower (250 ppm) at the urban site than at the suburban site. The diurnal
263	profiles of H_2O at both sites resemble that of NH_3 at the urban site, but the lowest values of H_2O occurred
264	earlier than the lowest value of NH ₃ at the urban site.
265	The diurnal patterns of NH3 and H2O in winter were similar to those in autumn though the mixing
266	ratios of NH ₃ and H ₂ O were lower than their autumn counterparts. There were two slight differences: (1)

- 267 the mixing ratios of NH_3 at both sites exhibited lower fluctuations than those in autumn and (2) the
- 268 mixing ratio of NH₃ at the urban site reached its minimum in winter earlier than that in autumn.
- 269 The above results indicate that although the two sites were under the influence of similar weather

270 systems, the diurnal variations in the NH₃ mixing ratios at the two sites were different in different seasons.

271 This finding suggests that different NH₃ sources and possibly sinks had different contributions to the NH₃

272 concentrations at the urban and suburban sites. Additional studies should be conducted to better

- 273 understand the behaviors of atmospheric NH₃ and its influencing factors.
- 274 3.4. Effect of meteorological factors on the NH₃ levels

275 Table 3 presents the annual and seasonal correlation coefficients between the daily means of NH₃ 276 mixing ratios and those of the temperature, relative humidity, and wind speed at the two sites. Annually, 277 the NH₃ mixing ratios at both sites were positively correlated with temperature and relative humidity and 278 negatively correlated with wind speed, and the correlations are all highly significant. However, the 279 correlations deteriorated somewhat in warm seasons. In summer and autumn, no significant correlations 280 were noted between ambient NH₃ and temperature at the two sites. The correlation between NH₃ and 281 wind speed in summer was much weaker than in the other seasons. The relative humidity was stronger 282 correlated with the NH₃ concentration at the two sites than temperature, which can be perceived in Fig 2. 283 Also, the correlation between NH₃ and relative humidity did not vary much from season to season. This 284 implies a possibility that relative humidity exerts a certain influence on the variation of the NH₃ level in 285 the surface layer.

- 286
- 287

Table 3. Correlations between the daily mean values of NH₃ and meteorological elements (Spearman's

288	rank correlat	ion coefficient)

Site	Time Period	Temperature	Relative humidity	Wind speed	
	Annual	0.680**	0.706**	-0.370**	
	Spring	0.450**	0.645**	-0.540**	
Urban	Summer	0.043	0.488**	-0.106**	
	Autumn	0.101	0.759**	-0.413**	
	Winter	0.596**	0.690**	-0.449**	

	Annual	0.745**	0.730**	-0.325**
	Spring	0.256*	0.518**	-0.391**
Suburban	Summer	0.126	0.576**	-0.061**
	Autumn	0.135	0.792**	-0.618**
	Winter	0.676**	0.663**	-0.545**

289	*: at the 0.05 significant level; **:	: at the 0.01 significant level.
-----	---------------------------------------	----------------------------------

291	Fig. 5 displays the seasonal mean diurnal variations in the NH ₃ mixing ratio, temperature, and
292	relative humidity in different seasons at the urban and suburban sites, with their correlation coefficients
293	shown in Fig. S5. At the urban site, the seasonal-hourly means of the NH ₃ mixing ratio were positively
294	(negatively) correlated with those of temperature (relative humidity) in spring, but the correlations were
295	reversed in the other seasons. At the suburban site, the seasonal-hourly means of the NH ₃ mixing ratio
296	were positively (negatively) correlated with those of temperature (relative humidity) in the spring and
297	summer, but less correlated in autumn and winter. Similar correlation behaviors (diurnal variations) were
298	found at both sites in spring, but in other seasons the correlations (diurnal variations) at the urban site
299	behaved differently from those at the suburban site. The inconsistent behaviors in summer, autumn and
300	winter caused urban-suburban differences in the annual-diurnal patterns of NH ₃ , temperature and relative
301	humidity as well as the NH3-temperature (relative humidity) correlations, as can be seen in Fig. S6.
302	Figure 6 displays the contour maps of the NH3 mixing ratio, temperature, and relative humidity in
303	different seasons at the urban and suburban sites. The annual contour maps are shown in Fig. S7. As
304	shown in these contour maps, the NH3 mixing ratios at both sites increased with relative humidity at
305	same temperature and increased with temperature at same relative humidity. Although there are some
306	scatterings in the contour maps, high NH3 levels are generally associated with high temperature and
307	humidity. In winter, when air temperature was low (< 0 °C), the NH ₃ mixing ratios at both sites often had
308	low values except in high humidity (>60%). An increase in temperature caused higher NH ₃ mixing ratios

309 at both sites; however, the NH₃ concentration at the suburban site was more significantly correlated with 310 temperature than that at the urban site (Table 3), suggesting that volatile NH₃ sources might have a higher 311 contribution to the NH₃ concentration in suburban than in urban area. A higher amount of NH₃ removal 312 through chemical transformation is expected during the day at the urban site than at the suburban site 313 because the urban area had higher relative humidity and amounts of particulate matters, and higher 314 emissions of acid gases (particularly NO_x) than the suburban area. In 2018, the concentrations of PM_{2.5}, 315 SO2 and NO2 were 50 µg/m³, 5 µg/m³, 43µg/m³ in Haidian, and 46 µg/m³, 6 µg/m³, 35 µg/m³ in 316 Changping, respectively, as reported by Beijing Ecology and Environment Statement.

319 Fig. 5. Diurnal variations in and correlation coefficients between the NH₃ mixing ratios and temperature (a), relative humidity (b) in

320 different seasons at the urban and suburban sites in Beijing.

322 Fig. 6. Contour maps of the NH₃ mixing ratio, temperature, and relative humidity in different seasons at the urban and suburban sites in

323 Beijing (a: Urban, b: Suburban).

324

325 To explore the influence of wind on the NH3 mixing ratios, rose charts were drawn for the hourly 326 mean concentration of NH₃, wind direction frequency, and wind speed during the observation period (Fig. 327 7). The large-scale wind circulation in the North China Plain is often influenced by the mountain-plain 328 topography; therefore, the dominant winds in this region are southerly (from noon to midnight) and 329 northerly (from midnight to noon) (Lin et al., 2009; Lin et al., 2011). As displayed in Fig. 7, some 330 differences existed in the distributions of the surface wind between the urban and suburban sites. The 331 prevailing surface winds were northeasterly and southwesterly at the urban site and northwesterly and 332 easterly at the suburban site. At the urban site, the NH₃ mixing ratios were relatively high when the winds 333 originated from the southern sectors and relatively low when the winds originated from the northwest 334 sectors. Therefore, under southwest wind, air masses from the south of Beijing carry not only air 335 pollutants but also higher levels of NH₃ to the urban site. Meng et al. (2017) examined the effect of long-

336 range air transport on the urban NH₃ levels in Beijing during the summer through trajectory analysis. 337 They concluded that the air mass from the southeast has a cumulative effect on the NH₃ concentration. 338 Although the dominant wind direction at the suburban site was different from that at the urban site, the 339 NH₃ mixing ratios were also relatively high in the south sectors. Thus, winds from the southeast, south, 340 and southwest can elevate levels of atmospheric NH₃ at both the urban and suburban sites. The NH₃ 341 mixing ratios were relatively low when air masses originated from the northwest sector at urban site and 342 from the west sector at the suburban site. The west and northwest winds were stronger and promoted the 343 dilution and diffusion of NH3 emitted into the boundary layer.

345 Fig. 7. Rose maps of the NH₃ mixing ratios, wind frequency, and wind speed in different wind direction sectors.

As a water-soluble gas, NH₃ can be impacted by precipitation. Heavy rainfall occurred on August 18, 2018 (Fig. 8). Before the rainfall, the NH₃ concentration at the urban site was higher than the average level in August. After the rainfall, the NH₃ concentration decreased rapidly, and it was significantly lower than the mean value in August. However, the diurnal pattern of NH₃ on that day did not differ considerably from the average diurnal pattern in August. On the same day, the NH₃ mixing ratio at the suburban site remained at a low level during the rainfall period, which was considerably lower than the August mean NH₃ concentration during the same time of day. However, the NH₃ mixing ratio increased

354 rapidly after the precipitation and reached the mean level at 17:00. The rainfall might have an obvious

355 clearing effect on NH₃ but more case studies are needed to reach a robust conclusion.

357 Fig. 8. Diurnal variations in the rainfall and NH₃ concentration on August 18, 2018.

358

356

359 4. Conclusions

360 In this study, the atmospheric NH₃ concentrations at an urban site and a suburban site in Beijing 361 were continuously and simultaneously observed from January 2018 to January 2019. The mean NH₃ 362 mixing ratios were 21 ± 14 ppb and 22 ± 15 ppb at the urban and suburban sites, respectively. These NH₃ 363 levels are among the highest mean values found in China and much higher than those reported for some 364 developed countries in America, Europe and Asia. In the summer and spring, the NH₃ mixing ratios at 365 the suburban site were slightly higher than those at the urban site. In the autumn and winter, however, 366 the situation was reversed. The highest NH₃ mixing ratios at the urban and suburban sites were all found 367 in July. The lowest NH₃ mixing ratio occurred in February at the urban site and in January at the suburban 368 site. A comparison with data from literature shows that the mean concentration of NH₃ in Beijing did not 369 change considerably in the decade before 2019. 370 The hourly mean NH₃ mixing ratios at the urban site were highly correlated (R = 0.849, P < 0.01)

371 with those at the suburban site. However, the mean diurnal variations in the NH₃ mixing ratios at the

urban and suburban sites were different. At the urban site, lower NH₃ mixing ratios were observed in the
daytime and higher ones at night. The opposite trend was observed at the suburban site. Although both
sites were under the influence of similar weather systems, the seasonal-diurnal variations in the NH₃
mixing ratio were different at the urban and suburban sites, suggesting that NH₃ sources had different
relative contributions to the NH₃ levels at the urban and suburban sites.
The relationship of meteorological factors with the NH₃ mixing ratio was complex. Overall, the NH₃

- 378 mixing ratios increased with relative humidity and temperate at both sites. Relative humidity was stronger
- 379 correlated with the NH₃ mixing ratio at both sites. The situation in different seasons varied and was site-
- 380 dependent, which warrants further studies. A high wind speed (mainly under northwesterly) suppressed
- 381 the levels of NH₃ at both sites. The NH₃ mixing ratios were higher under southerly wind conditions.
- 382 Rainfall had a certain scavenging effect on NH₃ but had little effect on the diurnal variations in the NH₃
- 383 concentration.

384

385 *Data availability*. The data of stationary measurements are available upon request to the contact author
386 Weili Lin (linwl@muc.edu.cn).

387

- Author contributions. ZL and WL developed the idea for this paper, formulated the research goals, and
 carried out the measurement at urban site. WP and ZM carried out the NH₃ field observations at the
 suburban site.
- 392 **Competing interests.** The authors declare that they have no conflict of interest.

- 394 Acknowledgments. This study was funded by the National Natural Science Foundation of China
- 395 (Grant No. 91744206) and the Beijing Municipal Science and Technology (Z181100005418016).

397	Reference
0/1	I COLOI OHOC

- 398 Adon, M., Yoboué, V., Galy-Lacaux, C., Liousse, C., Diop, B., Doumbia, E. H. T., Gardrat, E., Ndiaye,
- 399 S. A. and Jarnot, C.: Measurements of NO₂, SO₂, NH₃, HNO₃ and O₃ in West African urban
- 400 environments, Atmospheric Environment, 135, 31–40,
- 401 https://doi.org/10.1016/j.atmosenv.2016.03.050, 2016.
- 402 Baer, D. S., Paul, J. B., Gupta, M. and O'Keefe, A.: Sensitive absorption measurements in the near-
- 403 infrared region using off-axis integrated-cavity-output spectroscopy, Applied Physics B: Lasers

404 and Optics, 75(2–3), 261–265, doi:10.1007/s00340-002-0971-z, 2002.

- 405 Baer, D., Gupta, M., Leen, J. B., and Berman, E.: Environmental and atmospheric monitoring using
- 406 off-axis integrated cavity output spectroscopy (OA-ICOS). American laboratory, 44(10), 20–23,
- 407 2012.
- 408 Bash, J. O., Walker, J. T., Katul, G. G., Iones, M. R., Nemitz, E. and Robarge, W. P.: Estimation of in-
- 409 canony ammonia sources and sinks in a fertilized zea mays field, Environmental Science and
- 410 Technology, 44(5), 1683-1689, doi:10.1021/es9037269, 2010.
- 411 Behera, S. N., Sharma, M., Aneja, V. P. and Balasubramanian, R.: Ammonia in the atmosphere: A
- 412 review on emission sources, atmospheric chemistry and deposition on terrestrial bodies,
- 413 Environmental Science and Pollution Research, 20(11), 8092–8131, doi:10.1007/s11356-013-
- 414 2051-9, 2013.
- 415 Burkhardt, J., Sutton, M. A., Milford, C., Storeton-West, R. L. and Fowler, D.: Ammonia

- 416 concentrations at a site in southern Scotland from 2 yr of continuous measurements, in
- 417 Atmospheric Environment, 32(3), 325–331, https://doi.org/10.1016/S1352-2310(97)00198-2.
- 418 Cao, J.-J., Zhang, T., Chow, J. C., Watson, J. G., Wu, F. and Li, H.: Characterization of Atmospheric
- 419 Ammonia over Xi'an, China, Aerosol Air Qual. Res., 9(2), 277–289,
- 420 https://doi.org/10.4209/aaqr.2008.10.0043, 2009.
- 421 Chang, Y., Liu, X., Deng, C., Dore, A. J. and Zhuang, G.: Source apportionment of atmospheric
- 422 ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope
- 423 signatures, Atmospheric Chemistry and Physics, 16(18), doi:10.5194/acp-16-11635-2016, 2016a.
- 424 Chang, Y., Zou, Z., Deng, C., Huang, K., Collett, J. L., Lin, J. and Zhuang, G.: The importance of
- 425 vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai, Atmospheric
- 426 Chemistry and Physics, 16(5), 3577-3594, doi:10.5194/acp-16-3577-2016, 2016b.
- 427 Chang, Y., Zou, Z., Zhang, Y., Deng, C., Hu, J., Shi, Z., Dore, A. J. and Collett, J. L.: Assessing
- 428 Contributions of Agricultural and Nonagricultural Emissions to Atmospheric Ammonia in a
- 429 Chinese Megacity, Environmental Science and Technology, 53(4), 1822–1833,
- 430 doi:10.1021/acs.est.8b05984, 2019.
- 431 Charlson, R.J., LANGNER, J., Rodhe, H., Leovy, C.B., Warren, S.G.: Perturbation of the northern
- 432 hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols, Tellus B:
- 433 Chemical and Physical Meteorology, 43(4),12, doi:10.1034/j.1600-0889.1991.t01-1-00013.x,
- 434 1991.
- 435 Edgerton, E. S., Saylor, R. D., Hartsell, B. E., Jansen, J. J. and Alan Hansen, D.: Ammonia and
- 436 ammonium measurements from the southeastern United States, Atmospheric Environment, 41(16),
- 437 3339-3351, doi:10.1016/j.atmosenv.2006.12.034, 2007.

- 438 Ellis, R. A., Murphy, J. G., Markovic, M. Z., Vandenboer, T. C., Makar, P. A., Brook, J. and Mihele, C.:
- 439 The influence of gas-particle partitioning and surface-atmosphere exchange on ammonia during
- 440 BAQS-Met, Atmospheric Chemistry and Physics, 11(1), 133-145, doi:10.5194/acp-11-133-2011,
- 441 2011.
- 442 Erisman, J. W., Bleeker, A., Galloway, J. and Sutton, M. S.: Reduced nitrogen in ecology and the
- 443 environment, Environmental Pollution, 150(1), 140-149, doi:10.1016/j.envpol.2007.06.033, 2007.
- 444 Fu, X., Wang, S., Xing, J., Zhang, X., Wang, T. and Hao, J.: Increasing Ammonia Concentrations
- 445 Reduce the Effectiveness of Particle Pollution Control Achieved via SO₂ and NO_X Emissions
- 446 Reduction in East China, Environmental Science and Technology Letters, 4(6), 221–227,
- 447 doi:10.1021/acs.estlett.7b00143, 2017.
- 448 Ge, B., Xu, X., Ma, Z., Pan, X., Wang, Z., Lin, W., Ouyang, B., Xu, D., Lee, J., Zheng, M., Ji, D., Sun,
- 449 Y., Dong, H., Squires, F.A., Fu, F., Wang, Z.: Role of ammonia on the feedback between AWC and
- 450 inorganic aerosol formation during heavy pollution in the North China Plain, Earth and Space
- 451 Science, 6, 1675-1693, https://doi.org/10.1029/2019EA000799, 2019.
- 452 Gong, L., Lewicki, R., Griffin, R. J., Flynn, J. H., Lefer, B. L. and Tittel, F. K.: Atmospheric ammonia
- 453 measurements in Houston, TX using an external-cavity quantum cascade laser-based sensor,
- 454 Atmospheric Chemistry and Physics, 11(18), 9721–9733, doi:10.5194/acp-11-9721-2011, 2011.
- 455 He, Y., Pan, Y., Zhang, G., Ji, D., Tian, S., Xu, X., Zhang, R. and Wang, Y.: Tracking ammonia morning
- 456 peak, sources and transport with 1 Hz measurements at a rural site in North China Plain,
- 457 Atmospheric Environment, 235, https://doi.org/10.1016/j.atmosenv.2020.117630, 2020.
- 458 Hu, Q., Zhang, L., Evans, G. J. and Yao, X.: Variability of atmospheric ammonia related to potential
- 459 emission sources in downtown Toronto, Canada, Atmospheric Environment, 99,

- 460 doi:10.1016/j.atmosenv.2014.10.006, 2014.
- 461 Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M. and Zhang, H.: A high-resolution
- 462 ammonia emission inventory in China, Global Biogeochemical Cycles, 26(1),
- 463 doi:10.1029/2011GB004161, 2012.
- 464 Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., Cui, Z. L., Yin, B., Christie, P.,
- 465 Zhu, Z. L. and Zhang, F. S.: Reducing environmental risk by improving N management in
- 466 intensive Chinese agricultural systems, Proceedings of the National Academy of Sciences of the
- 467 United States of America, 106(9), 3041-3046, doi:10.1073/pnas.0813417106, 2009.
- 468 Krotkov, N.A., McLinden, C.A., Li, C., Lamsal, L.N., Celarier, E.A., Marchenko, S. v., Swartz, W.H.,
- 469 Bucsela, E.J., Joiner, J., Duncan, B.N., Boersma, K.F., Veefkind, J.P., Levelt, P.F., Fioletov, V.E.,
- 470 Dickerson, R.R., He, H., Lu, Z., Streets, D.G.: Aura OMI observations of regional SO₂ and NO₂
- 471 pollution changes from 2005 to 2015. Atmospheric Chemistry and Physics 16(7), 4605–4629,
- 472 doi:10.5194/acp-16-4605-2016, 2016.
- 473 Kuang, Y., Xu, W., Lin, W., Meng, Z., Zhao, H., Ren, S., Zhang, G., Liang, L. and Xu, X.: Explosive
- 474 morning growth phenomena of NH3 on the North China Plain: Causes and potential impacts on
- 475 aerosol formation, Environmental Pollution, 257, 113621, doi:10.1016/j.envpol.2019.113621,
- 476 2020.
- Liao, X., Zhang, X., Wang, Y., Liu, W., Du, J. and Zhao, L.: Comparative Analysis on Meteorological
 Condition for Persistent Haze Cases in Summer and Winter in Beijing, Environmental Science,
- 479 35(06), 2031–2044, doi:10.13227/j.hjkx.2014.06.001, 2014.
- 480 Lin, W., Xu, X., Ge, B., Liu, X.: Gaseous pollutants in Beijing urban area during the heating period
- 481 2007-2008: variability, sources, meteorological and chemical impacts, Atmos. Chem. Phys., 11,

482 8157-8170, 2011.

- 483 Lin, W., Xu, X., Ge, B., Zhang, X.: Characteristics of gaseous pollutants at Gucheng, a rural site
- 484 southwest of Beijing, J. Geophys. Res., 114, D00G14, doi:10.1029/2008JD010339, 2009.
- 485 Meng, Z. Y., Lin, W. L., Jiang, X. M., Yan, P., Wang, Y., Zhang, Y. M., Jia, X. F. and Yu, X. L.:
- 486 Characteristics of atmospheric ammonia over Beijing, China, Atmospheric Chemistry and Physics,
- 487 11(12), 6139–6151, doi:10.5194/acp-11-6139-2011, 2011.
- 488 Meng, Z. Y., Xu, X. bin, Wang, T., Zhang, X. Y., Yu, X. L., Wang, S. F., Lin, W. L., Chen, Y. Z., Jiang,
- 489 Y. A. and An, X. Q.: Ambient sulfur dioxide, nitrogen dioxide, and ammonia at ten background
- 490 and rural sites in China during 2007–2008, Atmospheric Environment, 44(21–22), 2625-2631,
- 491 doi:10.1016/j.atmosenv.2010.04.008, 2010.
- 492 Meng, Z., Lin, W., Zhang, R., Han, Z. and Jia, X.: Summertime ambient ammonia and its effects on
- 493 ammonium aerosol in urban Beijing, China, Science of the Total Environment, 579, 1521–1530,
- 494 doi:10.1016/j.scitotenv.2016.11.159, 2017.
- 495 Meng, Z., Wu, L., Xu, X., Xu, W., Zhang, R., Jia, X., Liang, L., Miao, Y., Cheng, H., Xie, Y., He, J. and
- 496 Zhong, J.: Changes in ammonia and its effects on PM_{2.5} chemical property in three winter seasons
- 497 in Beijing, China, Science of The Total Environment, 749, 142208,
- 498 doi:10.1016/j.scitotenv.2020.142208, 2020.
- 499 Nowak, J. B., Huey, L. G., Russell, A. G., Tian, D., Neuman, J. A., Orsini, D., Sjostedt, S. J., Sullivan,
- 500 A. P., Tanner, D. J., Weber, R. J., Nenes, A., Edgerton, E. and Fehsenfeld, F. C.: Analysis of urban
- 501 gas phase ammonia measurements from the 2002 Atlanta Aerosol Nucleation and Real-Time
- 502 Characterization Experiment (ANARChE), Journal of Geophysical Research Atmospheres,
- 503 111(17), doi:10.1029/2006JD007113, 2006.

- 504 Osada, K., Saito, S., Tsurumaru, H. and Hoshi, J.: Vehicular exhaust contributions to high NH₃ and
- 505 PM_{2.5} concentrations during winter in Tokyo, Japan, Atmospheric Environment, 206, 218–224,
- 506 doi:10.1016/j.atmosenv.2019.03.008, 2019.
- 507 Pan, Y., Tian, S., Zhao, Y., Zhang, L., Zhu, X., Gao, J., Huang, W., Zhou, Y., Song, Y., Zhang, Q. and
- 508 Wang, Y.: Identifying Ammonia Hotspots in China Using a National Observation Network,
- 509 Environmental Science and Technology, 52(7), 3926–3934, doi:10.1021/acs.est.7b05235, 2018.
- 510 Pearson, J. and Stewart, G.R.: The deposition of atmospheric ammonia and its effects on plants, New

511 Phytologist, 125(2), 283–305, doi:10.1111/j.1469-8137.1993.tb03882.x, 1993.

- 512 Phan, N.-T., Kim, K.-H., Shon, Z.-H., Jeon, E.-C., Jung, K. and Kim, N.-J.: Analysis of ammonia
- 513 variation in the urban atmosphere, Atmospheric Environment, 65, 177–185,
- 514 https://doi.org/10.1016/j.atmosenv.2012.10.049, 2013.
- 515 Pinder, R. W., Gilliland, A. B. and Dennis, R. L.: Environmental impact of atmospheric NH₃ emissions
- 516 under present and future conditions in the eastern United States, Geophysical Research Letters,
- 517 35(12), 89-90, doi:10.1029/2008GL033732, 2008.
- 518 Pu, W., Ma, Z., Collett, J. L., Guo, H., Lin, W., Cheng, Y., Quan, W., Li, Y., Dong, F. and He, D.:
- 519 Regional transport and urban emissions are important ammonia contributors in Beijing, China,
- 520 Environmental Pollution, 265, doi:10.1016/j.envpol.2020.115062, 2020.
- 521 Reay, D. S., Dentener, F., Smith, P., Grace, J. and Feely, R. A.: Global nitrogen deposition and carbon
- 522 sinks, Nature Geoscience, 1(7), 430-437, doi:10.1038/ngeo230, 2008.
- 523 Saraswati, George, M. P., Sharma, S. K., Mandal, T. K. and Kotnala, R. K.: Simultaneous
- 524 Measurements of Ambient NH 3 and Its Relationship with Other Trace Gases, PM_{2.5} and
- 525 Meteorological Parameters over Delhi, India, Mapan Journal of Metrology Society of India,

- 526 34(1), 55–69, doi:10.1007/s12647-018-0286-0, 2019.
- 527 Singh, S. and Kulshrestha, U. C.: Rural versus urban gaseous inorganic reactive nitrogen in the Indo-
- 528 Gangetic plains (IGP) of India, Environ. Res. Lett., 9(12), 125004, https://doi.org/10.1088/1748-
- *529 9326/9/12/125004*, 2014.
- 530 UN Environment 2019. A Review of 20 Years' Air Pollution Control in Beijing. United Nations
- 531 Environment Programme, Nairobi, Kenya.
- 532 https://www.unenvironment.org/resources/report/review-20-years-air-pollution-control-beijing.
- 533 Van Breemen, N., Mulder, J. and Driscoll, C. T.: Acidification and alkalinization of soils, Plant and
- 534 Soil, 75(3), https://doi.org/10.1007/BF02369968, 1983.
- 535 Vogt, E., Held, A. and Klemm, O.: Sources and concentrations of gaseous and particulate reduced
- nitrogen in the city of Münster (Germany), Atmospheric Environment, 39(38), 7393–7402,
- 537 https://doi.org/10.1016/j.atmosenv.2005.09.012, 2005.
- 538 Wang, K., Fan, S., Guo, J. and Sun, G.: Characteristics of ammonia emission from motor vehicle
- 539 exhaust in Beijing, Environmental Engineering, 36(03), 98–101, doi:10.13205/j.hjgc.201803020,
- 540 2019.
- 541 Warner, J. X., Dickerson, R. R., Wei, Z., Strow, L. L., Wang, Y. and Liang, Q.: Increased atmospheric
- ammonia over the world's major agricultural areas detected from space, Geophysical Research
- 543 Letters, 44(6), 2875–2884, doi:10.1002/2016GL072305, 2017.
- 544 Wei, S., Dai, Y., Liu, B., Zhu, A., Duan, Q., Wu, L., Ji, D., Ye, A., Yuan, H., Zhang, Q., Chen, D., Chen,
- 545 M., Chu, J., Dou, Y., Guo, J., Li, H., Li, J., Liang, L., Liang, X., Liu, H., Liu, S., Miao, C. and
- 546 Zhang, Y.: A China data set of soil properties for land surface modeling, Journal of Advances in
- 547 Modeling Earth Systems, 5(2), 212–224, doi:10.1002/jame.20026, 2013.

29 / 31

- 548 Wentworth, G. R., Murphy, J. G., Benedict, K. B., Bangs, E. J. and Collett, J. L.: The role of dew as a
- 549 night-time reservoir and morning source for atmospheric ammonia, Atmospheric Chemistry and
- 550 Physics, 16(11), 7435–7449, doi:10.5194/acp-16-7435-2016, 2016.
- 551 Wu, Z., Hu, M., Shao, K. and Slanina, J.: Acidic gases, NH3 and secondary inorganic ions in PM₁₀
- 552 during summertime in Beijing, China and their relation to air mass history, Chemosphere, 76(8),
- 553 doi:10.1016/j.chemosphere.2009.04.066, 2009.
- 554 Yao, X. and Zhang, L.: Trends in atmospheric ammonia at urban, rural, and remote sites across North
- 555 America, Atmos. Chem. Phys., 16(17), 11465–11475, https://doi.org/10.5194/acp-16-11465-2016,
- 556 2016.
- 557 Zhang, B.: Atmospheric Distribution and Variation of NH₃ in Beijing, Environmental Science and
- 558 Management 41(01), 119–122, 2016.
- 559 Zhang, S., Wag, A., Zhang, Z., Wang, J., Han, Y., Su, R. and Qu, Y.: On creating an anthropogenic
- 560 ammonia emission inventory in capital Beijing, Journal of Safety and Environment, 16(02), 242-
- 561 245, doi:10.13637/j.issn.1009-6094.2016.02.047, 2016.
- 562 Zhang, X., Wu, Y., Liu, X., Reis, S., Jin, J., Dragosits, U., van Damme, M., Clarisse, L., Whitburn, S.,
- 563 Coheur, P. F. and Gu, B.: Ammonia emissions may be substantially underestimated in China,
- 564 Environmental Science and Technology, 51(21), 12089–12096, doi:10.1021/acs.est.7b02171,
- 565 2017.
- 566 Zhang, Y., Tang, A., Wang, D., Wang, Q., Benedict, K., Zhang, L., Liu, D., Li, Y., Collett Jr., J. L., Sun,
- 567 Y. and Liu, X.: The vertical variability of ammonia in urban Beijing, China, Atmospheric
- 568 Chemistry and Physics, 18(22), 16385–16398, doi:10.5194/acp-18-16385-2018, 2018.
- 569 Zhao, X., Xie, Y. X., Xiong, Z. Q., Yan, X. Y., Xing, G. X. and Zhu, Z. L.: Nitrogen fate and

- 570 environmental consequence in paddy soil under rice-wheat rotation in the Taihu lake region,
- 571 China, Plant and Soil, 319(1), 225-234, doi:10.1007/s11104-008-9865-0, 2009.
- 572 Zhou, C., Zhou, H., Holsen, T. M., Hopke, P. K., Edgerton, E. S. and Schwab, J. J.: Ambient Ammonia
- 573 Concentrations Across New York State, Journal of Geophysical Research: Atmospheres, 124(14),
- 574 8287–8302, doi:10.1029/2019JD030380, 2019.