

1 Measurement report: Exploring the NH₃ behaviors at urban and suburban Beijing:

2 Comparison and implications

3 Ziru Lan^a, Weili Lin^a, Weiwei Pu^b, Zhiqiang Ma^{b,c}

4 ^aCollege of Life and Environmental Sciences, Minzu University of China, Beijing 100081;

5 ^bEnvironmental Meteorological Forecast Center of Beijing-Tianjin-Hebei, Beijing, 100089, China;

6 ^cBeijing Shangdianzi Regional Atmosphere Watch Station, Beijing, 101507, China

7 Correspondence: Weili Lin (linwl@muc.edu.cn)

8 **ABSTRACT**

9 Ammonia (NH₃) plays an important role in particulate matter formation, and hence its atmospheric level
10 is relevant to human health and climate change. Due to different relative distributions of NH₃ sources,
11 the concentrations of atmospheric NH₃ may behave differently in urban and rural areas. However, few
12 parallel long-term observations of NH₃ to reveal the different behaviors of the NH₃ concentrations at the
13 urban and rural sites in a same region. In this study, online ammonia analyzers were used to continuously
14 observe atmospheric NH₃ concentrations at an urban site and a suburban site in Beijing from January 13,
15 2018, to January 13, 2019. The observed mixing ratio of NH₃ averaged 21 ± 14 ppb (range: 1.6–133 ppb)
16 at the urban site and 22 ± 15 ppb (range: 0.8–199 ppb) at the suburban site. The NH₃ mixing ratios at the
17 urban and suburban sites exhibited similar seasonal variations, with high values in summer and spring
18 and low values in autumn and winter. The hourly mean NH₃ mixing ratios at the urban site were highly
19 correlated ($R = 0.849$, $P < 0.01$) with those at the suburban site. However, the average diurnal variations
20 in the NH₃ mixing ratios at the urban and suburban sites differed significantly, which implies the different
21 contributions of NH₃ sources and sinks at the urban and suburban sites. In addition to the emission
22 sources, meteorological factors were closely related to the changes in the NH₃ concentrations. For the
23 same temperature (relative humidity) at the urban and suburban sites, the NH₃ mixing ratios increased

24 with relative humidity (temperature). Relative humidity was the factor with the strongest influence on
25 the NH₃ mixing ratio in different seasons at the two sites. The relationships between the NH₃
26 concentrations and temperature (relative humidity) varied from season to season and showed differences
27 between the urban and suburban sites. The reasons for the different relationships need to be investigated
28 in future studies. Higher wind speed mainly from the northwest sector lowered the NH₃ mixing ratios at
29 both sites. Similar with other primary pollutants in Beijing, the NH₃ mixing ratios were high under
30 impacts of air masses from the south sector.

31 **Keywords:** NH₃; variations; simultaneous observation

32

33 **1. Introduction**

34 Ammonia (NH₃) is the most abundant alkaline trace gas in the atmosphere (Meng et al., 2017). An
35 excessive NH₃ concentration directly harms the ecosystem; causes water eutrophication and soil
36 acidification; and leads to forest soil erosion, biodiversity reduction, and carbon uptake variations
37 (Pearson and Stewart, 1993; Reay et al., 2008; van Breemen et al., 1983; Erisman et al., 2007). NH₃ can
38 react with acidic gases to form ammonium salts, which might significantly influence the mass
39 concentration and composition of particulate matter (Wu et al., 2009). As major components of fine
40 particle, ammonium salts contribute largely to the scattering of solar radiation and hence influence
41 climate change (Charlson et al., 1991). Therefore, atmospheric NH₃ is one of the key species relevant to
42 human health, ecosystem and climate change.

43 After the implementation of policies such as the *12th Five-Year Plan for the Key Regional Air*
44 *Pollution Prevention and Control in Key Regions* (Ministry of Ecology and Environment of the People's
45 Republic of China, 2012) and the *Air Pollution Prevention and Control Action Plan* (General Office of
46 the State Council, PRC, 2013), China, especially the capital city Beijing, has been effectively controlling
47 the emissions of sulfur dioxide (SO₂) and nitrogen oxide (NO_x), which are key precursors of fine particles.
48 However, the pollution caused by fine particles is still serious (Krotkov et al., 2016; UN Environment,
49 2019), particularly in winter in the North China Plain, where excess NH₃ promote the haze formation
50 through heterogeneous reactions (Ge et al., 2019). Studies have indicated that when the SO₂ and NO_x
51 concentrations are reduced to a certain extent, reducing NH₃ emissions is the most economical and
52 effective method to decrease the PM_{2.5} concentration (Pinder et al., 2008). In China, the main
53 anthropogenic sources of NH₃ are livestock and poultry feces (54%) and fertilizer volatilization (33%)
54 (Huang et al., 2012). Moreover, the atmospheric NH₃ concentration in China has increased with the

55 expansion of agricultural activities, control of SO_2 and NO_x , and increase in temperature (Warner et al.,
56 2017). This increase in the NH_3 concentration might weaken the effectiveness of SO_2 and NO_x emission
57 control in reducing $\text{PM}_{2.5}$ pollution (Fu et al., 2017).


58 The North China Plain is a region with high NH_3 emission (Zhang et al., 2017), and Beijing has one
59 of the highest NH_3 concentrations in the world (Chang et al., 2016b; Pan et al., 2018). Compared with
60 studies on pollutants such as SO_2 and NO_x , considerably fewer studies have been conducted on the NH_3
61 concentration in Beijing. Chang et al. (2016a) collected gaseous NH_3 samples during the 2014 APEC
62 summit (October 18 to November 29, 2014) in the Beijing urban area and concluded that the overall
63 contributions of traffic, garbage, livestock, and fertilizers to the NH_3 concentration were 20.4%, 25.9%,
64 24.0%, and 29.7%, respectively. According the data from Huang et al (2012), the NH_3 emissions in
65 Beijing were from livestock and poultry farming (34.55%), nitrogen-fixing plants (33.57%), fertilizer
66 use (13.06%), household garbage treatment (8.29%), traffic emissions (5.20%), industrial emissions
67 (0.14%), biomass combustion (0.42%), and agricultural soil (0.84%). Zhang (2016) measured the NH_3
68 concentrations in urban and rural areas of Beijing from January to July 2014 and found that NH_3
69 concentration in urban areas was approximately 65% higher than that in rural areas. Meng et al. (2011)
70 reported that the highest NH_3 concentration in Beijing occurred in summer and the lowest one occurred
71 in winter, and their results indicated traffic to be a significant source of NH_3 in urban areas. Zhang et al.
72 (2018) reported the vertical variability of NH_3 in urban Beijing based on one-year passive sampling in
73 2016/2017 and concluded that local sources such as traffic emissions were important contributors to
74 urban NH_3 . Meng et al. (2020) investigated the significant increase in winter NH_3 and its contribution to
75 the increasing nitrate in $\text{PM}_{2.5}$ from 2009 to 2016, and they also concluded that vehicles exhaust was an
76 important contributor to NH_3 in urban Beijing in winter.

77 Currently, NH_3 is not included in the routine environmental monitoring operation in China. Research
78 data on NH_3 monitoring, particularly on the synchronous observations of NH_3 concentrations with a high
79 temporal resolution in urban and suburban areas, are relatively scarce. In this study, high-time-resolution
80 observations of NH_3 were obtained simultaneously at an urban site and a suburban site in Beijing. The
81 variation characteristics and influencing factors of the NH_3 concentration were analyzed with
82 meteorological data to provide a scientific basis for NH_3 pollution control in Beijing.

83 **2. Materials and methods**

84 *2.1. Measurement sites*

85 From January 2018 to January 2019, continuous and simultaneous observations of atmospheric NH_3
86 were conducted at an urban site and a suburban site in Beijing. The urban site was located on the roof of
87 the Science and Technology Building of Minzu University of China (39.95°N , 116.32°E , altitude: 102
88 m) and the suburban site was in the Changping Meteorological Station ($40^\circ13'\text{N}$, $116^\circ13'\text{E}$, altitude: 77
89 m). The suburban site is in the NW direction relative to the urban site and the shortest distance between
90 these two sites is approximately 32 km (Figure 1). More farm land and glass land are around the suburban
91 site than the urban site.

93 **Fig. 1.** Location of the observation sites, the topography, and land use of Beijing city.

95 2.2. Measurements and data acquisition

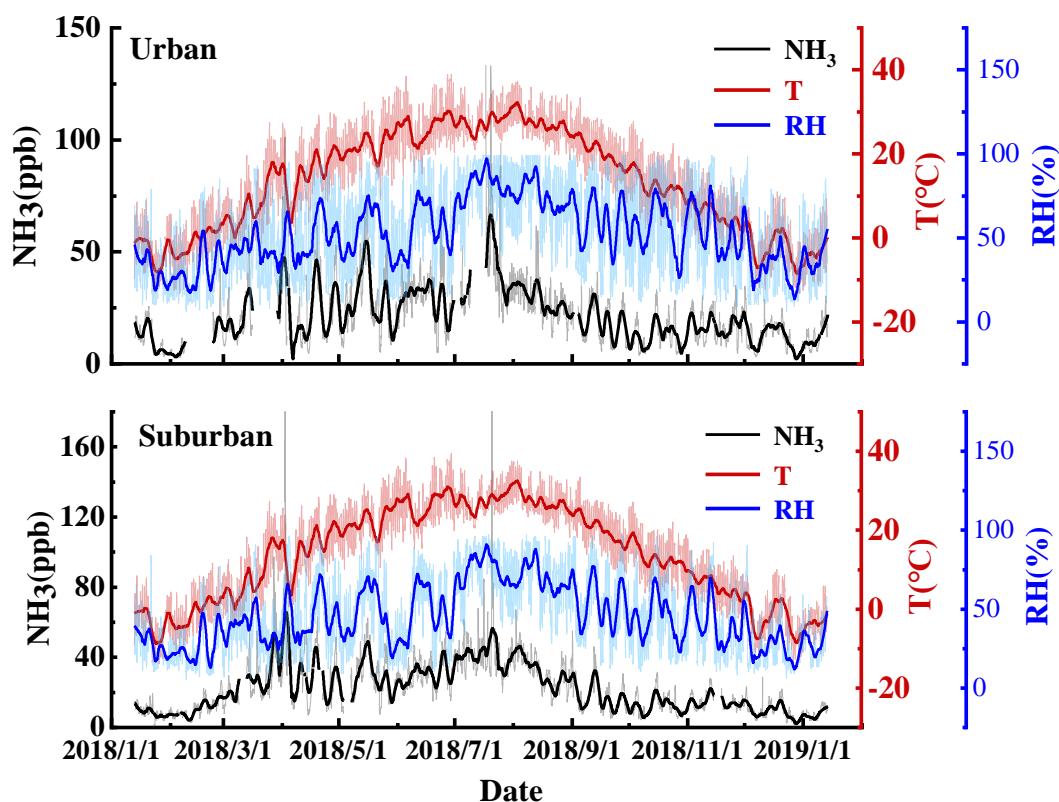
96 NH₃ concentrations were measured using two NH₃ analyzers (Ammonia Analyzer-Economical, Los
97 Gatos Research Inc., USA), which have the minimum detection limit of <0.2 ppb and the maximum drift
98 of 0.2 ppb/24hrs. The NH₃ analyzers were deployed in air-conditioning rooms. These analyzers use off-
99 axis integrated cavity output spectroscopy (OA-ICOS) technology, which is a fourth-generation cavity-
100 enhanced absorption technique, to simultaneously measure NH₃ and water vapor (H₂O) in the atmosphere.
101 The incident laser beam of the OA-ICOS technology deviates from the optical axis, which differs from
102 the traditional coaxial incidence mode. The axial incidence mode of the OA-ICOS technology can
103 increase the optical path, stimulate additional high-order transverse modes, effectively suppress the noise
104 of the cavity mode, reduce the cross interferences and errors due to contaminants existing in the cavity,
105 and improve the detection sensitivity (Baer *et al.*, 2002; Baer *et al.*, 2012). The analyzer method is a
106 quasi-absolute measurement, which theoretically does not require calibration. However, to ensure the
107 comparability of the obtained data with other monitoring data, NH₃ standard gas (Beijing AP BAIF Gases
108 Industry Co., Ltd.) was used for comparison measurement before the observation. The recorded
109 concentrations were revised with respect to the reference NH₃ concentration in the standard gas mixture.

110 Ambient air was drained at >0.4 L/min through Teflon lines (1/4'OD) from a manifold. The lengths
111 of the Teflon lines were designed as short as possible (less than 2 m from the manifold). Particulate
112 matters were filtered by Teflon membranes with a pore size less than 5 μm . Since NH₃ easily “sticks” to
113 surfaces (like inside walls of tubes), heated sample lines were suggested by many measurement studies.
114 However, according our test (Fig. S1) in the lab, when heating (70°C) was on, there did have a peak
115 lasting 5–6 min minutes and then deceasing to the normal levels in ambient air, which means a new
116 balancing process has been established in less than 10 min. This suggests that heating is not necessarily

117 a solution for NH₃ sticking. Keeping the relatively stable balance between adsorption and desorption of
118 NH₃ in the sampling system is important. When tested using air of different humidity, only very sharply
119 changes of humidity obviously influenced and changed the balance, and a new balance needed tens of
120 minutes to reestablished (Fig. S2). Under the normal weather conditions, humidity changes in a relatively
121 smoothing way unless a quickly changing weather system, like rain, is approaching. The minute-level
122 data were converted into hourly averages in the data analysis process and the hourly resolution can
123 smooth the effect to some extent caused by variations in humidity and temperature during the observation.

124 The balancing idea was also used to carry out multi-point calibrations on NH₃ analyzers (Fig. S3).

125 A high mixing ratio (e.g. 400 ppb or higher) of NH₃ mixing gases were firstly produced by a dynamic
126 diluter and measured by the NH₃ analyzers overnight. After the signals reached the stable level, other
127 lower span values were switched in turn. At each span point, the measurement time was lasting at least
128 40 minutes or longer. Then a linear regression function was obtained with R² higher than 0.999.
129 Nowadays, NH₃ in compressed gas cylinder is also trustworthy, as confirmed by the comparison with the
130 NH₃ standard in a permeation tube (Fig. S4).


131 Totally, 7645 and 8342 valid hourly mean observations were obtained for the urban (Haidian) and
132 suburban (Changping) sites, respectively. In addition, the urban and suburban meteorological data
133 (temperature, relative humidity, wind direction, and wind speed) during the sampling period were
134 obtained from the Haidian Meteorological Observation Station and Changping Meteorological Station,
135 respectively.

136 **3. Results and discussion**

137 *3.1. Overall variations in the NH₃ mixing ratios*

138 Fig. 2 displays the time-series variations in the NH₃ mixing ratios, temperatures, and relative

139 humidity at the urban and suburban sites in Beijing. At the urban site, the mean $\pm 1\sigma$, median, maximum,
 140 and minimum values of the hourly average NH_3 mixing ratio during the observation period were 21 ± 14
 141 ppb, 17 ppb, 133 ppb and 1.6 ppb, respectively. At the suburban site, the corresponding values were 22
 142 ± 15 ppb, 18 ppb, 199 ppb, and 0.8 ppb, respectively. The annual average and range of the NH_3 mixing
 143 ratio at the suburban site were marginally higher than those at the urban site. The characteristics of the
 144 weekly smoothed data indicate that the NH_3 variations and temperature/humidity fluctuations at the two
 145 sites were practically consistent, which suggests that both sites were under the influence of similar
 146 weather systems. The hourly mean NH_3 concentrations at the urban site were significantly correlated (R
 147 $= 0.849, P < 0.01$) with those at the suburban site.

148
 149 **Fig. 2.** Temporal variations in the hourly average NH_3 mixing ratios, temperatures (T) and relative humidity (RH) at the urban and suburban
 150 stations in Beijing. Continuous thick lines were smoothed with 168 points (7 days) by using the Savitzky–Golay method.

151

152 Table 1 shows the comparison of atmospheric NH_3 concentrations (ppb) observed in different areas.

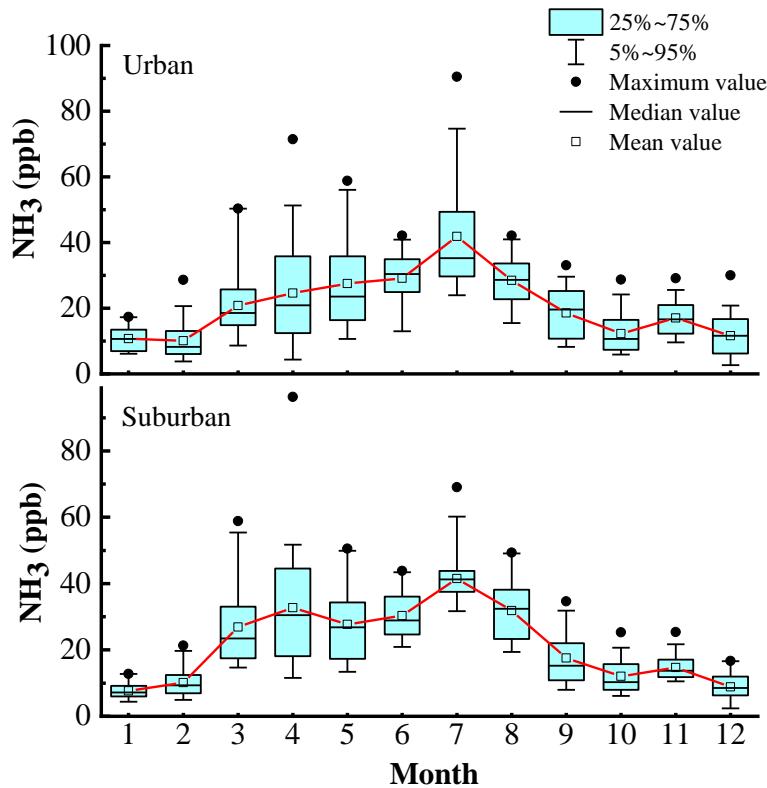
153 Meng et al. (2011) obtained an average NH_3 mixing ratio of 22.8 ± 16.3 ppb for the period 2008-2010 in
 154 Beijing urban area, which is very close to our result (21 ± 14 ppb) for 2018-2019. Therefore, the annual
 155 average NH_3 mixing ratio in urban Beijing did not change significantly from 2008 to 2019. Moreover,
 156 results from this study and Meng et al. (2011) indicate that the NH_3 concentrations at the urban and
 157 suburban sites were higher than those in the background areas. The observed NH_3 concentrations in
 158 Beijing were higher than those in northwest China (Meng et al., 2010) and the Yangtze River Delta region
 159 (Chang et al., 2019). The average annual NH_3 concentration in the urban area of Shanghai, a mega city
 160 in the Southeast China (31°N), was approximately 50% lower than that in urban Beijing. This might be
 161 related to the fact that the North China Plain, in which Beijing is located, is one of the most intensive
 162 agricultural production regions in China. The differences in the soil properties of Beijing and Shanghai
 163 may be another reason because the loss of soil NH_3 can increase with an increase in the soil pH (Ju et al.,
 164 2009). Shanghai and its surrounding areas are dominated by acidic soil of paddy fields (Zhao et al., 2009),
 165 whereas Beijing is dominated by the alkaline soils of dry land (Wei et al., 2013). In addition, the climate
 166 in Beijing is much drier than in Shanghai so that less atmospheric NH_3 in Beijing can be removed than
 167 in Shanghai by wet deposition.

168 **Table 1.** Comparison of the atmospheric NH_3 concentrations (ppb) observed in different areas.

Period	Location	Methodology	Types	Concentration	Reference
2018.01-2019.01	Beijing, CN	Online monitor	Urban	20.8 ± 13.7	This study
			Suburban	21.9 ± 14.9	
2008.02-2010.07 2007.01-2010.07	Beijing, CN	Passive sampler	Urban	22.8 ± 16.3	Meng et al., 2011
			Background	10.2 ± 10.8	
2014.5-2015.6	Shanghai, CN	Passive sampler	Urban	7.8	Chang et al. 2019
			Suburban	6.8	
2006.04-2007.04	Xi'an, CN	Passive sampler	Urban	18.6	Cao et al. 2009
			Suburban	20.3	
2017.12-2018.2	Hebei, CN	Online monitor	Rural	16.7 ± 19.7	He et al. 2020
2008	Qinghai, CN	Passive sampler	Rural	4.1 ± 2.2	Meng et al. 2010

2003.7-2011.9	Toronto, CA	Passive sampler	Urban	2.3-3.0	Hu et al. 2014
			Rural	0.1-4	
2016.4-2017.10	New York, US	Active and passive system	Urban	2.2-3.2	Zhou et al. 2019
			Rural	0.6-0.8	
2017.12	Tokyo, JP	semi-continuous microflow analytical system	Urban	4.1	Osada et al. 2019
2013.1-2015.12	Delhi, IN	Automatic analyzer	Urban	53.4±14.9	Saraswati et al., 2019
2012.10-2013.9	Jaunpur, IN	Glass flask sampling	Suburban	51.6±22.8	Singh and Kulshrestha, 2014
2008.1-2009.2	Bamako, MLJ	Passive sampler	Urban	46.7	Adon et al., 2016
2006.3-2017.4	Edmonton, CA	Online monitor	Urban	2.4±0.6	Yao et al., 2016
2010.9-2011.8	Seoul, KR	Online monitor	Urban	10.9±4.25	Phan et al., 2013
2004.3-2004.7	Munster, DE	Wet denuder	Urban	5.2	Vogt et al., 2005

169


170 Table 1 also shows observational results of atmospheric NH₃ from some other countries. The NH₃
 171 mixing ratios in the United States (Edgerton et al., 2007; Nowak et al., 2006; Zhou et al. 2019), Scotland
 172 (Burkhardt et al., 1998), Canada (Hu et al., 2014), Japan (Osada et al., 2019), and Germany (Vogt et al.,
 173 2005) were 0.23–13 ppb, 1.6–2.3 ppb, 0.1–4 ppb, 4.1 ppb, and 5.2 ppb, respectively. These values are
 174 considerably lower than those in Beijing. However, Delhi, India (Saraswati et al., 2019), exhibited higher
 175 NH₃ mixing ratio (53.4±14.9 ppb) than Beijing did. This result might be attributed to the well-developed
 176 livestock breeding activities in Delhi. This comparison indicates that in the decade before 2019, the NH₃
 177 concentration in Beijing did not change considerably, but it is of the highest in big cities in China and
 178 much higher than those observed in developed countries in America, Europe and Asia.

179 *3.2. Seasonal variations*

180 Fig. 3 displays the monthly statistics for the NH₃ mixing ratios at the urban and suburban sites in
 181 Beijing. The seasonal variations in the NH₃ mixing ratios were very similar at the urban and suburban
 182 sites, with higher mixing ratios in the spring and summer and low ones in the autumn and winter. The
 183 daily mean concentrations fluctuated considerably in the spring, particularly in April. The highest mean

184 NH₃ concentrations at the urban and suburban sites were 42± 17 ppb and 42 ± 8.2 ppb, respectively. Both
185 occurred in July, when the NH₃ concentrations fluctuated considerably as well. On average, the seasonal
186 NH₃ mixing ratios at the urban and suburban sites can be arranged as follows: summer > spring > autumn >
187 winter. The main grain crops in the rural area of Beijing are corn and wheat. Corn is categorized as spring
188 corn and summer corn, which are sown in April and June, respectively. Usually, a large amount of base
189 fertilizer is applied when planting corn and the topdressing after 2 months. Wheat is sown from
190 September to October, and the topdressing is applied in the following spring. The volatilization of
191 nitrogen fertilizers can cause an increase in atmospheric NH₃ mixing ratios and its fluctuations in
192 fertilization seasons (Zhang et al., 2016). In addition, the high temperature in summer should also be
193 responsible to the high NH₃ mixing ratios in this season. An increase in the temperature can increase the
194 biological activity and thus enhance the NH₃ production and emission. High temperature is also
195 conducive for the volatilization of the urea and diammonium phosphate applied to crops. Moreover, the
196 equilibrium among ammonium nitrate particles, gaseous NH₃, and nitric acid is transferred to the gas
197 phase at high temperature, which increases the NH₃ concentration (Behera et al., 2013). Sewage treatment,
198 household garbage, golf courses, and human excreta are crucial NH₃ sources that are easily neglected
199 (Pu et al., 2020). The relatively low NH₃ concentrations in the autumn and winter might be caused by the
200 decrease in NH₃ emission in the soil and vegetation, the decrease in the NH₄NO₃ decomposition capacity
201 at low temperatures, and the reduced human activities caused by a large floating population returning to
202 their native locations outside Beijing during the Spring Festival (Liao et al., 2014). In the spring and
203 summer, the NH₃ mixing ratios at the suburban site were higher than those at the urban site, which might
204 be related to the higher agricultural activity around the suburban site. In the autumn and winter, the NH₃
205 mixing ratios at the urban site were marginally higher than those at the suburban site. In the autumn and

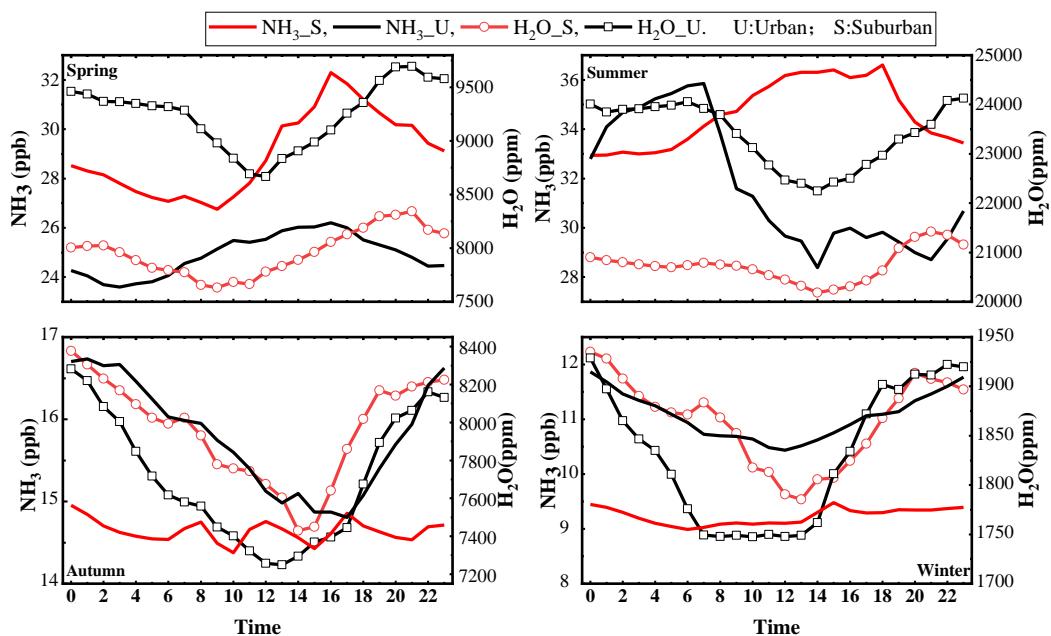
206 winter seasons, the influences of agricultural activities on the NH_3 concentration were weakened,
 207 whereas the influences of other sources (such as traffic sources) were enhanced. According to Wang et
 208 al. (2019), the traffic NH_3 emission per unit area in Haidian (urban site) was three times higher than that
 209 in Changping (suburban site). This difference in traffic source emissions might have resulted in higher
 210 NH_3 concentrations at the urban site than at the suburban site in the autumn and winter.

211

212 **Fig. 3.** Monthly statistical variation in the NH_3 mixing ratios at the urban and suburban sites in Beijing.

213

214 **Table 2.** NH_3 mixing ratios (ppb) measured at the urban and suburban sites in Beijing.


Site	Time period	Mean	Standard deviation	Minimum	Median	Maximum
Urban	Annual	21	14	1.6	17	133
	Spring	25	16	1.9	21	101
	Summer	32	12	5.0	30	133
	Autumn	16	7.5	3.8	15	41

	Winter	11	6.7	1.6	9.9	42
	Annual	22	15	0.8	18	198
	Spring	29	16	6.8	26	180
Suburban	Summer	35	12	12.1	33	199
	Autumn	15	6.8	4.1	13	55
	Winter	9.2	4.5	0.8	8.4	29

215

216 *3.3. Diurnal variations*

217 Figure 4 displays the average diurnal variations in the NH_3 and H_2O mixing ratios in different
 218 seasons at the urban and suburban sites in Beijing. Ambient NH_3 exhibited different diurnal behaviors in
 219 different seasons.

220

221 **Fig. 4.** Average diurnal variations in the NH_3 and H_2O mixing ratios in different seasons at the urban and suburban sites in Beijing.

222

223 In spring, the average diurnal variations in the NH_3 mixing ratio were similar at the urban and
 224 suburban sites. The diurnal variations exhibited a single-peak pattern with high values in the daytime and
 225 low values at night. The NH_3 mixing ratio began to increase in the morning, reached its maximum value

226 at 16:00, and then decreased gradually. The lowest mixing ratios at the urban and suburban sites occurred
227 at 03:00 and 09:00, respectively. The NH₃ mixing ratio began to increase earlier at the urban site than at
228 the suburban site. A plausible explanation to the earlier increase in the NH₃ emission at the urban site is
229 the traffic emission in the morning rush hours. In spring, the mixing ratio of NH₃ was higher at the
230 suburban site than that at the urban site, with an average difference of 4.1 ppb and a maximum difference
231 of 6.1 ppb. The average diurnal amplitude of the NH₃ mixing ratio at the suburban site was 5.3 ppb,
232 which was higher than that (2.6 ppb) at the urban site. At the urban site, the average diurnal variations in
233 the NH₃ and H₂O mixing ratios exhibited nearly opposite trends. The H₂O mixing ratio had high values
234 in the night and low values in the day. At the suburban site, the variation characteristics of NH₃ and H₂O
235 were very similar; however, the peak NH₃ concentration occurred 5 hours earlier than the peak H₂O
236 concentration. In spring, in contrast to the NH₃ mixing ratio, the H₂O mixing ratio at the urban site was
237 1279 ppm higher than that at the suburban site.

238 The diurnal variation in the NH₃ mixing ratio at the suburban site in summer was similar to that in
239 spring. This phenomenon was also observed in the rural areas of Shanghai by Chang et al. (2019). The
240 diurnal variations of NH₃ at the suburban site were considerably affected by the temperature and the
241 contribution from volatile NH₃ sources. However, the diurnal summer variation of NH₃ at the urban site
242 was completely different from that at the suburban site. The summer level of NH₃ at the urban site was
243 obviously lower during the daytime and evening than that at the suburban site, increased gradually from
244 21:00 to levels higher than its suburban counterpart, dropped after reaching its peak value at 7:00, and then
245 reached its lowest value at 14:00. The diurnal pattern (with a peak in early morning) has been observed
246 in other areas, such as rural (Ellis et al., 2011), urban (Gong et al., 2011), and steppe areas located far
247 away from human activity (Wentworth et al., 2016). Kuang et al. (2020) believed that such diurnal pattern

248 of NH₃ was caused by the evaporation of dew in the morning, which resulted in the release of NH₃
249 originally stored in the droplets. A lag was observed between the changes in the NH₃ and H₂O
250 concentrations in the early morning, which supported the hypothesis of Kuang et al (2020). In addition,
251 the increase in the NH₃ concentration in the morning might have been caused by the breakup of the
252 boundary layer formed at night. The downward mixing of air with a higher NH₃ concentration in the
253 residual layer led to a morning increase in the NH₃ concentration on the ground (Bash et al., 2010). In
254 summer, the NH₃ concentrations at the suburban site were significantly higher than those at the urban
255 site during the daytime and first half of the night. The average diurnal amplitude of the NH₃ concentration
256 was 7.5 ppb and 3.7 ppb at the urban and suburban sites, respectively. Similar to the situation in spring,
257 the H₂O concentrations at the urban site were significantly higher than those at the suburban site in the
258 summer.

259 In autumn, the NH₃ concentration at the suburban site was relatively stable and remained nearly all
260 the time lower than that at the urban site, which showed low values during the day and high values during
261 the night, with a peak at midnight and a minimum (about 2.0 ppb lower than the peak) at 17:00. The H₂O
262 concentration was marginally lower (250 ppm) at the urban site than at the suburban site. The diurnal
263 profiles of H₂O at both sites resemble that of NH₃ at the urban site, but the lowest values of H₂O occurred
264 earlier than the lowest value of NH₃ at the urban site.

265 The diurnal patterns of NH₃ and H₂O in winter were similar to those in autumn though the mixing
266 ratios of NH₃ and H₂O were lower than their autumn counterparts. There were two slight differences: (1)
267 the mixing ratios of NH₃ at both sites exhibited lower fluctuations than those in autumn and (2) the
268 mixing ratio of NH₃ at the urban site reached its minimum in winter earlier than that in autumn.

269 The above results indicate that although the two sites were under the influence of similar weather

270 systems, the diurnal variations in the NH₃ mixing ratios at the two sites were different in different seasons.
271 This finding suggests that different NH₃ sources and possibly sinks had different contributions to the NH₃
272 concentrations at the urban and suburban sites. Additional studies should be conducted to better
273 understand the behaviors of atmospheric NH₃ and its influencing factors.

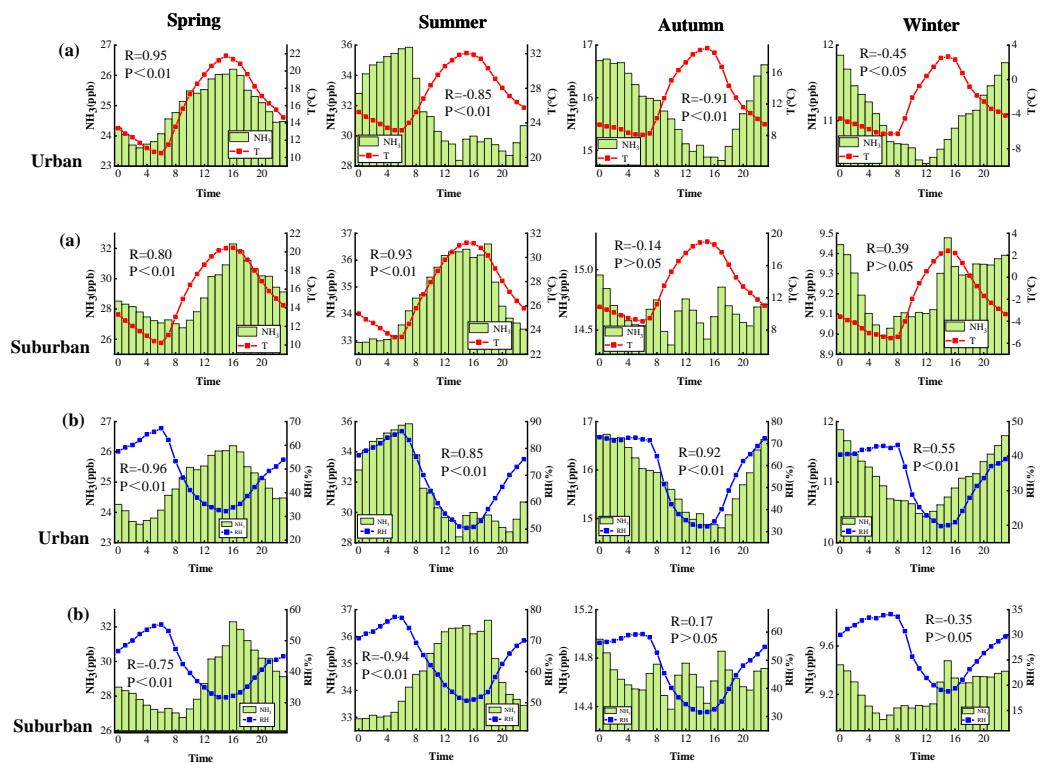
274 *3.4. Effect of meteorological factors on the NH₃ levels*

275 Table 3 presents the annual and seasonal correlation coefficients between the daily means of NH₃
276 mixing ratios and those of the temperature, relative humidity, and wind speed at the two sites. Annually,
277 the NH₃ mixing ratios at both sites were positively correlated with temperature and relative humidity and
278 negatively correlated with wind speed, and the correlations are all highly significant. However, the
279 correlations deteriorated somewhat in warm seasons. In summer and autumn, no significant correlations
280 were noted between ambient NH₃ and temperature at the two sites. The correlation between NH₃ and
281 wind speed in summer was much weaker than in the other seasons. The relative humidity was stronger
282 correlated with the NH₃ concentration at the two sites than temperature, which can be perceived in Fig 2.
283 Also, the correlation between NH₃ and relative humidity did not vary much from season to season. This
284 implies a possibility that relative humidity exerts a certain influence on the variation of the NH₃ level in
285 the surface layer.

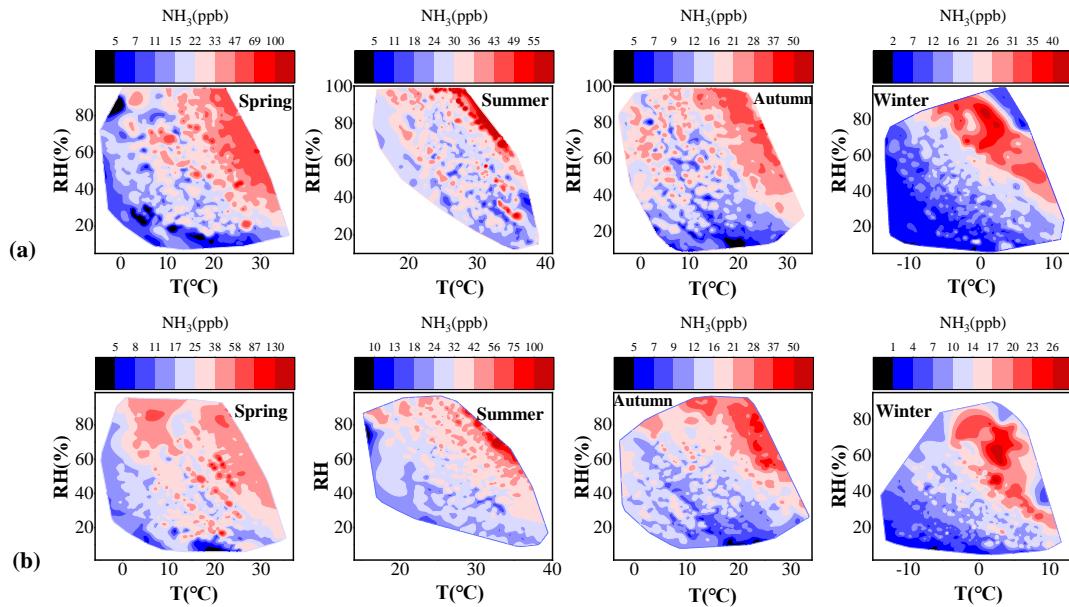
286

287 Table 3. Correlations between the daily mean values of NH₃ and meteorological elements (Spearman's
288 rank correlation coefficient)

Site	Time Period	Temperature	Relative humidity	Wind speed
Urban	Annual	0.680**	0.706**	-0.370**
	Spring	0.450**	0.645**	-0.540**
	Summer	0.043	0.488**	-0.106**
	Autumn	0.101	0.759**	-0.413**
	Winter	0.596**	0.690**	-0.449**


	Annual	0.745**	0.730**	-0.325**
Suburban	Spring	0.256*	0.518**	-0.391**
	Summer	0.126	0.576**	-0.061**
	Autumn	0.135	0.792**	-0.618**
	Winter	0.676**	0.663**	-0.545**

289 *: at the 0.05 significant level; **: at the 0.01 significant level.


290

291 Fig. 5 displays the seasonal mean diurnal variations in the NH₃ mixing ratio, temperature, and
 292 relative humidity in different seasons at the urban and suburban sites, with their correlation coefficients
 293 shown in Fig. S5. At the urban site, the seasonal-hourly means of the NH₃ mixing ratio were positively
 294 (negatively) correlated with those of temperature (relative humidity) in spring, but the correlations were
 295 reversed in the other seasons. At the suburban site, the seasonal-hourly means of the NH₃ mixing ratio
 296 were positively (negatively) correlated with those of temperature (relative humidity) in the spring and
 297 summer, but less correlated in autumn and winter. Similar correlation behaviors (diurnal variations) were
 298 found at both sites in spring, but in other seasons the correlations (diurnal variations) at the urban site
 299 behaved differently from those at the suburban site. The inconsistent behaviors in summer, autumn and
 300 winter caused urban-suburban differences in the annual-diurnal patterns of NH₃, temperature and relative
 301 humidity as well as the NH₃-temperature (relative humidity) correlations, as can be seen in Fig. S6.
 302 Figure 6 displays the contour maps of the NH₃ mixing ratio, temperature, and relative humidity in
 303 different seasons at the urban and suburban sites. The annual contour maps are shown in Fig. S7. As
 304 shown in these contour maps, the NH₃ mixing ratios at both sites increased with relative humidity at
 305 same temperature and increased with temperature at same relative humidity. Although there are some
 306 scatterings in the contour maps, high NH₃ levels are generally associated with high temperature and
 307 humidity. In winter, when air temperature was low (< 0 °C), the NH₃ mixing ratios at both sites often had
 308 low values except in high humidity (>60%). An increase in temperature caused higher NH₃ mixing ratios

309 at both sites; however, the NH_3 concentration at the suburban site was more significantly correlated with
 310 temperature than that at the urban site (Table 3), suggesting that volatile NH_3 sources might have a higher
 311 contribution to the NH_3 concentration in suburban than in urban area. A higher amount of NH_3 removal
 312 through chemical transformation is expected during the day at the urban site than at the suburban site
 313 because the urban area had higher relative humidity and amounts of particulate matters, and higher
 314 emissions of acid gases (particularly NO_x) than the suburban area. In 2018, the concentrations of $\text{PM}_{2.5}$,
 315 SO_2 and NO_2 were $50 \text{ }\mu\text{g/m}^3$, $5 \text{ }\mu\text{g/m}^3$, $43\text{ }\mu\text{g/m}^3$ in Haidian, and $46 \text{ }\mu\text{g/m}^3$, $6 \text{ }\mu\text{g/m}^3$, $35 \text{ }\mu\text{g/m}^3$ in
 316 Changping, respectively, as reported by Beijing Ecology and Environment Statement.
 317

318
 319 **Fig. 5.** Diurnal variations in and correlation coefficients between the NH_3 mixing ratios and temperature (a), relative humidity (b) in
 320 different seasons at the urban and suburban sites in Beijing.

321

322 **Fig. 6.** Contour maps of the NH₃ mixing ratio, temperature, and relative humidity in different seasons at the urban and suburban sites in
 323 Beijing (a: Urban, b: Suburban).

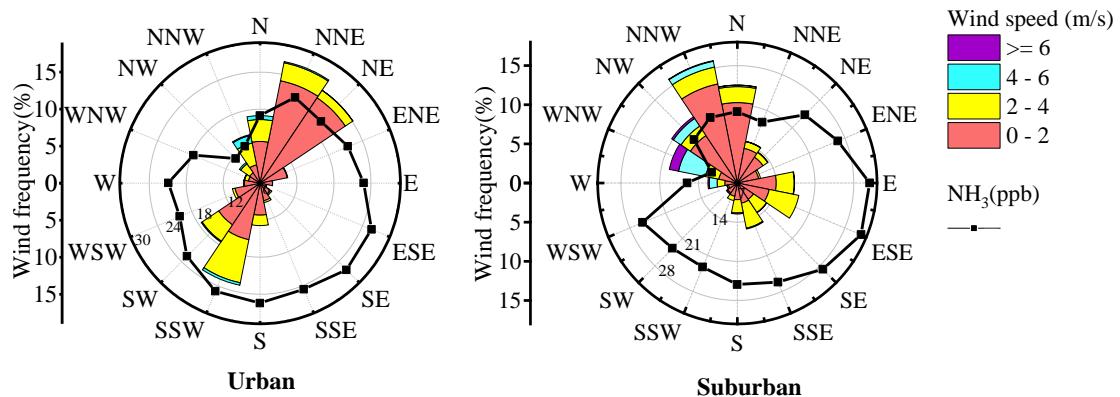
324

325 To explore the influence of wind on the NH₃ mixing ratios, rose charts were drawn for the hourly
 326 mean concentration of NH₃, wind direction frequency, and wind speed during the observation period (Fig.
 327 7). The large-scale wind circulation in the North China Plain is often influenced by the mountain-plain
 328 topography; therefore, the dominant winds in this region are southerly (from noon to midnight) and
 329 northerly (from midnight to noon) (Lin et al., 2009; Lin et al., 2011). As displayed in Fig. 7, some
 330 differences existed in the distributions of the surface wind between the urban and suburban sites. The
 331 prevailing surface winds were northeasterly and southwesterly at the urban site and northwesterly and
 332 easterly at the suburban site. At the urban site, the NH₃ mixing ratios were relatively high when the winds
 333 originated from the southern sectors and relatively low when the winds originated from the northwest
 334 sectors. Therefore, under southwest wind, air masses from the south of Beijing carry not only air
 335 pollutants but also higher levels of NH₃ to the urban site. Meng et al. (2017) examined the effect of long-

336 range air transport on the urban NH_3 levels in Beijing during the summer through trajectory analysis.

337 They concluded that the air mass from the southeast has a cumulative effect on the NH_3 concentration.

338 Although the dominant wind direction at the suburban site was different from that at the urban site, the


339 NH_3 mixing ratios were also relatively high in the south sectors. Thus, winds from the southeast, south,

340 and southwest can elevate levels of atmospheric NH_3 at both the urban and suburban sites. The NH_3

341 mixing ratios were relatively low when air masses originated from the northwest sector at urban site and

342 from the west sector at the suburban site. The west and northwest winds were stronger and promoted the

343 dilution and diffusion of NH_3 emitted into the boundary layer.

344

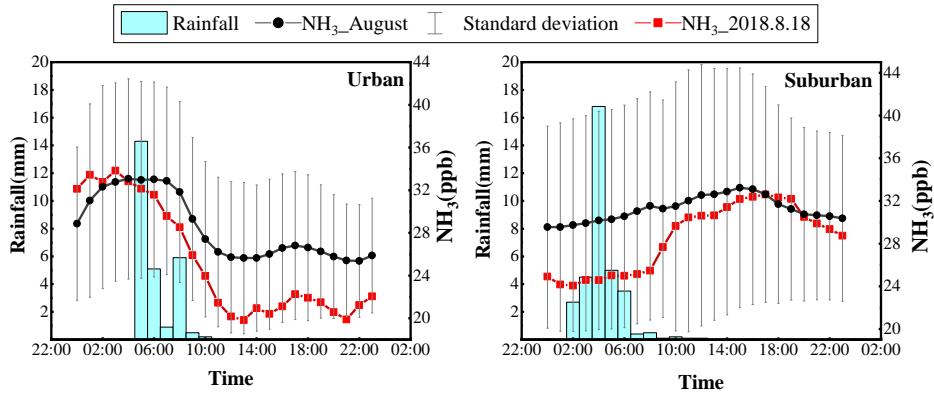
345 **Fig. 7.** Rose maps of the NH_3 mixing ratios, wind frequency, and wind speed in different wind direction sectors.

346

347 As a water-soluble gas, NH_3 can be impacted by precipitation. Heavy rainfall occurred on August

348 18, 2018 (Fig. 8). Before the rainfall, the NH_3 concentration at the urban site was higher than the average

349 level in August. After the rainfall, the NH_3 concentration decreased rapidly, and it was significantly lower


350 than the mean value in August. However, the diurnal pattern of NH_3 on that day did not differ

351 considerably from the average diurnal pattern in August. On the same day, the NH_3 mixing ratio at the

352 suburban site remained at a low level during the rainfall period, which was considerably lower than the

353 August mean NH_3 concentration during the same time of day. However, the NH_3 mixing ratio increased

354 rapidly after the precipitation and reached the mean level at 17:00. The rainfall might have an obvious
355 clearing effect on NH₃ but more case studies are needed to reach a robust conclusion.

356

357 **Fig. 8.** Diurnal variations in the rainfall and NH₃ concentration on August 18, 2018.

358

359 **4. Conclusions**

360 In this study, the atmospheric NH₃ concentrations at an urban site and a suburban site in Beijing
361 were continuously and simultaneously observed from January 2018 to January 2019. The mean NH₃
362 mixing ratios were 21 ± 14 ppb and 22 ± 15 ppb at the urban and suburban sites, respectively. These NH₃
363 levels are among the highest mean values found in China and much higher than those reported for some
364 developed countries in America, Europe and Asia. In the summer and spring, the NH₃ mixing ratios at
365 the suburban site were slightly higher than those at the urban site. In the autumn and winter, however,
366 the situation was reversed. The highest NH₃ mixing ratios at the urban and suburban sites were all found
367 in July. The lowest NH₃ mixing ratio occurred in February at the urban site and in January at the suburban
368 site. A comparison with data from literature shows that the mean concentration of NH₃ in Beijing did not
369 change considerably in the decade before 2019.

370 The hourly mean NH₃ mixing ratios at the urban site were highly correlated ($R = 0.849$, $P < 0.01$)
371 with those at the suburban site. However, the mean diurnal variations in the NH₃ mixing ratios at the

372 urban and suburban sites were different. At the urban site, lower NH₃ mixing ratios were observed in the
373 daytime and higher ones at night. The opposite trend was observed at the suburban site. Although both
374 sites were under the influence of similar weather systems, the seasonal-diurnal variations in the NH₃
375 mixing ratio were different at the urban and suburban sites, suggesting that NH₃ sources had different
376 relative contributions to the NH₃ levels at the urban and suburban sites.

377 The relationship of meteorological factors with the NH₃ mixing ratio was complex. Overall, the NH₃
378 mixing ratios increased with relative humidity and temperate at both sites. Relative humidity was stronger
379 correlated with the NH₃ mixing ratio at both sites. The situation in different seasons varied and was site-
380 dependent, which warrants further studies. A high wind speed (mainly under northwesterly) suppressed
381 the levels of NH₃ at both sites. The NH₃ mixing ratios were higher under southerly wind conditions.
382 Rainfall had a certain scavenging effect on NH₃ but had little effect on the diurnal variations in the NH₃
383 concentration.

384

385 **Data availability.** The data of stationary measurements are available upon request to the contact author
386 Weili Lin (linwl@muc.edu.cn).

387

388 **Author contributions.** ZL and WL developed the idea for this paper, formulated the research goals, and
389 carried out the measurement at urban site. WP and ZM carried out the NH₃ field observations at the
390 suburban site.

391

392 **Competing interests.** The authors declare that they have no conflict of interest.

393

394 **Acknowledgments.** This study was funded by the National Natural Science Foundation of China

395 (Grant No. 91744206) and the Beijing Municipal Science and Technology (Z181100005418016).

396

397 **Reference**

398 Adon, M., Yoboué, V., Galy-Lacaux, C., Liousse, C., Diop, B., Doumbia, E. H. T., Gardrat, E., Ndiaye,

399 S. A. and Jarnot, C.: Measurements of NO₂, SO₂, NH₃, HNO₃ and O₃ in West African urban

400 environments, *Atmospheric Environment*, 135, 31–40,

401 <https://doi.org/10.1016/j.atmosenv.2016.03.050>, 2016.

402 Baer, D. S., Paul, J. B., Gupta, M. and O'Keefe, A.: Sensitive absorption measurements in the near-

403 infrared region using off-axis integrated-cavity-output spectroscopy, *Applied Physics B: Lasers*

404 and Optics

75(2–3), 261–265, doi:10.1007/s00340-002-0971-z, 2002.

405 Baer, D., Gupta, M., Leen, J. B., and Berman, E.: Environmental and atmospheric monitoring using

406 off-axis integrated cavity output spectroscopy (OA-ICOS). *American laboratory*, 44(10), 20–23,

407 2012.

408 Bash, J. O., Walker, J. T., Katul, G. G., Iones, M. R., Nemitz, E. and Robarge, W. P.: Estimation of in-

409 canopy ammonia sources and sinks in a fertilized zea mays field, *Environmental Science and*

410 *Technology*, 44(5), 1683-1689, doi:10.1021/es9037269, 2010.

411 Behera, S. N., Sharma, M., Aneja, V. P. and Balasubramanian, R.: Ammonia in the atmosphere: A

412 review on emission sources, atmospheric chemistry and deposition on terrestrial bodies,

413 *Environmental Science and Pollution Research*, 20(11), 8092–8131, doi:10.1007/s11356-013-

414 2051-9, 2013.

415 Breemen, N. V., Mulder, J. and Driscoll, C. T.: Acidification and alkalinization of soils, *Plant and Soil*,

416 75(3), 283–308, doi:10.1007/BF02369968, 1983.

417 Burkhardt, J., Sutton, M. A., Milford, C., Storeton-West, R. L. and Fowler, D.: Ammonia

418 concentrations at a site in southern Scotland from 2 yr of continuous measurements, in

419 Atmospheric Environment, 32(3), 325–331, [https://doi.org/10.1016/S1352-2310\(97\)00198-2](https://doi.org/10.1016/S1352-2310(97)00198-2).

420 Chang, Y., Liu, X., Deng, C., Dore, A. J. and Zhuang, G.: Source apportionment of atmospheric

421 ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope

422 signatures, Atmospheric Chemistry and Physics, 16(18), doi:10.5194/acp-16-11635-2016, 2016a.

423 Chang, Y., Zou, Z., Deng, C., Huang, K., Collett, J. L., Lin, J. and Zhuang, G.: The importance of

424 vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai, Atmospheric

425 Chemistry and Physics, 16(5), 3577-3594, doi:10.5194/acp-16-3577-2016, 2016b.

426 Chang, Y., Zou, Z., Zhang, Y., Deng, C., Hu, J., Shi, Z., Dore, A. J. and Collett, J. L.: Assessing

427 Contributions of Agricultural and Nonagricultural Emissions to Atmospheric Ammonia in a

428 Chinese Megacity, Environmental Science and Technology, 53(4), 1822–1833,

429 doi:10.1021/acs.est.8b05984, 2019.

430 Charlson, R.J., LANGNER, J., Rodhe, H., Leovy, C.B., Warren, S.G.: Perturbation of the northern

431 hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols, Tellus B:

432 Chemical and Physical Meteorology, 43(4),12, doi:10.1034/j.1600-0889.1991.t01-1-00013.x,

433 1991.

434 Edgerton, E. S., Saylor, R. D., Hartsell, B. E., Jansen, J. J. and Alan Hansen, D.: Ammonia and

435 ammonium measurements from the southeastern United States, Atmospheric Environment, 41(16),

436 3339-3351, doi:10.1016/j.atmosenv.2006.12.034, 2007.

437 Ellis, R. A., Murphy, J. G., Markovic, M. Z., Vandenboer, T. C., Makar, P. A., Brook, J. and Mihele, C.:

438 The influence of gas-particle partitioning and surface-atmosphere exchange on ammonia during
439 BAQS-Met, Atmospheric Chemistry and Physics, 11(1), 133-145, doi:10.5194/acp-11-133-2011,
440 2011.

441 Erisman, J. W., Bleeker, A., Galloway, J. and Sutton, M. S.: Reduced nitrogen in ecology and the
442 environment, Environmental Pollution, 150(1), 140-149, doi:10.1016/j.envpol.2007.06.033, 2007.

443 Fu, X., Wang, S., Xing, J., Zhang, X., Wang, T. and Hao, J.: Increasing Ammonia Concentrations
444 Reduce the Effectiveness of Particle Pollution Control Achieved via SO₂ and NO_x Emissions
445 Reduction in East China, Environmental Science and Technology Letters, 4(6), 221-227,
446 doi:10.1021/acs.estlett.7b00143, 2017.

447 Ge, B., Xu, X., Ma, Z., Pan, X., Wang, Z., Lin, W., Ouyang, B., Xu, D., Lee, J., Zheng, M., Ji, D., Sun,
448 Y., Dong, H., Squires, F.A., Fu, F., Wang, Z.: Role of ammonia on the feedback between AWC and
449 inorganic aerosol formation during heavy pollution in the North China Plain, Earth and Space
450 Science, 6, 1675-1693, <https://doi.org/10.1029/2019EA000799>, 2019.

451 Gong, L., Lewicki, R., Griffin, R. J., Flynn, J. H., Lefer, B. L. and Tittel, F. K.: Atmospheric ammonia
452 measurements in Houston, TX using an external-cavity quantum cascade laser-based sensor,
453 Atmospheric Chemistry and Physics, 11(18), 9721-9733, doi:10.5194/acp-11-9721-2011, 2011.

454 Hu, Q., Zhang, L., Evans, G. J. and Yao, X.: Variability of atmospheric ammonia related to potential
455 emission sources in downtown Toronto, Canada, Atmospheric Environment, 99,
456 doi:10.1016/j.atmosenv.2014.10.006, 2014.

457 Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M. and Zhang, H.: A high-resolution
458 ammonia emission inventory in China, Global Biogeochemical Cycles, 26(1),
459 doi:10.1029/2011GB004161, 2012.

460 Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., Cui, Z. L., Yin, B., Christie, P.,
461 Zhu, Z. L. and Zhang, F. S.: Reducing environmental risk by improving N management in
462 intensive Chinese agricultural systems, Proceedings of the National Academy of Sciences of the
463 United States of America, 106(9), 3041-3046, doi:10.1073/pnas.0813417106, 2009.
464 Krotkov, N.A., McLinden, C.A., Li, C., Lamsal, L.N., Celarier, E.A., Marchenko, S. v., Swartz, W.H.,
465 Bucsela, E.J., Joiner, J., Duncan, B.N., Boersma, K.F., Veefkind, J.P., Levelt, P.F., Fioletov, V.E.,
466 Dickerson, R.R., He, H., Lu, Z., Streets, D.G.: Aura OMI observations of regional SO₂ and NO₂
467 pollution changes from 2005 to 2015. Atmospheric Chemistry and Physics 16(7), 4605–4629,
468 doi:10.5194/acp-16-4605-2016, 2016.
469 Kuang, Y., Xu, W., Lin, W., Meng, Z., Zhao, H., Ren, S., Zhang, G., Liang, L. and Xu, X.: Explosive
470 morning growth phenomena of NH₃ on the North China Plain: Causes and potential impacts on
471 aerosol formation, Environmental Pollution, 257, 113621, doi:10.1016/j.envpol.2019.113621,
472 2020.
473 Liao, X., Zhang, X., Wang, Y., Liu, W., Du, J. and Zhao, L.: Comparative Analysis on Meteorological
474 Condition for Persistent Haze Cases in Summer and Winter in Beijing, Environmental Science,
475 35(06), 2031–2044, doi:10.13227/j.hjkx.2014.06.001, 2014.
476 Lin, W., Xu, X., Ge, B., Liu, X.: Gaseous pollutants in Beijing urban area during the heating period
477 2007-2008: variability, sources, meteorological and chemical impacts, Atmos. Chem. Phys., 11,
478 8157-8170, 2011.
479 Lin, W., Xu, X., Ge, B., Zhang, X.: Characteristics of gaseous pollutants at Gucheng, a rural site
480 southwest of Beijing, J. Geophys. Res., 114, D00G14, doi:10.1029/2008JD010339, 2009.
481 Meng, Z. Y., Lin, W. L., Jiang, X. M., Yan, P., Wang, Y., Zhang, Y. M., Jia, X. F. and Yu, X. L.:

482 Characteristics of atmospheric ammonia over Beijing, China, *Atmospheric Chemistry and Physics*,
483 11(12), 6139–6151, doi:10.5194/acp-11-6139-2011, 2011.

484 Meng, Z. Y., Xu, X. bin, Wang, T., Zhang, X. Y., Yu, X. L., Wang, S. F., Lin, W. L., Chen, Y. Z., Jiang,
485 Y. A. and An, X. Q.: Ambient sulfur dioxide, nitrogen dioxide, and ammonia at ten background
486 and rural sites in China during 2007–2008, *Atmospheric Environment*, 44(21–22), 2625-2631,
487 doi:10.1016/j.atmosenv.2010.04.008, 2010.

488 Meng, Z., Lin, W., Zhang, R., Han, Z. and Jia, X.: Summertime ambient ammonia and its effects on
489 ammonium aerosol in urban Beijing, China, *Science of the Total Environment*, 579, 1521–1530,
490 doi:10.1016/j.scitotenv.2016.11.159, 2017.

491 Meng, Z., Wu, L., Xu, X., Xu, W., Zhang, R., Jia, X., Liang, L., Miao, Y., Cheng, H., Xie, Y., He, J. and
492 Zhong, J.: Changes in ammonia and its effects on PM_{2.5} chemical property in three winter seasons
493 in Beijing, China, *Science of The Total Environment*, 749, 142208,
494 doi:10.1016/j.scitotenv.2020.142208, 2020.

495 Nowak, J. B., Huey, L. G., Russell, A. G., Tian, D., Neuman, J. A., Orsini, D., Sjostedt, S. J., Sullivan,
496 A. P., Tanner, D. J., Weber, R. J., Nenes, A., Edgerton, E. and Fehsenfeld, F. C.: Analysis of urban
497 gas phase ammonia measurements from the 2002 Atlanta Aerosol Nucleation and Real-Time
498 Characterization Experiment (ANARChE), *Journal of Geophysical Research Atmospheres*,
499 111(17), doi:10.1029/2006JD007113, 2006.

500 Osada, K., Saito, S., Tsurumaru, H. and Hoshi, J.: Vehicular exhaust contributions to high NH₃ and
501 PM_{2.5} concentrations during winter in Tokyo, Japan, *Atmospheric Environment*, 206, 218–224,
502 doi:10.1016/j.atmosenv.2019.03.008, 2019.

503 Pan, Y., Tian, S., Zhao, Y., Zhang, L., Zhu, X., Gao, J., Huang, W., Zhou, Y., Song, Y., Zhang, Q. and

504 Wang, Y.: Identifying Ammonia Hotspots in China Using a National Observation Network,
505 Environmental Science and Technology, 52(7), 3926–3934, doi:10.1021/acs.est.7b05235, 2018.

506 Pearson, J. and Stewart, G.R.: The deposition of atmospheric ammonia and its effects on plants, New
507 Phytologist, 125(2), 283–305, doi:10.1111/j.1469-8137.1993.tb03882.x, 1993.

508 Phan, N.-T., Kim, K.-H., Shon, Z.-H., Jeon, E.-C., Jung, K. and Kim, N.-J.: Analysis of ammonia
509 variation in the urban atmosphere, Atmospheric Environment, 65, 177–185,
510 <https://doi.org/10.1016/j.atmosenv.2012.10.049>, 2013.

511 Pinder, R. W., Gilliland, A. B. and Dennis, R. L.: Environmental impact of atmospheric NH₃ emissions
512 under present and future conditions in the eastern United States, Geophysical Research Letters,
513 35(12), 89-90, doi:10.1029/2008GL033732, 2008.

514 Pu, W., Ma, Z., Collett, J. L., Guo, H., Lin, W., Cheng, Y., Quan, W., Li, Y., Dong, F. and He, D.:
515 Regional transport and urban emissions are important ammonia contributors in Beijing, China,
516 Environmental Pollution, 265, doi:10.1016/j.envpol.2020.115062, 2020.

517 Reay, D. S., Dentener, F., Smith, P., Grace, J. and Feely, R. A.: Global nitrogen deposition and carbon
518 sinks, Nature Geoscience, 1(7), 430-437, doi:10.1038/ngeo230, 2008.

519 Saraswati, George, M. P., Sharma, S. K., Mandal, T. K. and Kotnala, R. K.: Simultaneous
520 Measurements of Ambient NH₃ and Its Relationship with Other Trace Gases, PM_{2.5} and
521 Meteorological Parameters over Delhi, India, Mapan - Journal of Metrology Society of India,
522 34(1), 55–69, doi:10.1007/s12647-018-0286-0, 2019.

523 Singh, S. and Kulshrestha, U. C.: Rural versus urban gaseous inorganic reactive nitrogen in the Indo-
524 Gangetic plains (IGP) of India, Environ. Res. Lett., 9(12), 125004, <https://doi.org/10.1088/1748-9326/9/12/125004>, 2014.

526 Teng, X., Hu, Q., Zhang, L., Qi, J., Shi, J., Xie, H., Gao, H. and Yao, X.: Identification of Major
527 Sources of Atmospheric NH₃ in an Urban Environment in Northern China during Wintertime,
528 Environmental Science and Technology, 51(12), 6839-6848, doi:10.1021/acs.est.7b00328, 2017.

529 UN Environment 2019. A Review of 20 Years' Air Pollution Control in Beijing. United Nations
530 Environment Programme, Nairobi, Kenya.

531 <https://www.unenvironment.org/resources/report/review-20-years-air-pollution-control-beijing>.

532 Vogt, E., Held, A. and Klemm, O.: Sources and concentrations of gaseous and particulate reduced
533 nitrogen in the city of Münster (Germany), Atmospheric Environment, 39(38), 7393–7402,
534 <https://doi.org/10.1016/j.atmosenv.2005.09.012>, 2005.

535 Wang, K., Fan, S., Guo, J. and Sun, G.: Characteristics of ammonia emission from motor vehicle
536 exhaust in Beijing, Environmental Engineering, 36(03), 98–101, doi:10.13205/j.hjgc.201803020,
537 2019.

538 Warner, J. X., Dickerson, R. R., Wei, Z., Strow, L. L., Wang, Y. and Liang, Q.: Increased atmospheric
539 ammonia over the world's major agricultural areas detected from space, Geophysical Research
540 Letters, 44(6), 2875–2884, doi:10.1002/2016GL072305, 2017.

541 Wei, S., Dai, Y., Liu, B., Zhu, A., Duan, Q., Wu, L., Ji, D., Ye, A., Yuan, H., Zhang, Q., Chen, D., Chen,
542 M., Chu, J., Dou, Y., Guo, J., Li, H., Li, J., Liang, L., Liang, X., Liu, H., Liu, S., Miao, C. and
543 Zhang, Y.: A China data set of soil properties for land surface modeling, Journal of Advances in
544 Modeling Earth Systems, 5(2), 212–224, doi:10.1002/jame.20026, 2013.

545 Wentworth, G. R., Murphy, J. G., Benedict, K. B., Bangs, E. J. and Collett, J. L.: The role of dew as a
546 night-time reservoir and morning source for atmospheric ammonia, Atmospheric Chemistry and
547 Physics, 16(11), 7435–7449, doi:10.5194/acp-16-7435-2016, 2016.

548 Wu, Z., Hu, M., Shao, K. and Slanina, J.: Acidic gases, NH₃ and secondary inorganic ions in PM₁₀

549 during summertime in Beijing, China and their relation to air mass history, *Chemosphere*, 76(8),

550 doi:10.1016/j.chemosphere.2009.04.066, 2009.

551 Zhang, B.: Atmospheric Distribution and Variation of NH₃ in Beijing, *Environmental Science and*

552 *Management* 41(01), 119–122, 2016.

553 Zhang, S., Wag, A., Zhang, Z., Wang, J., Han, Y., Su, R. and Qu, Y.: On creating an anthropogenic

554 ammonia emission inventory in capital Beijing, *Journal of Safety and Environment*, 16(02), 242–

555 245, doi:10.13637/j.issn.1009–6094.2016.02.047, 2016.

556 Zhang, X., Wu, Y., Liu, X., Reis, S., Jin, J., Dragosits, U., van Damme, M., Clarisse, L., Whitburn, S.,

557 Coheur, P. F. and Gu, B.: Ammonia emissions may be substantially underestimated in China,

558 *Environmental Science and Technology*, 51(21), 12089–12096, doi:10.1021/acs.est.7b02171,

559 2017.

560 Zhang, Y., Tang, A., Wang, D., Wang, Q., Benedict, K., Zhang, L., Liu, D., Li, Y., Collett Jr., J. L., Sun,

561 Y. and Liu, X.: The vertical variability of ammonia in urban Beijing, China, *Atmospheric*

562 *Chemistry and Physics*, 18(22), 16385–16398, doi:10.5194/acp-18-16385-2018, 2018.

563 Zhao, X., Xie, Y. X., Xiong, Z. Q., Yan, X. Y., Xing, G. X. and Zhu, Z. L.: Nitrogen fate and

564 environmental consequence in paddy soil under rice-wheat rotation in the Taihu lake region,

565 China, *Plant and Soil*, 319(1), 225-234, doi:10.1007/s11104-008-9865-0, 2009.

566 Zhou, C., Zhou, H., Holsen, T. M., Hopke, P. K., Edgerton, E. S. and Schwab, J. J.: Ambient Ammonia

567 Concentrations Across New York State, *Journal of Geophysical Research: Atmospheres*, 124(14),

568 8287–8302, doi:10.1029/2019JD030380, 2019.