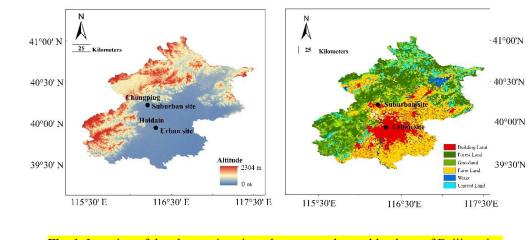
1	Measurement report: Exploring the NH ₃ behaviors at urban and suburban Beijing:
2	Comparison and implications
3	Ziru Lan ^a , Weili Lin ^a , Weiwei Pu ^b , Zhiqiang Ma ^{b,c}
4	^a College of Life and Environmental Sciences, Minzu University of China, Beijing 100081;
5	^b Environmental Meteorological Forecast Center of Beijing-Tianjin-Hebei, Beijing, 100089, China;
6 7	^c Beijing Shangdianzi Regional Atmosphere Watch Station, Beijing, 101507, China Correspondence: Weili Lin (<u>linwl@muc.edu.cn</u>)
8	ABSTRACT
9	Ammonia (NH ₃) plays an important role in particulate matter formation; however, few long-term
10	observations with a high temporal resolution have been conducted on the NH ₃ concentrations in Beijing.
11	In this study, online ammonia analyzers were used to observe continuously the atmospheric NH ₃
12	concentrations at an urban site and a suburban site in Beijing from January 13, 2018, to January 13, 2019.
13	The average mixing ratio of NH_3 at the urban site was 21 ± 14 ppb (range: 1.6–133 ppb) and that at the
14	suburban site was 22 ± 15 ppb (range: 0.8–199 ppb). The NH ₃ mixing ratios at the urban and suburban
15	sites exhibited similar seasonal variations, with high values being observed in the summer and spring
16	and low values being observed in the autumn and winter. The hourly mean NH3 mixing ratios at the urban
17	site were highly correlated ($R = 0.849$, $P < 0.01$) with those at the suburban site. However, the average
18	diurnal variations in the NH ₃ mixing ratios at the urban and suburban sites differed significantly, which
19	indicated the different contributions of NH3 sources and sinks at the urban and suburban sites. In addition
20	to the emission sources, meteorological factors were closely related to the changes in the NH_3
21	concentrations. For the same temperature (relative humidity) at the urban and suburban sites, the NH_3
22	mixing ratios increased with the relative humidity (temperature). The relative humidity was the factor
23	with the strongest influence on the $\rm NH_3$ mixing ratio in different seasons at the two sites. In general, a 1 / 31

- 24 high wind speed promoted a reduction in the NH₃ mixing ratio. Similar with other primary pollutants in
- 25 Beijing, the NH₃ mixing ratios were high when winds originated from the south and low when winds
- 26 originated from the north and northwest.
- 27 Keywords: NH₃; variations; simultaneous observation
- 28

30	Ammonia (NH ₃) is the most abundant alkaline trace gas in the atmosphere (Meng et al., 2017). An
31	excessive NH3 concentration directly harms the ecosystem; causes water eutrophication and soil
32	acidification; and leads to forest soil erosion, biodiversity reduction, and carbon uptake variations
33	(Pearson and Stewart, 1993; Reay et al., 2008; van Breemen et al., 1983). Thus, the NH ₃ concentration
34	influences climate change (Charlson et al., 1991; Erisman et al., 2007). NH ₃ can react with acidic gases
35	to form ammonium salts, which might significantly influence the mass concentration and composition
36	of particulate matter (Wu et al., 2009). After the implementation of policies such as the 12th Five-Year
37	Plan for the Key Regional Air Pollution Prevention and Control in Key Regions (Ministry of Ecology
38	and Environment of the People's Republic of China, 2012) and the Air Pollution Prevention and Control
39	Action Plan (General Office of the State Council, PRC, 2013), China, especially for Beijing, has been
40	effectively controlling the emission of primary pollutants, such as sulfur dioxide (SO ₂) and nitrogen oxide
41	(NO _x); however, the pollution caused by fine particles is still serious (Krotkov et al., 2016; UN
42	Environment, 2019). Studies have indicated that when the SO_2 and NO_x concentrations are reduced to a
43	certain extent, reducing NH ₃ emissions is the most economical and effective method to decrease the
44	$PM_{2.5}$ concentration (Pinder et al., 2008). In China, the main anthropogenic sources of NH_3 are livestock
45	and poultry feces (54%) and fertilizer volatilization (33%) (Huang et al., 2012). Moreover, the
46	atmospheric NH3 concentration in China has increased with the expansion of agricultural activities,
47	control of SO_2 and NO_x , and increase in temperature (Warner et al., 2017). This increase in the NH_3
48	concentration might weaken the effectiveness of SO_2 and NO_x emission control in reducing $\mathrm{PM}_{2.5}$
49	pollution (Fu et al., 2017).



The North China Plain is a region with high NH3 emission (Zhang et al., 2017), and Beijing has one

51	of the highest NH ₃ concentrations in the world (Chang et al., 2016b; Pan et al., 2018). Compared with
52	studies on pollutants such as SO_2 and NO_x , considerably fewer studies have been conducted on the NH_3
53	concentration in Beijing. Chang et al. (2016a) collected gaseous NH3 samples during the 2014 APEC
54	summit (October 18 to November 29, 2014) in the Beijing urban area and concluded that the overall
55	contributions of traffic, garbage, livestock, and fertilizers to the NH ₃ concentration were 20.4%, 25.9%,
56	24.0%, and 29.7%, respectively. According the data from Huang et al (2012), the NH ₃ emissions in
57	Beijing were from livestock and poultry farming (34.55%), nitrogen-fixing plants (33.57%), fertilizer
58	use (13.06%), household garbage treatment (8.29%), traffic emissions (5.20%), industrial emissions
59	(0.14%), biomass combustion (0.42%), and agricultural soil (0.84%). Zhang (2016) measured the NH_3
60	concentrations in urban and rural areas of Beijing from January to July 2014 and found that NH_3
61	concentration in urban areas was approximately 65% higher than that in rural areas. Meng et al. (2011)
62	reported that the highest NH3 concentration in Beijing occurred in summer and the lowest one occurred
63	in winter, and their results indicated traffic to be a significant source of NH_3 in urban areas. Zhang et al.
64	(2018) reported the vertical variability of NH3 in urban Beijing based on one-year passive samples in
65	2016/2017 and concluded that local sources such as traffic emissions were important contributors to
66	urban NH ₃ . Meng <i>et al.</i> (2020) investigated the significant increase in winter NH ₃ and its contribution to
67	the increasing nitrate in $PM_{2.5}$ from 2009 to 2016, and they also concluded that vehicles exhaust was an
68	important contributor to NH ₃ in urban Beijing in winter.
69	Currently, NH3 is not included in the routine environmental monitoring operation in China. Research
70	data on NH ₃ monitoring, particularly on the synchronous observation of the NH ₃ concentrations with a
71	high temporal resolution in urban and suburban areas, are relatively scarce. In this study, high-time-
72	resolution observations of NH3 were obtained simultaneously at an urban site and a suburban site in

73	Beijing. The variation characteristics and influencing factors of the NH ₃ concentration were analyzed
74	with meteorological data to provide a scientific basis for NH ₃ pollution control in Beijing.
75	2. Materials and methods
76	2.1. Measurement sites
77	From January 2018 to January 2019, continuous and simultaneous observations of the atmospheric
78	NH3 concentration were conducted in an urban area and a suburban in Beijing. The urban site was located
79	on the roof of the Science and Technology Building of Minzu University of China (referred to as the
80	urban site, 39.95°N, 116.32°E, altitude: 102 m) and the suburban site was in the Changping
81	Meteorological Station (referred to as the suburban site, 40°13'N, 116°13'E, altitude: 77 m), respectively.
82	The suburban site is in the NW direction relative to the urban site and the shortest distance between these
83	two sites is approximately 32 km (Figure 1). More farm land and glass land are around the suburban site

84 than the urban site.

85 86

Fig. 1. Location of the observation sites, the topography, and land use of Beijing city.

87

88 2.2. Measurements and data acquisition

NH₃ concentration measurements were performed by using two NH₃ analyzers (Ammonia
 Analyzer-Economical, Los Gatos Research Inc., USA), and the minimum detection limit was <0.2 ppb

92	analyzers use off-axis integrated cavity output spectroscopy (OA-ICOS) technology, which is a fourth-
93	generation cavity-enhanced absorption technique, to measure the NH3 and water vapor (H2O)
94	concentrations in the atmosphere. The incident laser beam of the OA-ICOS technology deviates from the
95	optical axis, which differs from the traditional coaxial incidence mode. The axial incidence mode of the
96	OA-ICOS technology can increase the optical path, stimulate additional high-order transverse modes,
97	effectively suppress the noise of the cavity mode, reduce the cross interferences and errors due to
98	contaminants existing in the cavity, and improve the detection sensitivity (Baer et al., 2002; Baer et al.,
99	2012). The analyzer method is a quasi-absolute measurement, which theoretically does not require
100	calibration. However, to ensure the comparability of the obtained data with other monitoring data, NH_3
101	standard gas (Beijing AP BAIF Gases Industry Co., Ltd.) was used for comparison measurement before
102	the observation. The obtained concentration was revised with respect to a reference concentration.
103	Sample gases were drained by >0.4 L/min through Teflon lines (1/4'OD) from a manifold, which
104	lengths were designed as short as possible (less than 2 m from the manifold). Particulate matters were
105	filtered by Teflon membranes with a pore size less than 5 μ m. Since NH ₃ easily "sticks" to surfaces (like
106	inside walls of tubes), heated sample lines were suggested by many measurements. However, according
107	our test (Fig. S1) in the lab, when heating (70°C) was on, there did have a peak lasting several minutes
108	(5–6 min) and then deceasing to the normal levels in ambient air, which means a new balancing process
109	has been established in less than 10 min. This tells us that heating is not a solution for NH_3 sticking.
110	Keeping the relatively stable balance between adsorption and desorption of NH ₃ in the sampling system
111	are the most important. When tested by different humidity air, only very sharply change of humidity
112	obviously influenced and changed the balance, and a new balance needed tens of minutes to reestablished

(Fig. S2). In the routine weather conditions, humidity changed in a relatively smoothing way except in a quickly changing weather system, like rainy days. The minute-level data were converted into hourly averages in the data analysis process and the hourly resolution can smoothing the effect to some extent caused by variations in humidity and temperature during the sampling time.

- 117 The balancing idea was also used to carry out multiple calibrations on NH₃ analyzers (Fig. S3). A
- 118 high mixing ratio (e.g. 400 ppb or higher) of NH₃ mixing gases were firstly produced by a dynamic
- diluter and measured by the NH₃ analyzer overnight. After the signals were keeping in stable level, other
- 120 lower span values were switched in turn. At each span point, the measurement time was lasting at least
- 121 40 minutes or more. Then a linear regression function was obtained with R² higher than 0.999. Nowadays,
- 122 NH₃ in compressed gas cylinder is also trustworthy, which result is concluded by the comparison with
- 123 NH₃ permeation tube (Fig. S4).

Finally, 7645 and 8342 valid hourly mean observations were obtained for the urban (Haidian) and suburban (Changping) sites, respectively. In addition, the urban and suburban meteorological data (temperature, relative humidity, wind direction, and wind speed) during the sampling period were obtained from the Haidian Meteorological Observation Station and Changping Meteorological Station, respectively.

- 129 **3. Results and discussion**
- 130 *3.1. Overall variations in the NH*³ mixing ratios

Fig. 2 displays the time-series variations in the NH₃ mixing ratios, temperatures, and relative humidity at the urban and suburban sites in Beijing. At the urban site, the mean $\pm 1\sigma$, median, maximum, and minimum values of the hourly average NH₃ mixing ratio during the observation period were 21 ± 14 , 17, 133 and 1.6 ppb, respectively. At the suburban site, the corresponding values were 22 ± 15 , 18, 199,

and 0.8 ppb, respectively. The annual average NH₃ mixing ratio and range of the NH₃ mixing ratio at the suburban site were marginally higher than those at the urban site. The variation characteristics of the weekly smoothing data indicated that the NH₃ variations and temperature/humidity fluctuations at the two sites were practically consistent, which suggested that both sites were under the influence of similar weather systems. The hourly mean NH₃ concentrations at the urban site were significantly correlated (*R* = 0.849, *P* < 0.01) with those at the suburban site.

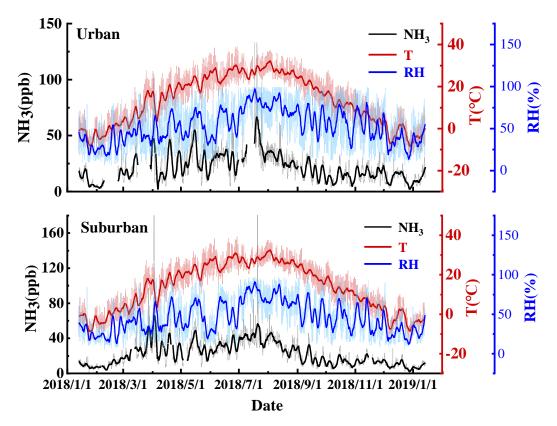


Fig. 2. Temporal variations in the hourly average NH₃ mixing ratios, temperatures (*T*) and relative humidity(*RH*) at the urban and suburban
 stations in Beijing. Continuous thick lines were smoothed with 168 points (7 days) by using the Savitzky–Golay method.

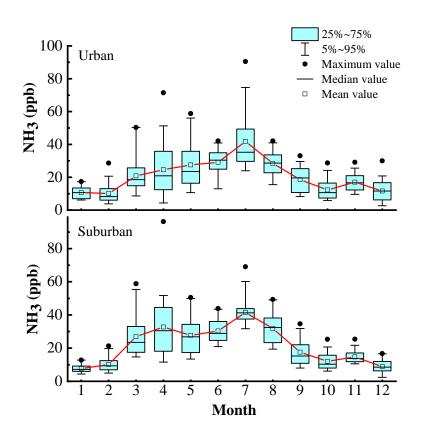
141

145Table 1 showed the comparison of the atmospheric NH3 concentrations (ppb) in different areas.146Meng et al. (2011) obtained an average NH3 mixing ratio of 22.8 ± 16.3 ppb for the period 2008-2020 in147Beijing urban area, which means there was no significant change in the annual average NH3 mixing ratio148from 2018 to 2019 compared with the change in the average NH3 mixing ratio over the past decade.

149	Moreover, the NH ₃ concentrations at the urban and suburban sites were higher than those in the
150	background areas. The observed NH3 concentrations in Beijing were higher than those in northwest
151	China (Meng et al. 2010) and the Yangtze River Delta region (Chang et al. 2019). For example, the
152	average annual NH_3 concentration in the urban area of Shanghai, a mega city in the south of China (31°
153	N), was approximately 50% lower than that in Beijing. This result might be related to the fact that the
154	North China Plain, in which Beijing is located, is one of the most intensive agricultural production
155	regions in China. The differences in the soil properties of Beijing and Shanghai may be another reason
156	because the loss of soil NH3 can increase with an increase in the soil pH (Ju et al., 2009). Shanghai and
157	its surrounding areas are dominated by acidic soil of paddy fields (Zhao et al., 2009), whereas Beijing is
158	dominated by the alkaline soils of dry land (Wei et al., 2013).

159 Table 1. Comparison of the atmospheric NH ₃ concentrations (ppb) in differen	nt areas.
---	-----------

Period	Location	Methodology	Types	Concentration	Reference	
	D	Online monitor	Urban	20.8±13.7	This study	
2018.01-2019.01	Beijing, CN		Suburban	21.9±14.9		
2008.02-2010.07			Urban	22.8±16.3		
2007.01-2010.07	Beijing, CN	Passive sampler	Background	10.2±10.8	Meng et al., 2011	
2014 5 2015 (Characteric CN	Deriver	Urban	7.8	Class et al. 2010	
2014.5-2015.6	Shanghai, CN	Passive sampler	Suburban	6.8	Chang et al. 2019	
2006.04-2007.04	4 Xi'an, CN	Passive sampler	Urban	18.6	Cao et al. 2009	
2006.04-2007.04			Suburban	20.3	Cao et al. 2009	
2017.12-2018.2	Hebei, CN	Online monitor	Rural	16.7±19.7	He et al. 2020	
2008	Qinghai, CN	Passive sampler	Rural	4.1±2.2	Meng et al. 2010	
2003.7-2011.9	Toronto, CA	Passive sampler	Urban	2.3-3.0	Hu et al. 2014	
2003./-2011.9	Toronito, CA	Passive sampler	Rural	0.1-4		
2016.4-2017.10	New York, US	Active and passive system	Urban	2.2-3.2	Zhou et al. 2019	
2010.4-2017.10	016.4-2017.10 New York, US Active and passive system Rural	0.6-0.8	Zhou et al. 2019			
semi-con 2017.12 Tokyo, JP		semi-continuous microflow	Urban	4.1	Osada et al. 2019	
2017.12	1011/0,01	analytical system	oroun		<i>Courter of all 2019</i>	
2013.1-2015.12	<mark>Delhi, IN</mark>	Automatic analyzer	<mark>Urban</mark>	53.4±14.9	Saraswati et al., 2019	
2012.10-2013.9	Jaunpur, IN	Glass flask sampling	<mark>Suburban</mark>	51.6±22.8	Singh and Kulshrestha, 2014	


2006.3-2017.4	Edmonton, CA	Online monitor	<mark>Urban</mark>	<mark>2.4±0.6</mark>	Yao et al., 2016
2010.9-2011.8	Seoul, KR	Online monitor	<mark>Urban</mark>	10.9±4.25	Phan et al., 2013
2004.3-2004.7	Munster, DE	Wet denuder	<mark>Urban</mark>	<mark>5.2</mark>	Vogt et al., 2005

161	The NH ₃ mixing ratios in the United States (Edgerton et al., 2007; Nowak et al., 2006; Zhou et al.
162	2019), Great Britain (Burkhardt et al., 1998), Canada (Hu et al., 2014), and Japan (Osada et al., 2019)
163	were 0.23–13, 1.6–2.3, 0.1–4, and 4.1 ppb, respectively. These NH ₃ mixing ratios are considerably lower
164	than that in Beijing. However, Delhi, India (Saraswati et al., 2019), exhibited a higher NH ₃ mixing ratio
165	(53.4±14.9 ppb) than Beijing did. This result might be attributed to the well-developed livestock breeding
166	activities in Delhi. The comparisons indicate that in the past decade, NH3 concentration in Beijing has
167	not changed considerably, but that it is higher than in large cities in other developed countries.
168	3.2. Seasonal variations
169	Fig. 2 displays the monthly statistical results for the NH ₃ mixing ratios at the urban and suburban
170	sites in Beijing. According to the seasonal division standard of China Meteorological Administration, in
171	China, March to May is spring, June to August is summer, September to November is autumn, and
172	December to February is winter. As presented in Fig. 2, the seasonal variations in the NH ₃ mixing ratios
173	were very similar at the urban and suburban sites. The NH3 mixing ratios showed high values in the
174	spring and summer and low values in the autumn and winter. The daily mean concentrations fluctuated
175	considerably in the spring, and the highest variations occurred in April. The highest mean NH3
176	concentrations occurred in July. The highest mean NH3 concentrations at the urban and suburban sites
177	were 42 ± 17 ppb and 42 ± 8.2 ppb, respectively. The NH ₃ concentrations fluctuated considerably in July.
178	On average, the NH ₃ mixing ratios at the urban and suburban sites can be arranged according to season
179	as follows: summer > spring > autumn > winter. The main grain crops in Beijing are corn and wheat.

180	Corn is categorized as spring corn and summer corn, which are sown in April and June, respectively. A
181	large amount of base fertilizer is applied when planting corn, and the topdressing is applied after 2 months.
182	Wheat is sown from September to October, and the topdressing is applied in the following spring. The
183	volatilization of nitrogen fertilizers can cause an increase in the NH3 mixing ratios and fluctuations in
184	fertilization seasons (Zhang et al., 2016). In addition, the NH3 mixing ratios are relatively high in the
185	summer season due to the relatively high temperature in this season. An increase in the temperature can
186	increase the biological activity and thus enhance the NH3 emission. A high temperature is also conducive
187	for the volatilization of the urea and diammonium phosphate applied to crops. Moreover, the equilibrium
188	among ammonium nitrate particles, gaseous NH ₃ , and nitric acid is transferred to the gas phase at high
189	temperature, which increases NH ₃ concentration (Behera et al., 2013). Sewage treatment, household
190	garbage, golf courses, and human excreta are crucial NH3 sources that are easily neglected (Pu et al.,
191	2020). The relatively low NH ₃ concentrations in the autumn and winter might be caused by the decrease
192	in NH3 emission in the soil and vegetation, the decrease in the NH4NO3 decomposition capacity at low
193	temperatures, and the reduced human activities caused by a large floating population returning to their
194	native locations outside Beijing during the Spring Festival (Liao et al., 2014). In the spring and summer,
195	the NH ₃ mixing ratios at the suburban site were higher than those at the urban site, which might be related
196	to the higher agricultural activity around the suburban site. In the autumn and winter, the NH3 mixing
197	ratios at the urban site were marginally higher than those at the suburban site. This result was obtained
198	possibly because in the autumn and winter seasons, the influence of agricultural activities on the NH3
199	concentration weakened, whereas the influences of other sources (such as traffic sources) on the NH_3
200	concentration were enhanced. According to Wang et al. (2019), the traffic NH ₃ emission per unit area in
201	Haidian was three times higher than that in Changping. This difference in traffic source emissions might

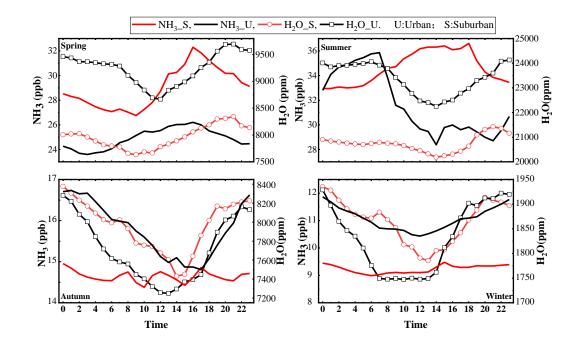
202 have resulted in higher NH₃ concentrations at the urban site than at the suburban site in the autumn and

203 winter.

204

205

Fig. 3. Monthly statistical variation in the $\rm NH_3$ mixing ratios at the urban and suburban sites in Beijing.


206

207 Table 2. NH₃ mixing ratios (ppb) measured at the urban and suburban sites in Beijing.

Site	Time period	Mean	Standard deviation	Minimum	Median	Maximum
	Annual	21	14	1.6	17	133
	Spring	25	16	1.9	21	101
Urban	Summer	32	12	5.0	30	133
	Autumn	16	7.5	3.8	15	41
	Winter	11	6.7	1.6	9.9	42
	Annual	22	15	0.8	18	198
Gelender	Spring	29	16	6.8	26	180
Suburban	Summer	35	12	12.1	33	199
	Autumn	15	6.8	4.1	13	55

209 *3.3. Diurnal variations*

Figure 4 displays the average diurnal variations in the NH₃ and H₂O mixing ratios in different seasons at the urban and suburban sites in Beijing. NH₃ exhibited different diurnal behaviors in different seasons.

213

Fig. 4. Average diurnal variations in the NH₃ and H₂O mixing ratios in different seasons at the urban and suburban sites in Beijing.

In the spring, the average diurnal variations in the NH₃ mixing ratio were similar at the urban and suburban sites. The diurnal variations exhibited a single-peak pattern with high values in the daytime and low values at night. The NH₃ mixing ratio began to increase in the morning, reached its maximum value at 16:00, and then decreased gradually. The lowest mixing ratios at the urban and suburban sites occurred at 03:00 and 09:00, respectively. The NH₃ mixing ratio began to increase earlier at the urban site than at the suburban site. This result was obtained possibly due to the increased NH₃ emission at the urban site

222	due to traffic in the morning rush hours. On average, the mixing ratio of NH3 was considerably higher at
223	the suburban site than that at the urban site, with an average difference of 4.1 ppb and a maximum
224	difference of 6.1 ppb in the NH ₃ mixing ratios of the sites. The average fluctuation in the NH ₃ mixing
225	ratio at the suburban site was 5.3 ppb, which was higher than that (2.6 ppb) at the urban site. At the urban
226	site, the average diurnal variations in the NH3 and H2O mixing ratios exhibited opposite trends. The H2O
227	mixing ratio had high values in the night and low values in the day. At the suburban site, the variation
228	characteristics of NH3 and H2O were very similar; however, the peak NH3 concentration occurred 5 hours
229	earlier than the peak H ₂ O concentration. In the spring, in contrast to the NH ₃ mixing ratio, the H ₂ O mixing
230	ratio at the urban site was 1279 ppm higher than that at the suburban site.
231	The diurnal variations in the NH ₃ mixing ratio at the suburban site in the summer were similar with
232	those in the spring. This phenomenon was also observed in the rural areas of Shanghai by Chang et al.
233	(2019). The diurnal variations were considerably affected by the temperature and the contribution from
234	volatile NH ₃ sources. However, at the urban site, the diurnal variations in the NH ₃ mixing ratio were
235	different. In the summer, the NH ₃ mixing ratio increased gradually from 21:00, decreased after reaching
236	its peak value at 7:00, and then reached its lowest value at 14:00. The diurnal variability pattern (with a
237	peak value in the morning) has been observed in other areas, such as rural (Ellis et al., 2011), urban
238	(Gong et al., 2011), and steppe areas located far away from human activity (Wentworth et al., 2016).
239	Kuang et al. (2020) believed that the diurnal variability pattern was caused by the evaporation of dew in
240	the morning, which results in the release of NH_3 that was originally stored in the droplets. A lag was
241	observed between the changes in the NH_3 with H_2O concentrations in the early morning, which supported
242	the hypothesis of Kuang et al (2020). In addition, the increase in the NH ₃ concentration in the morning
243	might have been caused by the breakup of the boundary layer formed at night. The downward mixing of

244	air with a high NH ₃ concentration in the residual layer led to an increase in the NH ₃ concentration on the
245	ground in the morning (Bash et al., 2010). The NH ₃ and H ₂ O concentrations at the urban and suburban
246	sites exhibited opposite diurnal variations patterns in the spring. In the summer, the NH3 concentrations
247	at the suburban site were significantly higher than those at the urban site during the daytime and first half
248	of the night. However, the NH ₃ concentrations at the urban site were significantly higher than those at
249	the suburban site during the second half of the night. The average fluctuation in the NH ₃ concentration
250	was 7.5 and 37 ppb at the urban and suburban site, respectively. Similar with the situation in the spring,
251	the H ₂ O concentrations at the urban site were significantly higher than those at the suburban site in the
252	summer.
253	In the autumn, the NH ₃ concentration at the urban site had low values during the day and high values
254	during the night. The peak NH3 concentration occurred at midnight, and the lowest NH3 concentration
255	occurred at 17:00. There was essentially no diurnal variation in the NH ₃ concentration at the suburban
256	site, but obvious at the urban site with a fluctuation of 2.0 ppb. The concentration of NH_3 at the urban
257	site was 1.2 ppb higher than that at the suburban site. The H ₂ O concentration was marginally lower (250
258	ppm) at the urban site than at the suburban site. The correlation between the diurnal variations in the NH ₃
259	and H_2O concentrations was strong; however, the lowest value of NH_3 occurred later than the lowest
260	value of H_2O at the urban site. The correlation between the diurnal variations in the NH_3 and H_2O
261	concentrations was poor at the suburban site.
262	In the winter, the NH ₃ mixing ratios at the urban and suburban sites exhibited similar diurnal
263	variation patterns. The mixing ratios exhibited high values in the night and low values in the day.
264	However, the NH3 mixing ratio at the urban site was higher than that at the suburban site. This result was
265	related to the decrease in the boundary layer height and temperature as well as the slow conversion and

266	easy accumulation of pollutants in the night. In the daytime, increases in the temperature and boundary
267	layer height enhanced the diffusion of pollutants, and the NH3 mixing ratio decreased. The H2O mixing
268	ratio at the suburban site was close to that at the urban site, but higher in the morning. In the winter, the
269	average diurnal variation in the NH_3 concentration was well correlated with that in the H_2O concentration
270	at the urban site ($R = 0.89$). The correlation was close to that ($R = 0.93$) obtained by Teng et al. (2017)
271	between the NH ₃ and H ₂ O concentrations in the winter. However, at the suburban site, the mean diurnal
272	variation in the NH ₃ mixing ratios had a poor correlation with that in the H ₂ O mixing ratios.
273	The results indicated that although the two sites were under the influence of similar weather systems,
274	the diurnal variations in the NH ₃ mixing ratios at the two sites were different in different seasons. This
275	finding suggested that different NH ₃ sources and possibly sinks had different contributions to the NH ₃
276	concentrations at the urban and suburban sites. Additional studies should be conducted on the behaviors

277 of NH₃.

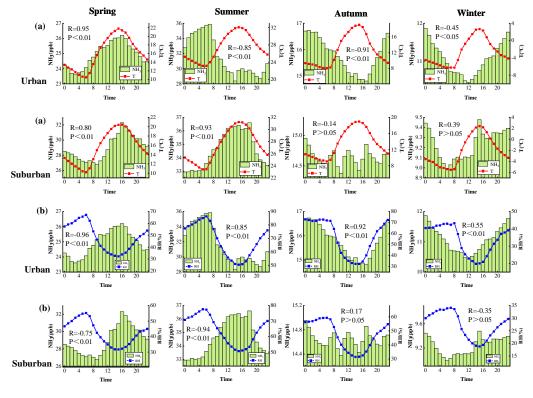
278 3.4. Effect of meteorological factors on the NH₃ levels

279 Table 3 presents the correlations between the daily mean NH₃ mixing ratios and the diurnal mean 280 values of the temperature, relative humidity, and wind speed at the two sites. Annually, the correlations 281 were highly significant as the NH3 mixing ratios at both sites were significantly and positively correlated 282 with the temperature and relative humidity and negatively correlated with the wind speed. However, in 283 the summer and autumn, no significant correlations were noted between the NH₃ and temperature at the 284 two sites. The relative humidity had the stronger influence on the NH₃ concentration at the two sites than 285 temperature, which phenomenon also can be found in Fig 2. The fluctuations between NH3 and relative 286 humidity were much more consistent.

289

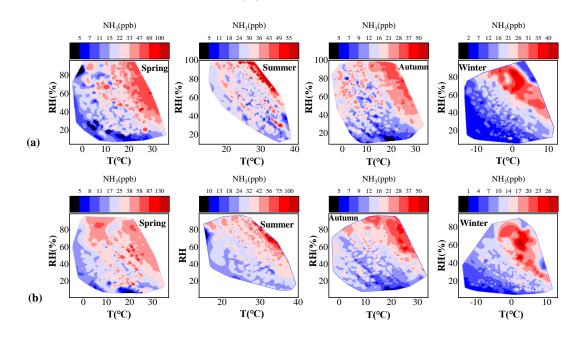
290 Table 3. Correlations between the daily mean values of NH₃ and meteorological elements (Spearman's

Site	Time Period	Temperature	Relative humidity	Wind speed
	Annual	0.680**	0.706**	-0.370**
	Spring	0.450**	0.645**	-0.540**
Urban	Summer	0.043	0.488**	-0.106**
	Autumn	0.101	0.759**	-0.413**
	Winter	0.596**	0.690**	-0.449**
	Annual	0.745**	0.730**	-0.325**
	Spring	0.256*	0.518**	-0.391**
Suburban	Summer	0.126	0.576**	-0.061**
	Autumn	0.135	0.792**	-0.618**
	Winter	0.676**	0.663**	-0.545**


291 rank correlation coefficient)

292

*: at the 0.05 significant level; **: at the 0.01 significant level.

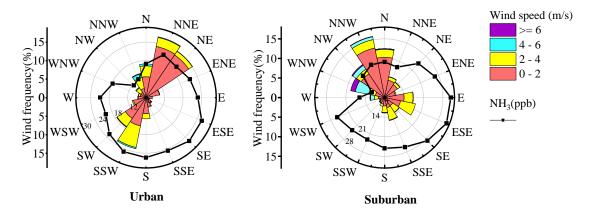

294	Figs. 5 display the seasonal mean diurnal variations in the NH ₃ mixing ratio, temperature, and
295	relative humidity with their correlation coefficients (also see in Fig. S5) in different seasons at the urban
296	and suburban sites. At urban site, the diurnal variations in the NH3 mixing ratio at the urban site were
297	positively (negatively) correlated with the temperature (relative humidity) in spring, while in contrast,
298	the diurnal variation of NH3 mixing ratio were negatively (positively) correlated with temperature
299	(relative humidity) in summer and autumn, and less correlated in winter. At suburban site, the diurnal
300	variations in the NH3 mixing ratio were positively (negatively) correlated with the temperature (relative
301	humidity) in the spring and summer, but less correlated in the fall and winter. Similar behaviors were
302	found in spring, but different in other seasons. In general, the annual diurnal behaviors of NH3 with
303	temperature and relative humidity were different at the urban and suburban sites (see Fig. S6). Figure 6
304	displays the contour maps of the NH ₃ mixing ratio, temperature, and relative humidity in different seasons $17 / 31$

305	at the urban and suburban sites. As displayed in Fig. 6 and Fig. S7, the NH_3 mixing ratios at both sites
306	increased with the relative humidity at the same temperature and increased with the temperature at the
307	same relative humidity. In winter, when the temperature was low (< 0 $^{\circ}$ C), the NH ₃ mixing ratios at both
308	sites often had low values except in high humidity (>60%). An increase in the temperature increased the
309	NH3 mixing ratios; however, the NH3 concentration at the suburban site was more significantly affected
310	by the temperature than that at the urban site (Table 3), indicating that volatile NH ₃ sources might have
311	a higher contribution to the NH3 concentration at the suburban site than at the urban site. A higher amount
312	of NH3 removal through chemical transformation was expected during the day at the urban site than at
313	the suburban site because the urban site had a higher relative humidity and higher amounts of primary
314	particulate matter, NOx, and SO2 acid gas emissions than the suburban site did. In 2018, the
315	concentrations of PM _{2.5} , SO ₂ and NO ₂ were $50\mu g/m^3$, $5\mu g/m^3$, $43\mu g/m^3$ in Haidian, and $46\mu g/m^3$, $6\mu g/m^3$,
316	$35\mu g/m^3$ in Changping, respectively, which were reported by Beijing Ecology and Environment
317	Statement, 2018.
318	

320 Fig. 5. Diurnal variations in and correlation coefficients between the NH₃ mixing ratios and temperature (a), relative humidity (b) in

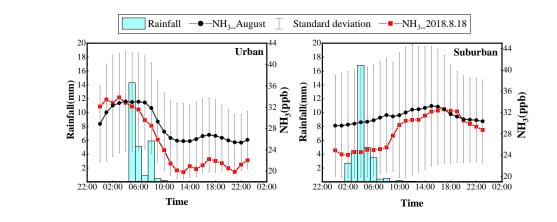
321 different seasons at the urban and suburban sites in Beijing.

319


323 Fig. 6. Contour maps of the NH₃ mixing ratio, temperature, and relative humidity in different seasons at the urban and suburban sites in

325

326 To explore the influence of wind on the NH₃ mixing ratios, rose charts were drawn for the hourly


327	mean concentration of NH ₃ , wind direction frequency, and wind speed during the observation period (Fig.
328	7). The large-scale wind circulation in the North China Plain is often influenced by the mountain-plain
329	topography; therefore, the dominant winds in this area originate from the south (often in the day) and
330	north (often at night). As displayed in Fig. 6, some differences existed in the distributions of the surface
331	wind between the urban and suburban sites. The dominant surface winds originated from the northeast
332	and southwest at the urban site and from the northwest and east at the suburban site. At the urban site,
333	the NH ₃ mixing ratios were relatively high when the winds originated from the southern sectors and
334	relatively low when the winds originated from the northwest sectors. Therefore, under the action of the
335	southwest wind, a polluted air mass from the south of Beijing can be easily transported to the urban site.
336	Meng et al. (2017) examined the effect of long-range air transport on the urban NH ₃ levels in Beijing
337	during the summer through trajectory analysis. The authors concluded that the air mass from the southeast
338	has a cumulative effect on the NH3 concentration. Although the dominant wind direction at the suburban
339	site was different from that at the urban site, the NH3 mixing ratios were relatively high in the south
340	sectors for both sites. Thus, winds from the southeast, south, and southwest had a cumulative effect on
341	the NH ₃ mixing ratios at both the urban and suburban sites. The NH ₃ mixing ratios were relatively low
342	when the wind originated from the northwest sector at urban site and from the west sector at the suburban
343	site, in which the wind speed was strong, which indicated that the northwest/west wind could promote
344	NH ₃ dilution and diffusion.

346 Fig. 7. Rose maps of the NH₃ mixing ratios, wind frequency, and wind speed in different wind direction sectors.

348 Heavy rainfall occurred on a few days in Beijing in 2018. Heavy precipitation occurred for a long 349 duration on August 18, 2018 (Fig. 8). Before the rainfall, the NH₃ concentration at the urban site was 350 higher than the average level in August. After the rainfall occurred, the NH₃ concentration decreased 351 rapidly, and it was significantly lower than the mean value in August. However, the diurnal variation of 352 NH3 on the rain day did not differ considerably from the average diurnal variation in August. On August 353 18, 2018, the NH₃ mixing ratio at the suburban site remained at a low level during the rainfall period and 354 was considerably lower than the mean NH₃ concentration in August. However, the NH₃ mixing ratio 355 increased rapidly after the precipitation and reached the mean level at 17:00. The rainfall might have an 356 obvious clearing effect on NH3 but needed more cases to support.

358 Fig. 8. Diurnal variations in the rainfall and NH₃ concentration on August 18, 2018.

360 4. Conclusion

361	In this study, the atmospheric NH3 concentrations at an urban site and a suburban site in Beijing
362	were continuously and simultaneously observed from January 2018 to January 2019. The mean NH_3
363	mixing ratios were 21 \pm 14 and 22 \pm 15 ppb at the urban and suburban sites, respectively. The annual
364	average NH3 mixing ratio at the suburban site was higher than that at the urban site. Moreover, the
365	variation range of the NH ₃ mixing ratio was larger at the suburban site than at the urban site. In the
366	summer and spring, the NH ₃ mixing ratio at the suburban site was higher than that at the urban site. In
367	the autumn and winter, the NH ₃ mixing ratio at the suburban site was lower than that at the urban site.
368	The highest NH ₃ mixing ratios at the urban and suburban sites were observed in July. The lowest NH ₃
369	mixing ratio at the urban site occurred in February, and the lowest NH3 mixing ratio at the suburban site
370	occurred in January. In the past decade, the concentration of NH3 in Beijing did not change considerably,
371	and the NH ₃ levels in Beijing were higher than those in other large cities.
371 372	and the NH ₃ levels in Beijing were higher than those in other large cities. The hourly mean NH ₃ mixing ratios at the urban site were highly correlated ($R = 0.849$, $P < 0.01$)
372	The hourly mean NH ₃ mixing ratios at the urban site were highly correlated ($R = 0.849$, $P < 0.01$)
372 373	The hourly mean NH ₃ mixing ratios at the urban site were highly correlated ($R = 0.849$, $P < 0.01$) with those at the suburban site. However, the mean diurnal variations in the NH ₃ mixing ratios at the
372 373 374	The hourly mean NH ₃ mixing ratios at the urban site were highly correlated ($R = 0.849$, $P < 0.01$) with those at the suburban site. However, the mean diurnal variations in the NH ₃ mixing ratios at the urban and suburban sites were different. At the urban site, low NH ₃ mixing ratios were observed in the
372373374375	The hourly mean NH ₃ mixing ratios at the urban site were highly correlated ($R = 0.849$, $P < 0.01$) with those at the suburban site. However, the mean diurnal variations in the NH ₃ mixing ratios at the urban and suburban sites were different. At the urban site, low NH ₃ mixing ratios were observed in the day and high NH ₃ mixing ratios were observed in the night. The opposite trend was observed at the
 372 373 374 375 376 	The hourly mean NH ₃ mixing ratios at the urban site were highly correlated ($R = 0.849$, $P < 0.01$) with those at the suburban site. However, the mean diurnal variations in the NH ₃ mixing ratios at the urban and suburban sites were different. At the urban site, low NH ₃ mixing ratios were observed in the day and high NH ₃ mixing ratios were observed in the night. The opposite trend was observed at the suburban site. Although both sites were under the influence of similar weather systems, the seasonal
 372 373 374 375 376 377 	The hourly mean NH ₃ mixing ratios at the urban site were highly correlated ($R = 0.849$, $P < 0.01$) with those at the suburban site. However, the mean diurnal variations in the NH ₃ mixing ratios at the urban and suburban sites were different. At the urban site, low NH ₃ mixing ratios were observed in the day and high NH ₃ mixing ratios were observed in the night. The opposite trend was observed at the suburban site. Although both sites were under the influence of similar weather systems, the seasonal diurnal variations in the NH ₃ mixing ratio were different at the urban and suburban sites. This result

381	At the same relative humidity, the NH ₃ mixing ratios increased with the temperature at both sites. The
382	relative humidity had the strongest influence on the NH ₃ mixing ratio in different seasons at the two sites.
383	No strong correlation was observed between the NH ₃ concentration and the temperature in the summer
384	and autumn at the two sites. A high wind speed promoted a decrease in the NH_3 concentration. The NH_3
385	mixing ratios were higher when the winds originated from the south than when the winds originated from
386	the north and northwest. Rainfall had a certain scavenging effect on NH ₃ ; however, it had little effect on
387	the diurnal variations in the NH ₃ concentration.
388	
389	Data availability. The data of stationary measurements are available upon request to the contact author
390	Weili Lin (linwl@muc.edu.cn).
391	
392	Author contributions. ZL and WL developed the idea for this paper, formulated the research goals, and
393	carried out the measurement at urban site. WP and ZM carried out the NH_3 field observations at the
394	suburban site.
395	
396	Competing interests. The authors declare that they have no conflict of interest.
397	
398	Acknowledgments. This study was funded by the National Natural Science Foundation of China
399	(Grant No. 91744206) and the Beijing Municipal Science and Technology (Z181100005418016).
400	
401	
402	
403	

- 404 **Reference**
- 405 Adon, M., Yoboué, V., Galy-Lacaux, C., Liousse, C., Diop, B., Doumbia, E. H. T., Gardrat, E., Ndiaye,
- 406 S. A. and Jarnot, C.: Measurements of NO₂, SO₂, NH₃, HNO₃ and O₃ in West African urban
- 407 environments, Atmospheric Environment, 135, 31–40,
- 408 https://doi.org/10.1016/j.atmosenv.2016.03.050, 2016.
- 409 Baer, D. S., Paul, J. B., Gupta, M. and O'Keefe, A.: Sensitive absorption measurements in the near-
- 410 infrared region using off-axis integrated-cavity-output spectroscopy, Applied Physics B: Lasers
- 411 and Optics, 75(2–3), 261–265, doi:10.1007/s00340-002-0971-z, 2002.
- 412 Baer, D., Gupta, M., Leen, J. B., and Berman, E.: Environmental and atmospheric monitoring using
- 413 off-axis integrated cavity output spectroscopy (OA-ICOS). American laboratory, 44(10), 20–23,
- 414 2012.
- 415 Bash, J. O., Walker, J. T., Katul, G. G., Iones, M. R., Nemitz, E. and Robarge, W. P.: Estimation of in-
- 416 canony ammonia sources and sinks in a fertilized zea mays field, Environmental Science and
- 417 Technology, 44(5), 1683-1689, doi:10.1021/es9037269, 2010.
- 418 Behera, S. N., Sharma, M., Aneja, V. P. and Balasubramanian, R.: Ammonia in the atmosphere: A
- 419 review on emission sources, atmospheric chemistry and deposition on terrestrial bodies,
- 420 Environmental Science and Pollution Research, 20(11), 8092–8131, doi:10.1007/s11356-013-
- 421 2051-9, 2013.
- 422 Breemen, N. V., Mulder, J. and Driscoll, C. T.: Acidification and alkalinization of soils, Plant and Soil,
- 423 75(3), 283–308, doi:10.1007/BF02369968, 1983.
- 424 Burkhardt, J., Sutton, M. A., Milford, C., Storeton-West, R. L. and Fowler, D.: Ammonia
- 425 concentrations at a site in southern Scotland from 2 yr of continuous measurements, in

426	Atmospheric Environment, 32(3), 325–331, https://doi.org/10.1016/S1352-2310(97)00198-2.
427	Chang, Y., Liu, X., Deng, C., Dore, A. J. and Zhuang, G.: Source apportionment of atmospheric
428	ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope
429	signatures, Atmospheric Chemistry and Physics, 16(18), doi:10.5194/acp-16-11635-2016, 2016a.
430	Chang, Y., Zou, Z., Deng, C., Huang, K., Collett, J. L., Lin, J. and Zhuang, G.: The importance of
431	vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai, Atmospheric
432	Chemistry and Physics, 16(5), 3577-3594, doi:10.5194/acp-16-3577-2016, 2016b.
433	Chang, Y., Zou, Z., Zhang, Y., Deng, C., Hu, J., Shi, Z., Dore, A. J. and Collett, J. L.: Assessing
434	Contributions of Agricultural and Nonagricultural Emissions to Atmospheric Ammonia in a
435	Chinese Megacity, Environmental Science and Technology, 53(4), 1822-1833,
436	doi:10.1021/acs.est.8b05984, 2019.
437	Charlson, R.J., LANGNER, J., Rodhe, H., Leovy, C.B., Warren, S.G.: Perturbation of the northern
438	hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols, Tellus B:
439	Chemical and Physical Meteorology, 43(4),12, doi:10.1034/j.1600-0889.1991.t01-1-00013.x,
440	1991.
441	Edgerton, E. S., Saylor, R. D., Hartsell, B. E., Jansen, J. J. and Alan Hansen, D.: Ammonia and
442	ammonium measurements from the southeastern United States, Atmospheric Environment, 41(16),
443	3339-3351, doi:10.1016/j.atmosenv.2006.12.034, 2007.
444	Ellis, R. A., Murphy, J. G., Markovic, M. Z., Vandenboer, T. C., Makar, P. A., Brook, J. and Mihele, C.:
445	The influence of gas-particle partitioning and surface-atmosphere exchange on ammonia during
446	BAQS-Met, Atmospheric Chemistry and Physics, 11(1), 133-145, doi:10.5194/acp-11-133-2011,
447	2011.

25 / 31

448	Erisman, J. W., Bleeker, A., Galloway, J. and Sutton, M. S.: Reduced nitrogen in ecology and the
449	environment, Environmental Pollution, 150(1), 140-149, doi:10.1016/j.envpol.2007.06.033, 2007.
450	Fu, X., Wang, S., Xing, J., Zhang, X., Wang, T. and Hao, J.: Increasing Ammonia Concentrations
451	Reduce the Effectiveness of Particle Pollution Control Achieved via SO_2 and NO_X Emissions
452	Reduction in East China, Environmental Science and Technology Letters, 4(6), 221–227,
453	doi:10.1021/acs.estlett.7b00143, 2017.
454	Gong, L., Lewicki, R., Griffin, R. J., Flynn, J. H., Lefer, B. L. and Tittel, F. K.: Atmospheric ammonia
455	measurements in Houston, TX using an external-cavity quantum cascade laser-based sensor,
456	Atmospheric Chemistry and Physics, 11(18), 9721–9733, doi:10.5194/acp-11-9721-2011, 2011.
457	Hu, Q., Zhang, L., Evans, G. J. and Yao, X.: Variability of atmospheric ammonia related to potential
458	emission sources in downtown Toronto, Canada, Atmospheric Environment, 99,
459	doi:10.1016/j.atmosenv.2014.10.006, 2014.
460	Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M. and Zhang, H.: A high-resolution
461	ammonia emission inventory in China, Global Biogeochemical Cycles, 26(1),

- 462 doi:10.1029/2011GB004161, 2012.
- 463 Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., Cui, Z. L., Yin, B., Christie, P.,
- 464 Zhu, Z. L. and Zhang, F. S.: Reducing environmental risk by improving N management in
- 465 intensive Chinese agricultural systems, Proceedings of the National Academy of Sciences of the
- 466 United States of America, 106(9), 3041-3046, doi:10.1073/pnas.0813417106, 2009.
- 467 Krotkov, N.A., McLinden, C.A., Li, C., Lamsal, L.N., Celarier, E.A., Marchenko, S. v., Swartz, W.H.,
- 468 Bucsela, E.J., Joiner, J., Duncan, B.N., Boersma, K.F., Veefkind, J.P., Levelt, P.F., Fioletov, V.E.,
- 469 Dickerson, R.R., He, H., Lu, Z., Streets, D.G.: Aura OMI observations of regional SO₂ and NO₂

- 470 pollution changes from 2005 to 2015. Atmospheric Chemistry and Physics 16(7), 4605–4629,
- 471 doi:10.5194/acp-16-4605-2016, 2016.
- 472 Kuang, Y., Xu, W., Lin, W., Meng, Z., Zhao, H., Ren, S., Zhang, G., Liang, L. and Xu, X.: Explosive
- 473 morning growth phenomena of NH3 on the North China Plain: Causes and potential impacts on
- 474 aerosol formation, Environmental Pollution, 257, 113621, doi:10.1016/j.envpol.2019.113621,
- 475 2020.
- 476 Liao, X., Zhang, X., Wang, Y., Liu, W., Du, J. and Zhao, L.: Comparative Analysis on Meteorological
- 477 Condition for Persistent Haze Cases in Summer and Winter in Beijing, Environmental Science,
- 478 35(06), 2031–2044, doi:10.13227/j.hjkx.2014.06.001, 2014.
- 479 Meng, Z. Y., Lin, W. L., Jiang, X. M., Yan, P., Wang, Y., Zhang, Y. M., Jia, X. F. and Yu, X. L.:
- 480 Characteristics of atmospheric ammonia over Beijing, China, Atmospheric Chemistry and Physics,
 481 11(12), 6139–6151, doi:10.5194/acp-11-6139-2011, 2011.
- 482 Meng, Z. Y., Xu, X. bin, Wang, T., Zhang, X. Y., Yu, X. L., Wang, S. F., Lin, W. L., Chen, Y. Z., Jiang,
- 483 Y. A. and An, X. Q.: Ambient sulfur dioxide, nitrogen dioxide, and ammonia at ten background
- 484 and rural sites in China during 2007–2008, Atmospheric Environment, 44(21–22), 2625-2631,
- 485 doi:10.1016/j.atmosenv.2010.04.008, 2010.
- 486 Meng, Z., Lin, W., Zhang, R., Han, Z. and Jia, X.: Summertime ambient ammonia and its effects on
- 487 ammonium aerosol in urban Beijing, China, Science of the Total Environment, 579, 1521–1530,
- 488 doi:10.1016/j.scitotenv.2016.11.159, 2017.
- 489 Meng, Z., Wu, L., Xu, X., Xu, W., Zhang, R., Jia, X., Liang, L., Miao, Y., Cheng, H., Xie, Y., He, J. and
- 490 Zhong, J.: Changes in ammonia and its effects on PM_{2.5} chemical property in three winter seasons
- 491 in Beijing, China, Science of The Total Environment, 749, 142208,

27 / 31

- 492 doi:10.1016/j.scitotenv.2020.142208, 2020.
- 493 Nowak, J. B., Huey, L. G., Russell, A. G., Tian, D., Neuman, J. A., Orsini, D., Sjostedt, S. J., Sullivan,
- 494 A. P., Tanner, D. J., Weber, R. J., Nenes, A., Edgerton, E. and Fehsenfeld, F. C.: Analysis of urban
- 495 gas phase ammonia measurements from the 2002 Atlanta Aerosol Nucleation and Real-Time
- 496 Characterization Experiment (ANARChE), Journal of Geophysical Research Atmospheres,
- 497 111(17), doi:10.1029/2006JD007113, 2006.
- 498 Osada, K., Saito, S., Tsurumaru, H. and Hoshi, J.: Vehicular exhaust contributions to high NH₃ and
- 499 PM_{2.5} concentrations during winter in Tokyo, Japan, Atmospheric Environment, 206, 218–224,
- 500 doi:10.1016/j.atmosenv.2019.03.008, 2019.
- 501 Pan, Y., Tian, S., Zhao, Y., Zhang, L., Zhu, X., Gao, J., Huang, W., Zhou, Y., Song, Y., Zhang, Q. and
- 502 Wang, Y.: Identifying Ammonia Hotspots in China Using a National Observation Network,
- 503 Environmental Science and Technology, 52(7), 3926–3934, doi:10.1021/acs.est.7b05235, 2018.
- 504 Pearson, J. and Stewart, G.R.: The deposition of atmospheric ammonia and its effects on plants, New
- 505 Phytologist, 125(2), 283–305, doi:10.1111/j.1469-8137.1993.tb03882.x, 1993.
- 506 Phan, N.-T., Kim, K.-H., Shon, Z.-H., Jeon, E.-C., Jung, K. and Kim, N.-J.: Analysis of ammonia
- 507 variation in the urban atmosphere, Atmospheric Environment, 65, 177–185,
- 508 https://doi.org/10.1016/j.atmosenv.2012.10.049, 2013.
- 509 Pinder, R. W., Gilliland, A. B. and Dennis, R. L.: Environmental impact of atmospheric NH₃ emissions
- 510 under present and future conditions in the eastern United States, Geophysical Research Letters,
- 511 35(12), 89-90, doi:10.1029/2008GL033732, 2008.
- 512 Pu, W., Ma, Z., Collett, J. L., Guo, H., Lin, W., Cheng, Y., Quan, W., Li, Y., Dong, F. and He, D.:
- 513 Regional transport and urban emissions are important ammonia contributors in Beijing, China,

- 514 Environmental Pollution, 265, doi:10.1016/j.envpol.2020.115062, 2020.
- 515 Reay, D. S., Dentener, F., Smith, P., Grace, J. and Feely, R. A.: Global nitrogen deposition and carbon
- 516 sinks, Nature Geoscience, 1(7), 430-437, doi:10.1038/ngeo230, 2008.
- 517 Saraswati, George, M. P., Sharma, S. K., Mandal, T. K. and Kotnala, R. K.: Simultaneous
- 518 Measurements of Ambient NH 3 and Its Relationship with Other Trace Gases, PM_{2.5} and
- 519 Meteorological Parameters over Delhi, India, Mapan Journal of Metrology Society of India,
- 520 34(1), 55–69, doi:10.1007/s12647-018-0286-0, 2019.
- 521 Singh, S. and Kulshrestha, U. C.: Rural versus urban gaseous inorganic reactive nitrogen in the Indo-
- 522 Gangetic plains (IGP) of India, Environ. Res. Lett., 9(12), 125004, https://doi.org/10.1088/1748-
- 523 **9326/9/12/125004, 2014.**
- 524 Teng, X., Hu, Q., Zhang, L., Qi, J., Shi, J., Xie, H., Gao, H. and Yao, X.: Identification of Major
- 525 Sources of Atmospheric NH₃ in an Urban Environment in Northern China during Wintertime,
- 526 Environmental Science and Technology, 51(12), 6839-6848, doi:10.1021/acs.est.7b00328, 2017.
- 527 UN Environment 2019. A Review of 20 Years' Air Pollution Control in Beijing. United Nations
- 528 Environment Programme, Nairobi, Kenya.
- 529 <u>https://www.unenvironment.org/resources/report/review-20-years-air-pollution-control-beijing.</u>
- 530 Vogt, E., Held, A. and Klemm, O.: Sources and concentrations of gaseous and particulate reduced
- 531 nitrogen in the city of Münster (Germany), Atmospheric Environment, 39(38), 7393–7402,
- 532 https://doi.org/10.1016/j.atmosenv.2005.09.012, 2005.
- 533 Wang, K., Fan, S., Guo, J. and Sun, G.: Characteristics of ammonia emission from motor vehicle
- exhaust in Beijing, Environmental Engineering, 36(03), 98–101, doi:10.13205/j.hjgc.201803020,
- 535 2019.

- 536 Warner, J. X., Dickerson, R. R., Wei, Z., Strow, L. L., Wang, Y. and Liang, Q.: Increased atmospheric
- 537 ammonia over the world's major agricultural areas detected from space, Geophysical Research
- 538 Letters, 44(6), 2875–2884, doi:10.1002/2016GL072305, 2017.
- 539 Wei, S., Dai, Y., Liu, B., Zhu, A., Duan, Q., Wu, L., Ji, D., Ye, A., Yuan, H., Zhang, Q., Chen, D., Chen,
- 540 M., Chu, J., Dou, Y., Guo, J., Li, H., Li, J., Liang, L., Liang, X., Liu, H., Liu, S., Miao, C. and
- 541 Zhang, Y.: A China data set of soil properties for land surface modeling, Journal of Advances in
- 542 Modeling Earth Systems, 5(2), 212–224, doi:10.1002/jame.20026, 2013.
- 543 Wentworth, G. R., Murphy, J. G., Benedict, K. B., Bangs, E. J. and Collett, J. L.: The role of dew as a
- 544 night-time reservoir and morning source for atmospheric ammonia, Atmospheric Chemistry and
- 545 Physics, 16(11), 7435–7449, doi:10.5194/acp-16-7435-2016, 2016.
- 546 Wu, Z., Hu, M., Shao, K. and Slanina, J.: Acidic gases, NH3 and secondary inorganic ions in PM₁₀
- 547 during summertime in Beijing, China and their relation to air mass history, Chemosphere, 76(8),
- 548 doi:10.1016/j.chemosphere.2009.04.066, 2009.
- 549 Zhang, B.: Atmospheric Distribution and Variation of NH₃ in Beijing, Environmental Science and
- 550 Management 41(01), 119–122, 2016.
- 551 Zhang, S., Wag, A., Zhang, Z., Wang, J., Han, Y., Su, R. and Qu, Y.: On creating an anthropogenic
- ammonia emission inventory in capital Beijing, Journal of Safety and Environment, 16(02), 242–
- 553 245, doi:10.13637/j.issn.1009-6094.2016.02.047, 2016.
- 554 Zhang, X., Wu, Y., Liu, X., Reis, S., Jin, J., Dragosits, U., van Damme, M., Clarisse, L., Whitburn, S.,
- 555 Coheur, P. F. and Gu, B.: Ammonia emissions may be substantially underestimated in China,
- 556 Environmental Science and Technology, 51(21), 12089–12096, doi:10.1021/acs.est.7b02171,
- 557 2017.

558	Zhang, Y., Tang, A., Wang, D., Wang, Q., Benedict, K., Zhang, L., Liu, D., Li, Y., Collett Jr., J. L., Sun,
559	Y. and Liu, X.: The vertical variability of ammonia in urban Beijing, China, Atmospheric
560	Chemistry and Physics, 18(22), 16385–16398, doi:10.5194/acp-18-16385-2018, 2018.
561	Zhao, X., Xie, Y. X., Xiong, Z. Q., Yan, X. Y., Xing, G. X. and Zhu, Z. L.: Nitrogen fate and
562	environmental consequence in paddy soil under rice-wheat rotation in the Taihu lake region,
563	China, Plant and Soil, 319(1), 225-234, doi:10.1007/s11104-008-9865-0, 2009.
564	Zhou, C., Zhou, H., Holsen, T. M., Hopke, P. K., Edgerton, E. S. and Schwab, J. J.: Ambient Ammonia
565	Concentrations Across New York State, Journal of Geophysical Research: Atmospheres, 124(14),

566 8287-8302, doi:10.1029/2019JD030380, 2019.