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S1. Comparisons between implementations of the same structure-based methods
S1.1. SIMPOL
[image: ]
Figure S1. Comparison between vapor pressures estimated by SIMPOL as implemented by the GECKO-A online interface and the APRL Python package. Scatter plots shown in top panels, with dashed lines indicating differences of integer log units (i.e. 10:1, 100:1, etc.). Distribution of absolute differences (in log terms) shown as bottom panels. Oxidation systems broken out as labeled, with gas- and particle-phase compounds combined. Vapor pressures estimated are in log (atm).

Table S1. Comparison between implementations of SIMPOL manually, using the GECKO-A online interface, and using the APRL Python package, for a test set of compounds observed to differ between implementations. 
	SMILES
	Manual
	GECKO-A
	APRL

	CC=CC(=O)(OON(=O)(=O))
	-2.78
	 -2.78
	-2.29

	CC=C(OO)C(=O)(O)
	-5.92
	 -6.41
	-5.92

	CC1OOC(=O)C1(O)C(OO)
	-6.26
	 -6.78
	-5.3

	C1(C(ON(=O)(=O)))OOC(=O)CC1(O)C(=O)(OON(=O)(=O))
	-9.17
	 -9.27
	-8.23

	C(=O)C1OC1(O)C(C(=O)(O))=CC(=O)
	-11.48
	 -11.27
	-10.25

	C(=O)(OO)C(=O)OOC(N(=O)(=O))(C(=O)(OO))C(=O)C(=O)
	-11.26
	-11.8
	-10.32




S1.2. EVAPORATION
[image: ]
Figure S2. Comparison between vapor pressures estimated by EVAPORATION as implemented by the IASB online interface and the UManSysProp Python package. Scatter plots shown in top panels, with dashed lines indicating differences of integer log units (i.e. 10:1, 100:1, etc.). Distribution of absolute differences (in log terms) shown as bottom panels. Oxidation systems broken out as labeled, with gas- and particle-phase compounds combined.

Table S2. Comparison between implementations of EVAPORATION manually, using the IASB online interface, and using the UManSysProp (UMSP) Python package, for a test set of compounds observed to differ between implementations. Vapor pressures estimated are in log (atm). 
	SMILES
	Manual
	IASB
	UMSP

	CC(=O)C(ON(=O)(=O))(C(=O))C(C)(C)C(OO)CC(=O)
	-9.53
	-9.54
	-8.23

	CC(=O)C(ON(=O)(=O))(C(=O))C(C)(C)C(ON(=O)(=O))CC(=O)
	-9.07
	-9.07
	-7.77

	CC1(C)CC(=O)C1(O)C(=O)
	-3.98
	-3.87
	-2.54

	C(=O)C(O)=C(C)C(=O)CC(=O)
	-6.08
	-5.55
	-6.99

	C(O)C(=O)C(ON(=O)(=O))C(C)(C)C(OO)C(=O)(OON(=O)(=O))
	-11.64
	-11.63
	-10.84

	C(=O)(O)OC(=O)C(=O)C(ON(=O)(=O))
	-7.69
	-8.08
	-2.28




S1.3. Nannoolal
[image: ]
Figure S3. Comparison between vapor pressures estimated by Nannoolal as implemented by the GECKO-A online interface and the UManSysProp Python package. Scatter plots shown in top panels, with dashed lines indicating differences of integer log units (i.e. 10:1, 100:1, etc.). Distribution of absolute differences (in log terms) shown as bottom panels. Oxidation systems broken out as labeled, with gas- and particle-phase compounds combined.


S2. Examining bias in formula-based methods
 [image: ]
Figure S4. Comparison between vapor pressures estimated by the formula-based Li method, and the average vapor pressure of a formula. Comparison between implementations of (a) the method as published, (b) a modified nitrogen coefficient, bN, such that it necessarily equals twice the negative of the oxygen coefficient, and (c) treatment of all NO3 units in the formula as OH. Colored by number of nitrogen atoms. See main text, Section 2.5.2 for explanation.


 [image: ]
Figure S5. Comparison between kOH of a formula estimated by the Donahue method to the average vapor pressure of a formula. Log-linear correlation observed is predicted by Donahue et al., but not observed in structure-based estimation, see Figure 6b.


S3. Distribution of vapor pressures between isomers for methods not shown in main text
[image: ]
Figure S6. Differences in vapor pressure between isomers for each structure-based estimation method, broken out by oxidation system. Colored as in Figure 1: (a) EVAPORATION, (b) SIMPOL, (c) Myrdal and Yalkowsky, and (d) EPI. Nannoolal is shown in Figure 1b. Average values of each distribution are provided in parentheses.  

[image: ]
Figure S7. Cumulative probability distribution of the difference between any two isomers of a given formula for each structure-based estimation method, broken out by oxidation system. Colored as in Figure 1: (a) EVAPORATION, (b) SIMPOL, (c) Myrdal and Yalkowsky, and (d) EPI. Nannoolal is shown in Figure 1d. Average values of each distribution are provided in parentheses.  


S4. Comparisons between structure-based methods
[image: ]
Figure S8. Comparison of all structure-based vapor pressure methods to the Nannoolal method. Each method is shown as a column, with oxidation systems as rows as labeled. Left to right, columns are: EPI vs. Nannoolal, Myrdal and Yalkowsky vs. Nannoolal, SIMPOL vs Nannoolal, and EVAPORATION vs. Nannoolal. Dashed lines indicate differences of integer log units (i.e. 10:1, 100:1, etc.).
[image: ]
Figure S9. Distributions of absolute difference between vapor pressure estimated by each structure-based method compared to the Nannoolal method. Each method is shown as a column, with oxidation systems as rows as labeled. Left to right, columns are: EPI vs. Nannoolal, Myrdal and Yalkowsky vs. Nannoolal, SIMPOL vs Nannoolal, and EVAPORATION vs. Nannoolal. Values and dashed lines indicate average value of the distribution.
[image: ]
Figure S10. Comparison between Henry’s Law Constant estimated by the HWINb and GROMHE methods. Scatter plots shown in top panels, with dashed lines indicating differences of integer log units (i.e. 10:1, 100:1, etc.). Distribution of absolute differences (in log terms) shown as bottom panels. Oxidation systems broken out as labeled, with gas- and particle-phase compounds combined. Values and dashed lines indicate average value of the distribution.


[image: ]
Figure S11. Comparison between kOH estimated by the Jenkin and Kwok and Atkinson methods. Scatter plots shown in top panels, with dashed lines indicating differences of integer relative differences (i.e. 2:1, 3:1, etc.). Distribution of relative differences shown as bottom panels. Oxidation systems broken out as labeled, with gas- and particle-phase compounds combined. Values and dashed lines indicate average value of the distribution.
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