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Abstract. Many methods are currently available to estimate physicochemical properties of atmospherically relevant 

compounds. Though a substantial body of literature has focused on the development and intercomparison of methods based 

on molecular structure, there has been an increasing focus on methods based only on molecular formula. However, prior work 

has not quantified the extent to which isomers of the same formula may differ in their properties, or, relatedly, the extent to 10 

which lacking or ignoring molecular structure degrades estimates of parameters. Such an evaluation is complicated by the fact 

that structure-based methods bear significant uncertainty and are typically not well constrained for atmospherically relevant 

molecules. Using species produced in the modeled atmospheric oxidation of three representative atmospheric hydrocarbons, 

we demonstrate here that estimated differences between isomers are greater than differences between three widely used 

estimation methods. Specifically, isomers tend to differ in their estimated vapor pressures and Henry’s Law Constants by a 15 

half to a full order of magnitude greater than differences between estimation methods, and differ in their rate constant for 

reaction with OH radicals (kOH) by a factor of two. Formula-based estimation of these parameters using certain methods is 

shown to agree with structure-based estimates with little bias and approximately normally distributed error. Specifically, vapor 

pressure can be estimated using a combination of two existing methods, Henry’s Law Constants can be estimated based on 

vapor pressure, and kOH can be approximated as a constant for all formulas containing a given set of elements. Formula-based 20 

estimation is therefore reasonable when applied to a mixture of isomers, but creates uncertainty commensurate with the lack 

of structural information. 

1 Introduction 

The fate of an organic compound in the atmosphere is dictated by a number of physicochemical properties. Its volatility 

controls whether it partitions to suspended particulate mass or remains in the gas phase, its reactivity controls its lifetime 25 

against degradation by ever-present oxidants, and its solubility may control its uptake to particles or its deposition to surfaces 

(Heald et al., 2020; Jimenez et al., 2009; Knote et al., 2015; Krieger et al., 2012; Ziemann and Atkinson, 2012). The parameters 

that describe these properties (e.g. vapor pressure) are consequently a critical term in models describing the physical and 

chemical transformations of atmospheric constituents. In some cases, an exact estimation of these parameters may not be 
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important; for instance, a compound will almost certainly condense when given the opportunity whether its vapor pressure is 30 

extremely low, or merely very low. However, many compounds exist in transition regimes in environments typical of 

atmospheric conditions in which they can partition between phases and may vary in their fates, such as: semivolatile 

compounds that partition between the gas and particle phase (Donahue et al., 2006); compounds with moderate reactivity that 

may last hours or days depending on oxidant concentrations (Price et al., 2019); or compounds with sufficient solubility to 

partition to particles with an aqueous phase but not dry particles (Wania et al., 2015). For these atmospheric components 35 

(which likely account for at least tens of percent of atmospheric organic carbon (Hunter et al., 2017)), an accurate estimate of 

its physicochemical parameters is critical.  

Unfortunately, physicochemical parameters for atmospherically relevant compounds are poorly constrained by experimental 

data. Vapor pressures and Henry’s Law Constants (HLC) are known primarily for higher volatility compounds, typically with 

few (1-3) functional groups (Compernolle et al., 2011; Raventos-Duran et al., 2010). Little observational data exists for, e.g., 40 

compounds with vapor pressures sufficiently low to partition under typical atmospheric conditions. In contrast, the atmosphere 

contains thousands or tens of thousands of compounds across ~15 orders of magnitude in vapor pressure (Jimenez et al., 2009), 

wide ranges of oxygenation, volatility and solubility (e.g., Donahue et al., 2011; Hodzic et al., 2014; Lannuque et al., 2018), 

and several orders of magnitude in reactivities (Lee et al., 2006), with many multifunctional components (e.g., Aumont et al., 

2005; Saunders et al., 2003). Most observational databases are consequently of little direct use, though there have been some 45 

recent efforts to develop datasets relevant to the ranges of properties observed in the atmosphere (Dang et al., 2019; Krieger 

et al., 2018). In order to estimate these parameters beyond the range of observational constraints, several methods have been 

developed that relate physicochemical parameters to structure through structure-activity relationships (SARs). These typically 

take the form of group contribution, in which a molecular structure is parsed into component groups (carbonyls, esters, carbon-

carbon double bonds, etc.) with each group assigned an empirically determined impact on a parameter of interest. Various 50 

methods exist to estimate volatility (e.g., Barley and McFiggans, 2010; Camredon and Aumont, 2006; Compernolle et al., 

2011), HLC (e.g., Meylan and Howard, 1991; Raventos-Duran et al., 2010)  and gas-phase reaction rates (e.g., Vereecken et 

al., 2018). Though these SARs are frequently used to estimate physicochemical parameters of atmospheric constituents, their 

application to atmospheric oxidation products often requires extrapolation far beyond the chemical space (i.e., volatility, 

chemical functionality) used in their development. Furthermore, many of the molecules present in the atmosphere contain 55 

multiple functional groups, and the substituent groups within a complex molecule may not obviously “map” to the groups used 

to define an SAR or may interact with neighboring groups in ways not captured by an SAR. This need to extrapolate the 

volatility and functionality domain of SARs for atmospheric applications leads to higher uncertainty, and previous work has 

demonstrated that SARs’ estimates of vapor pressures, HLC, and gas-phase reaction rates for atmospheric species tend to 

diverge with increasing number of organic functional groups on the carbon backbone (Raventos-Duran et al., 2010; Valorso 60 

et al., 2011).  
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Earlier work on vapor pressure implemented a two-step estimation method, in which boiling point is estimated using an SAR, 

and vapor pressure is estimated from this boiling point using a separate SAR. Widely used boiling point estimation methods 

include Stein and Brown (1994), Nannoolal et al. (2004), and Joback and Reid (Joback, 1984; Reid et al., 1987), while widely 

used vapor pressure estimation methods include Nannoolal et al. (2008) and Myrdal and Yalkowsky (1997). Comparison by 65 

Barley and McFiggans (2010) of these eight possible combinations (as well as a few less-widely-used methods) suggest that 

estimation of boiling point using the Nannoolal et al. (2004) method yields the best agreement with experimental data, in 

particular when using the Nannoolal et al. (2008) vapor pressure estimation method; this combination was similarly found to 

have the lowest bias in a later comparison by O’Meara et al. (2014). Other vapor pressure estimation also perform well when 

using the Nannoolal et al. (2004) boiling point estimation, most notably the Lee-Kesler method (Reid et al., 1987), which 70 

exhibits similarly low bias method (Barley and McFiggans, 2010; O’Meara et al., 2014). More recently, vapor pressure 

estimation methods have been developed that use SARs to directly estimate vapor pressure, specifically SIMPOL (Pankow 

and Asher, 2008) and EVAPORATION (Compernolle et al., 2011). These two methods have been previously shown to agree 

well with those estimated by the Nannoolal et al. method (Compernolle et al., 2011). Prior work therefore suggests that at least 

three methods (SIMPOL, EVAPORATION, and Nannoolal) comparably estimate vapor pressures and one of these methods 75 

(Nannoolal) is in reasonable agreement with experimental data. However, theses experimental data are mostly limited to vapor 

pressures greater than 10-8 atm (saturation concentration, c* > ~101.5 μg/m3), which is at the lower limit of vapor pressures 

expected to partition to the particle phase under typical atmospheric conditions (Donahue et al., 2006). These three methods 

consequently represent some of the current best SARs to estimate vapor pressure, but they remain highly uncertain. None of 

these methods was found to be accurate to better than approximately half an order of magnitude for their best constrained 80 

regions and methods tend to diverge at lower vapor pressures (Barley and McFiggans, 2010; Compernolle et al., 2011; Valorso 

et al., 2011). Even relatively accurate estimates can introduce large errors in transition regimes. An error of half an order of 

magnitude in vapor pressure for a compound with an estimated saturation concentration near ambient particulate matter 

concentrations may “move” a compound from mostly in the gas phase to mostly in the particle phase (Compernolle et al., 

2011). Furthermore, uncertainty estimates of half an order of magnitude may be optimistic as recent work has found orders-85 

of-magnitude discrepancies between measured vapor pressures of low-volatility compounds and those estimated by the 

Nannoolal et al. method (Dang et al., 2019), but data are still limited.  

For most volatile organic compounds (VOCs), the atmospheric oxidation is mainly driven by the reaction with OH radical. 

Various methods based on SARs are available in the literature to estimate VOC+OH gas-phase rate constants, kOH (Vereecken 

et al., 2018). A very commonly used SAR was developed by Kwok and Atkinson (Kwok and Atkinson, 1995), for which a 90 

few revised and extended versions are now available (e.g., Jenkin et al., 2018a, 2018b).  

A few methods are available for estimation of HLC, which parameterizes the partitioning of gases into a liquid (typically dilute 

aqueous) phase. For atmospheric chemistry applications, most commonly used SARs are HWINb (US Environment Protection 
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Agency, 2019) and the more recently developed GROMHE (Raventos-Duran et al., 2010), the latter of which has been shown 

to be somewhat more accurate. There is consequently less alternative around selection of a method to estimate these 95 

parameters, but there can nevertheless be large errors in their estimation (e.g., orders of magnitude in HLC estimates). 

To avoid the need to extrapolate SARs and the concomitant uncertainty that arises from this approach, a new generation of 

tools allows physicochemical properties to be directly estimated using quantum-chemistry-based calculations. These tools 

include commercial products that can directly calculate physicochemical properties (e.g., vapor pressure) or can calculate 

solvation parameters to estimate partitioning between phases, for instance COSMOtherm (available from Dassault Systèmes, 100 

based on COSMO-RS: Klamt, 1995; Klamt and Eckert, 2000) and SPARC Performs Automated Reasoning in Chemistry 

(available from ARChem LLC, based on: Hilal et al., 2004). In a related approach, a calibrated fit to experimental partitioning 

data can be developed based on solvation parameters (a poly-parameter linear free energy relationship, or ppLFER), which 

can in turn be calculated using commercial products like ABSOLV (ACDlabs) (Arp et al., 2008a, 2008b; Wania et al., 2014). 

By calculating parameters directly from molecular structure, these methods do not suffer the same degree of uncertainty caused 105 

by extrapolation beyond the empirically constrained regions of SARs and have been shown to handle multi-functional 

compounds with no bias and modest increases in uncertainty (Wang et al., 2017). These methods have also been shown to 

agree well in their estimations of partitioning between vapor and condensed phase organics (related to vapor pressure), but still 

exhibit large differences in estimations of partitioning of organics into water (related to HLC) (Wang et al., 2017). Quantum-

chemistry-based calculations may therefore represent a new approach for estimating partitioning in atmospheric systems (e.g., 110 

Wania et al., 2015), but they have not yet seen widespread adoption in the atmospheric science community and so the work 

presented here focuses on the more commonly used SAR-based approach. 

In addition to these methods for estimation of physicochemical parameters based on molecular structure, there has been a 

recent focus on developing approaches that rely only on molecular formula. This is driven in large part by the rapid increase 

in the use of direct mass spectrometry, in particular direct chemical ionization mass spectrometry (CIMS), which sample at 115 

atmospheric pressure and can therefore detect nearly all gas- and particle-phase atmospheric constituents with minimal pre-

treatment (Aljawhary et al., 2013; Huey et al., 1995; Hunter et al., 2017; Isaacman-Vanwertz et al., 2018). By allowing direct 

measurement of chemically and/or thermally labile atmospheric constituents, these instruments have profoundly increased 

understanding of atmospheric chemistry (e.g., Ehn et al., 2014; Lee et al., 2016; Nguyen et al., 2015). However, direct mass 

spectrometry generally lacks any mechanism for the resolution of isomers, yielding data only on the molecular formula of 120 

detected analytes, with little structural information. Some approaches to CIMS are limited to specific compound classes (e.g., 

acids), thus providing some information, but provide no resolution of isomers within these classes (Thompson et al., 2016). In 

order to situate measurements by CIMS and other direct mass spectrometers in a chemical space useful for modeling or 

understanding the atmosphere (e.g., Isaacman-VanWertz et al., 2017; Mohr et al., 2019), methods have been developed and 

applied for estimating physicochemical parameters from formulas alone. These methods are primarily limited to estimation of 125 
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vapor pressure (Daumit et al., 2013; Donahue et al., 2011; Li et al., 2016) and kOH (Donahue et al., 2013); no formula-based 

methods for estimation of HLC have been published.  

Formula-based estimation of physicochemical parameters is necessarily less exact than structure-based estimation, as it has 

less information available as an input (i.e., lack of structure). To some extent, isomers are known to differ in their 

physicochemical properties. Different functional groups containing the same atoms vary in their SAR group contributions 130 

(e.g., carboxylic acid vs. ester) and prior work has demonstrated that even positional isomers may differ in their vapor pressures 

(Dang et al., 2019). However, it has not been previously shown the extent to which a lack of structural information degrades 

parameter estimation. If, for example, the uncertainty in parameter estimation is significantly larger than differences caused 

by structure, there would be no significant loss in accuracy caused by not knowing the structure. It is therefore an important 

but unanswered question to determine to what extent isomers differ in their parameters, and how this compares to precision in 135 

parameter estimation. Addressing this issue would provide an understanding of the degree to which it is relevant to know the 

structure of a molecule when estimating a given parameter. It is important to note that application of SARs frequently include 

extrapolation beyond well-constrained laboratory data, which may decrease their accuracy. Formula-based estimations are 

typically built off of these existing SARs, so inherently include their limitations and biases. It is consequently less informative 

to discuss the accuracy of a formula-based estimation, which is driven in large part by the underlying SAR(s) and for which 140 

experimental data is limited, but rather the precision of such a method, i.e., the ability to recreate a structure-based estimate 

using only its molecular formula. 

Given the large number of available methods, selection of a method for the estimation of a physicochemical parameter is non-

trivial, and researchers are left navigating a complex issue without obvious best practices. Selection of one method over another 

is frequently an issue of convenience or familiarity, often with little consideration of the accuracy of a method, which may 145 

itself be poorly constrained due to a lack of experimental data for atmospherically relevant compounds. The range of choices 

is further complicated by the fact that many methods have multiple publicly available implementations (e.g., online interfaces), 

which we show in this work may disagree for a significant fraction of compounds. In an effort to understand the current 

landscape, we examine here some widely used methods for the estimation of three critical physicochemical parameters: vapor 

pressure, Henry’s law constant (HLC), and kOH. We combine widely used methods for estimation of these parameters to answer 150 

several questions: 

1. How different are the various methods available for both structure-based and formula-based estimation of vapor 

pressure, Henry’s law constants, and gas-phase OH reaction rates? 

2. Does knowing the structure of a molecule improve the estimation of its physicochemical parameters? That is, are 

differences in physicochemical parameters between isomers sufficiently large to outweigh uncertainty in their 155 

estimation? 

3. How much additional uncertainty is introduced in parameter estimation when structural information is unavailable? 
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2 Methods 

To answer the questions posed above, physicochemical parameters were estimated for approximately 38,000 atmospherically 

relevant species representing approximately 1,200 formulas. Parameters were estimated using a large number of methods 160 

currently in widespread use by the atmospheric chemistry scientific community. Differences between structure-based 

estimation methods for an individual compound were compared to differences between isomers of a formula for a given 

method. These were further compared to parameters estimated using formula-based methods. Details of species generation 

and parameter estimation are provided below. A critical issue to consider throughout this work is that extending results beyond 

the training data may significantly increase uncertainty. The results herein are most reasonably applied to products of gas-165 

phase atmospheric oxidation, with heavy representation by compounds that are highly oxygenated, are multi-functional, and/or 

contain nitrate groups.  

Throughout the manuscript, notation used to describe derived quantities about a property, x, estimated by a structure-based 

estimation method (i.e., SAR), m, include: 

 Δx = difference in x between two isomers 170 

 <Δx>formula = average difference in x between all isomer pairs for a given formula 

 Δmx = difference in x for a given species as estimated by two different SARs 

 <Δmx> = average difference in x between all SAR pairs for a given species 

 �̅� = average x of a species, estimated using all SARs  

 �̅�୭୰୫୳୪ୟ = average x of a formula, estimated using all SARs for all isomers  175 

Properties studied include: pure component subcooled liquid vapor pressure, p, in units of log(atm); Henry’s law constant, 

HLC or H, in units of log(M/atm), and gas-phase OH reaction rate constant, kOH or k, in units of cm3/molec-s. 

2.1 Generation of atmospherically relevant molecular structures 

Atmospherically relevant species were generated using the simulated oxidation of precursor hydrocarbons. Three hydrocarbons 

– -pinene, decane, and toluene – were selected to represent different chemical classes common in the atmosphere (cyclic 180 

alkene, saturated alkane, and aromatic, respectively) as well as different expected emissions sources. The gas-phase oxidation 

mechanism for these hydrocarbons were generated using the Generator of Explicit Chemistry and Kinetics of Organics in the 

Atmosphere (GECKO-A). GECKO-A is a computer program designed to automatically generate the complete mechanism 

involved in the oxidation of a broad range of atmospherically important hydrocarbons. The tool generates chemical 

mechanisms according to a prescribed protocol, providing reaction rates based on experimental and theoretical data and SARs. 185 

The protocol implemented in GECKO-A is described by Aumont et al. (2005), with chemistry updates given in Lannuque et 

al. (2018). The purpose of the study being to explore the properties of isomer distributions, oxidation was explicitly considered 
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up to the 5th generation and no lumping was performed using surrogate species during the generation process. To limit the size 

of the mechanism, gas-phase chemistry for species having a vapor pressure below 10-13 atm was not generated, those species 

being expected to partition almost exclusively to the condensed phase under typical atmospheric conditions (e.g., Valorso et 190 

al., 2011). The numbers of species generated are 2.0×105, 5.5×105 and 7.5×105 for the decane, toluene and -pinene 

mechanisms, respectively. Non radical species are considered in both the gas and particle phase. Condensed phase reactions 

are not considered in this model configuration. 

Simulations are performed in a box model using conditions roughly representative of average continental atmospheric 

conditions (Lannuque et al., 2018). In these runs, temperature is fixed at 298 K, photolysis frequencies are computed for mid-195 

latitude and for a solar zenith angle of 45° using the TUV model (Madronich and Flocke, 1999), the relative humidity is set to 

70%. Mixing ratios are prescribed for methane (1750 ppb), CO (120 ppb), HCHO (2 ppb), NOx (500 ppt), O3 (40 ppb). 

Furthermore, a proxy species is introduced to include the influence of non-methane volatile organic compound oxidation on 

the HOx and NOx cycles. First order loss rate of OH with respect to that proxy is set to 6 s-1 and leads to the formation of a 

surrogate peroxy radical, with a chemistry assumed to be similar to CH3O2. To allow gas/particle partitioning, a preexisting 200 

mass concentration of organic particle is assumed and set to 10 µg/m3. This condensed phase is assumed to behave as a well-

mixed ideal organic phase made of non-volatile organic matter. Finally, the parent hydrocarbon initial mixing ratio is set to an 

arbitrary value of 10 ppt carbon, a value low enough to not modify substantially the prescribed buffered conditions. Time 

integration of the mechanisms is performed for 5 days. These simulations served primarily to generate various species 

representative of the molecular structures expected in typical ambient atmospheres under both high and low NOx conditions. 205 

The analysis performed in this study is not sensitive to the exact oxidation conditions, as described below. 

 The number of species considered in the GECKO-A mechanisms is excessively large and a threshold was set in this work to 

perform the analysis. The species representing the approximately 200 most abundant molecular formulas in each the gas and 

particle phase were analyzed for each oxidation system. “Abundance” is considered here as the summed concentration across 

the modeled period. Separately considering the abundance of gas- and particle-phase compounds ensures a dataset spanning 210 

the atmospherically relevant range of properties. Some of the same formulas may be abundant in both the gas- and particle-

phase components of a given oxidation system, but a given formula may be comprised of a different set of isomers or the same 

isomers in different proportions. A total of 1193 formulas, comprised of roughly 182,000 unique compounds were 

consequently included in this analysis, roughly evenly split between the three oxidation systems, as well as between gas- and 

particle-phase components. Roughly two-thirds of these formulas contain nitrogen, in most cases in the form of organonitrates. 215 

For each formula, isomers were included in this analysis if they accounted for at least 0.1% of the abundance of each formula. 

This threshold was selected to maximize statistical robustness by providing a large dataset, while minimizing the impact of 

species expect to be produced at negligibly small concentrations. Selection of higher thresholds (e.g. 1%, 10%) were 

investigated but not observed to significantly change the results of this work. In order to prevent this analysis from being too 
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strongly impacted by the specific chemistry of the model, isomers were not weighted by their abundance in any of the analyses 220 

below; rather isomers were included with equal weight so long as they exceeded the 0.1% threshold. A total of 38,594 species 

exceeded the 0.1% threshold in at least one oxidation system and phase. Each formula may include a variable number of 

isomers, so compounds are not equally distributed between oxidation systems: 5% a-pinene gas-phase components, 6% decane 

gas, 10% toluene gas, 20% a-pinene particle, 16% decane particle, and 43% toluene particle. From this distribution it is 

apparent that in general, the model predicts particle-phase formulas to contain three to four times as many isomers as gas-225 

phase formulas, and toluene oxidation produces twice as many isomers per formulas as the other two systems studied. Due to 

these differences, the six datasets are discussed separately where relevant throughout this work. Furthermore, species that have 

both a gas- and particle-phase component exceeding the 0.1% threshold (N=3241 species) are included in both systems when 

gas- and particle-phase compounds are analyzed or discussed separately. 

Each compound is described by a SMILES string from which physicochemical properties could be estimated computationally. 230 

Most structure-based estimation methods involve a two-step process in which the SMILES notation is parsed into the chemical 

functional groups relevant to the method, then the impact of each group is combined. All structure-based estimation in this 

work was executed through publicly available online tools that performed both the parsing of the SMILES string as well as 

the computation of the properties, as described below. SMILES strings and estimated parameters are provided as 

Supplementary Data for all compounds used in this work (all ~182,000 compounds provided, with the most relevant 38,594 235 

denoted). 

 

2.2 Structure-based estimation of vapor pressure 

2.2.1 SIMPOL 

SIMPOL is a structure-activity relationship in which the subcooled liquid vapor pressure contributions of individual chemical 240 

functional groups are summed to generate a subcooled pure liquid vapor pressure (Pankow and Asher, 2008). No second-order 

interaction terms are included to account for neighboring functional groups. Two implementations of SIMPOL are publicly 

available: the GECKO-A online interface (http://geckoa.lisa.u-pec.fr/), and the Python package APRL Substructure Search 

Program, developed and made publicly available by Dr. S. Takahama (Ruggeri and Takahama, 2016). As of the time of 

publication, the GECKO-A online interface does not accept standard SMILES strings, requiring instead a modified notation 245 

that uses explicit hydrogens and a few other differences, making its widespread use somewhat more difficult. Both 

implementations of SIMPOL were compared as part of this work. While small differences are expected due to uncertainty in 

parsing SMILES notation and ambiguity in chemical functional group assignment, vapor pressures estimated by SIMPOL 

should ideally be nearly identical between implementations. In the case of decane and a-pinene oxidation products, these 

implementations were in excellent agreement (Figure S1). However, significant differences were observed in their estimations 250 
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of toluene oxidation products having complex molecular structures. To understand the differences observed for toluene 

oxidation products, SIMPOL was implemented manually for a random set of compounds that were observed to not agree, with 

results in Table S1. While some differences may be attributable to real errors in implementations, a larger uncertainty appears 

to be associated with needing to extrapolate beyond the functional groups identified within the SIMPOL SAR. For example, 

SIMPOL does not include the α-carbonyl peroxide (-C(=O)-O-O-R) functional group; while a peroxide group is included, 255 

carbonyls are included only as ketones and aldehydes, neither of which is an accurate description of this case. APRL treats this 

group as a peroxide, with no contribution from the carbonyl group, while GECKO-A treats this group as an ester-ether; little 

or no data exists to determine which approach is more accurate. This example points to a systematic limitation of SARs, and 

the inherent potential differences between implementations for complex atmospheric oxidation products.  

In the case of SIMPOL, manual investigation suggests that most differences between implementations could be traced to 260 

differences in the interpretation or extrapolation of the SAR for functional groups outside the prescribed bounds. Neither 

implementation was found to be clearly more suitable or faithful to the published SAR. The GECKO-A implementation of 

SIMPOL was used in this work because the online interface of GECKO-A provides a logistical benefit by implementing this 

method alongside multiple other structure-based parameter estimations. Results in this work are found to be relatively 

insensitive to the choice of implementation as they are nearly identical for decane and α-pinene oxidation products. 265 

2.2.2 EVAPORATION 

EVAPORATION is a structure-activity relationship for the estimation of subcooled liquid vapor pressure that includes vapor 

pressure contributions of individual chemical functional groups, as well as terms to account for interactions between 

neighboring groups (Compernolle et al., 2011). Currently, this method lacks terms to describe several less abundant but 

nevertheless atmospherically-relevant functional groups, including -NO2 and -C(=O)ONO2. For the purpose of this analysis, 270 

these groups were replaced by –ONO2 and -C(=O)OONO2 respectively, which are predicted to have similar impacts on vapor 

pressure based on SIMPOL (Section 2.2.1) and the Estimation Programs Interface Suite (EPI, Section 2.2.5). EVAPORATION 

currently also lacks a treatment of aromaticity, but this limitation has little impact on this dataset. Though toluene is aromatic, 

oxidation quickly breaks its aromaticity and fewer than 200 oxidation products contained aromatic carbon; aromatic carbons 

were replaced with aliphatic carbons for these compounds, which is expected to introduce bias of approximately half an order 275 

of magnitude for this small subset of compounds. 

As of the time of publication, two implementations of the EVAPORATION method are publicly available as online resources. 

A direct online interface is available through the Royal Belgian Institute for Space Aeronomy (hereafter referred to as “IASB”, 

found at https://tropo.aeronomie.be), the institution at which the SAR was developed. A separate implementation is available 

as part of the UManSysProp package for the estimation of a wide range of physicochemical and system parameters, developed 280 



10 
 

and published by researchers at the University of Manchester (Topping et al., 2016). UManSysProp is available both as a 

standalone Python package, and an online interface at http://umansysprop.seaes.manchester.ac.uk.  

Both the IASB and UManSysProp implementations of EVAPORATION were compared as part of this work in order to ensure 

that inclusion of this estimation method in this work is as faithful as possible to the published SAR. Though the comparison 

of these implementations shown in Figure S2 fell generally along a one-to-one line as expected, some significant differences 285 

were observed. Vapor pressures estimated for decane oxidation products were almost always nearly identical, but oxidation 

products of -pinene differed by approximately an order of magnitude for a large fraction of the tested compounds and toluene 

oxidation products differed significantly and variably for a substantial majority of compounds. To assess these differences, the 

EVAPORATION SAR was tested manually for a small set of compounds that differed between implementations. Values 

manually computed were found in most cases to be in reasonable agreement with the IASB implementation, but frequently 290 

differed from the UManSysProp implementation (Table S2). Not all differences in methods could be obviously explained by 

extrapolation beyond prescribed functional groups, but these differences nevertheless highlight the difficulties encountered in 

implementing a given SAR for highly diverse and complex molecular structure. This work relies on the IASB implementation 

for estimation of vapor pressures by the EVAPORATION method based on its agreement with manual implementation and 

the fact that this implementation is provided by the institution at which the SAR was developed. We note that the open-source 295 

nature of the UManSysProp package allows a user to understand and/or modify its source code, so future updates may impact 

these comparisons, but no attempt was made in this work to reconcile the two methods.  

2.2.3 Nannoolal 

Nannoolal and co-workers developed a group contribution method for the prediction of vapor pressure given the structure and 

boiling point of a molecule (Nannoolal et al., 2008). This method includes a substantially larger number of groups than either 300 

SIMPOL or EVAPORATION, encompassing a broader range of compounds including inorganic groups, and includes second-

order terms to account for interactions between neighboring groups. Boiling point can in turn be estimated from molecular 

structure using a group contribution method developed by Nannoolal and co-workers (Nannoolal et al., 2004). “Nannoolal” in 

this work refers to the estimation method using both the vapor pressure and boiling point group contribution methods developed 

by Nannoolal et al. Two implementations of Nannoolal are available through online interfaces, specifically using the GECKO-305 

A interface and the UManSysProp package. Some differences were observed between these implementations (Figure S3), 

similarly in scope and scale to the EVAPORATION comparison above. It is clear from the comparisons of Nannoolal and 

EVAPORATION implementations that estimation of vapor pressures for toluene oxidation products pose unique complexities. 

Due to the general similarity between implementations for the non-aromatic precursors and the use of the Nannoolal SAR as 

the default estimation method in the GECKO-A model itself, no further examination of the implementation in the two tools 310 

was undertaken.  In this work, Nannoolal refers to the GECKO-A implementation of this method. 
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2.2.4 Myrdal and Yalkowsky 

The vapor pressure estimation method developed by Myrdal and Yalkowsky consists of a group-contribution correction to a 

previous semi-empirical estimation method that relied only on boiling and melting points, as well as estimations of the entropy 

of boiling, entropy of melting, and heat capacity change upon boiling (Myrdal and Yalkowsky, 1997). In this modification, a 315 

small number of groups (fewer than a dozen) and molecular properties (e.g., rotational symmetry) are considered for their 

impacts to these three estimated physicochemical properties. For calculation of subcooled liquid vapor pressures, the terms 

considering temperatures and entropies of melting can be ignored. Consequently, vapor pressure estimation by the Myrdal and 

Yalkowsky method for this work depends only on molecular structure and boiling points.  

This work relies on the UManSysProp implementation of the Myrdal and Yalkowsky method, which allows estimation of 320 

boiling point by any of several methods. Where the Myrdal and Yalkowsky method are considered in this work, boiling points 

were estimated using the Nannoolal estimation technique (Nannoolal et al., 2004). Another implementation is available through 

the GECKO-A interface using the Joback and Reid boiling point group contribution estimation technique (Joback, 1984; Reid 

et al., 1987), with some modifications as described by Camredon et al. (2006). The Myrdal and Yalkowsky SAR has been 

shown previously to be comparable to, but somewhat less accurate and more biased, than the Nannoolal SAR when the 325 

Nannoolal boiling point estimation technique (Nannoolal et al., 2004) is used and substantially biased when Joback and Reid 

is used (Barley and McFiggans, 2010; O’Meara et al., 2014). The Myrdal and Yalkwosky method is therefore not included in 

most of the analyses in this work and the GECKO-A and UManSysProp implementations of this SAR are consequently not 

compared in detailed. 

2.2.5 EPI 330 

The U.S. Environmental Protection Agency makes available the Estimation Programs Interface Suite™ for the estimation of 

environmentally relevant parameters (US Environment Protection Agency, 2019), which includes a module (“MPBPVP”) for 

the estimation of vapor pressures and subcooled liquid vapor pressures using SMILES strings as inputs. This module uses the 

“Modified Grain Method” which estimates vapor pressure based on a near-unity structural factor and an estimated boiling 

point. Boiling point is in turn estimated using the Stein and Brown group contribution method (Stein and Brown, 1994), an 335 

extension of the Joback and Reid method (Joback, 1984; Reid et al., 1987). This approach includes group contributions for a 

wide variety of molecular structures, including a wide range of inorganic components. Estimation of vapor pressures by the 

EPI Suite is perhaps most common for estimating small numbers of vapor pressures due to its readily available implementation, 

though it has higher error than some other methods (e.g., Nannoolal) when compared against experimental data (Barley and 

McFiggans, 2010, wherein the method referred to as "SB/BK" closely approximates the EPI method). 340 



12 
 

2.3 Structure-based estimation of Henry’s law constant 

Two structure-based methods were considered in this work for the estimation of Henry’s Law Constants (HLCs). One method 

used here is “HWINb”, the bond contribution method implemented by the HENRYWIN module of the EPI Suite (US 

Environment Protection Agency, 2019). This method is similar to a group contribution method, but instead of using groups, 

individual bonds are considered with correction factors for different chemical classes (Hine and Mookerjee, 1975; Meylan and 345 

Howard, 1991). The other method used here is “GROMHE” (GROup contribution Method for Henry’s law Estimate), a group 

contribution method that also includes a group contribution term for the effect of hydration of carbonyls (Raventos-Duran et 

al., 2010). GROMHE is the HLC estimation method used by GECKO-A, which is the implementation used in this work. 

Previous work has suggested GROMHE to be more accurate than HWINb, but this conclusion was based on a relatively small 

amount of experimental data (<500 compounds) with relatively low HLCs (Raventos-Duran et al., 2010). We consequently do 350 

not assume the accuracy of one method over another and instead assume the variability between methods is due to uncertainty 

in structure-based estimation of HLC.  

2.4 Structure-based estimation of kOH 

Two structure-based methods were considered in this work for the estimation of kOH. Perhaps the most common method is that 

developed by Kwok and Atkinson, a group contribution method that includes additive terms for hydrogen abstraction from or 355 

radical addition to individual atoms or bonds (Kwok and Atkinson, 1995). An additional second-order term accounts for 

substituent effects on each atom. The implementation of this method used here is the AOPWIN module of the EPI Suite 

(Meylan and Howard, 1993; US Environment Protection Agency, 2019) . The other method used here is the group contribution 

method of Jenkin et al., which functions similarly to Kwok and Atkinson approach but with updated and extended coefficients 

(Jenkin et al., 2018). Jenkin et al. is the kOH estimation method used by GECKO-A, which is the implementation used in this 360 

work, and which is available through the GECKO-A online interface. 

2.5 Formula-based estimation of vapor pressure 

2.5.1 Daumit et al.  

Daumit and co-workers use a basic set of assumptions about the structures of atmospheric components to apply the SIMPOL 

estimation method in the absence of molecular structure (Daumit et al., 2013). Essentially, all oxygen atoms in a molecule are 365 

apportioned between hydroxyl and carbonyl groups based on the degree of unsaturation calculated from the H/C and O/C 

ratios. To accurately calculate degrees of unsaturation, an assumption must be made about the number of rings present in the 

molecule. We assume there to be no rings, as this is consistent with the majority of compounds in this dataset, but the need to 

make this assumption represents a general source of uncertainty in the Daumit et al. method. While Daumit et al. do not 

explicitly treat nitrogen, they note that the nitrate group is expected in SIMPOL to have a similar impact as the hydroxyl group. 370 

The carbonylperoxynitrate group, another major form of organic nitrogen in the atmosphere (e.g., peroxyacetylnitrate, PAN), 
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similarly has an impact comparable as its hydroxyl analog, the carbonylperoxyacid group. To explicitly extend this method to 

nitrogen, we make the assumption that nitrogen is predominantly present as nitrate groups and each nitrate group is treated as 

equivalent to a hydroxyl group; this assumption is reasonable for a system dominated by products of gas-phase oxidation, in 

which R-ONO2 compounds and peroxynitrates are the dominant source of organic nitrogen (Beaver et al., 2012; Lee et al., 375 

2016), but should be applied only cautiously to other systems. For every three oxygen atoms present in the formula, two oxygen 

atoms and one nitrogen atom is removed until all nitrogen has been removed. The resulting formula, in which all possible NO3 

groups have been formulaically converted to OH, are treated as per Daumit et al. As an example, the formula C8H15O6N, 

interpreted as containing one nitrate group, one carbonyl, and two hydroxyl groups, would be treated as C8H16O4, interpreted 

as containing one carbonyl, and three hydroxyl groups. In environments in which nitrogen is present in forms other than nitrate, 380 

Daumit et al. lacks an explicit mechanism for considering nitrogen. An additional limitation of this approach is that while 

certain groups can be approximated as a combination of carbonyl and hydroxyl oxygens, others may be poorly described in 

this way. For example, the vapor pressure contribution of a carboxylic acid is estimated to be similar to that of a ketone or an 

aldehyde plus a hydroxyl group, but a hydroperoxide has a substantially lower impact than that of two hydroxyl groups.  

2.5.2 Modified Li et al. (“molecular corridors”) 385 

The formula-based approach for the estimation of vapor pressures developed by Li et al. as part of their work on “molecular 

corridors” uses empirical coefficients to quantify the impact of each atom on vapor pressure, with a minor term for interactions 

between carbon and oxygen (Li et al., 2016; Shiraiwa et al., 2014). Formulas are first categorized by their component elements, 

with a separate set of coefficients for e.g., CHO formulas vs. CHON formulas. This method was developed by multi-linear 

regressions against a training set of vapor pressures estimated by the EPI Suite. As with any empirical method, it is to some 390 

extent limited to the compound classes on which it was trained and can only be as accurate as the SAR estimation method with 

which it was developed (EPI). Most notably, despite the relative prevalence of organic nitrates (R-ONO2) in the atmosphere 

(Lee et al., 2016), few such compounds exist in the CHON training set used by Li et al. Of the 13,628 CHON compounds used 

to build the relationship, only 9 (0.07%) are organic nitrates and 750 (5.5%) are organic nitro compounds, which have a similar 

impact on vapor pressure; all other included compounds represent amines, amides, amino acids, and other groups that contain 395 

C-N bonds, which are expected to have a very different impact on vapor pressure. Consequently, application of the Li et al. 

formula-based estimation technique to compounds containing nitrates is expected to be significantly biased. We test this 

hypothesis here in order to apply this method more accurately to the dataset. 

Comparison of vapor pressures estimated by Li et al. to vapor pressures estimated for the same compound using structure-

based methods (Figure S4) demonstrates significant biases that increase with the number of nitrogen atoms, which in this 400 

dataset are almost wholly contained in nitrate, nitro, and peroxynitrate groups. To address this bias we propose two similar 

possible approaches based on the observation that a nitrate group (NO3) has a similar impact on vapor pressure as a hydroxyl 

group (OH), and thus each nitrogen has the effect of canceling the effect of two oxygen atoms. Either the nitrogen coefficient 
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for CHON formulas can be forced to equal twice the negative of the oxygen atom (bN = -2*bO), or the formula used to estimate 

vapor pressure can be amended to convert all potential nitrate groups into hydroxyl groups as described in the implementation 405 

of Daumit et al. Both approaches are shown in Figure S4 to similarly remove the nitrogen-dependent bias and are generally 

equivalent in this dataset. In mixed environments in which functionalized amines and organonitrates may co-exist, 

formulaically converting nitrate groups to hydroxyl groups may be preferred in order to more accurately treat nitrogen in 

excess of potential nitrate groups (i.e. in cases where the number of nitrogens is greater than the number of sets of 3 oxygens). 

However, given the nitrate-dominated nature of this dataset, for simplicity we use a Modified Li et al. method in which bN = -410 

2*bO.  

2.5.3 Donahue et al. 

A relatively simple formula-based estimation method is provided by Donahue et al. (2011), relying only on carbon and oxygen 

number. This method represents a general relationship based on average expected trends in the structures of atmospheric 

components. It cannot be easily extended to nitrogen-containing formulas, so they are excluded from analyses using this 415 

approach in the present work. 

2.6 Formula-based estimation of Henry’s law constant 

To the best of our knowledge, no explicit method for formula-based estimation of Henry’s law constant (HLC) has been 

published. However, explicit modeling of gas phase oxidation has previously shown a relationship between HLC and vapor 

pressure for organic species of atmospheric interest (Hodzic et al., 2014; Lannuque et al., 2018). Given the previously 420 

demonstrated feasibility of formula-based estimation of vapor pressure, this suggests formula-based estimation of HLC is 

possible, at least for compounds with shared characteristics (e.g., multi-functional atmospheric oxidation products). 

2.7 Formula-based estimation of kOH 

In separate work from their formula-based vapor pressure estimation, Donahue and co-workers (Donahue et al., 2013) have 

developed a formula-based approach to the estimation of gas-phase OH reaction rates (kOH). The equation they provide is 425 

roughly based on the observations that as carbon number increases, available hydrogens for OH abstraction also increase, and 

as oxygen number increases, hydrogens become easier to abstract but there is a decrease in the number of abstractable 

hydrogens. Donahue et al. recognize it only as a rough approximation and not a particularly robust estimation method, a 

conclusion consistent with results in this work. 

2.8 Summary 430 

Given the large number of methods employed in this work, we summarize below alongside the notation hereafter used in this 

work. 
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Structure-based estimation of vapor pressure: 

 “SIMPOL” – calculated from SIMPOL as implemented by GECKO-A 

 “EVAPORATION” – calculated from EVAPORATION as implemented by the Royal Belgian Institute for Space 435 

Aeronomy (“IASB”) 

 “Nannoolal” – calculated based on Nannoolal et al. (2008) using boiling points estimated by Nannoolal et al. (2004), 

as implemented by GECKO-A 

 “Myrdal and Yalkowsky” – calculated based on Myrdal and Yalkowsky (1997) using boiling points estimated by 

Nannoolal et al. (2004), as implemented by the UManSysProp Python package 440 

 “EPI” – calculated by the EPI Suite, an implementation of the Modified Grain Method using boiling points estimated 

by Stein and Brown (1994). 

Structure-based estimation of Henry’s Law Constant: 

 “HWINb” – calculated by the EPI Suite, using the bond contribution method of the HENRYWIN module 

 “GROMHE” – calculated with the GROMHE group contribution method, as implemented by GECKO-A 445 

Structure-based estimation of kOH: 

 “Kwok and Atkinson” – calculated based on Kwok and Atkinson (1994) method, as implemented by the AOPWIN 

module of the EPI suite 

  “Jenkin” – calculated based on Jenkin et al. (2018a, 2018b), as implemented by GECKO-A 

Formula-based estimation of vapor pressure: 450 

 “Daumit” – calculated based on Daumit et al. (2013), with consideration for nitrates 

 “Modified Li” – calculated based on Li et al. (2016), with modified nitrogen coefficient 

 “Donahue” – calculated based on Donahue et al. (2011), not used for nitrogen-containing formulas 

Formula-based estimation of Henry’s Law Constant: 

 None previously published 455 

Formula-based estimation of kOH: 

 “Donahue” – calculated based on Donahue et al. (2013), not used for nitrogen-containing formulas 
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3 Results 

3.1 Isomer differences for vapor pressures 460 

A primary objective of this work is to understand typical differences in estimated vapor pressures between isomers. We 

evaluate these differences here by calculating the average difference in the vapor pressure of any two isomers of a given 

formula estimated by a given structure-based method. For each formula containing n isomers, (n*(n-1)/2) distinct pairs of 

isomers can be counted. For each possible pair of isomers i and j, the absolute difference in the estimated log vapor pressure 

is computed as Δp = |log(pi) – log(pj)|. The average difference in vapor pressure among isomers of a given formula (denoted 465 

<Δp>formula  hereafter) is then computed as the average of the Δp obtained for all pairs of a given formula. For all five structure-

based vapor pressure estimation methods included in this work, <Δp>formula is relatively evenly distributed between 0 and 2 log 

units (Figure 1a). The overall average of <Δp>formula is between 0.8 and 1.0 log units across all five estimation methods, 

indicating that the central tendency is for two isomers to differ by approximately one log unit in vapor pressure. The distribution 

of <Δp>formula depends on the oxidation system studied, as is clear from the breakdown of distributions by precursor and phase 470 

shown for Nannoolal in Figure 1b; the trends observed for Nannoolal are generally representative of the other four methods, 

shown as Figures S6 and S7. Estimated vapor pressures of isomers are more similar for decane oxidation products (<Δp>formula 

≈ 0.5 log units), and less similar for toluene oxidation products (<Δp>formula~1.5 log unit), with a-pinene oxidation products in 

between (<Δp>formula≈ 1 log unit). Phase of the compound also has some impact, with somewhat higher <Δp>formula for formulas 

abundant in the particle phase. Note that the components are distinguished as gas- and particle-phase based on their abundance 475 

in either phase – a minor fraction of species is represented in both datasets.  This phase dependence in the estimated differences 

in isomer vapor pressures is likely influenced by two complementary issues in applying SARs to this dataset: (a) phase serves 

as a proxy for volatility, and (b) given that all compounds are products of the same precursors, volatility is decreased primarily 

by the addition of functional groups and so is a proxy for increased functionality. Consequently, the increased variability in 

estimated vapor pressures of particle-phase isomers may be due part to the need to extrapolate the SARs toward lower volatility 480 

and higher functionality, farther from their well-constrained domains.  

The <Δp>formula metric obscures some of the larger individual differences between isomer pairs. The complete cumulative 

frequency distribution of Δp is shown in Figure 1c for all isomer pairs. While 50% of Δp values differ by less than 1 log unit, 

a long tail indicates that in many cases isomers may differ by up to around 3 log units (or, rarely, 4 or 5 log units) in their 

estimated vapor pressures. These trends are relatively robust, exhibited across all five tested estimation methods. The various 485 

oxidation systems (Figure 1d) vary in their Δp cumulative frequency distribution in qualitatively similar ways as their 

distributions of <Δp>formula: toluene oxidation isomers differ substantially more in their vapor pressures than the isomers in 

other systems, and gas-phase isomers are slightly less variable in their estimated vapor pressures than particle-phase isomers.  
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It is consequently difficult to provide a single number to characterize the typical <Δp>formula values due to the wide distribution, 

variabilities between systems, and differences between methods. However, it is a reasonable overall summary that vapor 490 

pressures of isomers estimated by most structure-based methods differ by between 0.5 and 3 log units, with a central tendency 

of ~1 log unit. Estimation methods typically agree about the range of <Δp>formula, but it is sensitive to the oxidation system 

being studied. Similar to phase-dependence, system-dependence may be due in part to varying degrees of extrapolating each 

SAR to functional groups or intramolecular interactions not captured in their development. 

 495 

 

Figure 1. Differences in vapor pressure between isomers. (a) Distribution of <Δp>formula, the average difference between 
vapor pressures of isomers of a given formula for the five structure-based estimation methods examined, with (b) the 
same distribution broken out by oxidation system for the Nannoolal method. Average values of each distribution are 
provided in parentheses. (c) Cumulative probability distribution of Δp, the difference between any two isomers of a 500 
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given formula for the five structure-based estimation methods examined, with (d) the same distribution broken out by 
oxidation system for the Nannoolal method. The other four methods are shown in Figures S6-S7. 

Though one log unit (a factor of 10), is a substantial difference in vapor pressures, it must be placed in the context of our ability 

to estimate the parameter. In other words, if estimation methods differ by more than this for a given species, details of the 

molecular structure are less important than which estimation method is used, so knowing the molecular structure would not 505 

substantively improve the estimate. In the Supplementary Information we compare EPI, Myrdal and Yalkowsky, SIMPOL and 

EVAPORATION versus Nannoolal estimation methods both as scatter plots (Figure S8), and histograms of the difference 

between two methods (Figure S9). The Myrdal and Yalkowsky (using Nannoolal boiling point estimation) and EPI methods 

estimate substantially higher vapor pressures for low-volatility oxidation products than the other three methods, consistent 

with previous work (Compernolle et al., 2011). This trend is in agreement with previous work that has shown overestimation 510 

of vapor pressures, particularly at lower vapor pressures, by the Myrdal and Yalkowsky method and the Stein and Brown 

method upon which EPI is based (Barley and McFiggans, 2010). In turn, Nannoolal estimates somewhat lower vapor pressures 

than SIMPOL and EVAPORATION for low-volatility compounds, but to a lesser extent. Similar trends between SIMPOL, 

Nannoolal, EVAPORATION, and Myrdal and Yalkowsky have been previously shown for the oxidation products of -pinene 

(Compernolle et al., 2011; Valorso et al., 2011). There is no sufficiently large database of known vapor pressures to know 515 

which of these methods is most accurate in these regions. We instead assume that the best available estimate for the vapor 

pressure of a compound is the average of the SIMPOL, Nannoolal, and EVAPORATION estimates. This assumption is based 

in large part on previous work demonstrating agreement between Nannoolal and experimental data (Barley and McFiggans, 

2010; O’Meara et al., 2014), and the similarity of the other two methods (SIMPOL and EVAPORATION) to Nannoolal. The 

EPI and Myrdal and Yalkowsky methods are treated as outliers based on their bias relative to experimental data (shown by 520 

Barley and McFiggans, 2010 and O’Meara et al., 2014). By averaging the vapor pressures estimated for each compound with 

Nannoolal, SIMPOL and EVAPORATION methods, we mitigate any biases present in any one method. The average of these 

three methods provides an average structure-based estimate for a given species, denoted here as �̅�. The methods treated here 

are of course not exhaustive, but these three methods represent several of the most widely used methods in the field, perform 

well in comparison to experimental data, and rely on completely independent parameterizations. Other methods that perform 525 

well in prior reviews (Barley and McFiggans, 2010; O’Meara et al., 2014), such as the Lee-Kesler method, are not included 

here either because they are not widely used within the atmospheric field and/or they use the Nannoolal boiling point estimation 

method (2004) and consequently do not represent a truly independent source of bias or error.  

To understand precision in structure-based estimation, we quantify the differences between methods in the predicted property 

of a given species. For each compound, the vapor pressure is estimated using the three selected methods above. We denote 530 

Δmp as the absolute difference in estimated vapor pressure of a given species between any 2 methods q and r ( Δmp = |log(mp,q) 

– log(mp,r)| ) and <Δmp> as the average value for the 3 possible combinations. The <Δmp> frequency distribution is shown in 

Figure 2a-b; it is important to note that these distributions are strongly sensitive to the set of methods that are 
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included/excluded. For gas-phase components, Δmp for the three test methods is within one log unit, with <Δmp> around 0.5 

log units. This is in reasonable agreement with reported uncertainties for each individual method. Estimation methods appear 535 

to have somewhat less skill for particle-phase atmospheric oxidation products, as expected due to their farther extrapolation 

from experimental constraints. For lower-volatility compounds, <Δmp> is around 1 log unit, with most compounds within 2 

log units in estimated vapor pressure. Note that for both gas- and particle-phase compounds, toluene oxidation products again 

tend to differ more in their estimated vapor pressures. In other words, while isomers for this system have higher vapor pressure 

differences, models are also less reliable at estimating this property; these facts may be related (high uncertainty in estimation 540 

may contribute to larger differences between isomers) and may point to a lack of experimental constraints on group 

contributions of the functionalities formed from oxidation of an aromatic compound. 

The difference in the variability between estimates for gas- versus particle-phase components is primarily a function of 

differences in volatility. This issue is qualitatively observed in the direct comparison between methods shown in Figure S8, in 

which methods diverge at lower vapor pressure, but we examine this issue more explicitly here.  Figure 2c shows <Δmp> as a 545 

function of average vapor pressure, �̅�, for all species and methods considered here; averages (and standard deviations) of ten 

bins of equal points each (deciles) are shown to make trends clear. At higher vapor pressures, differences between methods 

remain under 1 log unit, while this increases substantially at the lowest vapor pressures (and oxidation products decane and a-

pinene always have lower <Δmp> than those from toluene). As discussed above in the case of isomer variability, this increasing 

<Δmp> at low volatility is likely an indication of increased uncertainty for compounds that are well below the volatility range 550 

with which these SARs were constrained, and volatility in this dataset acts in part as a proxy for functionality. The decrease in 

vapor pressure caused by each functional group is of course uncertain, so methods diverge as number of functional groups 

increase and volatility decreases (Valorso et al., 2011). 

As in our discussion of vapor pressure differences between isomers, it is difficult to provide a single number to characterize 

the skill of these methods in estimating vapor pressure from a molecular structure. It is a reasonable overall summary that 555 

higher vapor pressures can be estimated within 1 log unit, with a central tendency of ~0.5 log unit. This <Δmp> range is 

somewhat smaller than typical differences between isomers, <Δp>formula. We estimate that the effect of isomers is 0.5-1.5 log 

units greater than the variability between estimation methods for high-to-moderate vapor pressures. At lower vapor pressures 

however, <Δp>formula is not substantially larger than <Δmp>, so the impact of structure is less than variability in estimation 

methods. Both conclusions are likely insensitive to the specific assumptions about which methods to include in this 560 

comparison, as the uncertainty in most estimation methods is generally lowest for high volatility compounds and high for low 

volatility compounds. However, the transition vapor pressure below which differences between isomers are lost in the 

uncertainty of these methods is sensitive to the methods included in the comparison. For the three methods included in this 

comparison, the transition can reasonably be considered to be in the range of 10-10 to 10-12 atm (c* ≈ 10-2.5 to 10-0.5 μg/cm3), 

where the average difference between methods, <Δmp>, is approximately equal to the average difference between isomers, 565 
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<Δp>formula (~1 log unit). This suggests that the difference in vapor pressures between isomers is likely relevant for estimating 

vapor pressures of semivolatile oxidation products – those that can partition back and forth between the gas and particle phases 

under typical atmospheric conditions (roughly c* ≈ 10-0.5 to 102.5 μg/cm3 per Donahue et al. (2009, 2011).  

 

 570 

Figure 2. Differences in vapor pressures between the Nannoolal, SIMPOL, and EVAPORATION estimation methods. 
(a) Distribution of <Δmp>, the average difference between vapor pressures estimated for a given compound in the (a) 
gas and (b) particle phase, which each oxidation system shown in a different lightness. Average values of each 
distribution are provided in parentheses. (c) Distribution of <Δmp> as a function of vapor pressure (as average vapor 
pressure of a species, 𝒑ഥ), broken out by oxidation system. Red dots are individual species, larger markers and error 575 
bars are the average and standard deviation of deciles. (d) Cumulative probability distribution of Δmp, the difference 
between any two methods for given species. 
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3.2 Estimation of vapor pressure by formulas 

The above analysis indicates that isomers are sufficiently different between their estimated vapor pressures that structure 580 

should be taken into account when estimating this parameter. However, due to the increasing use of mass spectrometric 

instruments that measure atmospheric constituents by their formulas with no accompanying structural information, there is an 

increasing need to estimate vapor pressure and other parameters by formula only. Formula-based estimation will necessarily 

be more uncertain as it relies on less information (i.e., lacks molecular structure). A goal of this work is to assess the precision 

of current formula-based estimation approaches. For each formula, an average estimated vapor pressure of a formula (denoted 585 

�̅�୭୰୫୳୪ୟ) is computed as the average, �̅�, of all isomers of that formula. �̅�୭୰୫୳୪ୟ therefore represent a “composite structure-

based estimate” of the vapor pressure using the three structure-based methods (i.e. SIMPOL, Nannoolal, EVAPORATION) 

and all isomers. Including all isomers and all methods in the average of each formula provides the most direct possible 

comparison between formula- and structure-based estimation, mitigating bias introduced by any one structure-based estimation 

method or uncertainties driven by any one isomer. The standard deviation of this average, σP, also provides an estimate of the 590 

range of the vapor pressures that species of a given formula may be estimated to have. This range represents the variability in 

estimated vapor pressure driven by differences in molecular structure, accounting for both differences between isomers and 

between SARs, and thus provides an estimate of the maximum precision of an estimation method that ignores structure. 

Assuming an approximately normal distribution, ~68% of isomers of a formula are expected to have a vapor pressure within 

the range of [�̅�୭୰୫୳୪ୟ - σP, �̅�୭୰୫୳୪ୟ + σP] and ~95% of estimates falling within two standard deviations. The precision of the 595 

three formula-based estimation methods (Daumit, Modified Li, and Donahue) is assessed by comparing their estimated vapor 

pressure with �̅�୭୰୫୳୪ୟ (Figure 3). An unbiased formula-based estimation would be expected to fall along a 1:1 line, with two-

thirds of estimates falling within the expected range of [�̅�୭୰୫୳୪ୟ - σP, �̅�୭୰୫୳୪ୟ + σP] 
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 600 

Figure 3. Comparison between average vapor pressure of a formula 𝒑ഥ𝐟𝐨𝐫𝐦𝐮𝐥𝐚 (average of all methods and all isomers, 
see text) and the formula-based estimate using the (a) Daumit method, (b) Li method, modified to remove its bias for 
nitrates, (c) Donahue method and (d) Average of Daumit and modified Li methods. Each formula is represented as an 
open circle at 𝒑ഥ𝐟𝐨𝐫𝐦𝐮𝐥𝐚, with light-gray bars representing standard deviation of the average, σP, to indicate the 
approximate range. Insets are distributions of z-scores for each method, calculated as difference between formula-605 
based method and 𝒑ഥ𝐟𝐨𝐫𝐦𝐮𝐥𝐚, relative to the standard deviation of 𝒑ഥ𝐟𝐨𝐫𝐦𝐮𝐥𝐚. (e) Distribution of error from applying the 
average Daumit-Li method to any given compound, with each oxidation system shown in a different lightness (gas and 
particle phases combined). Average values of each distribution are provided in parentheses. 

Biases and uncertainty in the three formula-based estimation techniques can be understood in the context of their development. 

All three methods demonstrate relatively high skill at predicting the estimated vapor pressures for more volatile components, 610 

where isomer differences are lower and structure-based estimation methods tend to agree due to better constraints. The 

formula-based methods diverge from each other and from the composite structure-based estimate at lower vapor pressures. 

The Daumit method (Figure 3a) tends to estimate lower vapor pressures than expected, which is predictable upon closer 

inspection of this method. Daumit treats all oxygen as a combination of hydroxyl and carbonyl groups, which is reasonable in 

some cases (e.g., carboxyl acids). In cases where this approximation does not hold, it is generally true that the decrease in 615 

vapor pressure caused by a functional group is less than sum of its component oxygens. For example, peroxides have relatively 

little impact on vapor pressure but will be treated as two hydroxyl groups as discussed above in section 2.5.1. As the number 
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of groups increases, vapor pressure decreases “faster” than it should, leading to a low bias in the Daumit method. Conversely, 

the Li method (implemented here with a modified nitrogen coefficient) is based on vapor pressures calculated by the EPI 

method, which tends to estimate higher vapor pressures for low-volatility species (Figure S8). Consequently, the Li method 620 

follows the same trend, estimating higher-than-expected vapor pressures at low vapor pressures (Figure 3b). The Donahue 

method (Figure 3c) roughly follows but exceeds the biases of the Daumit method as it is based on simpler assumptions about 

molecular structure (and cannot treat nitrogen-containing components). In general, the formula-based estimations from all 

three methods fall well outside the range of �̅�୭୰୫୳୪ୟ. Distributions of z-scores are shown as insets, calculated as the difference 

between the formula-based estimate and �̅�୭୰୫୳୪ୟ, relative to the standard deviation of �̅�୭୰୫୳୪ୟ, i.e., z-score = (p-�̅�୭୰୫୳୪ୟ)/σP. 625 

Observed z-scores are usually greater than 1 and frequently approach 4 (see distribution in Figure 3), indicating that the vapor 

pressures estimated from formula-based method is several standard deviations away from the structure-based �̅�୭୰୫୳୪ୟ. 

An interesting (though likely coincidental) conclusion from this analysis is that the Daumit and Modified Li methods are biased 

from the composite structure-based estimate by roughly equal but opposite amounts. Consequently, an average of these two 

methods (Figure 3d) provides a relatively accurate estimate of the vapor pressure of a formula. An ideal formula-based 630 

approach cannot be more accurate than the actual variability in �̅�୭୰୫୳୪ୟ, so should produce a normal distribution of error. The 

combined Daumit-Li method exhibits little to no bias, with 57% of estimates within one standard deviation, 80% within two 

standard deviations. This distribution is only a little broader than ideal (i.e., longer tails of high error), so this formula-based 

estimation method can reproduce the structure-based estimate almost as precisely as possible. Other approaches may be 

possible to achieve these results (e.g., refitting coefficients for the Li method), but no such effort is attempted here as they are 635 

unlikely to substantially improve on the precision of this formula-based method, and are no less empirical than combining 

existing empirical methods. 

These results demonstrate that formula-based parameter estimation can provide a representative estimate of vapor pressure for 

a given formula, i.e., typical of a large mixture of isomers. However, error in this approach increases if used to estimate the 

vapor pressure of an individual compound. The difference between the formula-based and structure-based estimate of vapor 640 

pressure for a given molecule is frequently several orders of magnitude (Figure 3e), even if using the lowest-error method (the 

average of the Daumit and Modified Li methods). This error is significantly higher in the case of toluene oxidation products, 

further supporting the conclusion that estimating vapor pressure for these compounds is particularly challenging. Error in 

estimating the vapor pressure of an individual molecule using only its formula is approximately the same as <Δp>formula, the 

difference in vapor pressures between isomers (i.e., Figure 1a compared to Figure 3e). This level of error is expected for an 645 

optimal formula-based method, as the lack of structural information as an input means the formula-based method does not 

distinguish between isomers so cannot be more precise than differences between them. Considering the average and 

distribution of error, the combined Daumit-Li method (modified to consider nitrates) appears to represent a nearly optimal 

approach to estimating vapor pressure from a molecular formula. 
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 650 

3.3 Isomer differences for Henry’s law constant 

Like vapor pressure, estimation of HLC can be critical for estimating the partitioning of an atmospheric organic species 

between vapor and condensed phases. We consequently seek here to address the same issue: whether differences in the 

estimated HLC of isomers are larger than the differences between SARs.  

Similar to Δp and <Δp>formula above, ΔHLC and <ΔHLC>formula denote here the absolute difference in estimated HLC of any 655 

isomer pair and the average value of all possible pairs of a given formula, respectively. Isomers are observed to substantially 

differ in their estimated HLC. Using HWINb, <ΔHLC>formula is less than 3 orders of magnitude, with an overall average of 

approximately 1.5 log units (Figure 4a). This is slightly lower than the estimate from GROMHE, for which <ΔHLC>formula is 

less than 4 orders of magnitude, with an overall average of approximately 2 log units. Average variability again obscures the 

more extreme cases observed across all isomer pairs. The distribution of ΔHLC for all possible isomer pairs is shown in figure 660 

4b. ΔHLC sometimes reach up to 4 or 5 log units (Figure 4b). These estimates suggest that <ΔHLC>formula is typically ~1 log 

unit larger than <Δp>formula, and up to several log units more in extreme cases. This may be due in part to the relatively high 

uncertainty in estimating HLC relative to estimating vapor pressure (Hodzic et al., 2014; Wang et al., 2017), as the high 

uncertainty may contribute to larger variability between estimates for isomers. 

For a given species, HLC estimated with GROMHE and HWINb frequently differ by several orders of magnitude (Figure 4c-665 

d, additional comparisons in Figure S10). We denote the difference between HLC estimation methods for a given species as 

<ΔmH>. As observed for <Δmp>, the differences in vapor pressure estimation methods, <ΔmH> is largest for particle-phase 

components, especially for the toluene oxidation system, similarly due in part to the uncertainty inherent in extrapolating these 

SARs to high HLC and multiple functional groups. Based on <ΔmH>, it is a reasonable summary of these data that estimates 

of HLC agree between methods to within 2 log units, with a central tendency of ~1 log unit. Overall <ΔHLC>formula is generally 670 

~1 log unit higher than variability between estimation methods, similar to the case of vapor pressure. 
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Figure 4. Differences in Henry’s Law Constant (HLC) between isomers and methods. (a) Distribution of <ΔHLC>formula, 
the average difference between HLC of isomers of a given formula for the two structure-based estimation methods 675 
examined. (b) Cumulative probability distribution of ΔHLC, the difference between any two isomers of a given formula 
for the two methods examined. (c-d) Distribution of absolute differences between structure-based estimates of HLC for 
a given compound. In the (c) gas and (d) particle phase, which each oxidation system shown in a different lightness. 
Average values of each distribution are provided in parentheses. 

3.4 Estimation of Henry’s law constants by formulas 680 

Similar to �̅�୭୰୫୳୪ୟabove, a composite structure-based estimate, 𝐻𝐿𝐶തതതതതത
୭୰୫୳୪ୟ, was computed for each formula as the average 

value of HLC estimated with both GROMHE and HWINb and for all isomers with that formula. Given the relationship (in log 

space) observed between vapor pressure and HLC in previous studies (Hodzic et al., 2014; Lannuque et al., 2018), formula-

based estimation of HLC is expected to be achievable. We apply that concept here through a simple linear regression (Figure 
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5a) between �̅�୭୰୫୳୪ୟ and 𝐻𝐿𝐶തതതതതത
୭୰୫୳୪ୟ, (i.e., estimated parameter for a formula calculated as the average for all isomers using 685 

all structure-based estimation methods). These parameters are observed to have a linear relationship (R2 = 0.75) of the form 

log(𝐻𝐿𝐶തതതതതത
୭୰୫୳୪ୟ) = -1.15 log(�̅�୭୰୫୳୪ୟ) – 0.78, where �̅�୭୰୫୳୪ୟ is in units of atm and 𝐻𝐿𝐶തതതതതത

୭୰୫୳୪ୟ is in units of M/atm. This 

equation (shown as a purple line in Figure 5b) also effectively describes the relationship between 𝐻𝐿𝐶തതതതതത
୭୰୫୳୪ୟ and its vapor 

pressure estimated using the average of the Modified Li and Daumit methods. Estimation of HLC in the absence of any 

structural information (i.e., from formulas alone) is consequently in good agreement with the average estimated HLC of a 690 

formula: exhibiting little bias, within one standard deviation of 𝐻𝐿𝐶തതതതതത
୭୰୫୳୪ୟ 57% of the time, and two standard deviations 80% 

of the time (Figure 5c). As in the case of vapor pressure, estimating HLC of a single species using its formula is less reliable, 

with errors up to 6 orders of magnitude (Figure 5d). The relationship between estimated HLC and estimated vapor pressure is 

again approximately as precise as possible for a formula-based method for the estimation of HLC (as in the case of vapor 

pressure estimation, there is a longer tail of high error than expected for an ideal normal distribution). Formula-based estimation 695 

of HLC therefore appears reasonably precisely capture the estimated HLC of a typical mixture of isomers. However, the 

average relationship described by this linear fit is necessarily a function of data with which it was generated and previous work 

found the slope to vary depending on the oxidized precursor (Hodzic et al., 2014). Consequently, while the relationship shown 

in Figure 5 represents a reasonable formula-based approach to estimating HLC for a complex mixture of atmospheric oxidation 

products (moderate-to-low volatility, with multiple functional groups), it should not be extended to other systems (e.g., large, 700 

non-polar compounds) without further investigation. 
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Figure 5. Comparison between 𝑯𝑳𝑪തതതതതത
𝐟𝐨𝐫𝐦𝐮𝐥𝐚 (average HLC of all methods and all isomers) and (a) 𝒑ഥ𝐟𝐨𝐫𝐦𝐮𝐥𝐚, the average 

vapor pressure of a formula with best fit line shown, and (b) the estimated vapor pressure using the formula-based 
average Daumit-Li method estimate, with same fit line shown in purple. (c) Comparison between 𝑯𝑳𝑪തതതതതത

𝐟𝐨𝐫𝐦𝐮𝐥𝐚 and the 705 
HLC estimated from vapor pressure calculated from the Daumit-Li method using the best-fit equation shown in panel 
(a). . Each formula is represented as an open circle at 𝑯𝑳𝑪തതതതതത

𝐟𝐨𝐫𝐦𝐮𝐥𝐚, with light-gray bars representing standard deviation 
of the average, σP, to indicate the approximate range. (d) Distribution of error from applying this method to any given 
compound, with all oxidation system combined, average value provided in parentheses. 

3.5 Estimation of kOH  710 

The last physicochemical parameter we examine in this work is the rate constant for the reaction between a gas-phase organic 

compound and the OH radical, kOH. The variability in rate constants is also substantially lower for kOH than for other 

parameters, with nearly all molecules having a rate constant between 10-12 and 10-10 cm3 molec-1 s-1 (as opposed to many orders 

of magnitude for vapor pressure and HLC). As opposed to the absolute differences in log terms used for the other parameters, 
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comparisons are consequently more reasonably quantified in terms of relative difference, i.e., Δk =|kOH,i-kOH,j|/kOH,i, where i in 715 

this work refers to Jenkin and j refers to Kwok and Atkinson. Both methods selected here for structure-based estimation of this 

parameter (Jenkin; Kwok and Atkinson) agree that the average difference between isomers, <Δk>formula, is approximately a 

factor of two to three (100-200% relative difference, Figure 6a). In contrast, the two methods tend to differ by only 25-50% 

(Figure S11, 75% for toluene products). Differences in the estimated kOH of isomers are therefore significantly larger than 

apparent variability in their estimation. Similar to vapor pressure and HLC, for each formula, we compute a composite 720 

structure-based average 𝑘ത୭୰୫୳୪ୟ as the average of both methods for all isomers of a given formula. Due to the relatively narrow 

range of possible kOH, and the significant variability between isomers, 𝑘ത୭୰୫୳୪ୟ is not particularly variable across formulas. 

Most formulas containing only carbon, hydrogen, and oxygen have estimated rate constants in the range of 2-4 x 10-11 cm3 

molec-1 s-1, with an overall average of 2.8 x 10-11 cm3 molec-1 s-1 (Figure 6b). Formulas also containing nitrogen (roughly two-

thirds of formulas, primarily nitrates and peroxynitrates in this dataset) have an estimated OH reaction rate constant of 725 

approximately half this, with a tight distribution centered around an average of 1.4 x 10-11 cm3 molec-1 s-1. These distributions 

indicate that for any given formula, assuming a constant kOH within a formula class is almost always accurate to within a factor 

of 2. It is important to note that, given the dataset used in this work to calculate these distributions and averages, these results 

apply only to atmospheric oxidation products and are not directly applicable to directly emitted compounds or other 

atmospheric constituents. 730 

In contrast to the low variability observed for 𝑘ത୭୰୫୳୪ୟ the formula-based estimation method developed by Donahue spans a 

larger range and typically overestimates kOH (Figure 6c). No correlation is observed between reactivity, 𝑘ത୭୰୫୳୪ୟ, and vapor 

pressure, �̅�୭୰୫୳୪ୟ (Figure 6d, R2 = 0.15 within a formula class, R2 = 0.02 in the combined dataset), consistent with results 

reported by Lannuque et al. (2018) also showing no clear trend between kOH and p.  This is in contrast to the Donahue method, 

which does predict a strong correlation between these properties (Figure S5, R2 = 0.80). However, Figure 6d does demonstrate 735 

some trends that are in rough agreement with the broad conclusions Donahue et al. (2011) put forth in the manuscript 

developing their method: higher volatility compounds react somewhat slower, moderate volatility compounds have rate 

constants around 3x10-11 cm3 molec-1 s-1, and lower volatility compounds have slightly higher reaction rates but are likely to 

partition to the particle phase and therefore not react quickly with OH. 
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 740 

Figure 6. (a) Differences in kOH between isomers for the two structure-based estimation methods examined. (b) 
Distribution of 𝒌ഥ𝐟𝐨𝐫𝐦𝐮𝐥𝐚, the average kOH for a given formula calculated as average of both methods for all isomers, 
shown separately for formulas with and without nitrogen with average value provided in parentheses. (c) Comparison 
of formula-based Donahue estimate to 𝒌ഥ𝐟𝐨𝐫𝐦𝐮𝐥𝐚; dashed lines are 1:1, 1:2, 1:3, etc. (d) Comparison of average kOH (𝒌ഥ) 
to average vapor pressure (𝒑ഥ𝐟𝐨𝐫𝐦𝐮𝐥𝐚) for a given formula, separated into formulas with and without nitrogen. Trend 745 
lines (R2 = 0.15) shown in the same colors, with trendline for combined set (R2 = 0.02) shown as dashed black line. (e) 
Z-scores of each formula-based methods, calculated as described in Figure 3 and main text. (f) Distribution of error 
from applying this method to any given compound, with all oxidation system combined. In contrast to other figures, shown 
in relative terms, as the number of compounds that do not contain nitrogen is a minority subset of the full dataset and is thus 
obscured when shown with an absolute y-axis. 750 

 

The general overestimation of the Donahue method, coupled with the observation that variability in the kOH of a formula is 

quite low, suggests an improved method of estimating kOH for a given formula is to simply assume it to have the average value 

of its formula class (i.e., 2.8 x 10-11 and 1.4 x 10-11 cm3 molec-1 s-1 for CHO and CHON, respectively). The distribution of z-
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scores in Figure 6e indicates that the composite structure-based average kOH for a given compound is usually (71% of the time) 755 

within one standard deviation of this average value, and within two standard deviations 86% of the time. This is, once again, 

approximately as precise as a formula-based method can be. In contrast, the Donahue method frequently overestimates kOH of 

a formula by several standard deviations. As in the case of vapor pressure and HLC, formula-based estimation of kOH of an 

individual molecule yields errors similar to the average differences between isomers (Figure 6f). However, due to the relatively 

low variability of these values, this approach is still typically within a factor of two (100% error) of the average values for each 760 

formula class. These data consequently suggest that approaches to actually estimate the OH reactivity of a gas-phase formula 

(including the Donahue approach) are likely to introduce more error than simply a rough assumption of “a few”x10-11 cm3 

molec-1 s-1.  

4 Discussion 

In general, structure-based estimation methods tested in this work agree to within approximately half an order of magnitude 765 

for vapor pressure, an order of magnitude for HLC, and <50% for kOH. The estimated vapor pressures and Henry’s law 

constants of two isomers typically tend to differ by a half to a full order of magnitude more than the variability in their 

estimation (i.e., differences between SARs), and isomers differ in their kOH by several times the variability in its estimation. 

Estimation of a physicochemical parameter from a formula can approximate the average of all relevant isomers within that 

formula with reasonable precision and low bias, but application of formula-based methods to an individual molecule from only 770 

its formula introduces higher error. These results support three important conclusions:  

(1) Differences in the physicochemical parameters in isomers tend to be larger than differences between estimation 

methods, therefore:  

(2) When molecular structure is available, its inclusion in the estimation of physicochemical parameters improves the 

precision of the estimate, and 775 

(3) Estimating parameters based only on formula is feasible, but is more meaningful if considered as a representative 

value for a typical mixture of isomers rather than any species in particular.  

We base these conclusions on the methods used in this work to estimate the properties of a formulas in this work: vapor 

pressure as the average of EVAPORATION, SIMPOL, and Nannoolal methods; Henry’s law constant as the average of 

GROMHE and HWINb; and kOH as the average of the Jenkin et al. and Kwok and Atkinson methods. These approaches were 780 

selected based on the accuracy of each SAR as published in previous work, and their publicly available implementations.  

One outcome of this work that is of critical importance to the broader atmospheric chemistry community is the demonstration 

that different publicly available implementations of a given published structure-based vapor pressure estimation methods (e.g., 
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EVAPORATION) may not all produce the same estimates for a given species. While five structure-based methods were 

considered in this work, three of them have two known publicly available implementations, and in all three cases these two 785 

implementations disagree, often by at least an order of magnitude for large fraction of the species tested. This implies that 

while five methods might be nominally used in the literature, there may be up to eight de facto methods used (not including 

manual implementations). Some differences could be due simply to errors in implementing complex parameterizations, but of 

more fundamental interest is the observation that many differences may be unavoidable outcomes of extrapolating SARs 

beyond the chemical ranges in which they are well constrained. In other words, the complexity of atmospheric species is not 790 

always easily described in clear-cut way by the functional groups included in an SAR, and each implementation may parse a 

structure differently. When possible, estimating a parameter as the average of multiple methods would help minimize the 

impacts of potential uncertainties in the implementations of each method, in addition to mitigating potential biases or 

uncertainties of any one method. 

Similarly, this work demonstrates the issue that development of empirical techniques such as formula-based estimation 795 

methods can be biased by the data used in their development. In particular, the Li et al. (2016) method for estimating vapor 

pressure from formulas (sometimes known as the “molecular corridors” method) contained few nitrates in its training data, 

and subsequently exhibits significant bias in the nitrate-heavy systems studied here. We propose a modification to this method 

to address this limitation, specifically the treatment of each NO3 unit in a formula as an OH unit.  

By combining existing methods and new approaches, we also provide in this work new methods for the estimation of vapor 800 

pressure, HLC, and kOH for a given molecular formula. The methods below agree with composite structure-based estimates for 

formula (i.e., average of all structure-based methods for all major isomers) with approximately normally distributed error (with 

a somewhat longer tail), suggesting they are nearly as precise as possible. The application of the recommended formula-based 

methods to an individual molecule introduces error comparable to the difference between isomers, which further supports the 

conclusions that these methods are approximately as precise as such a method can be. Consequently, while estimation of 805 

parameters for a formula can be reasonably accomplished, it nevertheless suffers higher uncertainty due to the lack of structural 

information. It should be noted that the accuracy of formula-based methods is limited by the accuracy of the SARs upon which 

they are built. This work therefore seeks only to understand the precision, not the accuracy, of formula-based methods in 

estimating the average SAR-estimated properties of a mixture of isomers of a given formula. These conclusions are also 

necessarily limited to the types of compounds analyzed in this dataset, namely oxidation products from the gas-phase oxidation 810 

of a few representative compound classes. These results can therefore reasonably be extended to oxygenated compounds in 

complex atmospheric mixtures, particularly with multiple functional groups in which organic nitrogen is in the form of nitrates. 

Extending the conclusions and methods of this work to broader systems will necessarily increase uncertainty. 

Formula-based estimation methods that are found to estimate average properties of a formula with approximately as high a 

precision as possible are: 815 
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 Vapor pressure – average of the Daumit method and the Li method, after modifying the latter to address its bias for 

nitrates. Error: roughly 1-2 order of magnitude. 

 Henry’s law constant – estimated from the above vapor pressure using the linear relationship log(HLC) = -1.15 log(p0) 

- 0.78 (see Figure 5a). Error: roughly 2-3 orders of magnitude. 

 kOH – constant depending on whether the formula contains only carbon, hydrogen, and oxygen (kOH = 2.8 x 10-11 cm3 820 

molec-1 s-1), or also contains nitrogen (kOH= 1.4 x 10-11 cm3 molec-1 s-1). Error: roughly a factor of 2. 

Error is estimated as the ability of the formula-based method to recreate the structure-based estimated property of a formula, 

not based on the accuracy of the existing SARs on which they are built. Error in vapor pressure and HLC is estimated as a 

range due in part to its dependence on volatility (more uncertainty at lower volatility) and oxidation system (more error in the 

aromatic system studied). We reiterate that these formula-based estimation methods are empirical, and consequently subject 825 

to biases as with other formula-based approaches. We attempt to minimize this issue by developing these methods using the 

types of atmospherically relevant compounds to which these methods are often applied (oxygenated oxidation products of 

common precursors), but stress that no empirical method can be fully free of development bias.  

To facilitate the adoption of these formula-based approaches, we are including as part of this manuscript the Parameter 

Estimation for Atmospheric Chemistry (PEACh) package, written in the Igor Pro programming environment (Wavemetrics, 830 

Inc.) widely used by the atmospheric chemistry community. PEACh v.1 is included in the Supplementary Information and will 

be updated and maintained as a GitHub repository (github.com/gabrielivw/PEACh). This package implements formula-based 

estimation by the methods described above. For structure-based estimation, we encourage the practice of averaging multiple 

SARs for structure-based estimates of properties and point the reader toward the publicly available implementations used in 

this work. 835 

Data availability. All data used in the core analyses of this work are provided in the Supplementary Information as a 

spreadsheet and are available as doi: 10.17632/3rgvkf7c9n.1. This data includes the SMILES strings and formulas for all 

products generated in the GECKO-A modeled oxidation. The 38,594 compounds used in most of the analyses are labeled, 

including flags for each oxidation system in which they appear. For each compound, estimated parameters are provided 

including: vapor pressure estimated by Nannoolal, SIMPOL, and EVAPORATION; HLC estimated by GROMHE and 840 

HWINb; and kOH estimated by Jenkin and Kwok and Atkinson. Where values are blank, either the method could not provide 

an estimate due to limited functional groups, or, in cases outside of the core compounds, an estimate was simply not calculated.  
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