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Abstract. Marine low cloud mesoscale morphology in the southeastern Pacific Ocean is analyzed using a large dataset of
classifications spanning three years generated by machine-learning methods. Meteorological variables and cloud properties

are composited by the mesoscale cloud type of the classification, showing distinct meteorological regimes of marine low cloud
organization from the tropics to the midlatitudes. The presentation of mesoscale cellular convection, with respect to geographic
distribution, boundary layer structure, and large-scale environmental conditions, agrees with prior knowledge. Two tropical
and subtropical cumuliform boundary layer regimes, suppressed cumulus and clustered cumulus, are studied in detail. The
patterns in precipitation, circulation, column water vapor, and cloudiness are consistent with the representation of marine
shallow mesoscale convective self-aggregation by large eddy simulations of the boundary layer. Although they occur under
similar large-scale conditions, the suppressed and clustered low cloud types are found to be well-separated by variables
associated with low-level mesoscale circulation, with surface wind divergence being the clearest discriminator between them,
regardless of whether reanalysis or satellite observations are used. Clustered regimes are associated with surface convergence,
while suppressed regimes are associated with surface divergence.

1 Introduction

Marine low clouds are radiatively important, with a strong cooling effect on the planet. They also display a wide
range of morphologies, which have differing radiative properties (Chen et al., 2000). Classically, ship-based observations have
classified marine low clouds using the familiar World Meteorological Organization (WMO) cloud types such as stratocumulus
(Sc), cumulus (Cu), etc. (e.g., Warren et al., 1988). However, clouds also form larger mesoscale morphologically distinct
organizations that would not be apparent from the limited perspective of a surface-based observer. These mesoscale cloud
patterns are of particular interest for several reasons. First, they have been shown to represent different underlying marine
boundary layer (MBL) regimes (e.g. Wood and Hartmann, 2006; hereafter WH06), namely the influence of an additional
environmental MBL property that covaries with cloud morphology. Second, prior work has shown that the mesoscale
organization regulates the relationship between albedo and cloud fraction (McCoy et al., 2017). Third, larger mesoscale
patterns are clearly visible from current-generation satellite imagers, allowing for their classification using computer image
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recognition, and subsequent generation of a potentially informative MBL cloud dataset on a near-global and highly temporally
resolved scale for studying these clouds and their drivers.

In the midlatitude storm tracks and eastern ocean subtropical Sc decks, stratiform low cloud types dominate
(Hartmann et al., 1992). These high cloud fraction cloud types are particularly effective coolers, and as a result their
organization and structure are-have been the subject of mueh-extensive investigation (Agee, 1987; Muhlbauer et al., 2014). In
lower latitudes and away from the eastern subtropical ocean basins, Sc clouds are rarer, and instead we often find boundary
layers dominated by cumuliform cloud types, sometimes clustering into large convectively active regions, and some_other
timestimes in relatively isolated smaller Cu. Figure 1, adapted from an observation-based climatic cloud atlas (Hahn and
Warren, 2007), shows the difference between the frequency of occurrence of Cu clouds and that of Sc clouds; the commonly-
occurring ‘Cu-under-Sc’ case is classified as Sc as-that-is-consistent-for consistency with the view from above (Hahn et al.,
2001). Red values indicate more Cu and show that boundary layer clouds over the ocean between 30°N and S are more often
cumuliform. Although the average cloud radiative effect (CRE) of these clouds is lower, their ubiquity combined with a high
mesoscale variability in cloud fraction makes them an important target of study.

Cumuliform MBLs have been observed to contain mesoscale aggregates of shallow convection in a number of
different forms (LeMone and Meitin, 1984; Nicholls and Young, 2007). Bretherton and Blossey (2017) (hereafter BB17)
demonstrated how mesoscale aggregation of warm shallow Cu presents in Large Eddy Simulation (LES). In their conceptual
model, the shallow convective self-aggregation is driven by convection-circulation-humidity feedbacks. These result in cloudy
regions of aggregated convection with a positive mesoscale column water vapor and moisture anomaly, as well as a strong
low-level circulation with lower boundary layer convergence acting to further concentrate moisture into the moist columns.
The difference between this and the conceptual model for deep-convective self-aggregation (e.g. Emanuel et al. 2014) is that
the latter relies on radiative feedbacks-while-these- which are not necessary to produce shallow mesoscale aggregation. BB17
demonstrated that the presentation of shallow aggregation agrees with this conceptual model and suggested that further
observational validation is warranted.

When classifying stratocumulus and cumulus clouds, a common form of mesoscale variability is mesoscale cellular
convection (MCC) (Agee, 1987). This can take the form of open-cellular or closed-cellular MCC. WHO06 used a neural network
to classify low cloud scenes from satellite observations over the eastern subtropical Pacific Ocean into four categories, based
on thei~MCC type or absence thereof: open, closed, and cellular but disorganized MCCs, and no MCC present. The utility of

these classification-based approaches is evident in their ability to show the controls on cloud morphology in cold air outbreaks
(McCoy et al., 2017), characterize properties and occurrences of the underlying regimes (Muhlbauer et al., 2014), or discern
whether mesoscale morphology is more strongly driven by internal mechanisms or by large-scale meteorology (WHO06).
However, a limitation of the WHO06 classification scheme is its lack-ef-inability to discriminateien between cloud morphologies
over the warmer regions of the Tropical trades, where MCC is less dominant. Additionally, the power spectra- and Fourier
transform-based feature vectors used for classification were very sensitive to the presence of high cloud, necessitating a-the

strict exclusion of many otherwise visually-identifiable scenes. More recent investigations of low-latitude marine low cloud
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mesoscale variability, agnostic to previously-identified forms of organization, has alse-been successful in identifying distinct
morphological regimes, using machine learning to classify a large dataset of cloud images (Stevens et al., 2020).

In this work we continue the exploration of marine low cloud morphology-its drivers and characteristics; with a-the
new classification scheme firstpresented-introduced a-by Yuan et al. (2020), and-expanding-enthat expanded on WHO06. The
new scheme focuses on discrimination between different cumulus-dominated cloud types, particularly in the Tropical trade
wind regions. The machine learning approach taken-tradopted to create this new dataset uses convolutional neural networkss
(CNNs) to permit the inclusion of some scenes with thin or small amounts of high cloud. We-alse-add-Ttwo cumuliform low
cloud morphological types were added, clustered convection and suppressed convection, to capture more cloud morphological
variability in the tropics and subtopics. We-start-with-Following a brief description of the new classification scheme and
observational datasets used-(section 2), we -and-present the physical characteristics of the resulting cloud types in {section 3}.
Specifically, ir-section-3-we validate in that section whether the presentation of the two cumuliform cloud types is consistent

with the model for mesoscale aggregation of shallow cumulus convection described by BB17. We conclude with a discussion

of the significance-importance of these results (section 4).

2 Datasets and Methods

Meost-analysis-in-this-werk-censists-of-We mainly perform composite analysis of various observational and model
datasets by morphological cloud type. We first describe the cloud type classifications, then the datasets used, and finally the

compositing methodology.

2.1 Cloud type classifications

The classification dataset used is derived from imagery by the Moderate-Resolution Imaging Spectrometer (MODIS), aboard
the Aqua satellite. MODIS RGB visible imagery of 128x128 km? (approximately 1°x1°) cloudy scenes, filtered to remove
scenes with >10% coverage of high cloud, low cloud <5%, and viewing angles >45°, are manually classified as being either
comprised mostly of stratus cloud, closed-cellular marine cellular convective Sc (closed MCC), open-cellular Sc (open MCC),
disorganized cellular stratocumulus (disorganized MCC), clustered cumulus, and suppressed cumulus. These categories were

chosen by examining the morphological climatologies in Muhlbauer et al. (2014), studying regions where there was little

variability in morphology category (primarily the tropics, where disorganized MCC dominated), and identifying additional

commonly occurring cloud morphologies. These (clustered and suppressed Cu) were then added to the pre-existing cloud

categories, along with a homogeneous stratiform category initially used in Wood and Hartmann (2006). Examples of these

types can be found in Figure 2.
The scenes were then used to train a convolutional neural net (CNN) using as input the image of scene visible reflectance. A

full description of the machine learning training and model evaluation can be found in Yuan et al. (2020). These authors found

that average model precision evaluated on a test set was approximately 93% across all categories. Open-MCC had the lowest
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precision, most likely because it was the lowest-frequency category. The largest source of model confusion was between

disorganized MCC and clustered Cu, which is unsurprising given the similar appearance of these categories. The primary

difference between these two types is that disorganized MCC represents a regime with cellular convection at some

characteristic scale, though not organized clearly into open- or closed-cell regimes, while clustered Cu represents aggregated

convection at a variety of scales within a scene. When distinguishing between these two types during manual labelling, scene

large-scale context proved helpful.

training-can-be-found-in-Yuan-et-al—(2020). For this paper, most analysis is based on three years of medelCNN classifications
from the southeast Pacific (SEP) region, (65°S-equator, 140°W-40°W) which includes much of the Southern Ocean and a
small portion of the southwest Atlantic, as well as classifications from summer 2015 in the northeast Pacific (NEP) region
(equator-60°N, 180°W-100°W) for co-location with aircraft data (see Section 3.5 below). The resulting tabular dataset contains
location, time, and cloud scene classification, as well as MODIS low cloud fraction derived from the MODIS Cloud Product
cloud top heights (MYDO6, Platnick et al. 2017). Fhere-were-aApproximately 750,000 scenes were available for the SEP
(averaging approximately 65 classifications per MODIS granule and 11 granules per day), while the NEP dataset is smaller

with ~35,000 data—peintsscenes. Relative distributions, normalized for each location, for the various cloud scene types are
provided in Figure 3. Due to N j istributi i

atior—gGeographical
differences in cloud cover and satellite sampling, the number of viable scenes is not distributed evenly over the regions of

interest, with approximately 5-five times as many scenes in the subtropical Sc regions as in the midlatitudes.

2.2 Satellite-derived ancillary data

Surface wind divergence is derived from the Advanced SCATterometer (ASCAT) aboard MetOp-A, specifically the
0.25° gridded wind vectors (Ricciardulli and Wentz, 2016). For each classified scenecation-datapeint, the 1°x1° co-located
calculated ASCAT divergence values are extracted and averaged-tegether. Since the ASCAT swath width is much narrower

than that of MODIS (even when filtering out high viewing angle scenes), seme-many classified scenes (approximately 45%)
had-necannot be paired with wind data. Additionally, the overpass time of MetOp-A (~9:30 a.m. local time) does not coincide
with Aqua (~1:30 p.m. local time), ard-so that any significant diurnal cycle in wind divergence could influence results. While
this is a source of noise and a point of potential improvement for future work, the diurnal amplitude in surface divergence is
likely much smaller than that ofe mesoscale variations (Wood et al., 2009), making the likelihood of -and-se-we-de-not-expect
any-significant biases small. This is confirmed by WWe-repeating at-the ASCAT-based-analysis-with-divergence analysis with
the temporally better-matched reanalysis wind data (see below) aswelwhich-istemperally-better-matchedwith-which yields

similar results.

Column water vapor (CWV) is provided by the Advanced Microwave Sounding Radiometer (AMSR-2) aboard the
Global Change Observation Mission (GCOM-W1) satellite,-again-usin_in the form of ag 0.25° gridded daily ebservations
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product (Wentz et al., 2014). Being on the A-Train as Aqua, GCOM-W1 overpass times are+oughhy-1:30-p-m—local-time;
which-isare nearly simultaneous with those ofe MODIS-ebservations.

FerretrievingFRain rates come from ;-a precipitation dataset based on AMSR-2 89 GHz brightness temperatures and
CloudSat observations is-used-(Eastman et al, 2019). This particular dataset has the advantage of being calibrated specifically
for warm rain from shallow marine clouds, with greater sensitivity to light rain than other passive microwave rain products
(Eastman et al., 2019).

To assess the radiative impacts of our cloud types, we also analyze data from the Clouds and the Earth's Radiant
Energy System (CERES), specifically SYN1deg hourly data, providing 1° top-of-atmosphere (TOA) all-sky and clear-sky
longwave (LW) and shortwave (SW) fluxes_(Doelling et al., 2013). These are also spatiotemporally co-located with the
classified cloud scenes-beth-spatiathyand-temperalhy, and used to calculate the LW, SW, and total cloud radiative effect (CRE)
for each classified scene via clear and all-sky upward fluxes F:{here-Fis-an-upward-flux):

CREw = Fiw ciear = Fiw,au CREsw = Fsw,cicar = Fsw,au CRE;o; = CRELy + CREgy 1A

2.3 Reanalysis data

For the purpose of analyzing large-scale meteorology, as well as comparing to satellite observations, we added data
from the Modern-Era Retrospective analysis for Research and Application, Version 2 (MERRA2, Gelaro et al. 2017) was
included-into our analysis{Gelare-etal2017}. The data used was-athas a 3-hourly resolution, with-and we selected the time

nearest to the MODIS-Aqua overpass-selected. In addition to available variables (sea surface temperature, near-surface winds),

we derived the estimated inversion strength (EIS) following Wood and Bretherton (2006), a surface divergence estimate from
the 10m winds, and a large-scale divergence D estimate from the 700 hPa heights and vertical motion from:
W700 w700
Doy = —2 Wonn & ——100
700 Z700 700 P7009
Note that this large-scale divergence is not the horizontal divergence at 700 hPa, but rather the mean divergence from the

surface to the 700 hPa_level; this follows from the mass continuity equation by considering a column of air from the surface

(where vertical motion is 0) to 700 hPa. Note that tFhe terms large-scale divergence and 700 hPa subsidence are used

interchangeably throughout; divergence is plotted instead of subsidence to allow for a better-more straightforward comparison
with surface divergence. As surface pressure varies with time, the second equality is only approximate.

For all of the above variables (either from reanalysis or and-satellite), and for each MODIS scene for which we have
a classification, we extract the variable in a 1°x1° box centered on the cloud scene to calculate a mesoscale average value, and
use the mean over a 10°x10° box for the synoptic mean value. These can then be used together to calculate a mesoscale
perturbation, which is simply the difference between the 1°x1° and 10°x10° averages. We also calculate a climatological 1°x1°
average by using-seasonally averaged-dataing.
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2.4 Aircraft observations

To provide insight into the vertical structure of the boundary layer as well as in-situ cloud observations we use aircraft
observations from the Cloud System Evolution in the Trades (CSET) field campaign (Albrecht et al., 2019), which took place
in summer 2015. This campaign is particularly suitable for our purposes since it eentaired-provides a large number of aircraft
profiles and dropsondes throughout the depth of the marine boundary layer, on a transect spanning from California to Hawaii,
and therefore sampling from the Sc-dominated near-coastal region (where organized MCC frequently is found) through the
Sc-Cu transition, to the cumuliform tropical MBL. All cloud types other than midlatitude Sc were therefore sampled. The
campaign profiles allowed us to estimate the boundary layer depth and degree of decoupling following Mohrmann et al. (2019),
and to composite by cloud morphological type.

2.5 Data compositing by cloud type

Much-of the following-analysisMany of the results that follow is-efthe-type shewnare summarized as in-figuressuch
asin Figure 6, which shows the composite net cloud radiative effect (CRE) for each cloud type (for the SEP region). For this

figure, the ~750,000 classifications are split by year and then further split by scene type. The mean net CRE for each year and
type is then plotted. The large sample size makes the sampling uncertainty negligible (error bars representing the standard
error of the mean are plotted throughout, though are typically net-too small to be visible). This is true even after accounting
for the high autocorrelation in the data. The data is nevertheless split by year to demonstrate the robustness as
representeindicated d-by (low) interannual variability.

An issue with the ebservational-data-compositing appreach-of observational data is that the cloud types do not all
have the same geographic distribution. One approach would be to try to eeerce-impose geographic parity by sampling the same
number of points from some grid, or else to control for every other variable by stratifying the data in many dimensions. Here
we-take-a-different-approach:The approach we adopted to identify the extent to which differences in potential driver variables
reflect short-lived anomalies as-eppesedcompared to geographic sampling bias, we-was to calculate seasonal climatologies for
each gridded dataset, and then extract for each scene the climatological value of that field at that location. These are-were also
composited by scene cloud seene-type and compared to the composite of instantaneous values. This analysis is similar to the
mesoscale-vs-synoptic mean comparison described in the previous section, but rew-shewingin this case using temporal
deviations from local climatology. Figure 7 (a) shows all three averages on the same panel for direct comparison. The black

circles represent ;-averaged-over-every-classification-in-the-dataset;-the mesoscale (i.e. 1°x1° average) SST at that location and

time, averaged over all classifications, the black diamonds are the same but averaged over a 10°x10° box, and the black squares

correspond again a-to 1°x1° averages, but with seasonal averages instead of daily values of SST.
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3 Results
3.1 Climatology of occurrence

We first present the characteristics of the cloud types represented by the classifier categories. This is-in-addition
tecomplements the analysis presented-iofn Yuan et al. (2020), which presents example scenes, cloud optical thickness, droplet
effective radius, and absolute frequency for each cloud type. Figure 3 shows the relative frequency of occurrence of the six
cloud types in the classification scheme. The more stratiform MCC types (a-d) occur at higher latitudes and towards the eastern
SEP basin, while the two cumuliform types (e and f) dominate the warmer (sub) tropical oceans away from the continents,
consistent with the ship-based climatology of Figure 1. The location of the MCC types (with closed-cell upwind, open-cell
downwind) is mostly consistent with their occurrence in the WHO6 classifications. Both subtropical and midlatitude MCC are
identified. The main differences with the WHO6 classifications are that the disorganized MCC type, which previously included
all scenes not classified as open MCC, closed MCC, or stratus, now primarily occurs near the Sc cloud deck, instead of
spreading over a much larger region. Another significant departure is that open-cellular MCC occurs much less frequently than
in the WHO6 classifier, representing only 4% of all scenes. The solid stratus type is a mix of coastal stratus and midlatitude
frontal stratus.

An ideal cloud type classification scheme would produce useful discrimination between-among cloud types in all
regions, as opposed to having ene-different cloud types cempletely-each dominatinge one region-and-another-completely
deminate-anotherregion. One way to visualize how well this classification scheme embodies this property is by considering,

for each region, the fraction of all scenes which come from the most common cloud type in that region, and then from the top

two most common, etc. This is shown in Figure 4. Panel (a) shows the fraction of scenes covered by the dominant cloud type
for that grid box. In panel (b), we see that in the northwestern corner of our region of interest, the top two cloud types (in this
case, suppressed and clustered Cu) account for more than 90% of all scenes. This weutd-suggests that any further differentiation
into more specific cloud subtypes would be most effective if focused on this region. Panel (c) and (d) show that the region
with the greatest variability in cloud type is the zonal band near 45°S, as well as the subtropical Sc-Cu transition region near
15°S.

3.2 Sample case

To better illustrate the scale en-at which the classifications as-weH-asand the underlying data exist, Figure 5 shows a
case study from July 22nd, 2015. Each panel shows the classifications in colored circles, marking the center of each rectangle
ef-rectangular MODIS image on which the classifications are carried out (see Yuan et al., 2020, for additional details on
classification).

The scene was-selected te-highlights suppressed and clustered types. In panel (a), a roughly 200 km by 400 km region
of enhanced cloud in the lower middle of the scene is identified as clustered Cu, surrounded by suppressed Cu scenes. A

misidentification of sun glint as solid stratus is evident as well (though Figure 3 shows that very few misidentifications of this
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significant impact on the classification climatology-ef-classifications). Panels (b) and (c) show the surface divergence as
observed-inferred from ASCAT and frem-the MERRA-2 reanalysis; as-the ASCAT overpass time at 9:30, is-being 4 hours
ahead of the MODIS Aqua observation time,-there-is-a- causes a slight geographic mismatch. tmpertanthyNevertheless, both
surface divergence plots show strong convergence (in blue) in the clustered region, and surreunding-divergence_in surrounding
regions. Note also the noisy nature of the ASCAT observations, as well as the narrow swath of ASCAT not allowing matches
with many (approximately half) of the classifications. Panel (f) shows the large-scale divergence as inferred from the 700 hPa
vertical motion. Although there is some convergence aloft at the southern boundary of the scene (where the MERRA-2 surface
convergence is strongest), the rest-remainder of the clustered region shows slightly enhanced subsidence aloft, in contrast to
the-surface conditions, which we will see later is also the mean behavior for clustered scenes. MODIS gives-indicates cloud
top pressures between 800 and 700 hPa (not shown) at around 15°N, 138°W (where the divergence is strongest), consistent
with the schematic model in BB17 (their Figure 10). This divergence may potentially represent the outflow from the aggregated
convection in this clustered region.

Panels (d) and (e) show the AMSR-2 precipitation and moisture retrievals, respectively. The clustered (suppressed)
classifications are consistently associated with a moist (dry) CWV anomaly, and precipitation is only found in the clustered
regions. Overall, the mesoscale anomalies in-the—presented—datasets—are clearly resolved on the spatial scales of the
classifications. Fhere-are-alse-Celassification edge cases exist where a human observer would struggle to clearly identify a
scene as suppressed or clustered, however oin aggregate the machine learning classifications are consistent with what-a-human

waould-labeling as the ;-performance evaluation is-presented in Yuan et al. (2020)_has shown.

3.3 Classification-rRadiative properties.of morphological cloud types

As the climatological relevance of marine low clouds is-basedrelates in large part en-to their radiative effect, it is
worth krewing-identifying the variability in radiative properties between-among the different categories. Figure 6 shows the
low cloud fraction of each cloud type, with closed MCC being-having the highest and suppressed CuMEC the lowest. The
mean cloud fraction across all scenes (black dot at right of panel a) also shows that the Cu-vs-Sc cloud types also split tidily
into the below-average and above-average cloudy scenes {as-expected);-for this particular sample, as expected. The mesoscale
cloud fraction anomaly (represented by the difference between the small diamonds and circles, for each type) shows that, on
average, the scenes we classify are slightly cloudier than their surroundings. This is most pronounced for the closed MCC, and
most likely a result of the filtering of scenes with very low cloud. The only exception is suppressed Cu, which is associated
with a low CF anomaly. The same is true when comparing to the climatological cloud fraction (small squares) where ;-there-is

a high bias in the-cloud fraction_is seen, again most likely due to the fact that we can only classify cloudy scenes.

Panels (b-d) show the composite net CRE of the various cloud types. In panel (b) the overall frequency of each cloud
type in our dataset is broken down by year (2014-2016). Together, clustered and suppressed Cu scenes account for more than

half of all scenes. Panel (c) shows the CERES net CRE as calculated in section 2b) for each type and year, as well as the
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mesoscale and climatological value. ;-Tthe net total-CRE, mostly coming from the SW, broadly mirrors the cloud fraction-(fer
i iati i i . The total cooling averaged over all scenes is
shown as the black dots in panel (c):-on-average-a-scene-in-our-dataset-has corresponds to a net CRE of ~-113 W m. Note
that due to the specific sampling strategy (only considering scenes with low cloud, without too much overlying high cloud),
and the fact that we composite instantaneous daytime values that are not weighted by the global frequency of occurrence of
our cloud types, our CRE for marine low clouds is approximately an order of magnitude larger than the global value found by
L’Ecuyer et al (2019).

The above difference between instantaneous local and global values underscores the fact that when considering the
radiative importance of different cloud types, both frequency and mean CRE at the time of occurrence are relevant.
Spemflcally, when conS|der|ng the Cu-cloud types (clustered and suppressed), while-both-have-a—relativelylow-mean

~thesewhich are the two types are alse-the most

frequently-occurring in our dataset, due to their dominance in the tropics and subtropics, one should keep in mind that their
low mean instantaneous CRE is counterbalanced by their high frequency of occurrence —Fherefore—caleulating-theThe
frequency-weighted CRE (panel d), which is simply the product for each year of the data in panel (b) and panel (c), is therefore

appropriate—Fhis as it represents the fraction of total cooling, over all scenes, by a particular cloud type. Thus open-MCC,
despite having a mean net CRE of -100 W m, only accounts for ~5 W m of the total cooling of all scenes in our dataset
(approximately 4%); while these scenes have high CFs and therefore net CRE, they are infrequent, more so in this classification
compared to previous work. For the clustered and suppressed types, the importance of understanding their drivers is highlighted

in panel (d); clustered Cu scenes have five times higher contribution to the net CRE than suppressed Cu scenes.

3.4 Composite analysis

Figure 7 and Figure 8 are similar to Figure 6, showing composites of meteorological variables by cloud type, as well
as synoptic and climatological averages (where seasonal mean values for a given location are composited instead of
instantaneous values). For both these figures, we can estimate the variability between types explained by differences in
geography by comparing the mesoscale averages (circles) to the climatological averages (squares). For instance, for every
cloud type, there is almost no bias between the mesoscale and climatological averages of sea surface temperature (SST, panel
a). In other words, variation in SST between scenes is almost entirely explainable by the variation in geography . The suppressed
scenes occur over the warmest waters, and the closed MCC over the coldest. The same is largely true for EIS, which is
determined in part by SST. This is not surprising given the geographic distributions of the cloud types seen earlier and
climatological gradients in SST and EIS. What this tells us, however, is that there is no strong evidence for sub-seasonal time
scale perturbations to SST or EIS coinciding with variations in cloud type. We can also compare the mesoscale averages to the
10° synoptic averages to assess whether any mesoscale anomalies are coincident with cloud type variability. However, an
important caveat to bear in mind is the bias introduced by our sampling strategy: only scenes with some low cloud and not too

much high cloud are considered, whereas the surrounding scenes are not similarly constrained. These biases are best identified
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from the black ‘all scenes” markers. For instance, we notice in panel (d) that averaged over all scenes, RH700 is biased low by
3%, most likely due to preferential selection of scenes with little high cloud (and therefore-the a free troposphere that is biased
dry). This bias is also applicable to the climatological comparison. The dry free troposphere (FT) anomaly relative to the
synoptic (and climatological) averages in e.g. the closed MCC scenes can be explained by this sampling bias and is not
indicative of some mechanism in a drier FT yielding closed MCC clouds.

With that caveat in mind, Figure 7 shows that closed-MCC and to a lesser extent disorganized MCC is-are associated
with a significant mesoscale anomaly in EIS (consistent with Muhlbauer et al., 2014). Solid stratus is associated with a positive
anomaly in vertical motion and RH700 relative to climatology, but not a mesoscale one, indicating that this link is driven by
synoptic features; manual inspection shews-confirms that many scenes identified as stratus are indeed associated with frontal
systems. Both closed and open MCC are associated with strong subseasonal anomalies of enhanced subsidence, though again
the absence of an anomaly relative to the synoptic mean indicates that these are larger features, likely associated with variability
in the position of the subtropical high.

Aside from the mesoscale and subseasonal anomaly analysis, a key result is that clustered and suppressed types are
poorly separated by the variables in Figure 7; they have virtually identical EIS distributions, and though suppressed scenes are
associated with slightly higher SST, large-scale divergence, and lower FT humidity, there is not much separation between
them in this phase space, especially relative to the variability between all cloud types, and these small differences are consistent
with their slightly different geographic distributions. In contrast, EIS is an excellent discriminator between the stratiform MCC
types.

Composite analysis of the surface divergence, however, is much more helpful at distinguishing between the Cu cloud
types. This is evident from Figure 8, panels (a) and (b). From the ASCAT composite data, the strongest surface divergence is
associated with suppressed scenes, and the strongest convergence with the clustered scenes. When using MERRAZ2 data, the
only difference is that the closed MCC cases have slightly stronger divergence, yet the clear separation between Cu types

remains. Additionally, the surface divergence signal is clearly of a mesoscale ene-nature and not explained by climatological

differences, particularly for the convergence associated with clustered scenes; the synoptic environment shows broad
divergence.

Having calculated both the 700 hPa large-scale and surface divergence, we can subtract the former from the latter to
estimate a boundary-layer anomaly divergence. If near-surface divergence purely reflects the large-scale subsiding flow, with
no additional low-level circulation, we would expect this anomaly to be small. Figure 9(a) shows this surface level anomaly,
using both the MERRA2 and ASCAT winds. The large positive anomaly for suppressed Cu scenes indicates that the bulk of
the divergence as-is a result of near-surface circulations rather than those extending over a deep layer of the lower troposphere;
similarly for clustered Cu, the surface convergence together with mean large-scale divergence indicate a shallow circulation,
as seen in the case study of Figure 5.

Considering AMSR-2 retrievals, the rain rate shows a very clear separation between clustered and suppressed cloud

types, with a strong positive (negative) mesoscale anomaly for clustered (suppressed) Cu of around 0.4 mm day-*. Similar
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qualitative results are found for conditional rain rates and rain probabilities (not shown). It is worth noting that the resolution
of the precipitation data is approximately 4 km, so the smallest clouds will not be resolved. The column water vapor results
are interesting as well; consistent with the warm SSTs, both Cu cloud types occur in areas of high column water vapor. The
mesoscale anomalies, however, are consistent with the BB17 presentation: clustered scenes are slightly moister than their
environment and suppressed scenes slightly drier. This is difficult to identify in Figure 8(d), so Figure 9(b) shows just the
mesoscale anomaly for all cloud types and makes clear that the suppressed scenes are the most anomalously dry and the
clustered scenes most anomalously moist. Although the moisture anomalies of the LES in BB17 were larger than those found
here, this may be due to their mean state being moister. One finding from that work is that the amplitude of aggregation-
associated moisture anomalies tended to scale with the mean state CWV, and so we expect the higher mean state moisture in

BB17 would occur with larger moisture anomalies.

3.5 Aircraft observations

Figure 10 shows the depth of the boundary layer and degree of decoupling (using the aq metric from Wood and

Bretherton, 2004) based on CSET aircraft profiles. The parameter aq is a measure of relative resemblance of upper boundary

layer moisture to the lower FT and lower boundary layer, with a value of 0 indicating a perfectly well-mixed boundary layer

and a value of 1 indicating a perfectly decoupled boundary layer where the upper BL moisture is equal to the lower FT moisture.

_ qr(upper BL) — qr(lower BL)

%ar qr(lower FT) — qr(lower BL)

For a given profile, the thermal inversion height is estimated using the maximum lapse rate, with the inversion being

the layer where the lapse rate deviation from a moist adiabat exceeds 25% of maximum deviation (this was tuned to agree with

a visual assessment of the inversion layer and worked well for all profiles). Upper and lower BL in the qr equation are taken

as the top and bottom 25% of the BL depth, while the lower FT starts 500m above the inversion top.

For each aircraft profile, the cloud type classification which covers that profile is selected for compositing, and so the<
profile represents a random estimate of depth or decoupling within that scene. Here the sample sizes are much smaller than the
composites of satellite and reanalysis data, and so the full histograms are shown (smoothed using kernel density estimation) to
highlight the uncertainty. Adopting a Lagrangian perspective which accounts for the boundary layer evolving downstream of
the trade winds through the Sc-Cu transition, there-is-boundary layer deepening and decoupling is found from stratus through
closed, disorganized, and open MCC; in particular the degree of decoupling between closed and open MCC is very pronounced,
with the former being the most coupled and the latter the most decoupled. However, this evolution breaks down for the Cu-
type boundary layers, which are neither deeper nor more decoupled than open MCC. This is not surprising, as the inversion at
the top of the surface mixed layer where Cu clouds form will persist as the decoupled Sc layer is eroded, such that the remaining

boundary layer stays shallower and strongly weH-coupled to the surface. Also important to note is that, as with EIS and SST,
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clustered and suppressed types are difficult to distinguish by their depth and decoupling state, though clustered scenes are

marginally deeper in panel (a).

4 Conclusions

In this study we have analyzed the characteristics of the marine boundary layer for six different morphological cloud
types, the occurrence of which was derived based-en-a-by novel machine-learning based cloud classification- operating on

MODIS mesoscale imageryeataset. Specifically, we assessed whether the observations of clustered and suppressed cumulus

are consistent with previous modeling of mesoscale aggregation of shallow cumulus. The key findings are as follows:

e The six cloud types represent distinct MBL regimes, based on their geography and environmental conditions.

e The anomalies in cloudiness, column water vapor, circulation, and precipitation are consistent with the Bretherton

and Blossey (2017) BB17 LES results and conceptual model for mesoscale shallow aggregation.

e Suppressed and clustered Cu scenes are most clearly separable by looking at surface wind divergence, and this signal

is apparent in both satellite retrievals as well as in the MERRA-2 reanalysis.

This last peint-teuches-on-finding pertains to a more general conclusion, namely that, at least for the variables considered,
mesoscale anomalies in meteorological variables are more pronounced for the cumulus types than the stratiform MCC types;
this is true for CWV, precipitation, and surface divergence. For discriminating between the MCC types, EIS, depth and
decoupling are the mostre useful; in stratocumulus regions, these variables have been shown to correlate strongly with each
other and with cloud cover (Wood and Bretherton, 2004; Wood and Hartmann, 2006).

Though it is tempting to conclude that surface divergence is such a good discriminator because the mesoscale aggregation
described in BB17 is likely the most important determinant of cloud variability, we must also bear in mind that, along with
precipitation, it is more an ‘internal” boundary layer predictor than most of the other predictors, e.g. EIS or SST, and therefore
better coupled to other MBL state variables (e.g. cloud fraction). Additionally, it is also much more directly observed and
resolved at finer scale than e.g. 700 hPa vertical motion, and therefore has a lower observational uncertainty. That being said,
the strong consistency between the observations and the BB17 LES modeling of mesoscale shallow convection dees-indicate
suggests that this process is an important driver of cumulus-dominated MBL cloud variability.

There are a-fewseveral limitations on the generalizability of these results. The first is that we have only considered the

SEP and NEP regions, and other clouds, particularly those in the warmer tFrade wind regions of the western ocean basins,
may have different MBL characteristics. The second is that we have only considered daytime behavior and cannot account for
diurnal variability in cloud type. The observations from aircraft data where limited and did not extend south of Hawaii or north
of California. Lastly, we have not examined in depth the role of SST in determining cloud type. This is not because it is
unimportant (on the contrary, it is a key driver of many MCC variability; see McCoy et al., 2017), but rather because it does

not vary much at mesoscale and short time scales.
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With regards to climate modelling, CRE for different cloud types largely mirrors cloud fraction. While the CRE between
suppressed and clustered types is very different, it remains to be seen whether the process of shallow convective aggregation
affects synoptic-scale mean cloud cover ander CRE. Given that models capable of reproducing such shallow aggregation are

now able to run at global scales (Bretherton and Khairoutdinov, 2015), this question is best answered using simulation studies.

Acknowledgements

We gratefully acknowledge our colleagues at the University of Washington for feedback and helpful discussion. Funding
for this research was provided in part by the NASA MEaSUREs program (award number 80NSSC18M0084).

Data Availability

MODIS reflectance data for this work is available at https://modis.gsfc.nasa.gov/data/dataprod/mod02.php. ASCAT data
is available from http://www.remss.com/missions/ascat/. =~ AMSR-2  water vapor data is available at
http://www.remss.com/missions/amsr/. CERES SYN1deg data is available at https://ceres.larc.nasa.gov/data/. MERRA-2 data
is available at https://gmao.gsfc.nasa.gov/reanalysissMERRA-2/data_access/. CSET aircraft data is available at
https://www.eol.ucar.edu/field_projects/cset. Data processing code as well as processed classification data can be found on
GitHub at https://github.com/jkcm/mesoscale-morphology (https://doi.org/10.5281/zenodo.4673556).

References

Agee, E. M. (1987). Mesoscale cellular convection over the oceans. Dynamics of Atmospheres and Oceans, 10(4), 317-341.
https://doi.org/10.1016/0377-0265(87)90023-6

Albrecht, B., Ghate, V., Mohrmann, J., Wood, R., Zuidema, P., Bretherton, C., ... Schmidt, S. (2019). Cloud System Evolution
in the Trades (CSET): Following the Evolution of Boundary Layer Cloud Systems with the NSF-NCAR GV. Bulletin of the
American Meteorological Society, 100(1), 93-121. https://doi.org/10.1175/BAMS-D-17-0180.1

Bony, S., Schulz, H., Vial, J., & Stevens, B. (2020). Sugar, Gravel, Fish and Flowers: Dependence of Mesoscale Patterns of
Trade-wind Clouds on Environmental Conditions. Geophysical Research Letters, 47(7). https://doi.org/10.1029/2019g1085988
Bretherton, C. S., & Blossey, P. N. (2017). Understanding Mesoscale Aggregation of Shallow Cumulus Convection Using
Large-Eddy  Simulation.  Journal ~of  Advances in  Modeling Earth  Systems, 9(8), 2798-2821.
https://doi.org/10.1002/2017MS000981

Bretherton, C. S., & Khairoutdinov, M. F. (2015). Convective self-aggregation feedbacks in near-global cloud-resolving
simulations of an aquaplanet. Journal of Advances in Modeling Earth Systems, 7(4), 1765-1787.
https://doi.org/10.1002/2015MS000499

13


https://github.com/jkcm/mesoscale-morphology

415

420

425

430

435

440

Chen, T., Rossow, W. B., & Zhang, Y. (2000). Radiative Effects of Cloud-Type Variations. Journal of Climate, 13(1), 264—
286.
Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D., Nguyen, C., ... Sun, M. (2013). Geostationary

Enhanced Temporal Interpolation for CERES Flux Products. Journal of Atmospheric and Oceanic Technology, 30(6), 1072—
1090. https://doi.org/10.1175/JTECH-D-12-00136.1

Eastman, R., Lebsock, M., & Wood, R. (2019). Warm Rain Rates from AMSR-E 89-GHz Brightness Temperatures Trained
Using CloudSat Rain-Rate Observations. Journal of Atmospheric and Oceanic Technology, 36(6), 1033-1051.
https://doi.org/10.1175/JTECH-D-18-0185.1

Emanuel, K., Wing, A. A., & Vincent, E. M. (2014). Radiative-convective instability. Journal of Advances in Modeling Earth
Systems, 6(1), 75-90. https://doi.org/10.1002/2013MS000270

Gelaro, R., McCarty, W., Sudrez, M. J., Todling, R., Molod, A., Takacs, L., ... Zhao, B. (2017). The modern-era retrospective

analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419-5454.
https://doi.org/10.1175/JCL1-D-16-0758.1

Hahn, C.J., Rossow, W. B., & Warren, S. G. (2001). ISCCP Cloud Properties Associated with Standard Cloud Types Identified
in Individual Surface Observations. Journal of Climate, 14(1), 11-28. https://doi.org/10.1175/1520-
0442(2001)014<0011:1CPAWS>2.0.CO;2

Hahn, C. J., & Warren, S. G. (2007). A GRIDDED CLIMATOLOGY OF CLOUDS OVER LAND (1971-96) AND OCEAN
(1954-97) FROM SURFACE OBSERVATIONS WORLDWIDE. https://doi.org/10.3334/CDIAC/cli.ndp026e

Hartmann, D. L., Ockert-Bell, M. E., & Michelsen, M. L. (1992). The Effect of Cloud Type on Earth’s Energy Balance: Global
Analysis. Journal of Climate, 5(11), 1281-1304. https://doi.org/10.1175/1520-0442(1992)005<1281: TEOCT0>2.0.CO;2
LeMone, M. A., Meitin, R. J., LeMone, M. A., & Meitin, R. J. (1984). Three Examples of Fair-Weather Mesoscale Boundary-
Layer Convection in the Tropics. Http://Dx.Doi.Org/10.1175/1520-0493(1984)112<1985: TEOFWM>2.0.CO;2.
https://doi.org/10.1175/1520-0493(1984)112<1985: TEOFWM>2.0.CO;2

L’Ecuyer, T. S., Hang, Y., Matus, A. V, & Wang, Z. (2019). Reassessing the Effect of Cloud Type on Earth’s Energy Balance

in the Age of Active Spaceborne Observations. Part I: Top of Atmosphere and Surface. Journal of Climate, 32(19), 6197
6217. https://doi.org/10.1175/JCLI-D-18-0753.1

McCoy, I. L., Wood, R., & Fletcher, J. K. (2017). Identifying Meteorological Controls on Open and Closed Mesoscale Cellular
Convection Associated with Marine Cold Air Outbreaks. Journal of Geophysical Research: Atmospheres, 1-25.
https://doi.org/10.1002/2017JD027031

Mohrmann, J., Bretherton, C. S., McCoy, I. L., McGibbon, J., Wood, R., Ghate, V., ... Palikonda, R. (2019). Lagrangian

Evolution of the Northeast Pacific Marine Boundary Layer Structure and Cloud during CSET. Monthly Weather Review,
147(12), 4681-4700. https://doi.org/10.1175/MWR-D-19-0053.1

Muhlbauer, A., McCoy, I. L., & Wood, R. (2014). Climatology of stratocumulus cloud morphologies: microphysical properties
and radiative effects. Atmospheric Chemistry and Physics, 14(13), 6695-6716. https://doi.org/10.5194/acp-14-6695-2014

14

[Formatted: Font: 10 pt

[Formatted: Font: 10 pt




445

450

455

460

465

470

475

Nicholls, S. D., & Young, G. S. (2007). Dendritic Patterns in Tropical Cumulus: An Observational Analysis. Monthly Weather
Review, 135(5), 1994-2005. https://doi.org/10.1175/MWR3379.1

Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant, B., ... Riedi, J. (2017). The MODIS Cloud
Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua. IEEE Transactions on
Geoscience and Remote Sensing, 55(1), 502-525. https://doi.org/10.1109/TGRS.2016.2610522

Ricciardulli, L., & Wentz, F. J. (2016). Remote Sensing Systems ASCAT C-2015 Daily Ocean Vector Winds on 0.25 deg grid,
version 02.1. Retrieved December 2, 2019, from Remote Sensing Systems, Santa Rosa, CA. website:
http://www.remss.com/missions/ascat/

Stevens, B., Bony, S., Brogniez, H., Hentgen, L., Hohenegger, C., Kiemle, C., ... Zuidema, P. (2020). Sugar, gravel, fish and
flowers: Mesoscale cloud patterns in the trade winds. Quarterly Journal of the Royal Meteorological Society, 146(726), 141—
152. https://doi.org/10.1002/qj.3662

Warren, S. G., Hahn, C. J., London, J., Chervin, R. M., & Jenne, R. L. (1988). Global distribution of total cloud cover and
cloud type amounts over the ocean. https://doi.org/10.2172/5415329

Warren, S. G., Eastman, R. M., & Hahn, C. J. (2007). A Survey of Changes in Cloud Cover and Cloud Types over Land from
Surface Observations, 1971-96. Journal of Climate, 20(4), 717—-738. https://doi.org/10.1175/JCL14031.1

Wentz, F. J., Meissner, T., Gentemann, C., Hilburn, K. A., & Scott, J. (2014). Remote Sensing Systems GCOM-W1 AMSR2
Daily Environmental Suite on 0.25 deg grid, version 8. Retrieved January 29, 2020, from Remote Sensing Systems, Santa
Rosa, CA. website: http://www.remss.com/missions/amsr/

Wood, R., & Bretherton, C. S. (2004). Boundary Layer Depth, Entrainment, and Decoupling in the Cloud-Capped Subtropical
and Tropical Marine Boundary Layer. Journal of Climate, 17(18), 3576-3588. https://doi.org/10.1175/1520-
0442(2004)017<3576:BLDEAD>2.0.CO;2

Wood, R., & Bretherton, C. S. (2006). On the Relationship between Stratiform Low Cloud Cover and Lower-Tropospheric
Stability. Journal of Climate, 19(24), 6425-6432. https://doi.org/10.1175/JCL13988.1

Wood, R., & Hartmann, D. L. (2006). Spatial variability of liquid water path in marine low cloud: The importance of mesoscale
cellular convection. Journal of Climate, 19(9), 1748-1764. https://doi.org/10.1175/JCL13702.1

Wood, R., Kdhler, M., Bennartz, R., & O’Dell, C. (2009). The diurnal cycle of surface divergence over the global oceans.
Quarterly Journal of the Royal Meteorological Society, 135(643), 1484-1493. https://doi.org/10.1002/qj.451

Yuan, T., Song, H., Wood, R., Mohrmann, J., Meyer, K., Oreopoulos, L., & Platnick, S. (2020). Applying Deep Learning to
NASA MODIS Data to Create a Community Record of Marine Low Cloud Mesoscale Morphology. Atmospheric
Measurement Techniques Discussions, (March), 1-16. https://doi.org/10.5194/amt-2020-61

15



60% A% 20% ¥ 20% 40% 0%

«—more 5¢ Cufreq. of occurence - Scfreq.  more Cu =

Figure 1: Difference in relative frequency of occurrence of cumulus and stratocumulus cloud types per Hahn et al. (2001) definitions
from ship-based observations. Red areas highlight Cu-dominated MBLs, while blue regions have more Sc cloud.
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Figure 2: Typical examples of scenes belonging to each of our classification categories. Image scale is roughly 100 km across
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Figure 3: Relative frequency of occurrence of each cloud type on a logarithmic scale. In the upper right corner of each panel, the
485  total number of classifications over three years (2014-2016), as well as the total fraction of scenes of each type, is shown. Grey areas
are where fewer than 200 scenes are sampled.
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Figure 4: The fraction of cloud scenes for each grid point which are represented by (a) the most common cloud type for that grid
|490 point, (b-d) the top 2 through 4 most common cloud types. Grey areas are-whereindicate that fewer than 200 scenes are-were sampled.
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Figure 6: Cloud radiative properties by cloud type: a) CERES cloud fraction; b) cloud frequency of occurrence, c) average CERES

net CRE per cloud type-frem-CERES; d) frequency-weighted net CRE. Each set of three markers-symbols is for the 3 years (2014-
2016) used. For panels (a) and (c), the mesoscale, synoptic, and climatological averages are shown using circular, diamond, and

| square markers-symbols respectively (see Section 2e).
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Figure 7: Same as Figure 6a, but for (a) MERRA2 sea surface temperature; (b) MERRAZ2 estimated inversion strength (EIS); (c)

MERRAZ2 700 hPa divergence; (d) MERRA2 700 hPa relative humidity.
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Figure 8: Same as Figure 7, but with (a) ASCAT surface wind divergence; (b) MERRAZ2 surface wind divergence; (c) AMSR2 rain

rate; (D) AMSR2 column water vapor.
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| Figure 10: Histograms of (a) boundary layer depth and (b) boundary layer decoupling index from CSET flights and dropsonde
observations.
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