
Response to reviewer comments, “Identifying meteorological influences on marine low cloud mesoscale 

morphology using deep learning classifications”, Mohrmann et al. 

We thank both reviewers for their time and helpful comments on the manuscript. Based on their 

feedback, we have the following revisions to be manuscript: 

Response to reviewer #1: 

Comment (1), also (6): The reviewer raises a very good point regarding the confusing wording of the 

manuscript title, and in hindsight it is very understandable that a reader could be misled by it to think 

that deep learning was used in identifying meteorological influences, not merely in creating the 

classification dataset used. A title change is warranted, and we have altered the new title to be 

“Identifying meteorological influences on marine low cloud mesoscale morphology using satellite 

classifications”. As the reviewer points out, the description of the classification dataset is primarily 

carried out in Yuan et al. (2020), and so no emphasis on it needs to be given in the title of this 

manuscript. This manuscript is primarily focused on the meteorology, and so we did not spend too many 

words on describing the methods behind the classification or its accuracy, but we agree with the 

reviewer’s comment (both comments (1) and (6)) that the accuracy of the deep learning and a brief 

description of its method and accuracy is warranted. The following language has been added to section 

2.1, paragraph 1, in the description of the classification dataset:  

Old text: [list of scenes] …These scenes are then used to train a convolutional neural net, which in turn is 

run near-globally on such MODIS oceanic scenes., and a detailed description of the classification dataset 

and training can be found in Yuan et al. (2020). 

New text: [list of scenes].  These categories were chosen by examining the category climatologies in 

Muhlbauer et al. (2014) and studying regions where there was little variability in category (primarily the 

tropics, where disorganized MCC dominated), and identifying additional commonly occurring cloud 

morphologies. These (clustered and suppressed Cu) were then added to the pre-existing cloud 

categories, along with homogeneous stratiform category initially used in Wood and Hartmann (2006). 

Examples of these types can be found in Figure 2.  

The scenes are then used to train a convolutional neural net (CNN). The CNN input data is the image of 

scene visible reflectance. A full description of the machine learning training and model evaluation can be 

found in Yuan et al. (2020); the main results are that average model precision evaluated on a test set 

was approximately 93% across all types. Open-MCC had the lowest precision, most likely because it was 

the lowest-frequency category. The largest source of model confusion was between disorganized MCC 

and clustered Cu, which is unsurprising as these categories have similar appearance.  

Comment (2): Please see the first paragraph added above, where we have added some more 

explanation about the origins of these cloud types. Additional information on the types is found in Yuan 

et al. (2020) and we do not think it would be beneficial to repeat too much of that discussion in this 

work.  

Comment (3): We have added in the appropriate citation for CERES (Doelling et al., 2013) 

Comment (4): We have added in the appropriate citation for CERES (Gelaro et al., 2017) 



Comment (5): While we understand the reviewer’s point that the Figures 6 and 7 are mentioned ahead 

of Figures 4 and 5, they are mentioned in section 2.5 only to serve as a possible reference for the 

methods described and not discussed in any depth. The analysis that corresponds to Figure 6 and 7 

comes later, in section 3.3, after the analysis of Figure 4 and 5 (in Sections 3.1 and 3.2 respectively). We 

feel that ordering the figures this way will lead to an overall more coherent reading of the paper; the 

alternatives would be to move the methods in section 2.5. to 3.3 (breaking up the methods), or moving 

Figures 6 and 7 up, resulting in much backtracking for the reader when they reach section 3.3.  

Comment (6): Addressed in response to comment (1).  

Comment (7): The following line has been added to section 3.1: “Panel (a) shows the fraction of scenes 

covered by the dominant cloud type for that grid box” to address this omission, thank you. 

 

Response to reviewer #2: 

Comment on l101, l133, l202: By mass continuity, the horizontal divergence at 700 hPa would only give 

us the local vertical divergence dw/dz (or dω/dp in pressure coordinated) at 700 hPa, and while we do 

not expect very strong gradients of large-scale divergence with height in the marine lower troposphere, 

this value will be somewhat sensitive to the level chosen. Using w700/z700 results from the integration of 

dw/dz from the surface to 700mb, and so represents the mean horizontal divergence over that layer, 

making it more suitable as an estimate of large-scale divergence. To make this point clearer, we have 

amended this paragraph as follows:  

“Note that this large-scale divergence is not the horizontal divergence at 700 hPa, but rather the mean 

divergence from the surface to the 700 hPa level; this follows from the mass continuity equation by 

considering a column of air from the surface (where vertical motion is 0) to 700 hPa. The terms large-

scale divergence and 700 hPa subsidence are used interchangeably throughout; divergence is plotted 

instead of subsidence to allow for more straightforward comparison with surface divergence. As surface 

pressure varies with time, the second equality is only approximate.” 

Comment on l218: Corrected typo, thank you. 

Comment on l218-220: The reviewer correctly interpreted this sentence, and are perhaps wondering if 

there was anything more to this point; we have added a parenthetical “(as expected)” to this sentence 

to indicate there is not deeper point being made. 

Comment on l234: Corrected by adding reference. 

Comment on S3.5: regarding alpha_q, we have added the following text: . The parameter αq is a 

measure of how much the upper boundary layer moisture resembles the lower FT as compared to the 

lower boundary layer; a value of 0 would indicate a perfectly well-mixed boundary layer, while a value of 

1 would indicate a perfectly decoupled boundary layer where the upper BL moisture was equivalent to 

the lower FT moisture. 

 

𝛼𝑞𝑇 =  
𝑞𝑇

(𝑢𝑝𝑝𝑒𝑟 𝐵𝐿) − 𝑞𝑇(𝑙𝑜𝑤𝑒𝑟 𝐵𝐿)

𝑞𝑇
(𝑙𝑜𝑤𝑒𝑟 𝐹𝑇) − 𝑞𝑇(𝑙𝑜𝑤𝑒𝑟 𝐵𝐿)

 



For a given profile, the thermal inversion height is estimated using the maximum in lapse rate, 

with the inversion being the layer where the lapse rate deviation from a moist adiabat was >25% of 

maximum deviation (this was tuned to agree with a visual assessment of the inversion layer and worked 

well for all profiles). Upper and lower BL in the qT equation are taken as the top and bottom 25% of the 

BL depth, while the lower FT is taken as the 500m above the inversion top.  

Regarding question 2 on this section, this is clarified in the text added above; the inversion used for 

diagnosing MBL depth is always the strongest thermal inversion, which tended to occur at the top of the 

remnant cloud layer in trade-like shallow Cu profiles. The result is that the boundary layers appeared 

highly decoupled as this layer has been subject to ample dry entrainment during the transition. There 

were some cases where the upper layer was thoroughly erased by dry entrainment that the diagnosed 

inversion was much shallower.  

Regarding question 3 on this section, we reprocessed the 

profiles to include a surface mixed layer depth using the 

(near-)surface-derived LCL, consistent with Wood and 

Bretherton (2004). This allows for a more apples-to-apples 

comparison with the figures referenced by the reviewer 

showing model results of the same quantities.  We include the 

fit from Park et al, 2004 shown in all 3 previous papers 

(though we note that Neggers et al. used a lower gamma 

value). It certainly seems that our profiles are consistent with 

the results in Wood and Bretherton, though we do not have 

the sample size to say anything more insightful regarding the slight disagreements between the LES 

results and the plotted fit in de Roode et al. 2016. 

Regarding the comparison to Lock (2009), we did briefly attempt to validate those results, but could not 

find a strong correlation between kappa and low cloud fraction. The most likely explanation for this is 

that in our observations, both kappa and cloud fraction are taken roughly simultaneously, whereas the 

simulations in Lock allow for cloud adjustment. It is also possible that kappa is sensitive to noise 

resulting from messy real-world profiles, and so we cannot say anything one way or another about its 

role in controlling cloud fraction. 

Comment on Fig 2: added “Image scale is roughly 100 km across.” to caption.  

For the discussion of clustered vs disorganized MCC, the following text has been added to section 2.1: 

“The primary difference between these two types is that disorganized MCC represents a regime with 

cellular convection at some characteristic scale, though not obviously organized into open- or closed-cell 

regimes, while clustered Cu represents aggregated convection at a variety of scales within a scene. For 

distinguishing between these two types during manual labelling, scene large-scale context proved 

helpful.” 

Comment on Fig 5: This may be a monitor issue, though we do agree that for Figure 5, the colors are not 

as easy to distinguish, though as the reviewer notes it is a moot point as no disorganized MCC or 

clustered Cu occurs in this scene. The colors are selected for consistency with the rest of the plots, 

where they do not present an issue, and so we will keep them as is. 



Regarding the differing color scales between the two divergence plots, we have updated the plots so 

that both ASCAT and MERRA surface divergence are on the same color scale.  

Comment on l342: typo corrected, thank you. 


