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Abstract. Epidemiological studies have consistently linked exposure to PM2.5 with adverse health effects. The oxidative 

potential (OP) of aerosol particles has been widely suggested as a measure of their potential toxicity. Several acellular chemical 

assays are now readily employed to measure OP, however, uncertainty remains regarding the atmospheric conditions and 

specific chemical components of PM2.5 that drive OP. A limited number of studies have simultaneously utilised multiple OP 30 

assays with a wide range of concurrent measurements and investigated the seasonality of PM2.5 OP. In this work, filter samples 

were collected in winter 2016 and summer 2017 during the atmospheric pollution and human health in a Chinese megacity 

(APHH-Beijing) campaign, and PM2.5 OP was analysed using four acellular methods; ascorbic acid (AA), dithiothreitol (DTT), 

2-7-dichlorofluoroscin/hydrogen peroxidase (DCFH) and electron paramagnetic resonance spectroscopy (EPR). Positive 

correlations of OP normalised per volume of air of all four assays with overall PM2.5 mass was observed, with stronger 35 

correlations in the winter compared to the summer. In contrast, when OP assay values were normalised for particle mass, days 

with higher PM2.5 mass concentrations (μg m-3) were found to have lower intrinsic mass-normalised OP values as measured 
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by AA and DTT. This indicates that total PM2.5 mass concentrations alone might not always be the best indicator for particle 

toxicity. Univariate analysis of OP values and an extensive range of additional measurements, 107 in total, including PM2.5 

composition, gas phase composition and meteorological data, provides detailed insight into chemical components or 40 

atmospheric processes that determine PM2.5 OP variability. Multivariate statistical analyses highlighted associations of OP 

assay responses with varying chemical components in PM2.5 for both mass- and volume-normalised data. Variable selection 

was used to produce subsets of measurements indicative of PM2.5 sources, and used to model OP response; AA and DTT assays 

were well predicted by small panels of measurements, and indicated fossil fuel combustion processes, vehicle emissions and 

biogenic SOA as most influential in the assay response. Through comparative analysis of both mass- and volume-normalised 45 

data we also demonstrate the importance of also considering mass-normalised OP when correlating with particle composition 

measurements, which provides a more nuanced picture of compositional drivers and sources of OP compared to volume-

normalised analysis, and which may be more useful in temporal and site comparative contexts. 

1 Introduction 

Large-scale epidemiological studies have consistently linked the exposure of airborne particulate matter (PM) with a range of 50 

adverse human health effects (Hart et al., 2015; Laden et al., 2006; Lepeule et al., 2012). A recent study by the World Health 

Organisation estimated that 1 in 8 deaths globally in 2014 were linked to air pollution exposure (World Health Organisation, 

2016) with urban areas in India and China particularly affected (Lelieveld et al., 2020). However, large uncertainty remains 

regarding the physical and chemical characteristics of PM that result in adverse health outcomes upon exposure (Bates et al., 

2019). 55 

Studies have suggested that oxidative stress promoted by PM components in vivo could be a key mechanism that results in 

adverse health outcomes (Donaldson and Tran, 2002; Knaapen et al., 2004; Øvrevik et al., 2015). Oxidative stress occurs when 

excess concentrations of reactive oxygen species (ROS) overwhelm cellular anti-oxidant defences, resulting in an imbalance 

of the oxidant-antioxidant ratio in favour of the former, which can subsequently lead to inflammation and disease (Knaapen et 

al., 2004; Li et al., 2003, 2008). The term ROS typically refers to H2O2, in some cases including organic peroxides, the hydroxyl 60 

radical (.OH), superoxide (O2
.-) and organic oxygen-centred radicals.  Particle-bound ROS is exogenously delivered into the 

lung through PM inhalation, and ROS can be produced in vivo via redox-chemistry initiated by certain particle components, 

in addition to baseline tissue ROS produced by metabolic processes (Dellinger et al., 2001). The capability of PM to produce 

ROS with subsequent depletion of anti-oxidants upon inhalation is defined as oxidative potential (OP) (Bates et al., 2019).  

OP is a fairly simple measure of PM redox activity, but reflects a complex interplay of particle size, composition and 65 

chemistries which induce oxidative stress by free radical generation which triggers cellular signal transduction and damage. 

These effects can be both localised (to lung epithelial surfaces and alveoli, reviewed by (Tao et al., 2003)) and systemic 

(through immune system activation and cytokine release (Miyata and van Eeden, 2011), translocation of ultrafine particles 

into the circulatory system (Oberdorster et al., 1992), increased circulating monocytes (Tan et al., 2000), and propagation to 
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other cells and organs (Laing et al., 2010; Meng and Zhang, 2006). Oxidative stress is implicated in the majority of 70 

toxicological effects related to air pollution (Ghio et al., 2012; Kelly, 2003; Pope and Dockery, 2006; Risom et al., 2005). A 

rapid and simple metric to capture the oxidative exposure burden which can be easily implemented for epidemiological studies 

will enable greater insight into the mechanisms of PM toxicity beyond total PM mass exposure and the most commonly 

measured (generally non-redox-active) toxic components of PM, such as measures of elemental or organic carbon and PAH 

concentrations. 75 

There are now a wide range of acellular chemical methods that attempt to quantify the entire OP of PM and particle-bound 

ROS,  as typically acellular assays allow faster measurement and are less labour intensive compared to cell cultures or in vivo 

methods (Bates et al., 2019). These include, but are not limited to, the dithiothreitol assay (DTT), ascorbic acid assay (AA), 2-

7-dichlorofluoroscein/hydrogen peroxidase assay (DCFH), electron paramagnetic spectroscopy (EPR), glutathione assay 

(GSH) and 9-(1,1,3,3,tetramethylisoindolin-2-yloxyl-5-ethynyl)-10-(phenylethynyl)anthracene (BPEAnit). These acellular 80 

assays all have differing sensitivities to specific particle components that may contribute to aerosol OP. For instance,  DTT 

has been shown to be sensitive to soluble metals (Shinyashiki et al., 2009), including copper and manganese (Charrier et al., 

2015; Charrier and Anastasio, 2012), as well as a range of organic particle components including water soluble organic carbon 

(WSOC, a mixture of 100’s to 1000’s of compounds), oxidised polycyclic aromatic hydrocarbons (PAHs) e.g. quinones 

(Chung et al., 2006; McWhinney et al., 2013a),  and humic-like substances (HULIS) (Dou et al., 2015; Verma et al., 2015a).  85 

AA is particularly sensitive to redox-active transition metals, most notably Fe (Godri et al., 2011) and Cu (Janssen et al., 2014; 

Pant et al., 2015), and has demonstrated sensitivity to organic carbon (Calas et al., 2018) including secondary organic aerosol 

(Campbell et al., 2019b). EPR is applied to speciate and quantify radical species either bound to aerosol particles (Arangio et 

al., 2016; Campbell et al., 2019a; Gehling and Dellinger, 2013), so-called environmentally persistent free radicals (EPFR),  or 

radicals formed upon suspension of  particles into aqueous solution (Gehling et al., 2014; Tong et al., 2016, 2017) or in some 90 

cases into synthetic lung lining fluid (Tong et al., 2018) consisting of a mixture of AA, glutathione and uric acid. EPR has the 

advantage of not being influenced by the dark colour of particulate suspensions (detection is via magnetic excitation rather 

than magnetic absorbance), does not require extraction of the PM from the filter, and that speciation of the free radical 

generated can be explored using spin-trap reagents that are selective for specific radicals (Miller et al., 2009). The DCFH assay 

has been shown to be particularly sensitive to hydrogen peroxide (H2O2) and organic peroxides (Venkatachari and Hopke, 95 

2008; Wragg et al., 2016), also present in secondary organic aerosol (SOA) particles (Gallimore et al., 2017),  and is a 

particularly useful assay for measuring particle-bound ROS (Wragg et al., 2016). 

Despite several studies utilising the aforementioned assays, further exploratory work is required to determine specifically what 

sources, physical properties and chemical components influence aerosol OP variability. A limited amount of studies have 

explored the role of chemical composition on aerosol OP, and it is often unclear which specific chemical components are 100 

responsible for driving aerosol OP; for example, studies show transition metals such as Cu and Mn dominate DTT activity 

(Charrier et al., 2015; Charrier and Anastasio, 2012), whereas others highlight the enhanced role of organics, in particular 

water soluble organic carbon (WSOC) such as HULIS, and quinones (Cho et al., 2005; Fang et al., 2016). Furthermore, several 
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studies correlate volume-normalised OP measurements with compositional variability, but given the potential collinearity of 

many aerosol components with overall mass, mass-normalised intrinsic OP values may provide additional insight into the 105 

effect of chemical composition on aerosol OP (Bates et al., 2019; Puthussery et al., 2020). Thus, a comprehensive 

characterisation of gaseous and particle phase pollution conditions combined measurements utilising multiple OP assays 

simultaneously, providing a wide range of information on particle-bound ROS and aerosol OP, would enable the identification 

of the most important components that drive aerosol OP. Ultimately, a greater understanding of the specific aerosol 

characteristics that influence OP, as well as specific sources that contribute more to aerosol OP,  could allow the development 110 

of more targeted and efficient air pollution mitigation strategies.     

In this work, PM2.5 filter samples collected in winter 2016 and summer 2017 during the APHH campaign were analysed using 

four acellular methods; AA, DCFH, DTT and EPR, providing a wealth of information on the health-relevant properties of 

PM2.5 including particle-bound ROS, redox-active components contributing to aerosol OP, and the formation of superoxide 

radicals upon sample extraction. As the APHH campaign simultaneously captured a broad range of PM compositional data, 115 

we aimed to establish what individual PM components, meteorological and atmospheric conditions contributed to increased 

OP assay response, whether these influences and compositions differed between assays, and if the compositions reflected 

particular PM sources. We included 107 different measurements, comprising transition metals, AMS measurements, total 

elemental and organic carbon, and a broad panel of organic species relating to biomass and fossil fuel burning, cooking 

emissions, vehicular markers, secondary organic aerosol compounds, plus gaseous species and general atmospheric conditions. 120 

We also sought to investigate the differences between volume-based and mass-based responses, as mass-based analysis may 

facilitate site and temporal comparisons more readily than volume measurements and provide details on intrinsic particle 

properties that influence OP.  

2 Materials and methods  

2.1 Air Pollution and Human Health in a Chinese Megacity Campaign (APHH) 125 

2.1.1 Site description 

High-volume 24 hr aerosol filter samples were collected at the Institute of Atmospheric Physics (IAP) in Beijing, China 

(39°58'28" N, 116°22'15" E) (Figure S1). Winter PM was collected during the months of Nov-Dec 2016 and summer PM was 

collected during the months of May-June 2017. n = 31 filters for winter 2016 and n = 34 filters for summer 2017 were collected. 

A PM2.5 high-volume sampler (RE-6070VFC, TICSH, USA) was used at a flow rate of ~1.06 m3/min. PM2.5 for subsequent 130 

OP analysis was collected onto quartz microfiber filters (Whatman, 20.3 × 25.4 cm) with a collection area of 405 cm2. 
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2.1.2 PM2.5 composition, gas phase composition and meteorological data  

Oxidative potential measurements were correlated with a range of additional particle phase composition, gas phase 

composition and meteorological measurements conducted concurrently during the APHH-Beijing campaign (Shi et al., 2019). 

Briefly, the following composition data was collated: total organic and elemental carbon (OC, EC), soluble inorganic ions (K+, 135 

Na+, Ca2+, NH4
+, NO3

-, SO4
2- and Cl-) measured using ion chromatography (IC), low-oxidised organic aerosol and more-

oxidised organic aerosol (LOOOA/MOOOA) fractions using aerosol mass spectrometry (AMS), biomass burning markers 

(galactosan, mannosan and levoglucosan), 16 polycyclic aromatic hydrocarbons (PAHs) (see  Elzein et al., 2019, 2020), C24-

C34 n-alkanes, aerosol cooking markers (palmitic acid, stearic acid, cholesterol), vehicle exhaust markers (17a(H)-22, 29,30-

trisnorhopane (C27a) and 17b(H)-21a-norhopane (C30ba)), isoprene SOA markers (2-methylglyceric acid, 2-methylerythritol, 140 

2-methylthreitol, 3-hydroxyglutaric acid), C5-alkene triols (cis-2-methyl-1,3,4-trihydroxy-1-butene, 3-methyl-2,3,4-

trihydroxy-1-butene, trans-2-methyl-1,3,4-trihydroxy-1-butene), α-pinene SOA tracers (cis-pinonic acid, pinic acid, 3-methyl-

1,2,3-butanetricarboxylic acid (MBTCA), 2,3-dihydroxy-4-oxopentanoic acid, aged α-pinene SOA marker), β-caryophyllene 

SOA tracer (β-caryophyllinic acid) and an aromatic volatile organic compound (VOC) SOA tracer (3-isopropylpentanedioic 

acid) (Liu et al., 2020). The following additional data was obtained from the Centre for Environmental Data Analysis (CEDA) 145 

archive : concentrations of inorganic elements Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Sb, Ba and Pb in PM2.5 using X-ray 

fluorescence (XRF) (Xu et al., 2020a), gas phase concentrations of methanol, acetonitrile, acetaldehyde, acrolein, acetone, 

isoprene, methacrolein, methyl ethyl ketone, benzene, toluene, C2-benzenes and C3-benzenes measured using proton transfer 

reaction time-of-flight mass spectrometry (PTR-ToF-MS) (Acton et al., 2018), gas phase concentrations of O3, CO, NO, NO2, 

NOy and SO2 as well as relative humidity (RH)  and air temperature measurements (Shi et al., 2019), photolysis rates for singlet 150 

oxygen and nitrogen dioxide (J O1D and J NO2) (Whalley et al., 2020) and gas phase concentrations of hydroxyl radicals (OH), 

peroxy radicals (HO2) and organic peroxy radicals (RO2) measured using fluorescence assay gas expansion (FAGE) (Whalley 

et al., 2020). 

2.2 Oxidative potential measurements  

2.2.1 Reagents  155 

Chemicals and gases were obtained from Sigma-Aldrich unless otherwise indicated and were used without further purification: 

ascorbic acid (≥99.0 %,), ChelexTM 100 sodium form, 0.1 M HCl solution, 0.1 M NaOH solution, dichlorofluorescein-diacetate 

(DCFH-DA), 1 M potassium phosphate buffer solution, horseradish peroxidase (HRP), methanol (HPLC grade), and o-

phenylenediamine (≥99.5 %). H2O used for the DCFH, HRP and AA solution were obtained from a Milli-Q high purity water 

unit (resistivity ≥ 18.2 M Ω cm-1, Merck Millipore, USA). For DTT analysis, 9,10-phenanthrenequinone (PQN) (≥99 %), 5,5’-160 

dithiobis(2-nitrobenzoic acid) (DTNB) (99 %), DL-dithiothreitol (DTT) (≥98 %),  potassium phosphate dibasic (≥98 %, Krebs 
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buffer),  potassium phosphate monobasic (≥98 %, Krebs buffer), and methanol (≥99.9 %) were all obtained from Fisher 

Chemical. Nitrogen (oxygen free) was obtained from BOC (Cambridge, UK). 

2.2.2 Acellular oxidative potential assays  

Four offline acellular methods for measuring PM2.5 oxidative potential were utilised in this work; The DCFH/HRP assay 165 

(Fuller et al., 2014), which quantifies the fluorescent product 2,7-dichlorofluoroscein, the ascorbic acid (AA) assay (Campbell 

et al. (2019)) which quantifies the dominant product of AA oxidation, dehydroascorbic acid (DHA) via condensation with a 

dye and fluorescence spectroscopy, Electron Paramagnetic Resonance spectroscopy (EPR) (Miller et al., 2009) specifically 

for the measurement of superoxide (O2
.-) and the dithiothreitol (DTT) assay (e.g. Cho et al., 2005), which quantifies the rate 

of loss of DTT during absorbance measurements.  These acellular methods have been widely applied in the literature to study 170 

particle OP (Bates et al., 2019). For detailed descriptions of the assay protocols, see Section S2 in the supplementary 

information. 

2.3 Statistical analysis   

We aimed to analyse the data as thoroughly as possible with respect to characterising the OP measured by each assay, and to 

attempt to robustly connect assays to both individual measurements and potential PM sources. As data were collated from 175 

several different experimental projects, and as analytical uncertainty values were not available for the majority of the data, the 

use of positive matrix factorization (PMF) was not undertaken for source apportionment, and will be published subsequently 

for selected analyses (Xu et al., 2020a). Multiple analytical platforms were used for the acquisition of compositional data, 

uncertainty estimates for each measurement were not easily estimable, a factor-based chemical mass balance approach was 

not required specifically, and temperature, relative humidity, actinic flux and other non-mass measurements could also be 180 

influential on the OP response, and are factors mainly independent of PM sources. On this basis we considered that PMF would 

not ultimately give useful models in the OP context. However, these issues are managed adequately by principal components 

analysis (PCA), which is a useful general unsupervised method for examining underlying variance and latent effects in data, 

and handles multicollinearity well, although it is not optimal for source apportionment (Paatero and Tapper, 1994).  

PCA and partial least squares regression (PLSR) models were produced in SIMCA+ 16.0 (Umetrics, Umeå, Sweden). Missing 185 

values were not altered prior to model construction, although measurements with more than 56% missing values per season 

were discarded from models. R2 and Q2 values were used to assess the goodness-of-fit of the model and the goodness-of-

prediction of the data through 7-fold cross-validation respectively. Data were unit-variance scaled and mean-centred to remove 

effects related to absolute data magnitude. Models were allowed to optimise to the maximum number of latent variables (LV) 

at which the cumulative Q2 value stabilised, which for most PLSR models was a single LV. PLSR model robustness was 190 

assessed through permutation testing, where the classifier (i.e. OP assay response) for all samples was randomly permuted 999 

times and the PLSR model constructed for each permutation; the model was considered robust if the real model R2 and Q2 
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values outperformed those from all random permutation models. Negative Q2 values indicate no predictive power of the data 

in the model, and LVs with Q2 significantly lower than the R2 value (arbitrarily defined for this study as Q2 at more than 10% 

below the R2) can be considered at least partially overfitted.  195 

Spearman rank correlations (Rs) between OP measurements and PM2.5 were calculated using OriginPro (2020), and were used 

to assess the relationships between assay responses and individual measurements, with Mann-Whitney-U tests (in R) used for 

pairwise testing of the differences in seasonal response for both assays and individual measurements. All other multivariate 

analyses, multiple linear regression models and selected univariate analyses were produced in R 4.0.2 (R Core Team, Vienna, 

Austria), implemented in RStudio 1.3.959 (Boston, Massachusetts, USA).  200 

For multiple linear regression models, outlier values were arbitrarily deemed to be those greater than 5 times the standard 

deviation and replaced with the season median where appropriate for analysis. Measurement subsets manually selected as 

relevant to source composition were then subjected to a variable selection process, whereby pairwise Spearman correlations 

for all measurements were calculated, and measurements removed from subsets if they were highly correlated with other 

measurements but predicted OP more poorly than the other co-correlated measurements, to reduce the number of variables 205 

contributing identical information in the final models. Multiple linear regression models were then further optimised from this 

initial subset using the regsubsets function in the leaps R package, to allow for between 4-8 variables which best predicted the 

OP response (models could be constructed with fewer or even more measurements, but the aim was to examine a small panel 

of contributors to potential source compositions). The variable selection process precludes the use of linear regression mode 

performance indicators such as the Aikake or Bayesian information criteria, as the model component sets are not identical. 210 

The stability of model predictions and features were assessed using bootstrap resampling of data, by randomly splitting one 

fifth of the data as a test set and using the remaining samples to construct the model and predict the left-out samples, for 500 

random iterations. Stability was also assessed though overall variance in OP predictions, measurement feature coefficients and 

model residuals plots, and run order/date bias (not differentiable as samples were analysed in date order) was assessed in 

residuals plots. Although not all data distributions were strictly normal when examined in the univariate kernel density plots, 215 

data were not log-transformed for multiple linear regression models, as this creates non-linearity in the model component 

response, which can complicate interpretation. Model residuals were plotted for manual examination and were all generally 

normally distributed despite the relatively small number of samples, and biases were related to periods of missing 

measurements or samples with values below the limit of quantification. Code developed for analysis is publicly available at 

https://github.com/katewolfer/Beijing.  220 

3 Results and discussion 

Both volume-normalised (OPv, per m3 air) and particle mass normalised (OPm, per µg PM2.5) values are considered in this 

work, where the OP value of the specific assay and sample is normalised by the volume of air collected or by the total PM2.5 

mass on the filter, respectively. OPv is useful when considering exposure or epidemiological outcomes, but OPm is likely a 
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more informative metric when exploring how chemical composition influences PM2.5 OP, and potentially enabling better OP 225 

response, site and composition intercomparisons (Bates et al., 2019). Henceforth, assay OP values will be referred to as AAv, 

DTTv, DCFHv and EPRv for volume-normalised OPv values, and AAm, DTTm, DCFHm and EPRm for mass-normalised OPm 

values. For comparison of mass normalised OP values, PM2.5 composition measurements were also normalised for total PM 

mass (e.g. ng/μg per μg PM2.5) 

3.1 Seasonal variation of OPm and OPv   230 

24-hour PM2.5 mass concentrations in winter 2016 (08/11/2016-09/12/2016) ranged from 8.1 – 328.7 µg m-3, with an average 

PM2.5 mass of 98.7 ± 75 µg m-3, whereas in summer 2017 (21/05/2017-24/06/2017) PM2.5 concentrations ranged of 13.6 – 85 

µg m-3 with an average of 36.7 ± 16 µg m-3 (Figure S7) (Shi et al., 2019; Xu et al., 2020a). Average seasonal values for each 

assay are summarised in Table S1. A data set showing 24-hr average data, for AAv and PM2.5 mass in both the winter and 

summer campaign, is shown in Figure 1 (for DCFHv, DTTv and EPRv, see Section S5 “Summary statistics for all 235 

measurements” in the Supplementary Information).  

 

 

Figure 1.  24-hour averaged volume-normalised AAv (red bars) and PM2.5 mass (blue dots), analysed from 24-hour high volume filters, for 

both winter 2016 (08/11/2016 – 08/12/2016) and summer 2017 (21/05/2017-24/06/2017) (Shi et al., 2019; Xu et al., 2020a). Substantially 240 
higher average PM2.5 mass concentrations (µg m-3) and AAv were observed in the winter season compared to the summer (see Table S1 for 

summary). 
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For all assays, a higher average PM2.5 OPv was observed in the winter compared to the summer in Beijing (Table S1).  The 

average AAv was 96.7 ± 42.7 nM [DHA] m-3 in the winter, whereas a mean value of 24.1 ± 6.1 nM [DHA] m-3 was observed 

in the summer. Given the recent introduction of this AA-based assay, which measures the formation of the AA oxidation 245 

product DHA rather than measuring the decay of AA via UV absorbance, limited literature values are available for direct 

comparison (Campbell et al., 2019b).  Average DCFHv in the winter was 0.71 ± 0.52 nmol H2O2 m-3 compared to 0.17 ± 0.11 

nmol H2O2 m-3 in the summer, which is within the range of DCFHv values observed in previous studies in Taiwan, the USA 

and Singapore (OPDCFH 0.02 - 5.7 nmol H2O2 m-3) (Hasson and Paulson, 2003; Hewitt and Kok, 1991; Hung and Wang, 2001; 

See et al., 2007; Venkatachari et al., 2005). Mean observed values for DTTv in the winter and summer were 2.9 ± 0.11 nmol 250 

min-1 m-3 and 0.9 ± 0.40 nmol min-1 m-3, respectively. The mean values of DTTv observed in this study are greater than those 

measured in similar studies in Beijing (Liu et al., 2014) (0.11-0.49, mean = 0.19 nmol min-1 m-3) with similar mass 

concentrations of PM2.5 (mean = 140 µg m-3), although they are within the range of DTTv values observed in a number of 

previous studies in several locations, including Europe (Jedynska et al., 2017; Yang et al., 2015), the US (Fang et al., 2015; 

Verma et al., 2014) and Northern China (Liu et al., 2018) (0.1-14.7 nmol min-1 m-3). The mean EPRv values, relating to the 255 

specific detection of O2
.-, were 2.4×106 ± 1.6×106 and 5.8×105 ± 4.1×106 counts m-3 in the winter and summer campaign, 

respectively.   

Spearman rank correlation coefficients of aerosol OPv with PM2.5 vary between the winter and summer seasons, and also 

between OP assays, as illustrated in Figure 2. All four assays, when normalised per volume (OPv), show a stronger correlation 

with PM2.5 mass concentration in the winter compared to the summer, consistent with results observed in Chamonix, France 260 

by Calas et al. (2018) For example, DCFHv correlates well with 24-hr average total PM2.5 mass concentration (µg m-3) in both 

winter (Rs = 0.96) and summer (Rs = 0.76) (Figure 2B), whereas AAv correlates well in the winter (Rs = 0.89) and poorly in 

summer (Rs = 0.21). Similar correlations of DCFHv with PM2.5 mass concentrations in both winter and summer suggest that 

species influencing DCFHv variability (e.g. H2O2 and organic peroxides, likely particle-bound ROS) present in the particles 

are relatively consistent between both seasons. Similar to AAv, differences between the seasons are also observed for DTTv 265 

and EPRv, where correlations of aerosol OPv vs. PM2.5 are stronger in winter compared to summer (Figure 2C and 2D), also 

generally consistent with previous studies, although in contrast to Calas et al. (2018), who observed no difference in EPRv 

between seasons in Chamonix, although in that study the spin trap DMPO was used to study hydroxyl radicals, whereas in this 

study we focus on the formation of superoxide upon particle suspension in aqueous solution. The differences in the correlation 

shown in Figure 2 suggest that the four assays are sensitive to different PM components and that in winter and summer 270 

different PM sources or components are important for the assay’s responses (Calas et al., 2018; Saffari et al., 2013; Verma et 

al., 2014). Figure 2 demonstrates that PM2.5 mass could be a reasonable predictor of total OPv in winter, but the poorer 

correlations between all OPv assays and PM2.5 in the summer indicate that a more detailed understanding is necessary to 

elucidate and ultimately predict aerosol OP. However, the variability in the strength of correlation between OPv and PM2.5 

mass as well as the seasonal difference indicates that compositional differences in PM2.5 or additional atmospheric processes 275 

influence PM2.5 OP.  
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Figure 2. Comparison of PM2.5 OPv during winter 2016 (blue) and summer 2017 (orange) vs. PM2.5 mass (µg m-3). (a) AAv, (b) DCFHv, (c) 

DTTv and (d) EPRv. Each datapoint represents a 24-hour average for OP measurements and PM2.5 mass. Corresponding Rs and linear fit 

equations are included. For AAv, DCFHv and DTTv, error bars represent the standard deviation observed over three repeat measurements for 280 
each filter sample, and in some cases the error is smaller than the data point. Uncertainty values are unavailable for EPRv measurements.  

To gain further insights into the potential particle-level compositional differences underlying assay OP response, the OP data 

for the four assays was normalised to the PM2.5 mass in each sample. As shown in Figure 3, mass-normalised OPm values vary 

up to ten-fold within a single season. AAm, DCFHm, DTTm and EPRm for both winter and summer are displayed in Figure 3, 

with colour bars indicating the 24-hr average total PM2.5 mass (µg m-3) for the corresponding OPm measurement.  The average 285 

OPm response observed in this study shows a similar trend to OPv (Table S2), where higher OPm values are observed for winter 

compared to summer (Figure 3), as observed previously (Liu et al., 2018; Saffari et al., 2014). This demonstrates that there 

are specific properties of PM2.5 in the winter that result in overall higher intrinsic OPm compared to the summer. 

For AAm, an inverse relationship between total PM2.5 mass concentration and AAm is observed in both seasons, where days 

with high PM2.5 mass loadings have correspondingly low AAm values in both the winter and summer, with almost a 6-fold 290 
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difference between the AAm on the highest PM2.5 mass day (PM2.5 = 328 µg m-3, AAm = 0.6 nM [DHA] µg-1) and lowest PM2.5 

mass day observed during the winter campaign (PM2.5 = 8 µg m-3, AAm = 3.53 nM [DHA] µg-1). A similar trend is observed 

for DTTm, where in general days with higher overall PM2.5 mass concentrations have correspondingly low DTTm values, which 

has also been observed previously (Wang et al., 2020b). The DTTm response is also not correlated with Cu and Mn 

concentrations, despite the monotonic relationship between these components being demonstrated in other studies (Charrier et 295 

al., 2016). These results indicate that on high-pollution days a large fraction of the PM mass might be OP-inactive, resulting 

in low intrinsic OPm values. In general, smaller particles have been observed to have higher DTTm values compared to larger 

particles (Bates et al., 2019; Janssen et al., 2014), an effect which may also play a role here.  Another possibility is that on 

higher PM2.5 mass days, selected chemical species interact with or deactivate redox-active components present in PM2.5 (e.g. 

the interaction of organics with metals (Tapparo et al., 2020)), therefore reducing the observed OPm signal. It is also possible 300 

that components present in PM2.5 on higher PM2.5 mass concentration days interfere with the assay response. It is currently 

unclear which chemical components are responsible for the observed inverse relationship between PM2.5 mass with AAm and 

DTTm. However, statistically significant inverse correlations are observed between AAm and DTTm in both the winter and 

summer with the chemically undetermined “unknown” fraction of PM2.5 for DTTm (Rs = -0.81) and AAm (Rs = -0.75), implying 

that PM2.5 chemical components unaccounted for in this study are likely responsible for the lower intrinsic AAm and DTTm 305 

values on high PM2.5 mass days (See Section 3.2 “Univariate analysis of PM OP and additional measurements”, Figure S11 

and Figure S12).  

In contrast, higher DCFHm responses are observed on days with greater PM2.5 mass concentrations in both winter and summer. 

Increased DCFHm responses on more polluted days could indicate that the mass fraction of particle-bound ROS (e.g. organic 

peroxides from SOA) increases with increasing PM2.5 mass concentration, or that the capacity of PM components to produce 310 

H2O2 upon extraction, as measured by DCFH, is enhanced. Previous studies have shown that on a mass-normalised basis, 

larger particles (PM10) have greater potential for H2O2 generation in synthetic lung fluid, possibly via Fenton-type chemistry, 

as compared to smaller particles (PM2.5) (Shen et al., 2011; Shen and Anastasio, 2011), likely related to components in smaller 

particles that relate to their specific sources. Despite the significant seasonal difference in EPRm, no obvious relationship 

between EPRm and PM2.5 mass was observed in our study.  315 
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Figure 3. Summer and winter 24-hour averaged mass-normalised OPm (A) AAm (µM DHA µg-1), (B) DCFHm (nmol H2O2 µg-1), (C) EPRm 

(counts µg-1) and (D) DTTm. Box plots indicate the median, 25% and 75% percentiles, and the data range. Data points are colour coded with 

respect to the 24-hour average PM2.5 mass (µg m-3), with a separate colour scale for winter and summer PM2.5 masses given the difference 320 
in total PM2.5 masses observed between the seasons. Grey in the colour scale indicates missing values. 

Spearman rank correlations (Rs) between the four assays, for mass-normalised OPm and volume-normalised OPv are presented 

in Table 1.  In terms of OPv, all four assays show significantly strong correlations with each other in the winter season (Rs 

0.72 – 0.89), but weaker correlations are observed between assays in the summer (Rs 0.01-0.58), a seasonal difference observed 

previously by Calas et al. (2018). In contrast, the only statistically significant correlation observed for OPm is between AAm 325 

and DTTm in the winter season only (Rs = 0.58).  

Seasonality of both OPv and OPm observed in the assays could be driven by changes in PM sources influencing overall OP, or 

a number of physical and chemical factors directly affecting particle composition. For instance, lower ambient temperatures 

in the winter may increase the partitioning of semi-volatile organic compounds, such as quinones and nitro-PAHs, which have 

been shown to influence DTT activity (Ntziachristos et al., 2007; Verma et al., 2011), observations which are supported by 330 

lab-based studies showing decreasing aerosol OP at higher temperatures (Biswas et al., 2009; Verma et al., 2011). Changing 

boundary layer height between the seasons may also contribute to higher concentrations of species responsible for increasing 

aerosol OP during the winter, compared to summer, especially affecting OPv seasonality (Wang et al., 2020a). Furthermore, 

air mass history may play an important role in the observed seasonality of OP. For instance, it was observed that winter days 

with high PM2.5 mass concentrations typically originate from regional sources south of Beijing, which is widely industrialised, 335 
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whereas high mass days in the summer typically have more varied air mass histories (Panagi et al., 2020; Steimer et al., 2020). 

There are likely varying contributions between different sources in different seasons, e.g. more photochemistry in the summer 

driving oxidation and biogenic sources, and more contributions from residential heating combustion in the winter (Xu et al., 

2020a). In order to gain further insight into what causes the observed variability of OP, relationships between particle chemical 

composition and aerosol OP will be explored in detail below. 340 

 

Table 1. Correlation of volume-normalised (OPv, top panel) and mass-normalised (OPm, bottom panel) assay responses in the winter (blue) 

and summer (orange) campaign.  It should be noted that assay responses expressed as mass-normalised (OP per μg) are correlated with mass-

normalised additional particle phase composition measurements (i.e. µg or ng per µg PM2.5). 

OPv Rs AAv DCFHv EPRv DTTv 

AAv  0.89*** 0.86*** 0.83*** 

DCFHv 0.35*  0.86*** 0.72*** 

EPRv 0.19 0.01  0.88*** 

DTTv 0.41* 0.58*** 0.07  

 345 

OPm Rs AAm DCFHm EPRm DTTm 

AAm  -0.29 0.22 0.60** 

DCFHm -0.20  -0.08 -0.15 

EPRm -0.26 0.15  0.27 

DTTm 0.2 -0.28 0.14  

Bold indicates Rs ≥ 0.5, *p < 0.05, **p < 0.01, *** p < 0.001. 

 

3.2 Univariate analysis of PM OPm and additional measurements    

Spearman rank correlations between OPm of the four assays and 107 additional measurements conducted during the APHH 

campaign (see Section 2.1.2 “PM2.5 composition, gas phase composition and meteorological data”), were calculated for both 350 

the winter (n = 31) and summer (n = 33). We focus on  OPm in the forthcoming discussion; as mentioned previously, as we 

consider it a particularly informative metric when determining the role of chemical composition on OP (Bates et al., 2019; 

Puthussery et al., 2020) (all results are presented in Section S7 “Assay correlations with individual component 

measurements”). 

The majority of additional particle phase composition, gas phase composition and meteorological measurements differed 355 

significantly by season. Exceptions included Al, V, Zn, Pb, Ca2+, Na+, NH4
+, acetaldehyde, acetonitrile, methanol, methyl ethyl 

ketone, methyl vinyl ketone/methacrolein, trans-2-methyl-1,3,4-trihydroxy-1-butene, β-caryophyllinic acid, 3-hydroxyglutaric 
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acid, C5-alkene triols, cholesterol, LOOOA and MOOOA. Stacked bar plots illustrating the total daily concentrations for both 

mass-normalized and volume-normalized data are shown in Figure 4 and Figure S13. Total concentrations of individual PM 

components (excluding all composite measures) account for approximately 0.3-0.8 µg/µg, i.e. 30 – 80% of the total PM mass 360 

(data not shown). Interestingly there were no marked or characteristic changes in mass composition associated with haze days; 

however, haze events were generally correlated with increased biomass burning marker concentration and total organic carbon 

in winter for the mass-normalised data (also observed during recent later winter haze events in Beijing (Li et al., 2019)), and 

small inorganic ion concentrations in both seasons in the volume-normalised data (Figure S13). 

IC measurements (K+, Na+, Ca2+, NH4
+ NO3

- and SO4
2-) account for the greatest proportion of total particle mass in both 365 

seasons, all of which are major components of secondary inorganic PM mass (NH4
+, NO3

-, SO4
2-), mineral dust (Ca2+, K+,), 

and marine aerosols (Na+, Cl-). These species were present at higher daily concentrations in summer than in winter. Summer 

compositions for each category were generally consistent for the whole sampling period, with a larger total proportion of SOA 

markers, whereas winter compositions were more variable, with greater contributions from elemental carbon, PAHs, n-alkanes 

and cooking-related compounds than for summer samples. Although PAHs are not redox-active (Charrier and Anastasio, 370 

2012), they are precursors to redox-active oxy-PAHs (quinones) and nitro-PAHs (Atkinson and Arey, 2007), and have well-

established intrinsic cellular toxicity (reviewed in Moorthy et al., 2015), mediated by their conversion to hydroxy-PAHs, which 

exert mutagenic and teratogenic effects, and also inducing transcriptional modifications and oxidative stress. EC and n-alkanes 

are also non-redox-active and the exact mechanism of their toxicities is unclear (Levy et al., 2012); however, SOA derived 

from the interaction of n-alkanes with NOx with photo-oxidation (Lim and Ziemann, 2005; Presto et al., 2010) is likely both 375 

to contribute to the redox activity of samples (Tuet et al., 2017), and to have more toxic properties than its precursors (Xu et 

al., 2020b). The sample from 22 November 2016 has a particularly high concentration of cooking markers (palmitic acid, 

stearic acid and cholesterol). This could reflect the fact that the traditional Chinese winter solar term Xiao Xue (小雪,“Light 

Snow”), begins on this date (Li, 2006), a period associated with the preparation of warm foods as the ambient temperatures in 

northern China drop; a similar elevation of palmitic acid and stearic acid has been observed around the same week in a more 380 

recent study in Shanghai (Wang et al., 2020c).  
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 385 

Figure 4. Stacked bar plots of total concentrations for mass-normalised data. Abbreviations: OC: organic carbon; EC: elemental carbon; 

PAH: polycyclic aromatic hydrocarbon; SOA: secondary organic aerosol “Metals” is the summed concentrations of Al, Ti, V, Cr, Mn, Fe, 

Co, Ni, Cu, Zn, Cd, Sb, Ba, Pb; “biomass burning” is the summed concentrations of palmitic acid, stearic acid and cholesterol;  “PAH” is 

the summed concentrations of naphthalene, acenaphthylne, acenaphthene, fluorene, phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, 

chrysene,  benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene and 390 
benzo(ghi)perylene; “n-alkane” is the summed concentrations of C24, C25, C26, C27, C28, C29, C30, C31, C32, C33, C34; “cooking 

markers” is the summed concentrations of palmitic acid, stearic acid, cholesterol; “vehicle markers” is the summed concentrations of 17a(H)-

22,29,30-trisnorhopane (C27a) and 17b(H),21a(H)-norhopane (C30ba); “SOA” is the summed concentrations of 2-methylthreitol, 2-

methylerythritol, 2-methylglyceric acid, cis-2-methyl-1,3,4-trihydroxy-1-butene, -methyl-2,3,4-trihydroxy-1-butene, trans-2-methyl-1,3,4-

trihydroxy-1-butene, C5-alkene triols, 2-methyltetrols, 3-hydroxyglutaric acid, cis-pinonic acid, acid, MBTCA,  beta-caryophyllinic acid, 395 

https://doi.org/10.5194/acp-2020-1024
Preprint. Discussion started: 13 October 2020
c© Author(s) 2020. CC BY 4.0 License.



16 

 

glutaric acid derivative, 3-acetylpentanedioic acid, 3-acetylhexanedioic acid, 3-isopropylpentanedioic acid and 2,3-dihydroxy-4-

oxopentanoic acid. Dates marked in red indicate partial or total day haze events as described in Shi et al. (2019). Measurement uncertainty 

values were unavailable for most data types, and for selected dates in the upper plots, the sum of the total mass measurements is slightly 

more than 1 (i.e. more than 1µg per µg); for these dates, the data has been proportionately scaled. It should be noted that the OC measurement 

in the upper plots incorporates the variety of organic carbon species represented in the lower plots. 400 

Rs calculated for OPv and OPm with the individual compositional measurements have strikingly different univariate 

correlations, as illustrated in correlation heatmaps (Figure 5). Cumulative scores, referring to the number of Rs correlations ≥ 

0.5 for OPm and OPv (Table S3), demonstrate that for all assays, considerably more significant correlations are observed for 

OPv in the winter compared to OPm. For both OPv and OPm, all assays show more statistically significant correlations in winter 

compared to summer, particularly for the AA response (AAm: 54 correlated features in winter, 15 in summer; AAv: 67 405 

correlated features in winter, 4 in summer).   

Volume-based correlation analysis (Figure 6A) indicates that a very large number of the 107 atmospheric components 

measured in this study correlate statistically significantly with all four assays. The large number of correlations in the volume-

normalised data indicate strong collinearity between concentrations of chemical components in PM2.5 and overall PM2.5 mass 

concentrations likely due to meteorological processes, complicating analysis of the sources and processes contributing to OP 410 

variability in particles. However, the mass-based analysis (Figure 6B) reveals that the mass fractions of chemical components 

and sources to which the four assays are sensitive to differ significantly (further illustrated by the weaker inter-assay 

correlations shown in Table 1), which demonstrates that mass-based analysis of OP data is also important to elucidate 

atmospheric processes and particle sources responsible for the different OP metrics.  

A range of transition metals were all positively correlated with AAm and DTTm, including V, Cr, Mn, Fe, Co, Ni, Zn, Cd and 415 

Pb (all Rs ≥ 0.5, p < 0.05). This reinforces the importance of their contribution to urban PM2.5 and potential to exert oxidative 

stress in tissues, particularly Fe, Cr, V and Co which are commonly major components of vehicle emissions, which can undergo 

redox-cycling reactions producing ROS (Charrier et al., 2014; Shen and Anastasio, 2012; Valko et al., 2005) contributing to 

higher AAm and DTTm in the winter compared to the summer. Stronger correlations between Fe and AAm are observed in the 

winter (Rs 0.73) compared to summer (Rs 0.48) despite Fe concentrations (µg/µg) being lower in winter samples than summer 420 

samples, again highlight the enhanced role of redox-active transition metals in winter. It is not established whether this seasonal 

difference is related to the chemical availability (i.e. redox state, solubility, speciation) of Fe, to the variability of emission 

sources of Fe between the seasons, or to some other important additional contribution to ROS in the summer; complexation of 

the Fe may differ between seasons, and the ligands can directly influence the redox state and bioavailability of the metal (Ghio 

et al., 1999). Interestingly, a mild inverse correlation of Fe with DCFHm is observed (Table S8, not statistically significant), 425 

which may be linked to the destruction of particle-bound organic peroxides by Fe via Fenton-type chemistry (Charrier et al., 

2014), a process which the DCFH assay is specifically sensitive to (Gallimore et al., 2017; Wragg et al., 2016), and which has 

been observed in other recent studies (Paulson et al., 2019).  No significant positive correlation between any metals measured 

in this study and DCFHm and EPRm was observed. Few EPR studies have looked specifically at superoxide formation, as is 
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the case here, but those conducted so far show that EPR is less sensitive to transition metal chemistry compared to traditional 430 

EPR methods focussing on OH formation.  

 

 
 

 435 
Figure 5. Heatmaps demonstrating the correlation of OP, expressed as volume-normalised OPm (A) and mass-normalised OPv (B) vs a range 

of additional measurements conducted during the APHH campaign. Red indicates positive correlation; blue indicates inverse correlation. 

For OPm, particle-phase components are also mass normalised (µg per µg PM2.5 and for OPv, volume-normalised (µg or ng per m3).  
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In the summer, from the measured transition metals, only Fe correlated significantly positively (Spearman correlation p-value 

< 0.05) with DTTm and AAm response (Rs = 0.48, 0.51 respectively), whereas in the winter, DTTm and AAm correlated with a 440 

number of transition metals including V, Cr, Mn, Fe, Co, Ni, Zn, Cd. Of particular note, AAm is mildly correlated with Cu in 

winter samples (Rs 0.48), whereas no correlation is observed between DTTm and Cu in either winter or summer, in agreement 

with a recent online DTT study also (Puthussery et al., 2020). In contrast, previous reports from other locations have implicated 

Cu as a dominant contributor to DTT oxidation, considering volume normalised and mass normalised data (Calas et al., 2018; 

Charrier et al., 2015).  Interestingly, in contrast with OPm, good correlations (Rs > 0.6) are observed in this study between AAv, 445 

EPRv, DCFHv and DTTv and Cu in the winter, but poorer correlations are observed in the summer for all assays (Rs < 0.39). 

Higher average Cu concentrations in winter compared to summer (winter = 17.7 ng m-3, summer = 4.9 ng m-3) may explain 

the higher Rs observed for Cu vs. OPv in winter compared to summer, whereas mass normalized concentrations of Cu are more 

similar between the seasons.  Poor correlation of Cu concentrations with AAm and DTTm response in winter may hint at more 

insoluble Cu complex formation observed at this site in Beijing, as predominantly water-soluble Cu participates in redox 450 

reactions, therefore the sensitivity of AA and DTT towards Cu probably depends on the soluble fraction of Cu (Bates et al., 

2019; Charrier and Anastasio, 2012; Fang et al., 2016). Furthermore, the presence of organic chelating ligands in PM may 

reduce the redox-activity of Cu and Fe (Charrier et al., 2014; Charrier and Anastasio, 2011; Shen and Anastasio, 2012). 

Correlations between AAm and DTTm with total OC are observed in both summer and winter (Tables S6 and S7), and with 

total EC in the winter season, whereas DCFHm is negatively correlated with total OC (Table S8). In contrast, DCFHm is 455 

positively correlated with MOOOA and LOOOA, whereas DTTm and AAm show no correlation and even exhibit slight negative 

correlations with MOOOA and LOOOA in both summer and winter. This potentially indicates that the MOOOA and LOOOA 

AMS fractions, typically associated with water-soluble organic carbon content (Verma et al., 2015b), may contain higher 

concentrations of particle-bound ROS (i.e. organic peroxides) as measured by DCFHm, but on a per-mass basis these species 

may contribute less significantly to AAm and DTTm compared to redox-active transition metals and other organic components. 460 

Total OC and EC correlations with AAm and DTTm may relate to concentrations of redox-active organic components such as 

oxidized PAHs and quinones, which may not be represented by MOOOA and LOOOA factors and which have been shown to 

significantly contribute to DTTm (Chung et al., 2006; McWhinney et al., 2013b).  

Significant correlations are also observed between AAm and a range of n-alkanes and hopanes (17a(H)-22, 29,30-trisnorhopane 

(C27a) and 17b(H)-21a-norhopane (C30ba), Table S6), markers of primary organic aerosol emitted from vehicles (Schauer et 465 

al., 1999; Subramanian et al., 2006). Although these species are not redox-active, they are co-emitted with redox-active 

transition metals such as Fe, V and Cu from vehicle activity, either directly (Bates et al., 2019) or via dust resuspension,  and 

other organics contributing to SOA (Platt et al., 2014) and highlight the potential importance of vehicular emissions on AAm. 

Vehicular emissions and dust-resuspension have been previously shown to be the dominant sources of Cu and Fe in Beijing 

(Gao et al., 2014). EPRm, DTTm and DCFHm responses do not show any significant correlations with these organic traffic 470 

markers.  
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Notably, AAm correlates well with cis-pinonic acid, pinic acid and 3-methyl-2,3,4-butanetricarboxylic acid (MBTCA) in both 

seasons, all of which are biogenic SOA markers and products of α-pinene oxidation, with MBTCA a marker for OH-initiated 

ageing of first generation α-pinene oxidation products (Müller et al., 2012). AA sensitivity towards α-pinene SOA has been 

demonstrated previously (Campbell et al., 2019b). Although these three carboxylic acids are also not redox-active, they may 475 

correlate with the formation of particle-bound ROS such as peroxides or peroxy acids in SOA (Steimer et al., 2018), or with 

species that decompose liberate ROS upon extraction (e.g. (Tong et al., 2017)); these processes are highly likely to contribute 

to AAm, highlighting the assay’s sensitivity to redox-active particle phase organic components and particle-bound ROS. 

Generally, DTTm  has been previously shown to be relatively insensitive to SOA as observed here (Bates et al., 2015; Verma 

et al., 2015b), and both DTTm and DCFHm correlate poorly with the SOA markers analysed in the present study (Tables S7 480 

and S8). 

Compared to the three other assays, few significant correlations are observed between EPRm and additional measurements, 

despite the much better correlations with the EPRv data, particularly for the summer samples. However, seasonality in the 

EPRm response is still observed, with substantial variability in the mass-normalised EPRm response (≈ factor of 10 in the 

summer, factor of 2 in the winter, Figure 3). Therefore, we observe differences in aerosol composition influencing EPRm, but 485 

with the current comprehensive measurements (i.e., 107 parameters) are unable to determine the specific PM2.5 components 

responsible for the observed EPRm variation.  

The univariate analysis presented here clearly shows that OPm enables a more nuanced identification of aerosol components 

linked to OP as compared to OPv. Many more correlations are observed when considering volume-normalised OPv, likely 

related to collinearity of species with overall PM2.5 mass concentration due to meteorological effects. Metal and organic tracers 490 

of traffic emissions (exhaust and non-exhaust) such as Fe, Cu and hopanes and SOA markers show especially strong 

correlations with AAm, whereas the other three OPm metrics (DTTm, DCFHm and EPRm) provide a less clear picture.  

3.3 Multivariate modelling of OP from measured components    

To assess potential latent influences from the individual components on assay response and hence on OP, a systematic 

multivariate analysis was undertaken. Initially principal components analysis was applied to the whole set of independent 495 

measurements excluding the OP responses (i.e. the values to be predicted by the models), to investigate which contributed 

most to the variation in the data, whether there were relationships between measurements which characterised OP, and if the 

OPm response could be predicted from the individual component measurements.  

In the PCA model, the seasonal variation within the samples was clearly apparent (Figure 6). The first four principal 

components (PC) accounted for 68.2% of the observed variation in the dataset (R2 or goodness-of-fit), of which 50.5% was 500 

stable through 7-fold cross-validation (Q2, or model variation accounted for through cross-validation), indicating about half of 

the variation in the model was robust with respect to sample score prediction. The loadings plot for this model (Figure 7) 

indicated the primary drivers of seasonality in the first principal component were increased PAHs (Feng et al., 2019), n-alkanes 

(He et al., 2006) and biomass burning markers (He et al., 2006) in winter, and increased ozone (Zhao et al., 2018), ambient 
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temperature and selected SOA markers (including 2-methylerythritol (Liang et al., 2012) and 2-methylglyceric acid (Ding et 505 

al., 2016; Shen et al., 2018)) in summer, findings which are consistent with existing volume-based studies. When scores were 

coloured by OP, the AAm (Figure 6B), DTTm and DCFHm, assay responses could be observed in the second and sometimes 

also the first principal components (although the EPRm response demonstrated no specific trend, Figure S14). When loadings 

plots were examined by general measurement category (Figure 7), it was observed some categories of measurements cluster 

together (e.g. PAH, n-alkanes, NOx, temperature, relative humidity), but this was related to strong correlation of these species 510 

with the OPm measurement and known compound behaviour rather than to intrinsic measurement bias, as other categories 

showed broader variation (e.g. inorganic and small organic ions, gases, metals and SOA markers).    
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 515 

 
Figure 6. Principal components analysis scores plot of all data. A: coloured by season (winter/summer). B: coloured by AAm response. Both 

principal component 1 and principal component 2 demonstrate variance associated with AA response, and there is greater variation associated 

with the winter response than the summer response. PC 1 R2X 35.90%, Q2 29.28%; PC 2 R2X 19.34%, Q2 23.73%; the model included four 

principal components, with a cumulative R2X of 68.2% and Q2 of 50.5%. Analogous colour-coded PCA plots for DTTm, DCFHm and EPRm 520 
are shown in Figures S14-S16.  

B 

A 
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Figure 7. Principal components analysis loading plot for all data points. Points are coloured by measurement category; a fully labelled plot 

is provided in Figure S17. The plot is annotated with the same orientation as the scores plot, to indicate the direction of visualised trends in 

Figure 6. In PC 1, the winter classification is driven by increased gas radicals, n-alkanes, PAH, vehicle markers, biomass burning markers, 525 
total OC and selected metals and SOA markers; the summer classification is driven by increased temperature and photolysis, ozone (the 

single gas species in this section of the plot), selected SOA markers and metals, and selected VOCs. In PC 2, high AAm response is associated 

with increased SOA, transition metals, cooking markers, n-alkanes and PAH concentrations in samples; low AAm response associated with 

low VOCs, gases and selected meteorological parameters (relative humidity). 

Partial least squares regression (PLSR) is a supervised regression extension of PCA, which models the variation in the data 530 

associated with a defined sample classification (Eriksson et al., 2013). PLSR models were constructed for each individual OP 

assay and season, to examine the most specific markers associated with assay response. Table 2 gives the model performances 

for all PLSR assay models, and example PLSR scores plots for AAm and DTTm models (both seasons) are illustrated in Figures 

8 and 9 (analogous plots for other assays provided in Figures S18 and S19). The performance indicators show that while the 

mass-normalised measurement data can be used to explain and predict a large majority of the variation associated with AAm 535 

summer/winter and DTTm winter assay response, the other assay responses were less consistent; R2 and Q2 values for these 
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models indicated that less than 70% of the variance in response can be predicted from the individual component measurements, 

and the predictions much less stable through cross-validation. These results could suggest either that assay responses are not 

as adequately sensitive at the µg/µg concentrations as for the total volume of PM per sample, or that a proportion of the OPm 

response is contributed to by species not measured directly in this campaign, and which cannot also be inferred from total 540 

organic carbon measurements. As total OC is estimated from combustion properties of the sample rather than from a sum of 

individually validated component measurements, and as multiple organic and transition metal-organic complexed species 

contribute to the total OC measurements with unknown redox properties, these observations highlight the need for more 

comprehensive chemical characterisation of PM composition. Similarly to the univariate correlations, the summer samples 

were less well modelled in both mass-normalised and volume-normalised data, indicating either reduced assay sensitivity 545 

(which may also be compounded by the reduced collected filter PM mass in summer) or the influence of unmeasured 

components. 

Table 2. Performance assessment of PLSR models for all assays, for both mass-normalised (left) and volume-normalised (right) data. Models 

are considered to perform well when both cumulative (i.e. across all latent variables included in the model) R2 and Q2 values are high, or at 

a minimum where Q2 values are within 10% of the R2 value, indicating that the variance is well accounted for in model cross-validation. 550 
Permutation tests were rejected for robustness if any single random permutation model performance surpassed the performance of the real 

cross-validated model; on this basis, the winter DCFHm and summer DTTv models were rejected (highlighted with *), although fewer than 

three random models outperformed the real model, and none of the permuted model Q2 values outperformed those of the real model. 

  mass (µg/µg) volume (µg/m3) 

assay season optimal 

LVs 

cumul. 

R2 

cumul. 

Q2 

permutation  

test pass 

optimal 

LVs 

cumul. 

R2 

cumul. 

Q2 

permutation  

test pass 

EPR winter 1 43.2 19.3 no 2 83.9 75.2 yes 

 summer 1 11.3 -10.0 no 1 52.0 3.7 no 

AA winter 1 81.4 78.2 yes 2 94.1 87.9 yes 
 

summer 2 79.3 49.7 yes 1 41.8 22.6 no 

DTT winter 2 76.0 62.0 yes 2 86.8 67.0 yes 
 

summer 1 47.4 31.6 no 1 66.2 50.9 no* 

DCFH winter 2 71.9 50.4 no* 2 67.0 55.2 yes 
 

summer 1 28.2 -6.6 no 1 86.0 66.7 yes 
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 555 

Figure 8. PLSR scores plot for AAm assay. Model performance parameters given in Table 2. Left: winter samples; right: summer samples. 

Points coloured by overall AA assay response for both seasons. Red bar indicates 2 × SD for all scores, orange dotted line indicates 1 × SD 

for all scores. Models which have only one latent variable have the X-axis replaced by date for easier visualisation. The grey ellipse represents 

the Hotelling’s T2 statistic, a multivariate 95% confidence interval, and samples which are outside the ellipse may potentially be outliers. 

 560 

Figure 9. PLSR scores plot for DTTm assay. Model performance parameters given in Table 2. Left: winter samples; right: summer samples. 

Points coloured by overall DTT assay response for both seasons. 

Table 3 shows the top ten features in the variable importance in projection (VIP) for the PLSR loadings, which enable a 

ranking of the features which contribute most to the model (Naes and Martens, 1988). It is evident from these data that the 
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features which best model the OPm seasonal response are derived from multiple particle sources and atmospheric aging 565 

processes. For example, the AAm and DTTm responses show similar trends in the multivariate models, but the main contributors 

to their responses have little overlap, with AAm responses being more strongly associated with SOA tracers, PAHs and general 

measures of organic carbon, and the DTTm more characterised by combustion and vehicle emissions markers (Figure 10). 

Notably, compounds which are not generally recognised as being redox-active were frequently observed to be important in 

PLSR classification, and though they do not directly contribute to the OPm response, they are likely co-emitted with or are 570 

secondary products of redox-active particle components.  

Table 3. Characteristic loadings most influential in PLSR models of OPm as defined by ordered variable importance in projection for each 

model. Blue upward arrows indicate positive correlation with the assay measurement, red downward arrows for inverse correlation, and * 

for p < 0.05 in Spearman correlation of the feature with the assay in the univariate analysis.  

EPRm winter AAm winter DTTm winter DCFHm winter 

feature VIP  feature VIP  feature VIP  feature VIP  
indeno(1,2,3-cd)- 

pyrene * 
2.12 ↑ cis-pinonic acid * 1.44 ↑ SO2 * 1.46 ↓ NH4

+ 2.16 ↑ 

acenaphthylne 2.02 ↑ Cl- * 1.42 ↑ Ca2+ * 1.40 ↑ chrysene * 1.61 ↓ 

benzo(ghi)- 
perylene * 

2.01 ↑ total OC * 1.33 ↑ Fe * 1.37 ↑ 
benzo(b)- 

fluoranthene * 
1.59 ↓ 

benzo(a)pyrene * 2.01 ↑ MOOOA * 1.30 ↑ fluorene 1.34 ↑ RH8 * 1.59 ↑ 

fluorene 1.82 ↑ pyrene * 1.30 ↑ acetaldehyde * 1.33 ↓ benzo(a)-anthracene* 1.58 ↓ 
benzo(a)- 

anthracene * 
1.81 ↑ 2-methylthreitol 1.29 ↑ phenanthrene * 1.33 ↑ pyrene * 1.58 ↓ 

dibenzo(a,h)- 
anthracene * 

1.80 ↑ ORG * 1.29 ↑ acetone * 1.33 ↓ LOOOA * 1.57 ↑ 

phenanthrene * 1.77 ↑ 
benzo(k)- 

fluoranthene * 
1.29 ↑ Cl- * 1.31 ↑ fluoranthene * 1.56 ↓ 

chrysene * 1.66 ↑ 
3-methyl-2,3,4- 

trihydroxy-1-butene * 
1.28 ↑ benzene * 1.31 ↓ RH120 * / RH240 *  

1.55 ↑ 
1.55 ↑ 

naphthalene * 1.62↑ fluoranthene * 1.27 ↑ toluene * 1.30 ↓ K+ * 1.51 ↑ 

 575 

EPRm summer AAm summer DTTm summer DCFHm summer 

feature VIP feature VIP feature VIP  feature VIP  
LOOOA 2.59 ↑ ORG * 1.80 ↑ OH 1.58 ↑ cis-pinonic acid * 2.38 ↓ 

T8 / T120 / T240 
2.28/2.15/  

2.08 ↑ 
cis-pinonic acid * 1.62 ↑ 

dibenzo(a,h)- 
anthracene * 

1.51 ↑ C31 * 1.76 ↓ 

O3 2.00 ↑ MOOOA * 1.58 ↑ C26 * 1.48 ↑ pinic acid * 1.74 ↓ 

RO2 * 1.76 ↑ cholesterol 1.58 ↓ 
benzo(a)- 
pyrene * 

1.48 ↑ acetonitrile * 1.69 ↑ 

galactosan * 1.74 ↓ naphthalene * 1.57 ↑ total OC * 1.46 ↑ 
3-methyl-2,3,4- 

trihydroxy-1-butene 
1.65 ↓ 

K+ 1.70 ↑ palmitic acid * 1.49 ↑ C30 * 1.46 ↑ 
benzo(ghi)- 

perylene 
1.62 ↓ 

17a(H)-22,29,30- 
trisnorhopane (C27a) 

1.55 ↓ RH8 1.39 ↓ C28 * 1.43 ↑ C32 1.61 ↓ 

cis-2-methyl-1,3,4- 
trihydroxy-1-butene 

1.55 ↑ stearic acid * 1.39 ↑ 
benzo(ghi)- 
perylene * 

1.41 ↑ 
dibenzo(a,h)- 
anthracene * 

1.61 ↓ 

Ba 1.47 ↓ 
benzo(ghi)- 
perylene * 

1.36 ↑ C33 * 1.40 ↑ acetaldehyde * 1.61 ↑ 

RH8 1.46 ↓ 
benzo(a)- 
pyrene * 

1.34 ↑ C29 * 1.39 ↑ isoprene * 1.61 ↓ 
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Figure 10. Variable importance in projection (VIP) plots. Above: winter AAm PLSR model; below: winter DTTm PLSR model (top 50 

features only). Error bars represent the standard error or the mean for each feature and are often large due to the intrinsic noisiness and 580 
instability of the individual measurements. Terms with VIP > 1 contribute most significantly to the model. Abbreviations: 3MTHB: 3-

methyl-2,3,4-trihydroxy-1-butene; C2MTHB: cis-2-methyl-1,3,4-trihydroxy-1-butene; T2MTHB: trans-2-methyl-1,3,4-trihydroxy-1-

butene; 17a-TNH:17a(H)-22,29,30-trisnorhopane (C27a); 17b-NH: 17b(H),21a(H)-norhopane (C30ba); MVK: methyl vinyl ketone or 

methacrolein. Analogous plots for all other assays are given in Figures S20-S27. 
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3.4 Multiple Linear Regression (MLR) modelling to predict OPm associated with specific sources    585 

While multivariate model loadings highlighted the measurements most associated with assay response, they do not enable 

straightforward variable selection, which is important to characterise the specific compounds contributing to each assay OP 

response.  Multiple linear regression modelling has been used in previous studies (Calas et al., 2018) to establish important 

contributors to total OP response, rather than looking at source apportionment, and only simple forward variable selection was 

used for model refinement. Here, relevant measurements were grouped into six categories (biogenic SOA, biomass burning, 590 

coal and fossil power generation, cooking, dust and vehicle emissions).  The full method description, references, model 

formulae and performance parameters for the mass-normalised data models are presented in the Methods (Section 2.3 

“Statistical analysis”) and in Section S10. Briefly, literature sources and the SPECIEUROPE database (Pernigotti et al., 2016) 

were used to establish which individual measurements were likely to be characteristic of each source, with several 

measurements appearing in multiple categories (e.g. total EC). All proxy and composite measurements (except total EC, as 595 

numerous organic carbon species are represented, but elemental carbon should be independent of most of these), AMS 

measurements, temperature, relative humidity and actinic flux measurements were excluded from models entirely, as the 

composite measures duplicate individual measurements and the atmospheric measurements complicate model interpretation. 

Multiple linear regression models were then constructed for each assay and season for each category, using both mass-

normalised and volume-normalised data. MLR models further reinforced that not all putative sources and components of PM2.5 600 

contribute equally to OPm response (Table 4).  

Table 4. R2 values for optimised subset multiple linear regression models of relevant source contributions. R2 values greater than 0.7 are 

highlighted in bold. Full model performance indicators for mass-normalised models are provided in Section S8 of the SI, including all model 

terms, residuals information, coefficients and p-values. 
 EPR R2 AA R2 DTT R2 DCFH R2 

data type model winter summer winter summer winter summer winter summer 

µg/µg vehicle emissions 0.88 0.72 0.95 0.73 0.91 0.80 0.89 0.62 

µg/µg biomass burning 0.41 0.29 0.49 0.47 0.45 0.41 0.58 0.31 

µg/µg coal/fossil fuel combustion 0.84 0.56 0.88 0.61 0.86 0.68 0.75 0.71 

µg/µg cooking markers 0.19 0.11 0.66 0.20 0.39 0.36 0.08 0.24 

µg/µg dust 0.23 0.23 0.88 0.47 0.72 0.46 0.50 0.26 

µg/µg biogenic SOA 0.55 0.35 0.95 0.74 0.79 0.61 0.55 0.70 
          

µg/m3 vehicle emissions 0.94 0.79 0.97 0.74 0.96 0.87 0.94 0.86 

µg/m3 biomass burning 0.85 0.23 0.89 0.24 0.72 0.62 0.78 0.53 

µg/m3 coal/fossil fuel combustion 0.91 0.69 0.95 0.62 0.88 0.77 0.93 0.91 

µg/m3 cooking markers 0.10 0.08 0.09 0.22 0.10 0.44 0.11 0.49 

µg/m3 dust 0.79 0.21 0.92 0.30 0.78 0.54 0.73 0.63 

µg/m3 biogenic SOA 0.87 0.36 0.84 0.59 0.80 0.63 0.94 0.90 

 605 

OPm response models based on measurements characteristic of vehicle emissions, coal/fossil fuel combustion and biomass 

burning gave accurate and robust predictions of particle-level OPm, which are important contributors to PM (mass per volume) 

in Beijing urban background sites (Yu et al., 2013; Zheng et al., 2005). As expected, OPv models gave very good predictions 
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for these source profiles, but also gave improved models of OPv for biogenic SOA and dust compared with the mass-normalised 

data. Although the same base sets of predictor measurements for each source were used for each type of model (season, OP 610 

and PM normalisation), there was only partial overlap of predictors between models from the same source and season, again 

illustrating the complex dynamic between OP and overall mass/volume composition. As with the PLSR models, the most 

important contributors to regression models were often not redox-active species, indicating that they could be influencing or 

contributing to the oxidation state of the redox-active PM components, either through co-emission, propagation reactions or 

by direct oxidation of the species themselves. As with the univariate and multivariate analyses, the summer samples gave less 615 

robust linear regression models (and thus OP predictions) from both mass- and volume-normalised data. However, AA and 

DTT measurements produced the best subset modelling for all source panels, indicating that these assays might be most optimal 

for measuring OP in an urban environment, as they appear to reflect the variety of PM sources well.  

Vehicle emissions, biogenic SOA and winter biomass burning contributions to AA and DTT response (as measured by the 

model R2 value) were generally comparable across all assays, contrasting with the findings of Fang et al. (2016), who observed 620 

greater OP response in positive matrix factorization-chemical mass balance (PMF-CMB) models associated with traffic 

emissions for AAv over DTTv, and biomass burning for DTTv over AAv in multiple locations in the southeastern US. However, 

a more recent study conducted in the coastal areas adjacent to Beijing (Liu et al., 2018) observed similar seasonality to the 

present study in the DTTm OP response. Vehicle emissions (Wang et al., 2016; Yu et al., 2019), coal combustion (Ma et al., 

2018; Yu et al., 2019), biomass burning (Ma et al., 2018) and dust (Yu et al., 2019) sources have been shown in other studies 625 

using PMF models to contribute to OPv in Beijing, all using the DTT assay. Cooking markers (palmitic acid, stearic acid and 

cholesterol) contributed a substantial proportion of the known organic fraction of the PM mass and volume concentrations (see 

Figure 4), but did not contribute robustly to the modelled OP response for either normalisation type, suggesting they are either 

not strongly contributing to or affected by oxidative conditions in PM, or that their variation over the sampling period cannot 

be linearly modelled. Similarly, biomass burning markers contribute a comparable number of variables in the model base sets, 630 

but appear to contribute much more significantly to the OPv than to the OPm response. Biogenic SOA and dust models (which 

incorporate K+, Na+, Ca2+, Cl-, Al, Ti, Mn, Fe and Zn) explain a significant proportion of winter OPv responses, but are only 

strongly correlated with winter AA and DTT for mass-normalised models. This suggests these sources contribute to PM OPv 

by total quantity rather than through their particularly high intrinsic OPm, i.e. their mass as a proportion of the PM mass is 

smaller, but the number of particles per volume is greater, and the AA and DTT assays have a higher sensitivity for these 635 

species over the EPR and DCFH assays. 

It should be noted that the MLR models represent a sub-optimal prediction of the OP response from measured components, as 

numerous species which are known source components (e.g. PAH in combustion processes and distinguishing gasoline from 

diesel vehicles, VOCs in biomass burning) could not be included in models. Not all measurements which were associated in 

the literature with a particular assay response passed the stages of variable selection for mass-normalised models, which could 640 

reflect a lower limit of detection in either the OPm assay responses, or in the individual component measurements. Moreover, 

MLR models do not fully account for the proportion of each measurement which may originate from multiple sources, and 
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PMF-CMB or mixed effects models would address more adequately. Validation of the multivariate and MLR models using 

secondary datasets (both from Beijing and other locales) is also needed prior to their future implementation. 

4 Conclusions  645 

This study presents a detailed and comprehensive analysis of PM2.5 oxidative potential measured in winter 2016 and summer 

2017 during the APHH-Beijing campaign at a central site in Beijing, China. Four acellular methods for measuring OP were 

applied, and correlated with 107 additional atmospheric measurements (particle components, trace gases, meteorological 

parameters) to delineate chemical particle components and atmospheric processes and sources responsible for driving PM2.5 

OP. Higher volume-normalised and mass-normalised OP values across all assays were observed in the winter compared to the 650 

summer. An inverse correlation was observed between AAm and DTTm with overall PM2.5 mass concentrations, i.e. days with 

higher PM2.5 mass concentrations have lower intrinsic OP values. This is likely due to an increase in OP-inactive material in 

high PM2.5 mass days, and/or a mass fraction that is at present undetermined and highlights that a focus on total PM exposure 

only does not necessarily capture accurately the toxicological effects of PM. 

Univariate analysis with the additional 107 measurement parameters acquired during the APHH-Beijing campaign highlight 655 

significant assay-specific responses to chemical components of PM2.5, as well as a seasonal difference between the components 

which drive aerosol OP. It also highlights the importance of considering both volume-normalised and mass-normalised OP 

metrics when drawing conclusions on the role of chemical composition on OP, as assay correlations vary significantly between 

the two metrics. The data presented in this study illustrates that mass-normalised OPm values provide a more nuanced picture 

of specific chemical components and sources that influence intrinsic OP, whereas many more correlations with OPv values are 660 

observed, likely due to collinearity of many chemical components with overall PM2.5 mass concentrations driven by changes 

in meteorological conditions.  Both metrics, mass-normalised OP as well as volume-normalised OP, are important to consider, 

with OPv a more relevant metric with respect to exposure and epidemiological studies, whereas OPm provides more insight 

into what sources and what composition drives OP concentrations in particles. Furthermore, OPm may allow easier study and 

site inter-comparisons, and reduces the impact on analyses of collinearity between PM2.5 mass and concentrations of PM 665 

components due to meteorological factors.  

The multivariate statistical analyses encapsulated the observations from the univariate analyses into comprehensive single 

models of OP relating to PM composition, and the inference from the univariate analyses that OPm measured by each assay is 

related to different compounds present in the particle was confirmed. Variable selection of measurements and evaluation 

through multiple linear regression models indicated that OPm is well predicted by measurement panels characteristic of 670 

combustion sources, particularly (exhaust and non-exhaust) vehicle emissions, and biogenic SOA. At present no single assay 

is completely representative of the totality of OP effects present in atmospheric PM. The comprehensive statistical analysis 

performed here shows that all four OP assays are sensitive to a range of different aerosol components, sources and atmospheric 
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conditions and illustrate that with the current state of knowledge none of these four assays can be disregarded with respect to 

their relevance for particle toxicity.  675 
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