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Abstract 16 

We have estimated the spatial changes in NO2 levels over different regions of India during the 17 

COVID-19 lockdown (25th March – 3rd May 2020) using the satellite-based tropospheric 18 

column NO2 observed by the Ozone Monitoring Instrument (OMI) and the Tropospheric 19 

Monitoring Instrument (TROPOMI), as well as surface NO2 concentrations obtained from the 20 

Central Pollution Control Board (CPCB) monitoring network. A substantial reduction in NO2 21 

levels was observed across India during the lockdown compared to the same period during 22 

previous business-as-usual years, except for some regions that were influenced by anomalous 23 

fires in 2020. The reduction (negative change) over the urban agglomerations was substantial 24 

(~20-40  %) and directly proportional to the urban size and population density. Rural regions 25 

across India also experienced lower NO2 values by ~15-25 %. Localised enhancements in NO2 26 

associated with isolated emission increase scattered across India were also detected. Observed 27 

percentage changes in satellite and surface observations were consistent across most regions 28 

and cities, but the surface observations were subject to larger variability depending on their 29 
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proximity to the local emission sources. Observations also indicate NO2 enhancements of up 30 

to ~ 25 % during the lockdown associated with fire emissions over the north-east of India, and 31 

some parts of the central regions. Besides, the cities located near the large fire emission sources 32 

show much smaller NO2 reduction than other urban areas as the decrease at the surface was 33 

masked by enhancement in NO2 due to the transport of the fire emissions. 34 

Keywords: OMI, TROPOMI, CPCB, Emission reduction, Air quality, ISRO LULC 35 

1 Introduction 36 

Nitrogen oxides NOx (NO+NO2) are one of the major air pollutants, as defined by various 37 

national environmental agencies across the world, due to their adverse impact on human health 38 

(Mills et al., 2015). Furthermore, tropospheric levels of NOx can affect tropospheric ozone 39 

formation (Monks et al., 2015), contribute to the secondary aerosol formation (Lane et al., 40 

2008), acid deposition, and impact climatic cycles (Lin et al., 2015). The major anthropogenic 41 

sources of NOx emissions include the combustion of fossil fuels in road transport, aviation, 42 

shipping, industries, and thermal power plants (e.g., USEPA, 1999; Ghude et al., 2013; Hilboll 43 

et al., 2017). Other sources include open biomass burning (OBB), mainly large-scale forest 44 

fires (e.g., Hilboll et al., 2017), lightning (e.g., Solomon et al., 2007) and emissions from soil 45 

(e.g., Ghude et al., 2010). NOx hotspots are often observed over regions with large thermal 46 

power plants, industries as well as  urban areas with significant  traffic volumes causing large 47 

localised emissions (e.g., Prasad et al., 2012; Hilboll et al., 2013; Ghude et al., 2013). 48 

With growing scientific awareness of the adverse impacts of air pollution, the number of air 49 

quality monitoring stations has expanded to over 10,000 across the globe (Venter et al., 2020). 50 

Additionally, multiple satellite instruments such as the Global Ozone Monitoring Instrument 51 

(GOME) on ERS-2, the Scanning Imaging Absorption Spectrometer for Atmospheric 52 

Cartography (SCIAMACHY, 2002-2012) on Envisat, the Ozone Monitoring Instrument (OMI, 53 

2005-present) on Aura, GOME-2 (2007-present) on MetOp and the TROPOspheric Monitoring 54 

Instrument (TROPOMI, 2017-present) on Sentinel-5P (S5P) have monitored NO2 pollution 55 

from the space for over two decades. Surface sites typically measure NO2 in concentration 56 

quantities (e.g., µg m-3), but satellite NO2 measurements are retrieved as integrated vertical 57 

columns (e.g., tropospheric vertical column density, VCDtrop). The latter is preferred for 58 

studying NO2 trends and variabilities because of global spatial coverage and spatio-temporal 59 

coincidence with ground-based measurements (Martin et al., 2006; Kramer et al., 2008; Lamsal 60 

et al., 2010; Ghude et al., 2011). NO2 has been reported to increase in south Asian countries 61 
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(Duncan et al., 2016; Hilboll et al., 2017; ul-Haq et al., 2017), decrease over Europe (van der 62 

A et al., 2008; Curier et al., 2014; Georgoulias et al., 2019) and the United States ( Russell et 63 

al., 2012; Lamsal et al., 2015). In the case of India, a tropospheric NO2 increase was observed 64 

during the 2000s (e.g., Mahajan et al., 2015), but since 2012 it has either stabilized or even 65 

declined owing to the combined effect of economic slowdown and adoption of cleaner 66 

technology (e.g., Hilboll et al., 2017). However, thermal power plants, megacities, large urban 67 

areas and industrial regions remain NO2 emission hotspots (Ghude et al., 2008, 2013; Prasad 68 

et al., 2012; Hilboll et al., 2013, 2017; Duncan et al., 2016;). Moreover, despite the measures 69 

taken to control NOx emissions, urban areas often exceed national ambient air quality standards 70 

in India (Sharma et al., 2013; Nori-Sarma et al., 2020; Hama et al., 2020), and thus require a 71 

detailed scenario analysis. 72 

The nationwide lockdown in various countries during March-May 2020, due to the outbreak 73 

of COVID-19, reduced the traffic and industrial activities leading to a significant reduction of 74 

NO2. Studies using space-based and surface observations of NO2 have reported reductions in 75 

the range of ~30-60 % for China, South Korea, Malaysia, Western Europe, and the U.S. 76 

(Bauwens et al., 2020; Kanniah et al., 2020; Muhammad et al., 2020; Tobías et al., 2020; 77 

Dutheil et al., 2020; Liu et al., 2020; Huang and Sun 2020; Naeger and Murphy 2020; Barré et 78 

al., 2020; Goldberg et al., 2020) against the same period in previous years, with the observed 79 

reductions strongly linked to the restrictions imposed on vehicular movement. The lockdown 80 

in India was implemented in various phases starting on the 25th March 2020 (MHA, 2020; 81 

Singh et al., 2020). The lockdown restrictions in the first two phases (Phase 1: 25th March - 82 

14th April 2020 and Phase 2: 15th April - 3rd May 2020) were the strictest, during which all non-83 

essential services and offices were closed and the movement of the people was restricted, 84 

resulting in a considerable reduction in the anthropogenic emissions. The restrictions were 85 

relaxed in a phased manner from the third phase onwards in less affected areas by permitting 86 

activities and partial movement of people (MHA, 2020). 87 

A decline in NO2 levels over India during the lockdown has been reported from both surface 88 

observations (Singh et al., 2020; Sharma et al., 2020; Mahato et al., 2020), as well as satellite 89 

observations (ESA, 2020; Biswal et al., 2020; Siddiqui et al., 2020; Pathakoti et al., 2020) 90 

against the previous year or average of few previous years.  A detailed study by Singh et al. 91 

(2020) based on 134 sites across India reported a decline of ∼30–70 % in NO2 during lockdown 92 

with respect to the mean of 2017-2019, with a largest reduction being observed during peak 93 

morning traffic hours and late evening hours. While Sharma et al. (2020) reported a smaller 94 
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decrease (18 %) in NO2 for selected sites against the levels during 2017-2019, Mahato et al. 95 

(2020) found a decrease of over 50 % in Delhi for the first phase of lockdown against previous 96 

years (2017-2019), which was also confirmed by Singh et al. (2020) for the extended period of 97 

analysis. The satellite-based studies by Biswal et al. (2020) and Pathakoti et al. (2020) 98 

estimated the change in NO2 levels using OMI observations, whereas Siddiqui et al. (2020) 99 

used TROPOMI to compute the change over eight major urban centres of India. Biswal et al. 100 

(2020) reported that the average OMI NO2 over India decreased by 12.7 %, 13.7 %, 15.9 %, 101 

and 6.1 % during the subsequent weeks of the lockdown relative to similar periods in 2019. 102 

Similarly, Pathakoti et al. (2020) reported a decrease of 17 % in average OMI NO2 over India 103 

compared to the pre-lockdown period and a decrease of 18 % against the previous 5-year 104 

average. Moreover, both studies reported a larger reduction of more than 50 % over Delhi. 105 

Similarly, Siddiqui et al. (2020) also reported an average reduction of 46 % in the eight cities 106 

during the first lockdown phase with respect to the pre-lockdown phase. While recent studies 107 

have used either only satellite observations or only surface observations, this study goes further 108 

by adopting an integrated approach by combining both measurement types to investigate NO2 109 

level changes over India in response to the COVID-19 pandemic using OMI, TROPOMI and 110 

surface observations over different regions. As both OMI and TROPOMI have similar local 111 

overpass times of approximately 13:30 (Penn and Holloway, 2020; van Geffen et al., 2020), 112 

diurnal influences on the retrievals of NO2 for both instruments are similar. Moreover, as both 113 

instruments use nearly similar retrieval schemes (i.e., differential optical absorption 114 

spectroscopy, DOAS), their NO2 measurements are believed to be comparable with a suitable 115 

degree of confidence (van Geffen et al., 2020; Wang et al., 2020). Any product differences are 116 

likely to be caused by inconsistent inputs/processing of the retrievals (e.g., derivation of the 117 

stratospheric slant column, the a priori tropospheric NO2 profile and the treatment of 118 

aerosols/clouds in the calculation of the air mass factor (van Geffen et al., 2019; Lasmal et al., 119 

2021)). 120 

We estimate the changes in the NO2 levels over different land-use categories (i.e., urban, 121 

cropland and forestland) and urban sizes. In addition to this, we investigate the spatial 122 

agreement between population density and NO2 spatial variability observed at the surface. A 123 

key benefit of this study will be to understand and assess the impact of reduced anthropogenic 124 

activity on NO2 levels not only over the urban areas but also over the rural areas (cropland and 125 

forestland). This study thus provides an improved understanding of the spatial variations of 126 

tropospheric NO2 for future air quality management in India.   127 
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2 Data and methodology 128 

2.1 Data 129 

Satellite observations of VCDtrop NO2 were obtained from OMI (2016-2020) and TROPOMI 130 

(2019-2020). Surface NO2 observations (2016-2020) at 139 sites across India were from the 131 

Central Pollution Control Board (CPCB). The period from 25th March to 3rd May each year is 132 

defined as the analysis period. Average NO2 levels during the analysis period in 2020 and 133 

previous years are referred to as lockdown (LDN) NO2 and business as usual (BAU) NO2, 134 

respectively. The BAU years for OMI and CPCB are 2016-2019, whereas for TROPOMI the 135 

BAU year is 2019 because of the unavailability of earlier observations. 136 

NO2 data were analysed for six geographical regions (north, Indo Gangetic Plain (IGP), north-137 

west, north-east, central and south) of India (supplementary Fig. S1). The NO2 changes over 138 

various land-use categories (i.e., urban, cropland and forestland) have been analysed using 139 

spatially collocated land-use land cover (LULC) data (NRSC, 2012) and OMI and TROPOMI 140 

observed VCDtrop NO2. Visible Infrared Imaging Radiometer Suite (VIIRS) fire count data was 141 

used to study the fire anomalies during the LDN and other analysis periods. 142 

2.1.1 OMI NO2 143 

OMI has a nadir footprint of approximately 13 km × 24 km, measuring in the ultraviolet-visible 144 

(UV-Vis) spectral range of 270-500 nm (Boersma et al., 2011). It uses differential optical 145 

absorption spectroscopy (DOAS) to retrieve VCDtrop (i.e., VCDtrop is the difference between 146 

the total and stratospheric slant columns divided by the tropospheric air mass factor (Boersma 147 

et al., 2004)). Here, we use the OMI NO2 30 % Cloud-Screened Tropospheric Column L3 148 

Global Gridded (Version 4) at a 0.25° × 0.25° (~ 25 km  × 25 km) spatial grid from the NASA 149 

Goddard Earth Sciences Data and Information Services Center (GESDISC) available at 150 

(https://disc.gsfc.nasa.gov/datasets/OMNO2d_003/summary). Details of the retrieval scheme 151 

and OMI data product Version 4 are discussed by Krotkov et al., (2019) and Lamsal et al., 152 

(2021) and for older versions by e.g., Celarier et al. (2008) and Krotkov et al. (2017). 153 

2.1.2 TROPOMI NO2 154 

TROPOMI has a nadir-viewing spectral range of 270–500 nm (UV-Vis), 675–775 nm (near-155 

infrared, NIR) and 2305–2385 nm (short wave-infrared, SWIR). In the UV-Vis and NIR 156 

wavelengths, TROPOMI has an unparalleled spatial footprint of 3.5 km × 7.0 km, along with 157 

7 km × 7 km in the SWIR (Veefkind et al., 2012). Details of the TROPOMI scheme and data 158 

are discussed by Eskes et al. (2019) and Van Geffen et al. (2019). The TROPOMI VCDtrop NO2 159 
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over India for the analysis period was obtained at 3.5 km × 7 km resolution from 160 

(http://www.temis.nl/airpollution/no2.php) and re-gridded at a spatial resolution of 0.05° × 161 

0.05° (~ 5 km  × 5 km) based on the gridding methodology of Pope et al. (2018). The source 162 

data are filtered to remove pixels with QA (Quality Assurance) values greater than 50, which 163 

removes cloud fraction less than 0.2, part of the scenes covered by snow/ice, errors and 164 

problematic retrievals (Eskes et al., 2019).  165 

Although substantial differences are found between OMI and TROPOMI (such as the 166 

differences in the orbit and spatial resolution, van Geffen et al., 2020), they exhibit good 167 

correlation with the surface observations (Chan et al., 2020; Wang et al., 2020) but are ~ 30 % 168 

lower than the Multi-axis differential optical absorption spectroscopy (MAX-DOAS) 169 

observations. Overall, TROPOMI has been reported to be superior to OMI (van Geffen et al., 170 

2020). Detailed descriptions of the recent retrieval schemes used for TROPOMI and OMI data 171 

products are provided in van Geffen et al. (2019) and Lamsal et al. (2021), respectively. 172 

Analysis of differences between these two satellite data products is beyond the scope of this 173 

study. 174 

 175 

2.1.3 Surface NO2 concentration 176 

The hourly averaged surface NO2 concentration at 139 sites (Fig. S1) for 2016-2020 across 177 

India was acquired from the CPCB CAAQMS (Continuous Ambient Air Quality Monitoring 178 

Stations) portal (https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing). The data 179 

was further quality controlled by removing the outliers, constant values, and sites with less than 180 

60 % data during the analysis period. Details of the surface observations are explained in Singh 181 

et al. (2020). 182 

2.1.4 Land use land cover data 183 

The high-resolution (50 m × 50 m) LULC data mapped with level-III classification for 18 major 184 

categories (NRSC, 2012) was obtained from the BHUVAN geo-platform (https://bhuvan-185 

app1.nrsc.gov.in/thematic/thematic/index.php) of the Indian Space Research Organisation 186 

(ISRO). To quantify the changes over urban, crop and forest areas, the OMI and TROPOMI 187 

NO2 at urban grids (category 1), cropland (category 2 to 5) and forestland (category 7 to 10) 188 

were extracted for further analysis. In order to match the OMI and TROPOMI grid resolution 189 

with the Indian LULC, the dominant LULC was considered within the OMI and TROPOMI 190 

grid. Supplementary Fig. S2 shows the high-resolution LULC data used in this study for 191 

http://www.temis.nl/airpollution/no2.php
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php
https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php
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cropland, forestland, and urban areas separately. Urban areas were further divided into four 192 

sizes (10-50 km2, 50-100 km2, 100-200 km2 and greater than 200 km2) to study the change in 193 

NO2 with respect to the size of the urban agglomeration.  194 

2.1.5 VIIRS fire counts 195 

The VIIRS aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite provides 196 

daily global fire count at a 375 m × 375 m spatial resolution (Schroeder et al., 2014; Li et al., 197 

2018). The fire count data over India during the analysis period from 2016 to 2020 was obtained 198 

from the FIRMS (Fire Information for Resource Management System) web portal 199 

(https://firms.modaps.eosdis.nasa.gov/download/). The fire count data was gridded at 5 km × 200 

5 km for each year by summing the fire counts falling on each spatially overlapping grid. The 201 

burnt area was calculated from the fire counts by multiplying with the VIIRS grid size (Prosperi 202 

et al., 2020).  203 

2.1.6 Population data 204 

The gridded population density (people per hectare, pph) data for 2020 was taken from 205 

Worldpop (2017). Worldpop estimates the population density at approximately 100 m × 100 m 206 

(near the equator) by disaggregating census data for population mapping using random forest 207 

estimation technique using remotely sensed and ancillary data. Details of the population 208 

mapping methodology can be found in Stevens et al. (2015).  209 

2.1.7 Google mobility change 210 

Google estimated the change in the people movement from 15th February 2020 onwards based 211 

on the Google maps information of people's location at retail & recreation, grocery & 212 

pharmacy, parks, transit stations, workplaces, and residential places etc. The changes were 213 

estimated with reference to the baseline days that represent a normal value for that day of the 214 

week. The baseline day is the median value from the five-week period Jan 3 – Feb 6, 2020. 215 

The google mobility change dataset provided an excellent proxy for the anthropogenic activity 216 

change and has therefore been used for several purposes of air quality studies such as lockdown 217 

emission estimation and temporal relation with pollutant species (Archer et al., 2020; Forster 218 

et al., 2020; Gama et al., 2020; Guevara et al., 2021) during the lockdown period of 2020. The 219 

Google mobility data and reports are available at (https://www.google.com/covid19/mobility). 220 

2.1.8 Meteorological data 221 

The Copernicus Climate Change Service (C3S) provides the ERA5 reanalysis (Hersbach et al., 222 

2020) meteorological data with an improved vertical, temporal and spatial coverage. The 223 

https://firms.modaps.eosdis.nasa.gov/download/
https://www.google.com/covid19/mobility
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monthly mean meteorological data (temperature, wind speed and planetary boundary layer 224 

height) at 0.25° × 0.25° resolution for March, April and May of 2016-2020 were used for the 225 

analysis. For details, see https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 226 

(last access: 25 January 2021). 227 

2.1.9 Analysis methodology 228 

The change in the NO2 levels for each analysis period has been calculated by subtracting the 229 

BAU NO2 from LDN NO2. We calculate the percentage change (D) using the equation 230 

𝐷 =
(𝐿𝐷𝑁 − 𝐵𝐴𝑈 )

𝐵𝐴𝑈
× 100 231 

The analysis was done over the whole of India as well as over the separate considered regions 232 

and selected LULC categories using the open-source Geographic Information System (QGIS). 233 

3 Results and Discussion 234 

3.1 Meteorological variations 235 

Air pollutant concentration over a region is governed by emission sources and prevailing 236 

meteorological conditions. Meteorological factors (e.g., wind, temperature, radiation rainfall 237 

etc) can affect the NO2 concentration (Barré et al., 2020) as well as biogenic emissions 238 

(Guenther et al., 2012). The meteorological variations between years can cause ~ 15 % 239 

variations in monthly column NO2 values (Goldberg et al., 2020). However, the NO2 levels are 240 

likely to be similar under similar meteorological conditions. Recent studies (e.g., Singh et al., 241 

2020; Navinya et al., 2020; Sharma et al., 2020) have shown that meteorological conditions 242 

remained relatively consistent over recent years during the lockdown period and therefore 243 

assumed that the changes in the pollution levels during the lockdown are primarily driven by 244 

the emission changes. However, it is important to highlight the meteorological differences 245 

during the study period to assess the uncertainties associated with meteorological differences. 246 

We used monthly mean ERA-5 reanalysis data (Hersbach et al., 2020) at 0.25° × 0.25° 247 

resolution for March, April and May for BAU as well as LDN periods at the satellite local 248 

overpass time. We considered temperature (T), wind speed (WS) and boundary layer height 249 

(BLH) in our analysis. Fig. 1 (a-c) shows the spatial variation in these quantities during BAU 250 

(left panel), LDN (middle panel) and the calculated difference (LDN-BAU, right-panel). The 251 

probability density function (PDF) using kernel density estimation (KDE) of the 252 

meteorological parameters are also shown (Fig. S3) for the BAU (blue) and LDN (red). KDE 253 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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is a non-parametric way to estimate the PDF. The peak of the distribution shows the most 254 

probable value, and the width of the distribution shows the variability. The temperature 255 

difference between LDN and BAU shows a slight reduction (~0-3 K range) during the 256 

lockdown. Wind speed values also show a reduction (up to 2 ms-1) during the lockdown, 257 

although the reduction is mainly seen in certain parts of central India. Reduction in the BLH is 258 

also seen in most parts of India. In general, the meteorological parameters during the lockdown 259 

were similar. However, the PDF (Fig. S3) during BAU and LDN show a small reduction (less 260 

than 5 %) in temperature and wind speed and ~ 10 % reduction in BLH. Although small, this 261 

weather variability can further add to the variability in the NO2 levels. However, during the 262 

lockdown in India, the NO2 change was more sensitive to the emission change than the 263 

meteorology variability. Shi et al. (2021) compared the detrended and de-weathered change in 264 

NO2 observed over selected cities from India, Europe, China and USA. While the reduction in 265 

NO2 was highest for Delhi (~50%), the difference between a detrended and de-weathered 266 

change in NO2 observed over Delhi was much smaller (~2%) as compared to the difference 267 

calculated for other cities. This suggests that weather variability did not have much impact on 268 

NO2 levels over India and most of the changes were driven by a change in the anthropogenic 269 

emissions. 270 
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 271 

Fig. 1: Spatial map showing the variation in surface meteorological parameters (a. 272 

temperature, b. wind speed and c. BLH) from ERA-5 by comparing BAU (left column), LDN 273 

(middle) and observed difference (LDN-BAU, right). 274 

 275 

3.2 Fire count anomalies during the lockdown  276 

Forest fires are an important source of surface NO2 and VCDtrop NO2 (Sahu et al., 2015; 277 

Yarragunta et al., 2020), depending on the occurrence time and the intensity of fires (Mebust 278 

et al., 2011). Also, as the forest fire plumes can be transported longer distances (Alonso-Blanco 279 

et al., 2018), forest-fire-related NO2 can contribute to regional and global air pollution. In India, 280 

forest fires are prevalent as 36 % of the country’s forest cover is prone to frequent fires, out of 281 

which nearly 10 % is extremely to very highly prone to fires (ISFR 2019). Long-term satellite-282 

derived fire counts suggest that Indian fire activities typically peak during March-May (Sahu 283 

et al., 2015), predominantly over the north, central and north-east regions (Venkataraman et 284 

al., 2006; Ghude et al., 2013). However, the spatial and temporal distribution of fire events is 285 
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largely heterogeneous (Sahu et al., 2015), meaning an abrupt increase or decrease in fire 286 

activity could significantly impact NO2 levels over anomalous regions during the lockdown. 287 

An investigation of fire counts during the 2020 lockdown (LDN analysis period), when 288 

compared with the corresponding 2016-2020 average, highlights a substantial decrease over 289 

the eastern part of central India and an increase over the western part of central India and north-290 

east. In Fig. 2a widespread fire activity (counts of 10-50) is shown across India, such as the 291 

central region (Madhya Pradesh, Chhattisgarh, Odisha), parts of Andhra Pradesh, the Western 292 

Ghats in Maharashtra and the north-east region (Assam, Meghalaya, Tripura, Mizoram and 293 

Manipur). The fire anomaly during the lockdown (Fig. 2b) shows positive fire counts (5-20) 294 

over the north-east region, west of Madhya Pradesh in central India and scattered locations in 295 

South India. The negative fire anomalies (-20 to -5) observed over the central region 296 

(Chhattisgarh and Odisha) suggests a decrease in fire activity during the 2020 lockdown period. 297 

To minimise the impact of fire emission in our analysis, we have considered the grids with zero 298 

fire anomaly to assess the changes in NO2 during the lockdown. By considering the grids with 299 

zero fire anomaly, we excluded almost all the grids which have recorded fire activity during 300 

the analysis period. However, the impact of long-range transport of forest fire plumes cannot 301 

be ignored. 302 

 303 
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 304 

Fig. 2 Spatial distribution of the 5 km × 5 km gridded VIIRS fire counts. (a) Average fire 305 

counts during the analysis period (March 25th - May 3rd, 2016-2020). (b) Gridded fire 306 

anomaly during the lockdown in 2020. 307 

3.3 VCDtrop NO2 over India during lockdown period 308 

The spatial distribution of VCDtrop NO2 is largely determined by local emission sources; 309 

therefore, NO2 hotspots are found over urban regions, thermal power plants and major 310 

industrial corridors. For the Indian subcontinent, maximum NO2 is observed during winter to 311 

pre-monsoon (Dec-May) and minimum NO2 during the monsoon (Jun-Sep). Region-specific 312 

peaks such as the winter-time peak (Dec-Jan) in the IGP is associated with anthropogenic 313 

emissions, or the summer-time peak (Mar-Apr) in central India and north-east India is 314 

associated with enhanced biomass burning activities (Ghude et al., 2008; Ghude et al., 2013; 315 

Hilboll et al., 2017). 316 
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 317 

Fig. 3 Spatial distribution of mean VCDtrop NO2 (molecules cm-2) during the analysis period 318 

(25th March - 3rd May) for (a) OMI NO2 during business as usual (BAU, 2016-2019), (b) OMI 319 

NO2 during the lockdown (LDN, 2020), (c) TROPOMI NO2 during BAU (2019) and, (d) 320 

TROPOMI NO2 during LDN (2020). 321 
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We compare the LDN mean VCDtrop NO2 with the BAU mean for OMI and TROPOMI. The 322 

spatial distribution of the BAU and LDN VCDtrop NO2 observed by OMI and TROPOMI is 323 

shown in Fig. 3 (a-d). The mean VCDtrop NO2 from the two instruments shows similar spatial 324 

distributions during the LND and BAU analysis period. In BAU years, the NO2 hotspots are 325 

seen over the large fossil-fuel-based thermal power plants (~1000 ×1013 molecules cm-2), urban 326 

areas (~400-700 ×1013 molecules cm-2) and industrial areas. Scattered sources are also present 327 

in western India, covering the industrial corridor of Gujarat and Mumbai, various locations of 328 

south India, and densely populated areas (e.g., IGP). The spatial distribution showed significant 329 

changes during the lockdown in 2020. The details of actual and percentage changes are 330 

discussed in the subsequent sections.  331 

3.4 Changes observed by OMI and TROPOMI  332 

There is a substantial reduction in VCDtrop NO2 between the LDN and BAU (Fig. 4a & c). A 333 

large reduction in the number of hotspots, mainly urban areas, is seen in both OMI and 334 

TROPOMI observations. However, hotspots due to coal-based power plants remain during the 335 

lockdown as electricity production was continued. Over the NO2 hotspots, there has been an 336 

absolute decrease of over 150 ×1013 molecules cm-2 (~250 ×1013 molecules cm-2 over 337 

megacities) detected by both OMI and TROPOMI. The rural VCDtrop NO2 has typically 338 

reduced by approximately 30-100 ×1013 molecules cm-2
, representing a percentage decrease of 339 

30-50 % for OMI and 20-30 % for TROPOMI (Fig. 4b & d). For urban regions, both OMI and 340 

TROPOMI see a decrease of approximately 50 %, but reductions in smaller urban areas are 341 

clearly noticeable in the TROPOMI data, given its better spatial resolution. Both instruments 342 

observe an increase in VCDtrop NO2 in the north-eastern regions and moderate enhancement 343 

over the western and central regions. These enhancements are linked with the biomass burning 344 

activities during this period (Fig. 2). 345 

 346 

 347 
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 348 

Fig. 4 (a, c) Absolute change and (b, d) percentage change in VCDtrop NO2 during the analysis 349 

period for LDN year compared to BAU years as observed by OMI (left panels) and TROPOMI 350 

(right panels). 351 

 352 
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3.5 Changes in NO2 over different land use types 353 

Anthropogenic NOx emissions are typically more localised in urban and industrial centres, 354 

while biogenic sources (e.g., soil) are more important in rural regions. OBB activities peak in 355 

March-April (Sahu et al., 2015) and represent more sporadic sources. As the lockdown is 356 

expected to have reduced urban anthropogenic NOx sources (as shown in Fig. 4), it is important 357 

to assess the lockdown impact over the rural regions such as cropland and forestland as well. 358 

This section estimates the changes in VCDtrop NO2 over different land-types such as cropland, 359 

forestland, and urban areas (Fig. S2). Industrial emissions are often part of the urban 360 

agglomerates scattered around the city and are part of urban emissions. To minimise the impact 361 

of OBB emissions in our analysis, we exclude grids with fire anomalies (Fig. 2) and those 362 

containing thermal power plants (Fig. S2d). However, absolute separation of the impact of the 363 

long-range transportation is beyond the scope of this study. 364 

3.5.1 Changes over cropland and forestland 365 

The changes in VCDtrop NO2 observed by OMI and TROPOMI over the cropland (Fig. S2a) in 366 

different regions of India are shown in Fig. 5a & b and Table S1. A decline in VCDtrop NO2 has 367 

been observed over croplands in all regions except for the north-east. A higher percentage 368 

decline was observed over IGP and south regions by both the satellites. While VCDtrop NO2 369 

has decreased, prominent enhancements have been observed over the north-east and few grids 370 

in central and north-west regions. These enhancements can be attributed to the impact of nearby 371 

forest fires (Fig. 2). The observed changes over the forestland (Fig. S2c) over different regions 372 

of India have been shown in Fig. 5 c & d and Table S1. The average VCDtrop NO2 has declined 373 

over forestland in all the regions except for the north-east where VCDtrop NO2 was enhanced 374 

due to the positive fire anomaly (Fig. 2) during the analysis period. It can be noted that although 375 

we have taken the grids with zero fire anomaly, the effect of a nearby grid exhibiting positive 376 

fire anomaly cannot be ignored due to atmospheric dispersion and mixing. The inter-377 

comparison of the changes observed by two satellites suggests that OMI data indicates a larger 378 

reduction in VCDtrop NO2 than TROPOMI in most of the regions. 379 
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 380 

 381 

Fig. 5 Observed change in VCDtrop NO2 between LDN and BAU from OMI and TROPOMI for 382 

different regions shown as (a) violin plot of the absolute change over cropland, (b) percentage 383 

change over cropland, (c) violin plot of the absolute change over forestland, and (d) percentage 384 

change over forestland. A violin plot is a combination of a box plot and a kernel density 385 

estimation (KDE) plot. KDE is a non-parametric way to estimate the probability density 386 

function (PDF). The red lines in the violin plot show the interquartile range; the blue line 387 

shows the median value; the yellow star shows the mean value. The vertical lines in the bar 388 

plot show the standard deviation The abbreviations NWest and NEast are for north-west and 389 

north-east regions, respectively.   390 

 391 

3.5.2 Changes over urban regions 392 

We analysed the changes in VCDtrop NO2 over the urban areas (Fig. S2b) in different regions 393 

of India. The calculated actual and percentage changes observed by OMI and TROPOMI are 394 

shown in Fig. 6 and in Table S1. The mean changes observed by OMI and TROPOMI show 395 

similar variations in different regions. The changes observed over urban areas are larger than 396 

those observed over the forest and croplands. In contrast to the cropland and forestland, 397 

TROPOMI observed a larger reduction in VCDtrop NO2 than OMI in most of the regions. 398 

Densely populated IGP with the largest urban agglomeration shows the maximum change in 399 

VCDtrop NO2 followed by the central and north-west regions. The VCDtrop NO2 over the urban 400 

areas in the north-east region is likely to be influenced by the nearby forest fires through 401 

atmospheric dispersion and mixing, resulting in the enhancement of VCDtrop NO2 over the 402 

urban grids. 403 
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 404 

Fig. 6 Observed change in VCDtrop NO2 between LDN and BAU from OMI and TROPOMI for 405 

different regions shown as (a) Violin plot of the absolute change over urban areas, (b) 406 

percentage change over the urban area, (c) violin plot of the observed change over different 407 

sized urban areas, and (d) percentage change over different sized urban areas. 408 

We have also analysed the change in the VCDtrop NO2 over urban areas of different sizes. We 409 

have taken the urban areas of sizes more than 10 km2 and grouped them into four bins of size 410 

10-50 km2, 50-100 km2, 100-200 km2, and greater than 200 km2. We then calculate the changes 411 

observed for all the cities filling into the respective bins. Fig. 6 (c & d) show the absolute and 412 

percentage change in VCDtrop NO2, as observed by OMI and TROPOMI, respectively. A 413 

significant reduction of 50-150 ×1013 molecules cm-2 (20-40 %) was observed over the urban 414 

area of different sizes. The actual reduction in VCDtrop NO2 is greater for the larger urban area 415 

with peak reductions for the urban area bin (> 200 km2) for both OMI and TROPOMI. The 416 

greater reduction in the larger urban areas is mainly due to the reduction in local emission 417 

sources, as evidenced by the Google mobility reduction, which is higher for larger cities than 418 

the smaller ones (Fig. S6). 419 

3.5.3 Changes over thermal power plants 420 

Thermal power plants (TPPs) are the hotspots of NO2 pollution. These are scattered across the 421 

nation, with a majority of them in Madhya Pradesh, Bihar, Uttar Pradesh, Odisha, Gujarat, 422 

Chattisgarh, West Bengal, and Tamil Nadu (Fig S2d). During the lockdown period, TPPs were 423 

still operated to fulfill the electricity demands. In this section, we analyse the changes observed 424 

over TPPs. The changes in VCDtrop NO2 observed by OMI and TROPOMI over the TPPs are 425 

shown in Fig. S5. A decrease in mean VCDtrop NO2 levels over TPPs has been observed that 426 
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is in line with the power sector report, which mentions that during April 2020, energy demand 427 

met for India decreased by 24 % as compared to April 2019 (POSOCO report: 428 

https://posoco.in/reports/monthly-reports/monthly-reports-2020-21/). Also, there is a drop 429 

(~30%) in thermal power production during the lockdown against to respective period of 2019.   430 

 431 

3.6 Inter-comparison of changes observed by OMI, TROPOMI and surface 432 

observation 433 

Fig. 7 (a,b) shows the relationship of OMI and TROPOMI NO2 with surface NO2 for the BAU 434 

and LDN periods, respectively. During BAU, there are reasonable positive correlations 435 

between the satellite instruments and the surface sites (OMI: 0.48, 95 % CI 0.33 - 0.60) and 436 

TROPOMI: 0.52, 95 % CI 0.37 - 0.64). In LDN, these correlations drop to 0.36 (95 % CI 0.20 437 

- 0.49) and 0.28 (95 % CI 0.12 - 0.43), respectively. The decrease in the correlation during 438 

LDN could be due to the decrease in the signal to noise ratio, potentially linked with the primary 439 

reduction in urban NO2 levels. We also determined the correlation between satellite and 440 

surface-observed changes during the lockdown (Fig. 7c), finding values of 0.44 (95 % CI 0.28 441 

- 0.57) for OMI and 0.49 (95 % CI 0.33 - 0.63) for TROPOMI. This indicates that the lockdown 442 

NO2 reductions appear to be present in both measurement types, providing us with confidence 443 

in the observed changes detected in this study. The correlation observed over India in this study 444 

is lower than that reported for the USA (Lamsal et al., 2015). The low correlation between OMI 445 

and surface NO2 has been reported earlier by Ghude et al. (2011). While they report the 446 

temporal correlation for a single site, our study reports the spatial correlation representing the 447 

satellites' ability to capture the spatial heterogeneity. One of the reasons for the lower 448 

correlation can be the choice of surface station. Generally, urban background sites are preferred 449 

for this kind of analysis. However, the surface NO2 monitoring station type classification is not 450 

available for the CPCB sites. Therefore sites used in the analysis could be potentially impacted 451 

by traffic emissions resulting in lower correlation. Another reason is that in-situ measurements 452 

are more sensitive to the local emission sources than remotely sensed measurements, and 453 

therefore have larger variability resulting in low correlation. Proper classification of the 454 

monitoring stations could provide a better assessment of satellite-based observations. 455 

 456 

https://posoco.in/reports/monthly-reports/monthly-reports-2020-21/
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457 
Fig. 7 Scatterplots between surface and satellite observed NO2 for (a) business as usual (BAU) 458 

and (b) lockdown (LDN). Panel (c) shows a scatterplot of observed absolute change (LDN-459 

BAU) in surface and satellite NO2. The values shown in the brackets are the correlation 460 

coefficients with 95 % confidence intervals (CI). 461 

 462 

The LDN NO2 percentage change, observed by surface and spatially co-located satellite 463 

measurements, is shown in Fig. 8a for various Indian regions. For this comparison, the number 464 

of available CPCB surface monitoring stations were 17, 15, 81, 25, and 1 for central, north-465 

west, IGP, south and north-east regions (north region data not available), respectively. Most of 466 

the CPCB stations are in urban areas, so our results reflect changes in predominantly urban-467 

sourced NO2. At all surface sites in all regions, there was a percentage reduction greater than 468 

20 % (Fig. 8a). Satellite observations show a similar trend except for the north-east region, 469 

where enhancements are due to forest fires. Both OMI and TROPMI observed the highest 470 

reduction (~50 %) over IGP. A smaller average reduction of ~20 % over central India might 471 

be due to the aggregate effect of power plants, forest fires and prevalent biomass burning 472 

activities during this season. While the effect of forest fires can be observed in the column NO2, 473 

its impact on the surface NO2 is minimal. For the central, IGP and south regions, the mean 474 

percentage change observed by the surface monitoring station is comparable to that observed 475 

by the satellites. 476 
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 477 

 478 

Fig. 8 (a) Boxplot showing the percentage change between LDN and BAU in NO2 levels 479 

observed by ground and satellite measurements at CPCB monitoring locations in different 480 

regions. (b) Bar chart showing the percentage change in NO2 levels observed at megacities in 481 

India for the same measurements as panel (a). The vertical line in the bar chart is the standard 482 

deviation. 483 

 484 

We have intercompared the percentage change in NO2 observed at the surface and satellite over 485 

the major Indian cities (i.e., New Delhi, Chennai, Mumbai, Bangalore, Ahmedabad, Kolkata, 486 

and Hyderabad, Fig. 8b). A significant reduction in the range of ~25-75 % is observed, 487 

consistent in all observational sources used in this study. A similar reduction observed by the 488 

satellites over the cities in other parts of the world has been reported (Tobías et al., 2020; 489 

Naeger and Murphy, 2020; Kanniah et al., 2020; Huang and Sun, 2020). The satellites observe 490 

the largest reduction over Delhi and the smallest over Kolkata. While the observed decline is 491 

comparable for cities, Ahmedabad and Kolkata showed smaller declines than observed by 492 

ground measurements. Also, the reduction observed at the surface has a larger spatial 493 

variability than the one observed from the space. This is potentially linked to the influence of 494 

the local emissions which could not be detected by the space-based instruments because of 495 

relatively large satellite footprints. The results of percentage change observed by OMI are 496 

consistent with the change reported by Pathakoti et al. (2020), although Siddiqui et al. (2020) 497 

reported a higher decline of NO2 using TROPOMI. This is because we computed the changes 498 

between lockdown and BAU during the same period of the year, whereas Siddiqui et al. (2020) 499 

estimated the changes between the pre-lockdown NO2 and the lockdown NO2, which includes 500 

the seasonal component of NO2. We have also analysed the changes in VCDtrop NO2 observed 501 



22 
 

by both OMI and TROPOMI for the other major cities (Guttikunda et al., 2019), as shown in 502 

Fig. S4. A reduction of over 20 % was observed in most cities except for a few in the north-503 

east and central India. Cities showing enhancement or smaller reductions reflect the enhanced 504 

fire activities in the north-east and central Indian regions. TROPOMI can capture the reduction 505 

over the cities near the fire-prone areas (e.g., Indore and Bhopal) because of its higher spatial 506 

resolution. 507 

 508 

3.7 Correlation of tropospheric columnar NO2 with the population density 509 

In this section, we examine the VCDtrop NO2 and population relationship for India except where 510 

fire anomalies or large thermal power plants existed. The scatter density plots between VCDtrop 511 

NO2 and population density for the BAU and LDN analysis period are shown in Fig. 9 for OMI 512 

and TROPOMI. The data were log-transformed to establish the log-log relationship as neither 513 

dataset is normally distributed. As the observed changes had negative values, this log 514 

transformation was obtained by adding a constant value (Ekwaru and Veugelers, 2018), which 515 

was later subtracted when plotting to display the corresponding NO2 values. Both OMI and 516 

TROPOMI NO2 show a similar relationship with the population density with correlations of ~ 517 

0.65 during the LDN and BAU periods, suggesting a strong dependence upon the population 518 

(i.e., anthropogenic emissions). The slopes of the lines in Fig. 9 (a,b,d,e) show that VCDtrop 519 

NO2 follows a power-law scaling with population density (Lamsal et al., 2013). During BAU, 520 

the VCDtrop NO2 observed over a grid increased by factors of 100.28 = 1.9 and 100.20 = 1.58 for 521 

OMI and TROPOMI, respectively, with a ten-fold increase in the population density. The rate 522 

of increase of the VCDtrop NO2 during LDN was 100.23 = 1.7 and 100.16 = 1.45 times for OMI 523 

and TROPOMI, respectively, which was lower than BAU. The correlation during the LDN 524 

period was marginally lower than the BAU period. This could be due to a larger reduction in 525 

the NO2 levels in the densely populated grids. The changes observed in the VCDtrop NO2 during 526 

the LDN (Fig. 9c & f) were negatively correlated (i.e., reduction was positively correlated) 527 

with the population density. The linear relation suggests an increase in the reduction with an 528 

increase in the population density; however, some grids exhibit enhancements in VCDtrop NO2 529 

due to the local emissions. 530 
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 531 

 532 

Fig. 9. Scatter density plot between the VCDtrop NO2 (×1013 molecules cm-2) and population 533 

density (pph) for the analysis period in different years. (a) Business as usual (BAU, 2016-2019) 534 

observed by OMI; (b) lockdown (LDN, 2020) observed by OMI; (c) changes (LDN-BAU) 535 

observed by OMI; (d) BAU (2019) observed by TROPOMI; (e) LDN (2020) observed by 536 

TROPOMI; (f) LND-BAU changes observed by TROPOMI. The linear best fit lines show the 537 

log-log relationship between VCDtrop NO2 (Y) and population density (X) given by equation y= 538 

β.x+c, where y= log(Y), x= log(X) and c= log(C). Therefore, the equation can be written as 539 

log(Y) = β.log(X)+log(C) or Y=C.Xβ where β is the slope of the line. 540 

3.8 Linking the mobility change with NO2 change 541 

In order to link the observed reduction in NO2 levels with the traffic emissions over the urban 542 

areas, Fig. 10 shows the seven-day moving average of the daily percentage change observed 543 

by OMI, TROPOMI and CPCB across urban India from 1st March 2020 to 31st May 2020 544 

against the Google mobility percentage reduction for three mobility categories: transit stations, 545 

workplace and residential. Transit stations and workplace, proxies for traffic emissions (Forster 546 

et al., 2020), show a sharp decline (~70 %) due to the lockdown. The signatures of reduced 547 

traffic can be seen even before the start of lockdown in mid March 2020. The decrease in the 548 

workplaces resulted in the enhancement (25-30 %) of the people at a residential location. The 549 

percentage reduction observed by satellites and surface monitoring are consistent with each 550 

other and follow the same trend of the workplaces and transit stations. The reductions observed 551 
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by satellites and surface monitoring are ~ 20 % lower than the reductions in workplaces and 552 

transit stations which are compensated by the enhancement in residential emissions. Surface 553 

(CPCB) measurements exhibit higher correlation (~ 0.9 and 0.8, with and without moving 554 

average) with the mobility reduction compared to the satellite observation, which has a 555 

relatively weaker correlation (~ 0.8 and 0.5). The positive correlation of NO2 reduction with 556 

workplaces and transit stations suggests that the reduction observed over the urban areas was 557 

linked with reduced traffic emissions due to travel restrictions for COVID containment. 558 

Moreover, the mobility reduction was higher for larger cities as compared to the smaller ones 559 

(Fig. S6). 560 

 561 

Fig. 10 Temporal evolution of estimated change (seven-day rolling mean) of satellite 562 

observed VCDtrop NO2 and surface measured NO2 for the period (March 1st - May 31st, 563 

2020) from the baseline. 564 

 565 

3.9 Limitations of this study  566 

This study has few limitations that need to be considered while interpreting the results. The 567 

observed changes in the NO2 levels are the combined effect of changes in the emissions, local 568 

meteorology, large-scale dynamics, and non-linear chemistry. The variability in NO2, caused 569 

by weather patterns and non-linear chemistry is not included in the present work. Our study 570 

does not distinguish the differences in the upwind and downwind transport of plumes 571 

originating from urban areas and thermal power plants. Moreover, the estimates can be biased 572 

by the forest-fire plumes, which can be transported over a long distance. These limitations 573 

warrant a detailed modelling study to quantify the impact of long-range transport of plumes in 574 
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the drastic reduction of urban emissions. One of the limitations arises due to the unavailability 575 

of the surface monitoring classification according to its location and vicinity of the local 576 

sources, which restricted a proper assessment of the space-based NO2 observation. To 577 

overcome this limitation, proper classification of the monitoring stations (Geiger et al., 2013) 578 

based on the environment type and vicinity of the sources will be helpful in air quality 579 

assesment. 580 

 581 

4 Conclusions and discussion 582 

The changes in NO2 levels over India during the COVID-19 lockdown (25th March-3rd May 583 

2020) have been studied using satellite-based VCDtrop NO2 observed by OMI and TROPOMI, 584 

and surface NO2 concentrations obtained from CPCB. The changes between lockdown (LDN) 585 

and the same period during business as usual (BAU) years have been estimated over different 586 

land-use categories (e.g., urban, cropland, and forestland) across six geographical regions of 587 

India. Also, the changes observed from space and at the surface have been inter-compared and 588 

the correlation with the population density has been studied. 589 

Overall, a significant reduction in NO2 levels of up to ~ 70 % was observed over India during 590 

the lockdown compared to the same period during BAU. The usual prominent NO2 hotspots 591 

observed by OMI and TROPOMI over urban agglomerations during BAU were barely 592 

noticeable during the lockdown. However, despite the reduction in electricity production, the 593 

coal-based thermal power plants continued to be major NO2 hotspots during the lockdown. 594 

Some of the largest reductions in NO2 were observed to be over the urban areas of the IGP 595 

region. The reduction observed for urban agglomerations was over 150 ×1013 molecules cm-2 596 

(~30 %) and even more for megacities showing a reduction of around 250 ×1013 molecules cm-597 

2 (50 %). The reduction observed over the urban areas was linked with reduced traffic emissions 598 

due to travel restrictions for COVID containment. The decrease was also observed over rural 599 

regions. Average declines of NO2 in the ranges of 14-30 %, 8-28 % and 10-24 % were observed 600 

by OMI and 22-27 %, 6-18 % and 3-21 % were observed by TROPOMI over the urban, 601 

cropland and forestland, respectively, in different regions of India. In contrast, an average 602 

enhancement over north-east India was observed due to positive fire anomalies during the 603 

lockdown. Although we have considered the grids with zero fire anomaly during the lockdown, 604 

the fire emissions can still enhance NO2 levels over grids with no fire activity because of 605 

horizontal transport. 606 
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The observed changes in VCDtrop NO2 were found to be spatially positively correlated with 607 

surface NO2 concentrations indicating that the lockdown NO2 changes appear to be present in 608 

both measurement types. The TROPOMI NO2 showed a better correlation with surface NO2 609 

and was more sensitive to the changes than the OMI because of the finer resolution. Therefore, 610 

TROPOMI can provide a better estimate of NO2 associated with fine-scale heterogeneous 611 

emissions. Also, VCDtrop NO2 was found to exhibit a good correlation with the population 612 

density, suggesting a strong dependence upon the population and hence the anthropogenic 613 

emissions. The changes observed in the VCDtrop NO2 during the lockdown were negatively 614 

correlated (i.e., reduction was positively correlated) with the population density suggesting a 615 

larger reduction for the densely populated cities. However, the influence of local emissions can 616 

be different in different cities.  617 

The analysis presented in this work shows a significant change in NO2 levels across India. The 618 

observed reductions can be linked with the control measures taken to prevent the spread of the 619 

COVID-19 that restricted the people's movement, resulting in a significant reduction in 620 

anthropogenic emissions. As an important message to policymakers, this study indicates the 621 

level of decrease in NO2 that is possible if dramatic reductions in key emission sectors such as 622 

road traffic were incorporated into air quality management strategies. 623 

5 Data availability.  624 

OMI data is available at NASA Goddard Earth Sciences Data and Information Services Center 625 

(GESDISC) (https://disc.gsfc.nasa.gov/datasets/OMNO2d_003/summary). TROPOMI data is 626 

obtained from (http://www.temis.nl/airpollution/no2.php). Surface measured NO2 data across 627 

India are available at CPCB site (https://app.cpcbccr.com/ccr/). VIIRS fire count data is 628 

available at FIRMS web portal (https://firms.modaps.eosdis.nasa.gov/). India Population data 629 

used in this study is available at the https://www.worldpop.org/. The LULC data for India is 630 
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(https://cds.climate.copernicus.eu/cdsapp). The mobility data is available on Google platform 633 
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