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Abstract

Fine particlesweresampledrom 9" Novemberto 11" Decembe2016and 22" May
to 24" June2017aspartof the AtmosphericPollutionandHumanHealthin a Chinese
megacity(APHH-China)field campaignsn urbanBeijing, China.Inorganicons,trace
elementsOC, EC, andorganiccompoundsncludingbiomarkershopanesPAHSs, n-
alkanesand fatty acids were determinedfor sourceapportionmentin this study.
Carbonaceouscomponentscontributed on average 47.26 and 35.2% of total
reconstructe®M: s duringthewinter andsummercampaigngsrespectively Secondary
inorganicions (sulfate,nitrate,ammonium SNA) accountedor 35.0% and45.26 of
total PM2 s in winterandsummer Othercomponentincludinginorganicions(K*, Na',
CI"), geologicalminerals,andtracemetalsonly cortributed13.26 and12.4% of PMzs
during the winter and summercampaignsFine OC was explainedby sevenprimary
sourceqindustrial/residentiatoal burning biomassburning,gasoline/dieselehicles,
cooking and vegetativedetritug basedon a chemicalmassbalance(CMB) receptor
model It explainedanaverageof 75.7% and56.1%of fine OC in winterandsummer,
respectively.Other (unexplainedl OC was comparedwith the secondaryOC (SOC)
estimatedy the EC-tracermethod with correlationcoefficients(R?) of 0.58 and0.73
andslopesof 1.16and0.80in winter andsummeryespectively This suggestshatthe
unexplaineddC by CMB wasmostlyassociateavith SOC PMy.s apportionecdby CMB
showedthatthe SNA andsecondaryrganicmatterwerethe highesttwo contributors
to PM2s. After these,coal combustionand biomassburning were also significant
sourcesof PMzsin winter. The CMB resultswere also comparedwith resultsfrom
PositiveMatrix FactorizationPMF) analysisof co-locatedAerosolMassSpectrometer
(AM S) data TheCMB wasfoundto resolvemoreprimaryOA sourceshanAMS-PMF
butthe latter could apportionsecondarOA sourcesThe AMS-PMF resultsfor major
componentssuchas coal combustionOC and oxidized OC correlatel well with the
resultsfrom CMB. However,discrepanciesindpooragreementsverefoundfor other
OC sourcessuchasbiomassburningandcooking,someof which werenot identified
in AMS-PMF factors
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1 Introduction

Beijing is the capitalof Chinaanda hotspotof particulatematterpollution. It hasbeen
experiencingsevere PMqs (particulate matter with an aerodynamicdiameter of

O2 . 5 @atigtion in recent decades,as a result of rapid urbanization and

industrialization,andincreasingenergyconsumptionWangetal., 2009. High PM2 5

pollution from Beijing could have significantimpact on humanhealth (Songet al.,

20063 Li etal., 2013. A casestudyin Beijing revealedthata 10 ug m increaseof

ambientPM: s concentratiorwill correspondinglyincrease0.78%,0.85%and0.75%
of the daily mortality of the circulatory diseases,cardiovasculardiseasesand

cerebrovasculadiseasesiespectivelyDong et al., 2013. FurthermorePM: s causes
visibility deteriorationin Beijing. A betterunderstandingf PM2.s sourcesn Beijing is

essentialasit canprovideimportantscientificevidencego developmeasureso control

PMz s pollution.

Ma nsyt u Havemlentifiedthepossiblesource®f fine particulde matterin Beijing
usingvariousmethod§Z heng etSan @] et2 0ABN0g6 aet ;lail .et 2006
al . ,;Zh@hy et;Yal .a,nd20Ng3Sgnget A.02BO)&aap pl i ed
t woi genmedélbs, principal component anal ysi
scog (PCA/ APCSHhoasdudiNMI bkeis s oBieSapesardigsf P M
usede | ement toHostorua cer | p p 0 r2thy yo nanpepastiywemaitgx P M
factorization(PMF) (Song et ;hAIl . et 2;@0h6abn g2 X5¥@al and 2013
Wang, ) 2Bil8 approach hadhabbepgandrMPyi mgam
requar eé¢at avgeysampliebess tzeea @amide v erdend witnt o3 s

critical assessment of its mat hemati cal p
reasonability (dé& Mheahdaltkeamartio f;i @&kl8r, 202
et al).s,ecdoOntdlhy, i mperetmarstsi M sources do not
el ement al .Heoncpe d ietmeon-lidsdd amerhod cannot d
sourscuecsh as cooki ng acstr hewe manmildcbay exhace o us
compo (Wacsg et ).aGenerally,@daficinatter (OM) is compmsed of

primary organic matter (POM) aniddisreeccotnidyar y
emi ttedidmd thB@jichemicaloxidationof volatile organiccompounds
(VOCs)(Yang et ). @M wastheargesténtributorto PMz.5s masswhich was

reportedto accountfor 30%-50% of PM:.s in some Chinesecities suchas Beijing,

GuangzhouX i GaadshanghaiSong et;Ha&l et 2Hula7n g2 @1l al ., 2C
and cancontributeup to 90% of submicronPM massin Beijing(Zhou et ). al . |, 20
Furthermoremanyorganictracersaremorespecificto particularsourcesmakingthem

more suitableto identify and quantify different sourcecontributionsto carbonaceous
aerosolaandPM s.

Chemical Mass bahascbeétf&MBy)oethodel apportio
PM wor lidwildued,i hSAent ony CRORBOeWK mal et )al ., 20:
and G@herm et )d8he , CKHB lamstsduenteasst source prof il «
unchanged between (Slhae nami eYiearn a na)2adl8ept DGO
et (2dR2clompared the source apportionment res
receptor model |l ingt h&&WBc @amachebei cn@dt f ooampl! e
and representative sourcdé dpwpwostudnmsenhaotk
aCMB mdoaodel source apport i(Zohnemegn2® thFauP.Mti ml Be i
201uo0 et ;Wdng tO)IBdr. ,e 2P| 20 Wdnereg t e tg ad le.d
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2 Methodology

2.AMlerosol sampling

PM2s was collectedat an urban samplingsite (116.39E,39.98N) - the Institute of

AtmospheridPhysicq1AP) of the ChineseAcademyof Sciencesn Beijing, Chinafrom

9" Novemberto 11" December016 and 22" May to 24" June2017, aspart of the
AtmosphericPollutionandHumanHealthin a Chinesemegacity(APHH-China)field

campaigngShietal., 2019. Thesamplingsite(Fig. 1) is locatedn themiddlebetween
the North 3 Ring Roadand North 4" Ring Roadand approximately2 0 0 from a

majorhighway. Hence|t is subjectto manylocal sourcessuchastraffic, cooking,etc

Thelocationof a rural site in Beijing - Pingguduring the APHH-Chinacampaignss

alsoshownin Fig. 1. Therural sitein Xibaidianvillage in Pingguis about60 km away
fromIAP and4  korthwestof the Pinggutown centre.lt is surroundedy treesand
farmland with several similar small villages nearby. A provincial highway is

approximately500 m away on its eastsideaunning north-south. This site is far from

industrial sourcesand locatedin a residentialarea.Otherinformation regardingthe
samplingsiteis describecelsewhergShietal., 2019.
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PM2s sampleswere collected on pre-baked (450°C for 6h) large quartz filters
(Pallflex, 810 inch) by Hi-Vol air sampler(Tisch USA) ataflow rateof 1.1 m? min
1. A Medium-Vol air sampler(ThermoScientific Partisol2025i) wasalsodeployed at
the samelocationto collectPMz.s samplesimultaneouslyon 47 mm PTFEfilters ata
flow rateof 15.0L min™. Field blankswere also collectedwith the pump turnedoff
during the samplingcampaign.Before and after sampling,all filters were put in a
balanceoomandequilibratedata constantemperaturandrelativehumidity (RH) for
24hprior to anygravimetricmeasurementsvhichwere22°C and30%RH for summer
samples21°C and 33% RH for winter samplesPMz s masswas determinedhrough
theweighingof PTFEfilters usingamicrobalancgSartoriusmodelMC5, precision:1
1g). After that,filters werewrappedseparatelwith aluminumfoil andstoredat under
1 20°C in darknesauntil analysis.The large quartzfil terswere analyzedfor OC, EC,
organic compoundsand ion species while small PTFE filters were used for the
determinatiorof PMz s massandmetals Online PMz s weredeterminedy the TEOM
FDMS 1405DF instrumentat IAP with filter equilibratingand weighing conditions
comparablewith the United States Federal Reference Method (RH: 30-40%;
temperature20-23°C) (Le etal., 2020 U.S.EPA,2016.

2.2 Chemical Analysis

2.2.1 OC and EC

A 1.ucmhedtlmge quar watsé k &dagarficcsbam{@q) e

and elemental carbon (E@)e a s u rsb ya éhermal/optical carbon analyZenodel

RT-4, Sunset Laboratory Inc., USBR)a s etdhEetJiIs AA(RRur opean Supersi:t
At mospheric Aer ans hprRoeetgOsaaeehclhl)i ;Ebhenal et a@D10
20D Raeplicatef ad@ lweskesE€onduct ed ornfbee every
uncertainties from duplicate analysesfitters were <10%Alda mp |l e weegul t s
corrected by the values obtained f?Pom fiel
for OC and ERet aelspectt i vlee yOC/ EC measur emer

el sevheaerresphpeul ou )eTthieals.t r U2n@nti4dt ssl of detecti o
5
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and EC in this studgndeyelnesteismatced vied ybe |

2. 20rgani c compounds

Organictracers including 11 n-alkanes(C24-Cz4), 2 hopanes(17a(H) -22, 29, 30-
Trisnorhopane,17b (H), 21a (H) -Norhopane),17 PAHs (retene, phenanthrene,
anthracenefluoranthenepyrene,benz(a)anthracenehrysenepenzo(b)fluoranthene,
benzo(k)fluoranthene,benzo(e)pyrene, benzo(a)pyrene, perylene, Indeno(12,3
cd)pyrene, dibenz(a,h)anthracene,benzo(ghi)perylene, coronene, picene) 3
anhydrosugarglevoglucosan,mannosangalactosan) 2 fatty acids (palmitic acid,
stearicacid) andcholesteroln the PM,. s samplesveredeterminedn this study. 9 cn?
of thelargequartzfilterswereextracted timeswith dichloromethane/methan@iPLC
grade v/v: 2:1) underultrasonicatiorfor 10 minutes The extractswerethenfiltered
andconcentratedisinga rotary evaporatoundervacuum,andblown downto dryness
with pure nitrogengas.50 L of N,O-bis-(trimethylsilyDtrifluoroacetamidédBSTFA)
with 1% trimethylsilyl chlorideand10 L of pyridinewerethenaddedto the extracts,
which wereleft reactingat 70 °C for 3 h to derivatize-COOHto TMS estersand-OH
to TMS ethers.After cooling to room temperaturethe derivativeswere diluted with
1401L of internalstandard (C13n-alkane,1.43ng L ) in n-hexaneprior to GC-MS
analysisThefinal solutionswereanalyzedoby agaschromatographynassspectrometry
system(GC/MS, Agilent 7890A GC plus5975Cmassselectivedetectoj fitted with a
DB-5MS column(30m x 0.25mm x 0.25¢ m The GC temperaturgrogramandMS
detectiordetailswerereportedn Li etal. (2018. Individualcompoundsvereidentified
throughthe comparisorof massspectrawith thoseof authenticstandardr literature
data(Fu et al., 2016. Recoveriedor thesecompoundswverein a rangeof 70-100%,
whichwereobtainedby spikingstandardso pre-bakedblankquartzfilters followed by
thesameextractionandderivatizationproceduresField blankfilters wereanalyzedhe
sameway assampledor quality assurancebut no targetcompoundsweredetected.

2.2.3 I norganic components

Haloff t he PTFE filter was extracted with 10
i norgamMia¢nibogani c i o s, KiHh c1CUd HNDOMBHF War e
determined by wusingdg CRinonex, cSHhurmmatdlge,apdA,(
detect i(obLosk)i mhesnm were 0.032, 0.010, 0.011,
Qg Mmespecdthenal yhicealt ai nty was | ess than 5%
An intercomplaowednt saudygur | BGennhbbywpedsi ohs
agreed well with th®wue edaf pffhac iOedt abahgr at
Al(DLsGgifm 0,2@®0)04CH. 03@0. n3)( Pe Wie4d)e

deter mK-nay blhuorescermRRdé&Ot Bpecelrementes ( Xcl uc
CoMnNi , Cu, Zn, AasnRllnSerr,e Cadn an Sylr,ce tdiB@uep |yie d

pl asnmd s spedcCtPMmet er EéXRPAEEI bnl pér 1by di |
mi xtur# HC&dtdhe det ecti on 1l.i3M@BtOND®A2 . 10bem wer
1.25.212470.,020. 0B,0B68nd040g 3In respdMassvely
concentrations of all i norganic fiamMme and e
field bl anakndvatlhueesmet hods were quality as:
material s.
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2.4 Chemical Mass Balance (CMB) model

The chemicalmassbalancemodel (US EPA CMB8.2) was appliedin this studyto
apportion the sourcesof OC by utilizing a linear least squaressolution. Both
uncertainties in source profiles and ambient measurementswere taken into
considerationn this model. Thesourceprofilesappliedherewerefrom local studiesn
Chinato betterrepresenthe sourcecharacteristicsincluding straw burning (wheat,
corn, rice straw burning) (Zhanget al., 20070, wood burning (Wang et al., 2009,
gasolineanddieselvehicles(includingmotorcycleslight- andheavyduty gasolineand
dieselvehicles)(Caietal., 2017, industrialandresidentiacoalcombustion(including
anthracite,subbituminite, bituminite, and brown coal) (Zhang et al., 2008, and
cooking(Zhaoetal., 2015, exceptvegetativedetritus(Roggeetal., 1993 Wangetal.,
2009. The sourceprofiles with EC andorganictracersusedin the CMB modelwere
providedin Table S1 of Wu et al. (2020. The selectedfitting specieswere EC,
levoglucosan, palmitic acid, stearic acid, fluoranthene, phenanthrene,retene,
benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene,
benzo[ghi]perylenepicene,17a (H) -22, 29, 30-trisnorhopanel7b (H), 21a (H) -
norhopan&andn-alkanegC24-C33),theconcentrationsf whichareprovidedin Table
1. The essentiakriteriain this modelwere met to ensurereliable fitting results For
instancejn all samplesR? were>0.80(mostly>0.9), Chi® were<2, Tsat Valueswere
mostly greaterthan?2 exceptthe sourceof vegetativedetritus,andC/M ratios(ratio of
calculatedo measureatoncentrationjor all fitting speciesverein rangeof 0.8-1.2in
this study.

25 PosiMatvréaxt ori zation analysiAsrofoldaMas®hb
Spectr 0 M&P WF)

An AerodyneAMS with a PM. aerodyamic lens was deployedon the roof of the
neighboringbuilding- the Tower branchof IAP for reattime measurementsf non

7



250 refractory(NR) chenical speciesrom 16" Novemberto 11" Decembef016and22™

251 May to 24" June 2017. The detailed information of the sampling sites is given
252 elsewherdXu etal., 2019h. The submicronparticlesweredriedandsamplednto the
253 AMS at a flow of ~0.1L min. NR-PM: can be quickly vaporizedby the 6 0 NIC

254  tungstervaporizerandthenthe NR-PM; speciedncluding organics,Cl, NOz, SO

255 andNHs" weremeasuredby AMS in masssensitiveV mode(Sunetal., 2020. Details
256  of AMS dataanalysisjncludingthe analysisof organicaerosolOA) massspectracan
257 befoundelsewherdXu etal., 2019h. The sourceapportionmenbf organicsin NR-

258 PMywascarriedoutby applyingPMFto the high-resolutionmassspectraof OA, while

259 thatof fine OC in this studywasconductedy applyingsourceprofiles alongwith an
260 offline chemicalspeciatiordatasetTheprocedurs of the pretreatmenof spectradata
261 anderrormatricescanbefoundelsewherdgUIlbrich etal.,2009. It is notedthatthedata
262  weremissingduringtheperiod09" - 15" Novembe2016dueto themalfunctionof the
263 AMS.

264
265 3 Results anddiscussion

266 31Char acterizsatnidc sCaorfboPmMMiceous Compounds

267 Mean concentration®f PM.s, OC, EC and organic tracersduring wintertime (9"

268  Novembeto 11" Decembef016)andsummertimg22' May to 24" June2017)atthe

269 |AP sitearesummarizedn Tablel andFig. S1 Theaverage® M. s concentratiorwas
270  94.8:64.41g m™ during the whole winter samplingcampaign The winter sampling
271  periodwasdividedinto haze(daily PM.5 > 75 g m®) andnonhazedays(<751g m

272 %), basedon the National Ambient Air Quality StandardGradell of the limit for 24-

273  houraveragd’Mz s concentrationThedifferentiationbetweernazeandnon-hazedays
274  enabledusto studythe majorsource contributingto the hazeformation. The average
275 daily PMzs was 136.7#9.8 and 36.7#23.5 ;g m* on haze and nonhaze days,
276  respectively.Daily PM.s in the summersampling period was 30.214.8 g m=,

277  comparablavith thaton winter non-hazedays.

278 OC concentrationsangecdbetweer8.9-48.8pg m3 (mean21.5.g m3) and1.8-12.7
279 g m? (mean: 6.4 g m?) during winter and summer, respectively. They are
280 comparablevith the OC concentrationsn winter (23.7 g m3) andsummer(3.781g

281 m)in Tianjin, Chinaduringanalmostsimultaneousamplingperiod(Fanetal., 2020,
282  but muchlower thanthe OC concentratior(17.1 g m) in summer2007in Beijing
283 (Yangetal.,2016. Theaverage OC concentratiomuringhazedays(29.449.2 g m?)
284  wasapproximatelythreetimesthatof non-hazedays(10.746.2 .g m) duringwinter.
285 TheaverageEC concentratioruringwinterwas3.542.0 .g m’3; its concentrationwas
286  4.6#1.3 g m3 on hazedays,approximately2.4 times that on winter non-hazedays
287  (1.9#1.6 g m®) and5 timesthat(0.940.4 .g m'3) duringthe summersamplingperiod.
288 TheOCandEC concentrations this studywerecomparablavith theOC (27.9+ 23.4
289 g m?) andEC (6.6+ 5.1 g m) concentrationsn winter Beijing in 2016(Qi etal.,
290 2018, but muchlower thanthosein anurbanareaof Beijing during winter (OC and
291 EC:36.7#19.4and15.2#11.1e gn'®) andsummer(10.743.6 and5.72.9¢ gn'®) in
292 2002(Danetal.,2004.



293 On average OC and EC concentrationsn winter were 3.3 and 3.9 timesthosein
294  summerAdditionally, OC andEC werewell-correlatedn this study,with R? valuesof
295 0.85and0.63during winter and summer respectively suggestingimilar pathsof OC
296 andECdispersioranddilution, andbr similarsource of carbonaceougerosolsespecially
297  in winter. LesscorrelatedOC andEC in summercould be a resultof SOCformation.
298  SOCin this studywasestimatedandis discussedhn section3.3.7.
299 Table 1. Summaryof meauredconcentrationsit IAP sitein winterandsummer.
5 Winter ) B _
Compound¥ ng m Hazé (n=18) Nor-hazé (n=13) Winter (n=31) Summer (n=34)

PMos(© g 9)m 136. 7N4238. ©36. 7N2375) (1 94. 8RN6423%9.(4 30. 2N1478. ¢

3
oc Gg ¥m 29. 4NPAB7. 8) 10.7K6212. §)3. 21.5N12838)36.4K2-12.712
ECOg ¥m 4.6N163601.6 1.9N156200.33.5N2606(00.30.9N0-147(00
soc (g ¥ m 10. 3N524. q)2. 2.9N154500.07.2N522.60.02.3N1-64000
Levoglucosan 348.2N14B12D. 195. 0N1683%. 278.5N1753%. 26. 1N2472.
Palmitic acid 376.2N2340®9 278N280-16373 335N255-1837325.2N15.89
Stearic acid 207. 1N284647 163. 6N228B03. 188.8N19®0B. 16. ON73I . 4)
Phenanthrene 8. 6N6-1)(1.8 5. 6N62.41 8()1 7. 3N62.42 8()1 0. 7N@..78)(0
Fluoranthene 25. 1N1966 204 16. 1N28B43304 21.3N28453(04 0. 4@..29)
Retene 16N1452. )2 11.1N1251500 13.9N1%528200 0N0-0( D)
Benz(a)anthracene 21.5N1625700 10. 8N93®. §)1. 17N14-68 .(70). 3 0. 2Ne0..15)( 0
Chrysene 22.6N1471303 13.6KN1596500 18. 8105925) 0.2KN@..13)(0
Benzo(b)fluoranthene 52.6N298)(10. 28. 1N31113(.26.)4 42. 3N31418.6232 0. 7N@.)5 (0
Benzo(k)fluoranthene 12. 288 .30 6. 7N62.38 7()0 9. 9N72.59 30)0 0.2N@..14)(0
Picene 0.8N®@.8)(0 0.3Ka@..53) 0.6N@.76)(0 0NO-0) O
Benzo(ghi)perylene 7. 0N41.37 6()0 4. 0N41.41 000 5. 6 N41.46. 0()0 oNo.a. 3)
17a (H)-22, 29, 38 2. 7R166700.6 1. 6RN1-65 (0.3 2. 2RKN1-667(00.3 0RO .-a. 4)0
Trisnorhopane
mtr)h(gp)éﬁéa(m 3.1R166600.9 1.8R1-78300.3 2. 6RKN1-78300.3 0RN0-0(Q)
Cc24 26.3N1553507 18N19:721.(22.1 22.5N17142021.4RK0-36 300
C25 28.2N1596 (8 19.5N206520224.2NR19g632022.9N1655(00
C26 18. 9N1@022(05 13N13-418.(21). 8 16. 2N1#488 201 1.6N0-47 300
c27 20. 4N93 2. 6. 13.8N1235502 17. 4N1832502 4. 4N211(.07.)6
c28 10. 6N41®8. )3. 6. 9N5-12.B82.58.9N5-19.3B2.51.4N0-26 900
C29 22.3N1®91 705 14. 3N132.)6 (3 18. 7N1319..97)(3 5. 2N32®.(¢0
C30 6. 8N2-19.@2. 2 4. 5N39..17)( 1 5. 7N3L.12 401 1NO. 42)(0. 2
C31 11.6N412. 1)3. 7. 7N5-18.@73.2 9. 8N5-18.(¢3.2 4.3N32D)(0
C32 6. 1N2-9& 3) 3.9N2-86200.7 5. 1N2-98300.7 0.9N0-147(00
C33 5.8N2-12.62.7 3. 9N3-91600.9 4. 9KN311(.05.)9 1.8N1-61 300
C34 2. 1N25.15)( 0 1.2N14)4 (0 1.7N15..8)(0 0.3N®@..39)(0
300 2Theunitis ng m? for all organiccompoundsndpg m for PM; s, OC,EC andSOC;® mearSD
301  (min-max);¢ SOCconcentratiorwascalculatedoy EC-tracermethod;® Hazedays:PM..:O 7 |5
302 m?3 eNonhazedays:PM, <751y m3;
303 3.2 Chemical (®™dG8ys Closure
304 Thecompositionof PMsa p p | tyhcehg@ mi cal mas g gdlod g we2de i metFh @
305 andummari zesddBeonalUaskel ¢ he gravimetfPidpsel y mea
306 di ffers sl ightGFy AfthredSnr eognrl @ snsei dhivk tamed ry smas g e
307 reconstructed uscogethrapBbt abnbdomewarsair £d PM
308 (of fPIMi/eeonlJid)s’werBMi nveptogaeddi anBig.
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317 As shown in Fig3, measured offline/online PM were moderatelyvell correlated
318  with the reconstructed PM with slopes of 0.77~1.26 and Rof 0.67~0.96In winter,

319 the regression results were good between reconstrBdfied and offlinePM.s. For

320 onlinePMz s, it wasmuch higher thathe reconstructed PMwhen the maswasover

321 1700 g “3.mfter excludingthe outliers 2 outliersof offline-PMz.5> 2000 g = amd 4

322 outliersof onlinePMzs> 1700 g “)pihe regression results improved with both slopes
323 and R approaching unityFig. S3). This could indicatesomeuncertainties in offline
324 andoronline PM s measurement for heavily polluted samplasthe applied OM/OC
325  ratio in winter was not suitable for converting OC to OM in heavily polluted samples
326  During thesummercampaignthe slope other e ¢ o n s RMxsiaedtorlidePMz s

327 was close td, but that ofr e ¢ 0 n sRMeswamd tofflirePM2.s was 1.26. Thisould

328 be due tdhe loss of sermvolatile compounds from PTFE filters thre positiveartefacts
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of quartz filtersfor chemical analysesyhich can absorb more organics than PTFE
filters that are used for PM weighingTo avoid loss of semrolatiles all collected
samples were stored in cold conditions, including during shipmbatdatapoints were
more scattered in summer, which couédult fromthe large difference in ONDC
relationships from day to day. Theconstructednorganics feconstructed Pk
excluding OM correlated well with offlinePMz.5, but OMdid not (Fig. ). Hence,
the discrepancies of between reconstructed £ad offline/online PMs in summer
may be mainly attributableto variable OM/OC ratios.

During thewinter campaign the carbonaceous components (&MEC) accounted
for 47.2% of totalreconstruadPM s, followed by the secondary inorganic iohsH",
S @, NQ) (35.00). In summer, on the contrary, secondary inorganic salts
represented!5. 26 of PM2s mass followed by carbonaceous componer?s.250).
Bound watercontributed 4.6% and 7.2% of BMduring the winter and summer,
respectivelyAll other components combined accountedlf&:®6 and12.4% of PMb s
during thewinter and summesampaignsrespectively

33Source apporti onuremBaiodipndi s@MBD Onoidne |

The CMB rmocdbdéleedn primary sources of oC i1
including vegetative detritus, straw and w
vehicl essehidcileesse,l i ndustri al coal combusti ot

combustion (Residenti al CC) and¥% c(odoX.ihg. I
91. 3%) and-7%6 32%% OE3 4.n3 wi nt er s @ntdi MMaedmme r , f
averaged CM&@ tsonmmeeatap esultsarpecnesvented amn
TabA®ai ly source contribution estimates to
di fferent sources contri auseh cowmns 4tm FiCg.i n w

During thewinter campaign coal combustion (industrial and residential CC,1g.5
m, 35.0% of OG was the most significant contributor to OC, followed®trer OC
(5.31g m=3, 24.8%9, biomass (3.8g m=3, 17.6%, traffic (gasoline and diesel vehicles,
2.61g m=3,11.99%, cooking (2.2g m=3, 10.399, vegetative detritu(09pg m=3, 0.4%.
On winter haze days, industrial coal combustion, cooking @iter OC were
significantly higher (nearly tripled) compared to ndraze daysDuring thesummer
campaign Other OC (2.91.g m3, 45.8%) was the most significant contributor to OC,
followed by coal combustion (2)® m=3, 31.1%), cooking (0.7g m=3, 10.3%), traffic
(0.34Lg m-3, 6.1%), biomasburning(0.31g m3, 5.3%),andvegetative detritusd(1 g
m=, 1.7%).

Table 2. SourcecontributionestimategSCE, ;g m™) for fine OC in urban Beijing
duringwinterandsummerfrom the CMB model
Winter

Sources Haze (n=18) ?:](lnl-g;aze Winter (n=31)
Vegetative deO.RD180 0.f@7 08
Biomass burni4.®0a23 2.857
Gasoline vehi2.RBB.7 159 N& 5
Diesel vehiclo38&l.43 0.Rf4 33
INndustrial co7.fM217 1.R5 36
Residential ¢3.8372 1.RK6 96

Summer
(n=34)

2 08 0.RKD1 08
8 64 0.K04 39
.3 56 03MN@.6
M4 15 0.KD8 16
M4 15 1.8@.2
MQ 12 0.f8 11

NS~ODNWO
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Cooking 3.3 30 0.M552 2.R3B13 0.6 43
Ot het OC 74866 2 NB. 4 5 8. 9 2 .Np5

Calculted 022.0N6. 8.2N5.3 16.2N9. 3.5N1.
MeasuredDC 29.4N9. 10.7N6. 21.5N12 6. 4N2.

366  20ther OC is calculated by subtracting calculated OC from measured OC;
367 P Calculated OC is the sum of OC frath seven primary sourcesegetative detritus, biomass burning,
368  gasoline vehicles, diesel vehicles, industrial acaahbustion, residential coal combustion and cooking.
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3.3.1 I ndustrial and residenti al coal

In China, a large amount of coal is usedhiarmal power planindustries,urban and
rural house# northern Chinaespeciallyduring theheating period (midNovember to
mid-March) (Huang et al., 20%17Yu et al., 201% But urban household coal use
experienced aemarkabledrop of 58% during 20052015, which is much higher than
that of rural household coal use (5% of decre@&edo et al., 2018In this study, oal
combustion is theingle largessource that contributetd primary OC in both winter
and summerln addition, ndustrial CC was a more significant source of Otha
residential CC in urban Beijin@n average, coal combustion related OC was5105

g m3 (34.59.8% of OC) in winter, which was more than 3 times of that in summer
2.060.8 g m= (32.310.2% of OC), but the percentage contribution is similar
similar seasonal trend was also found in other studies in Bégingng et al., 2005
Wang et al., 2009 but the relative contribution of coal combustion was much lower
than in this study. Industrial CC derived OC wa84#.15 and 1.82#.72g m3in
winter and summer, respectiveliResidential CC derived OC wd&s6013.12 and
0.18#0.11pg m 3 in winter and summer, respectively. Residential CC was much higher
in winter compared to that in summer. On haze days, industriah@@eaidential CC
derived OC were 3.6 and 3.1 times that on-hame days, respectively, indicating an
important contribution to haze formation from industrial CC.

Coal combustion is also a major source for particulatericle (Chen et al., 2004
Because Beijing is an inland city, the contribution of marine aerosols to particulate Cl
is considered minor, which is also supported by the highéd&Imass ratios in winter
(10.1#4.8) and summer (2.74.8) than sea water (1.81), indicative of signifi
contributions from anthropogenic sour¢Bendy et &, 2017. Yang et al(2018 also
reported that the contribution of sealt aerosol to fine particulate chloride was
negligible inChinainland areas even during summer. Hence,irCthis study was
mainly from anthropogenic sourcéde time series of OC from coal combustion (OC
CC) and Clduring winter and summer of Beijing are shown in Fig. 5-:@Cand Cl
exhibited similar trends in both seasons. The correlation coefficiéhbéRveen O€
CC and Cl during winter was 0.62which could be attributed to enhanced coal
combustion activities in this seasono Nignificant correlation between the tw@s
found during the summer campaigimdicating the abundance of @ summer was
more influenced by otlesourcesprobably including biomass burning addition, due
to the semivolatility of ammonium chlorideit is liable to evaporate in summg@®io
and Harrison, 1987 A similar phenomenon has been observed in O@hant et al.,
2015.

Winter 0C-CC Cl Summer 0C-CC Cl.
25.00 4.00
- o
£ 20.00 g
o o 300
=N 3
2 15.00 N
z 2 200
.€ 10.00 =
= =
B £ 100
S 500 =
Q |5}
g 2
g 000 — 8 S 5 0.00
9 %) n\ ab« a r‘j ,..’3 ,\6 ,,\C’j \’\ b'¥ \bb b% \ \ \\"o q‘\ nb(
o \\ o \ A A A oy ﬂ\s ,\é 1\5 16 {\\ o \,\ MM
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Figure 5. Time series of OC from coal combustion (@C) and Clin winter and
summer in Beijing

3. Bidmass burning

Biomass burning (BB)including straw anavood burning,s an important source of
atmospheric fine OC, which ranked as the second highest primary source of OC, after
industrial coal combustionduring thewinter campaign and third highestluring the
summercampaignafter industrial CC and cookind\s shown in Fig4, the relative
abundance of BB derive@C during the winter campaigis much higher thanthe
summercampaign BB-derived OC from the CMB resultgas3.78£2.64 g m™ and
0.3440.39 g m~3in winter andsumner, contributing 17.6% and 5.3% of OC in these
two seasonsiespectively These resultsare lower tharthosein 20052007 Beijing
whenBB accounted for 26% and 11% of OC in winter and summer, respeciValyg

et al., 2009. The BBderived OCon winter haze days4(80+.23 g m=3) was
approximately double that of ndraze days2.3842.57 g m3), accounting for 16.3%
and 22.2% of O®n haze and nochaze day, respectively.

Levoglucosan isvidely usedas a key tracer for biomass burning emiss(@mattarai
et al., 2019Cheng et al., 2013Xu et al., 2019a Based oralevoglucosan to OC ratio
of 8.2 %(Zhang et al., 20074an et al., 2020the BB-derived OCwas3.4022.09 g9
m~and 0.3240.35g m-3during thewinter and summesampaignsrespectivelyThese
results are comparabte BB-derived OC fronthe CMBin this study. The estimated
BB-derived OC concentration aa¢so comparable with the B&erived OCduring the
same sampig periods inTianjin (Fan et al., 2020 but higher thanthoseat IAP in
20132014 (Kang et al., 2018. Both of the studies applig¢be levoglucosan/OC ratio
method to estimate the Bi#erived OCalthough the actual ratio in Beijing air may be
very different to 8.2%The heavily elevated OC concentration in wintamrmpared to
summer could be a result of increased biomass burning activities for house heating and
cooking in Beijingin addition tothe urfavorabledispersionconditions under stagnt
weatherconditionsin the winter

In summer, the total OC concentration was higbest?" June The sudden rise of
OC on this dayvas attributedo theenhancd biomass burning activities, which led to
the highest level of BRlerived OC andhighestBBOC to OC abundance. The
IevogIucc;samoncentratiomn this day waslsothe highest in summer, whichached
172 g m~.

3. BLa3oline and di esel vehicl es

OC and ECarethe keycomponent®f traffic enissions (gasoline vehiclés diesel
engines)Chen et al., 2014Chuang et al., 20)6Traffic related OC, as represented by
the total sum oOC from gasoline and diesel vehiclegs2.42.3 and0.39t0.22 g
m=3, and contributed 12.1+7.8% and 6.8.3% of OC in winter and summer,
respectively Theseresults ardower thanthe contribution of vehicle emissions to OC
(13-20%) in Beijing during 2005 and 200@Nang et al., 2009 suggestingtraffic
emissionsnaybea lesssignificant contributor to fine OC in the atmosphere in Beijing
in 2016/2017By multipling by OM/OCfactorsof 2.39 and 1.47 in winter and summer,
respectively, as mentioned in section, 2raffic related organic aerosol contributed
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8.2£6.9% and 23#1. 7% of PMps in winter and summer, respectively. The summer
result was comparable with thehicular emissions contribution to BMI(2.1%) in
summerin Beijing, but higher than that in winté€t.5%)in Beijing estimatedy using

a PMF model(Yu et al., 2019 Gasoline vehicles dominantele traffic emissims
gasoline vehiclalerived OCwas 2.03#1.56 and 0.31#.16,g m= in winter and
summer, respectivelywhich are approximately four timeshan that in winter
(0.54#1.15 g m™3) and summer (0.0840.16y m) attributed todiesel vehiclesOn
haze daysgasoline and dieseberived OC were 2.35#.27 and 0.83#1.48 m™,
respectively, much higher than gasolind.59#.85 g m=) and dieseberived
(0.1440.33 g m~) OC on nonrhaze days. Evethough diesel vehicles playedess
important role in OC emigans, dieselderived OConhaze dayscreasedy around 6
times abovethat of noshaze daysand suchan increase was much higher théor
gasoline, suggestirgpotentialy important roleof diesel emissions on haze formation.

3.4 o0o0king

Cooking is expected to be an important contributor of fine OC in densily populated
Beijing, which has a populatioof over 21 million The cooking source profile was
selected froma study which was carried out the urban area ofinother Chinese
megacity Guangzhouwhichincludesfatty acids, sterols, monosaccharide anhydrides,
alkanesandPAHSs in particles from the Chinese residential cookittpo et al., 2015
Theresulantcooking relate®C concentrationsere2.23+£2.13pg m=3and 0.6640.43

g m=3in winter and summergspectivelyandbothaccounted foabout10% to total

OC. Cooking OCwas 3.23#£.30.g m~3 onwinter haze days, around four tinggher
thanthaton non-haze days (0.850.5gy m3).

3.3.5 Vegetative detritus

Vegetative detritus made a minor contribution to fir@eticle masslts concentration
was0.0940.08 g m=3(0.4%) and.114.08g m3(1.7%) of OC during the winter and
summer campaigns, respectively. These contributions are comparable with that in
winter (0.5%), but higher than that in summer (0.3%) in urban Beijing during- 2006
2007 (Wang et al., 2009 These results are also higher than the plant ddbrised

OC in Tianjin in winter 2016 (0.02 g i) and summer 2017 (0.01 pg ) which were
calculated based on the relationship of glucose and plant debris and a OM/OC ratio of
1.93(Fan et al., 2020

3. Dther ocC

The OtherOC was calculatetly subtracting the calculated OC (the sum of OC from

seven main sources) from measured OC concentra#henshown inTable S2there

are four major source categorie$ OC in Beijing based on the Multiesolution

Emission Inventory for China (MEICyyhich include power, industry, resideiad and
transportation(Zheng et al., 2008 | n t he i i n d,uisdustrigl ccoalc at egor
combustion has been resolvieg the CMB model. The local emission$ OC from

industrial coal in Beijingverezero(shown inTable S2)andhencethe resolved POC

from industrial coal combustian Beijing should beegionallytransportedThe MEIC

data also show a small industrial oil combustion source. Since the tracers for this are

likely to be the same as those for petratederived road traffic emissioms CMB, this
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496 may result in a small overestin@i of the latter source-or the industrial processes
497 related OC which hee not been resolved by the CMB modile annwal averageOC
498 emissionsn Beijing were 1161 and 1083rtnes in 2016 and 2017 respectiveiich
499 accounted for 7.7% and 9.0% of the total OC emissidROC) Therefore the
500 contribution from industrial processes to the total i@@e atmosphere (POC+SOC)
501 wasconsideredelatively small. e Other OC in this studyg likely to be a mixture of
502 predominantly SOC and a small portion of P@8m sourcessuch asindustrial
503 processes

504 The Other OCwas5.3#4.9 and 2.941.5ig m3in winter andsummey respectively,
505 contributing24.8% and 43.9% dbtal measured OCThis is in good agement with

506 theOther OC estimated by CMB in another study in urban Beijing, for wtbler OC
507  contributed 22% and 44% of OC in winter and summer, respec(Wlgg et al., 2009
508 SOC/OC in summewasmore than 10% higher than that in summer 2@0Beijing

509 estimatedusing a tracer yield methpdavith the SOCderived from specific VOC
510 precursors (toluene, isoprengp i n e n ecargophgllen accouning for 32.5% of
511 OC(Guo et al., 201p

512 Even though the Qher OC concentration was lower in summer, its relative
513 abundance was higher than that in winter, suggesting relatively heffieency of

514 SOA formation in summer due toore active photochemical processes under higher
515 temperature and strong radiatiohe Other OCon winter hazedays was/.445.6 g

516 m3, approximagly 3 times of thabnnonhazedays(2.541.4 g m3). Other OCis also

517 compared with the SOC estimated by E@cer method below.

518 33 .S/0C cal cul ateEHGt b ased ot hod

519 ECis aprimarypollutant,while OC canoriginatefrom both primarysourcesandform
520 intheatmospherérom gaseougrecursorsnamelyprimaryorganiccarbon(POC)and
521  SOC respectively(Xu et al., 2018. The OC/EC ratios can be usedto estimatethe
522  primary and secondarycarbonaceouaerosolcontributions Usually, OC/EC ratios >
523 2.00r 2.2 havebeenappliedto identify and estimateSOA (Liu et al., 2017). In this
524  study,all samplesvereobservedwith higherOC/ECratios(>2.2). SOCin this study
525 was estimatedusing the equationbelow, assumingeC comes100% from primary
526  sourca andthe OC/EC ratio in primary sourcesis relatively constant(Turpin and
527  Huntzicker,1995 Castroetal., 1999:

528 3/ # | # %# | F%# 4)

529 where SOG, OC and EC are the ambientconcentrationsof secondaryorganic
530 carbon,organiccarbonandelementalcarbonof samplei, respectively (OC/ECyi is

531 the OC/ECratio in primary aerosolslt is difficult to accuratelydeterminingthe ratio

532 of (OC/EC)y for a given area. (OC/EC)yi varieswith the contributionsof different
533 sourcesandcanalsobeinfluencedby meteorologicatonditions(Danetal., 2004). In

534  this work, (OC/EC): was determinedbasedon the lowest5% of measuredOC/EC
535 ratiosfor thewinterandsummercampaignsiespectivelyPioetal.,2011). Theaverage
536 SOCconcentrationsluringsummerandwinter werecalculatedcandareshownin Table
537 1.Daily concentrationsf OtherOC estimatedby CMB andSOCestimatedy the EC-

538 tracermethodin winter andsummerare plottedin Fig. 6, aswell astheir correlation
539 relationship.
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Figure 6. Time seriesof meanvaluesfor Other OC estimatedby CMB and SOC
estimatedby the EC-tracer mehod in winter (a) and summer (c); Correlation
relationshipgbetweerOtherOC estimatedy CMB andSOCestimatedy the EC-tracer
methodin winter (b) andsummer(d).

TheaverageSOCconcentrationg winterandsummerarepresentedn Table1.The
average SOC concentrationduring winter was 7.245.7 g m3, accountedfor
36.6#15.9%o0f total OC. TheaveragesOCconcentratiorduringsummemwasonethird
of thatin winter, which was2.3#.4 g m3, accouning for 36.2416.0%of total OC.
ThemeanSOCconcentratioaduringwinter hazeandnon-hazeperiodswere10.345.7
iy m3and2.941.4 pg m3, contributingto 34.0412.0%and40.54£0.4%of OC during
hazeandnon-hazeepisodesrespectively As shownin Fig. 6, the SOC estimatedoy
the EC tracermethodfollowed a similar trendto the Other OC calculatedby the CMB
model. They werewell-correlatedn both seasonsvith R? of 0.58 and0.73in winter
andsummersamplesrespectivelyandgradientsof 1.16 and0.80. This suggestghat
the estimatesof Other OC calculatedfrom the CMB outputswere reasonableand
mainly represerdgdthe secondaryprganicaerosol.

3.Clompari sormsowirtcle tatp@orti onment resul ts

The OC source apportionment results in this study are also comparethegighin
another study conducteat a rural site of Beijing- Pinggu during APHHBeijing
campaigns(Wu et al.,, 202 CMB was run based on the resuftem high-time
resolition PM2.s sampleshatwerecollected in Pinggu during the same sampling period
but not on identical dayst is valuable to study both rural and urban sites, as both
exceed healthbased guidelines and require evidebesed mitigation policies which

may differ depending on the source apportionment at each. Furthermore, urban air
pdlution may affect the pollution levels in rural are@Shen et al., 2020Qb and
domestic heating and cooking led to high emissions of particles and precursor gases,
which may contribute to air pollution in the citigsu et al., 202). The comparisowof
resultsis presented ifrig. 7 andTableS3.
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As shown inFig. 7 andTable S3, slightly more OC was explained by CM& the
urban site (75.7%) thaherural site (69.1%) during winter, but less OC was explained
at theurban site (56.1%) thaherural site (63.4%) during summeXs at the urban sife
biomass burning and coal combustion are important primary sources in eijjraj B
Diesel contributed more to O&t therural site, while cooking contributed maaethe
urban siteThe wral sitealsohad a largercontribution from vegetative detritus to OC
thantheurban siteThesource contribution estimatéem hiomass burningt therural
site wasapproximately2 and 4 timeshat at thaurban site during winter and summer.
In winter, biomass burning contributed a similar percentage ofatidth sites A
higher percentage of Oftom biomass burning was fourat the rural sitethanthe
urban site in summeipossibly because of us# biomassfor cooking For traffic
emitted OC, gasolinexceededlieselat theurban site, whilgherural site by contrast
hasa largerdieselcontribution Industrial CC emitted OC ikigherat theurban site
during winter, but lower in summer comparedrterural site.Thesource contribution
estimatesof residential CCat theurban site is only half thaif therural site in both
seasons, and itglative contributionto OC was alsdower at theurban siteCoal is
widely used for cooking and heating at the villages around the rurait $hie time of
observationsCooking accounted for over 10% of @€theurban site, but less than 5%
at therural site, which is plausible éiseurban site is more densely populated.
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Figure 7. Comparison of the source contribution estimates (SGE im3 (%0C)) at
IAP with those at a rural site in Beijin@inggu

35Comparwistonn source appor AMB8RME Nt resul ts f

Resultsfrom AMS-PMF were comparedvith the CMB sourceapportionmentesults
to invedigatethe consistencyand potentialuncertaintieof both methods andalsoto
provide supplementasourceapportionmentesults(Ulbrich et al., 2009; Elseret al.,
2016) Similar comparison$aveyieldedvaluableinsightsin earlierstudies(Aiken et
al., 2009 Yin etal., 2015. It is noteworthythatthe CMB modelwasappliedto PM: 5
sampleswhile AMS-PMF was appliedfor NR-PM: speciesThis may consequently
causedifferencesn the chemicalcompositionandsourceattributionbetweenthe two
methodsaslargerparticleswerenot capturedoy AMS. However,asmentionedn the
studyof Aiken etal. (2009),the massconcentratiorbetweerPM; andPM; s wassmall
with areducedractionof OA andincreasedractionof dust.In addition,OC fractions
in fine particleswerefoundmostlyconcentrateth particles<1 um (Chenetal.,2020a
Zhanget al., 2018 Tian et al., 2020. Hence,the biaswas expectedo be relatively
small.Six factorsin nonrefractory(NR)-PM; from the AMS wereidentified basedon
the massspectrameasuredn winter at IAP by applyinga PMF mode] including coal
combustionOA (CCOA-AMS), cooking OA (COA-AMS), biomassburning OA
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(BBOA-AMS) and 3 secondaryfactorsof oxidized primary OA (OPOAAMS), less

oxidized OA (LOOOA-AMS), andmoreoxidized OA (MOOOA-AMS). In summer,
the PMF analysisresultedin 5 factorsincluding 2 primary factorsof hydrocarborike

OA (HOA-AMS), cooking OA (COA-AMS) and 3 secondaryfactorsof oxygenated
OA (OOA-AMS): OOA1,00A2,00A3. TheseOOA factorswereidentifiedby PMF

basedndiurnalcycles massspectraandthecorrelationdbetweerOA factorsandother
measuredpeciesThreeOOA factorsshowedsignificantly elevatedO/C ratios (0.6 7

1.48),andcorrelatedwell with SIA (R=0.520.69).Hence,OOA1, OOA2 andOOA3

representhreetypesof SOA.Comparedo OOA2andOOA3,00Alshowedelatively

higherf43 (fraction of m/z 43 in OA). In addition,the concentration®f OOA1 and

OOA3 werehigherin daytime,implying the effect of photoctemical processingThe

variations of OOA2 tracked well with C2H202" (R=0.89), an aqueousprocessing
related fragmention (Sun et al., 2016, indicating that OOA2 was an OA factor

associatedvith aqueousphaseprocessingPreviousstudiessuggestedhat aqueous
phaseprocessingplays an important role in the formation of nitrogercontaining
compounds(Xu et al., 2017. The fact that OOAZ2 with relatively high N/C ratios
(0.046)wascorrelatedwith severalN-containingions (e.g. CHaN*, CoHsN*, R=0.7%

0.77)furthersupportshe aboveargumentThefactor profiles of AMS-PMF in winter

andsummerareprovidedin Figs.S5andS6,respectively.

In orderto comparewith thesourceapportionmentesultsof OC in this studyfrom the

CMB model,the OA concentration$rom the AMS-PMF wereconvertedo OC based
onvariousOA/OCratiosmeasureth Beijing: 1.35for CCOA/CCOC(coalcombustion
organiccarbon),1.31 for HOA/HOC (hydrocarborike organiccarbon)(Sunet al.,

2016, 1.38for COA/COC(cookingorganiccarbon),1.58for BBOA/BBOC (biomass
burning organiccarbon)(Xu et al., 2019h, and 1.78 for OOA/OOC (Huanget al.,

2010. Theconcentration®f OA andcorrespondingdC from AMS-PMF analysisare
presentedn Table 3. As the AMS datawere missing during the period 09" - 15"

November2016,thecomparisorof the AMS-PMF andCMB resultsfor this periodhas
beenexcluded.

Table 3. Sourcecontributionsof OA andOC (g m?) from AMS-PMF resultsin urban
Beijing duringwinter andsummer

Wi nter

Factors Concentra Factor s Concentr a%
CCOA 6. 2N4. 4 ccocC 4. 6N3. 3
COA 5.9N4.1 coc 4.3N3.0
BBOA 6. 5N5. 8 BBOC 4. 1N3.7
OPOA 4.6N2.1 OPOC 2.6N1. 2
LOOOA 5. 2N5. 2 LOOOC 2.9N2.9
MOOOA 8.1N7.0 MOOOC 4.6N4.0
OOA 18.0KR13.2 o0o0¢ 10. 1N7. 4
oM 36. 7N24. 0

Summer

Factors Concentra Factor s Concentr a%t
HOA .7NO0. 4 HOC 0.5N0. 3
COA 1.8N1.0 coc 1.3N0. 7
OO0OA1 3.3N1. 4 ooci1 1.9N0. 8
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OO0OA2 2. 4N2. 4 00C2 1.4N1. 3

O0OA3 1.9N1. 1 oocC3 1. 1N0. 6
OOA 7.6N3.7 ooC 4.3N2.1
oM 10. 1N3.9
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Figure 8. Timeseriesandcorrelationof coalcombustiorrelatedOC (CCOC)estimated
by CMB andCCOCfrom AMS-PMF analysis

BBOA-AMS in winterwas6.545. 8 g m™, contributing17.7% of OM. This BBOA-
AMS factorincludeda high proportionof m/z 60 and73, which aretypical fragments
of anhydroussugarslike levoglucosan(Srivastavaet al., 2019. BBOC-AMS was
4.143.7 iy m3, which wasvery closeto the estimated3BOC-CMB (3.72£2. 79 g mv
3, 16.4% of OC) duringthe sameperiod

COA-AMS is asacommonfactoridentifiedin bothwinterandsummerresults.lt is
characterizedby high m/z of 55and57 in themassspectrum(Sunetal., 2016. COA-
AMS was5.9+4.1and1.8+1.0pg m3in winterandsummeryespectivelycontributing
16.1% and 17.8% of OM. COG-AMS was4.3:3.0 and1.3#.7 pg m=in winter and
summerespectivelywhich werealmost2 timesof the COG-CMB resultsfor winter
(2.20+1.97y m®) andsummer(0.660.43g m™). Yin etal. (2015 alsoreportecthat
COC-AMS wasabout2 timesof COCGCMB. The overestimatiorof cooking OC by
AMS-PMF couldbedueto alow relativeionizationefficiency (RIE) for cookingOAs
(1.4)in AMS while theactualRIE could be higher, suchas1.56-3.06 (ReyesVillegas
et al., 2018, andbr the useof a relatively low OA/OC ratio for cooking (Xu et al.,
2021).
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HOA-AMS was0.74.4 1g m3in summeraccouning for 6.9% of OM. HOA-AMS
is usuallyidentified basedon the high contributionof aliphatic hydrocarbonsn this
factor, particularlym/z of 27,41,55,57,69 and71 (Aiken etal., 2009. This resultis
lower thanthat (17% of OM) in rural Beijing duringsummer2015(Huaetal., 2018.
HOC-AMS was 0.5#.3 (g m?3 in summer, which is higher than the traffic
(gasoline+dieselpmitted OC (0.4#.2 pg m=) from the CMB model. No obvious
correlationwas observedetweenHOC with nitrate andtraffic emittedOC from the
CMB modelduringsummer.
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In summary CMB is ableto resolvealmostall major known primary OA sourcesput
AMS-PMF canresolvemoresecondarnfOA sourcesThe AMS-PMF resultsfor major
componentssuchas CCOGAMS and OOGAMS agreedwell with the resultsfrom
CMB in the winter. However,discrepancieor poor agreementvas found for other
sourcessuchas BBOA-AMS and COA-AMS, althoughthe temporalfeatureswere
very similar. FurthermoreAMS-PMF did notidentify certainsourcesprobablydueto
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their relatively small contributionto particle mass Overall, CMB and AMS-PMF
offeredcomplkementarydatato resolveboth primaryandsecondangources.

36Source contrdi budtdm@&WMB modd&®IM

The source conwer bufiad msitipleaie @fNHe yine OC

source estimates from CMB by the ratios of fine OC te PiMass (Table 4§, which

were obtained from the same source profiles used for the OC apportionment by CMB
(Zhang et;Wahg, e20Calib ,e t280 8 n,g 2e0)IF@adoaoking, 2 00 8
vegetative detritus and secondary organic aerosols, OM/OC ratios were applied
considering the low contribution of inorganic species te PiMass from these sources

(Zhao et ;Bale. ,et@dine QM OC oxpngemat dadr OA wer e
the range@Bbang. 85Ailaken & 0dln.d, t2h0e0 BOM/ OC r at
2.17 in secondary, @agaeretcladdhe@0daecef RM O
ratio of 2.2 is applOten@Oi iholu@thitee varigbilitd y t o c o
of the OC/PMsratio in the source profige the application using the average OCLBEM

ratio of each source to convert the OC toBNh all samples maye subject to
uncertaintiesas both organic species and PfMnass measurements are subject to

analytical imprecisionUnf ort unatel y, i nsufficient dat a
anal ysis of wuncert a-lmt% ,s ebeunt veeln aguitips; odbfa bd rea
instead ofs O@EPpPWMIi ng athea WMh@C andtivegetati ve
sourfceers the calcul ation may r essldwr cien an
contrifouadmonbesebasthauereas al so emit i norgani
However, cooking emissionstarbumosnl!| yr omgaua
detritusstoepP¥Mdaimaldf,fects on source contri
are consi delrheed dnaeigloyn gFirb be t coxe @asdmanlat @ser a
source camrper o biud eSHanndehi gF.1 gléds pRecttaiivieeldyd dat a
their relati hree comwn dancseeemdmePrM ze® in Tabl e

As shown 5 BPMTgaabsilse was wel | explained by t
accounbaeadofN24. 1% and 9PMINAO wiwtef anti sen
respedtni wehleythiemmdd ssnbo®R&Mr t han .omlhiuse obs
the -GMBed sourcareemohabupmbKERel . FNI26. 6 %) .

On average, the source contadalutd @emisu s tni owni
Ot her>bOM mass>dpas wnliinfgeeg&otliiogselcomk>negal s
vegetative detritus; >pt bemmOBI t hesnbusbanhka

geol ogi c alc omikxngnagsad Isi ne> b8l odnasselbegeaetit agi ve
detritus.
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Carbonaceous aerosols contributed approximately 59% and 41% of reconstrugted PM
in winter and summer at the urban IAP site in Beijiflge OC and EC concentrations
were comparable with more recent studfesn et al., 2020Qi et al., 2018 but lower
than those before 2018r¥ang et al.,, 2016 Dan et al., 2004 suggesting the
effectiveness of air pollution control measures since 2002t al., 2019Zhang et al.,
2019. CMB modellirg showed that in the winter 2016, the top three primary
contributors to PMs-OC were coal combustion (35%), biomass burning (17%), and
traffic (12%); these were in the same order with that at the rural site during the same
study period: coal combustion9®), biomass burning (18%), and traffic (170@Ju

et al., 202. In the summer 2017,

the top three primary contributors tosFM were

coal combustion (32%), cooking (11%), and traffic (6%); these were different to that at
the rural site during the same study period: coal combustion (38%), biomass burning

(11%), and traffic (7%)Wu et al.,

2020 The Other OC, which was wedbrrelated

(R% 0.6~0.7; slope: 0.8~1.2) with the secondary OC (SOC) estimated based on the EC
tracer method, accounted for 25% and 44% of OC at urbaarsit@1% and 37% of
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OC at rural site during winter and summer, respectivdijnough the annual average
PM: s levels in Beijing reduced from 88y n3 in year 2013 to 58ig m in year 2017

(Vu et al., 2019), and the deweathered concentration etdébteaed by-38% in 2017
comparing to 2007Zhang et al., 2020 our CMB modelling results indicate that the
coal combustion and biomass burning still remained the dominant primary OC sources
in winter2016and summe&017 with road traffic ranked as the third highest. Cooking
was a more significantsource of OChanbiomass burning at the urban site during
summer Compared to other CMB studies in Beijiragir studyrevealed an increase of

the contributions from coal combustion, biomass burning and traffic tq PMvinter

2016 compared to winter 2000, while thosehils study remained similar compared to
winter 2013 Sulfate, nitrate and ammonium concentrations were significantly lower in
this study compared to 20XZheng et al., 2005Zhou et al., 201) It is however
notable that there is a broad consistency in the findings of the CMB studies, whereas
the more numerous studies which have used PMF come to rather diverse conclusions
(Srivastava et al.,@20).
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