1 Supplement of

- 2 Source Apportionment of Carbonaceous Aerosols in Beijing with Radiocarbon
- 3 and Organic Tracers: Insight into the Differences between Urban and Rural Sites
- 4 Siqi Hou et al.
- 5 Correspondence to: Roy M. Harrison (r.m.harrison@bham.ac.uk), Zongbo Shi (z.shi@bham.ac.uk)
- 6

7 Influence from Regional Transport

8 During the wintertime, air masses transported to Beijing were mainly from Inner Mongolia, Shanxi 9 and Hebei, where the open burning activities were associated with maize straw (Zhang et al., 2019). 10 During summer, air masses from Shandong, Hebei, Liaoning and Tianjin may bring particles from 11 burning of wheat straw. However, for Inner Mongolia and Shanxi, little wheat is grown in these areas 12 (Zhang et al., 2019; Zhou et al., 2017) and the influence of wheat straw burning is less important. The 13 fire spot intensity, transport direction and sources of biomass burning are summarized in Table S1.

14 The high fire spot intensity indicates a strong likelihood of regional transport. However, the 15 concentrations of LG would decrease with atmospheric transport by aging, varying with environmental conditions (Bhattarai et al., 2019), which can be used to infer the influence from 16 17 regional transport and local emissions. For example, with similar PM_{2.5} concentrations, the LG 18 concentration on 26 November was much lower than that on 3 December. Considering the different 19 intensity of fire spots between the two days, LG on 26 November may arise more from regional 20 transport instead of local emissions. Moreover, the LG concentration on 2 December was similar to 21 that on 3 December, but the PM_{2.5} concentration was much lower. This implies a contribution from 22 local sources in addition to regional transport on 2 December.

23 Detailed Method of Ratio Selection and Sensitivity Test for Quantification of Biomass Burning

As mentioned in the main text, softwood, maize straw and wheat straw are the main types of biomass fuels used within the region. The ratios of EC/OC and OC/LG from softwood, maize straw and wheat straw are summarized in Table S2.

As the fraction of LG from wood burning (f_{wood}) and straw burning ($f_{straw}= 1- f_{wood}$) are each in the range of 0 to 1, only those matching this limitation were selected when calculating OC_{bb}. Emission factors of LG from various biofuels showed that the LG emission from wheat straw was hundreds of times higher than from the values for wood combustion, while the emission factors are similar between maize and wood (Yan et al., 2018). It means that although the consumption of wheat straw may be less than that of wood, LG emission from wheat straw may exceed that from wood, and f_{wood} may be quite small in summer. Besides, the sum of calculated OC_{straw} and OC_{wood} should not exceed the measured OC_{nf} concentrations, which is another limitation for selecting EC/OC and OC/LG ratios. Hence, ratios of softwood from No. 25 to No. 37 in Table S3 with ratios of maize (No. 48 in Table S3) were used for the wintertime, and No. 30-37 with No. 42-45, 50 from softwood and wheat straw respectively were used in the summertime estimation of f_{wood}

38 OC_{bb} from each type of softwood and crop straw combination can be estimated once f_{wood} was 39 confirmed, and then these were averaged. To further assess the sensitivity of the calculated OC_{bb} 40 results to the different ratio sets, concentrations of OC_{bb} for each set of ratios have been plotted vs. the averaged values (Fig. S4). Compared to OC_{wood}, concentrations of OC_{straw} show a small spread, 41 and are in narrow ranges. It means the OC_{straw} are less affected by the varying ratios, as the range of 42 43 ratios is smaller. According to Fig. S4, there are large uncertainties attached to the estimated values 44 of OCwood, but not OCstraw. The uncertainties from OCbb can further affect the estimation of OC from 45 cooking, but have no influence on estimates of SOC, which are determined from the (OC/EC)_{min} 46 ratios. The accuracy of this extended Gelencsér method would increase if the softwood types and 47 ratios were confirmed.

48 The concentrations and contributions of OC_{bb} are shown in Fig. S5. The uncertainties of OC_{bb} are 49 calculated considering the uncertainties of EC_{nf} and LG:

50
$$u(OC_{bb}) = \sqrt{\sum \left[\left(\frac{a-b}{ac-bd}\right)^2 u(EC_{nf})^2 + \left(\frac{abc-abd}{ac-bd}\right)^2 u(LG)^2 \right]}$$

51 where $a = (OC/LG)_{wood}$, $b = (OC/LG)_{straw}$, $c = (EC/OC)_{wood}$, and $d = (EC/OC)_{straw}$.

52 The average uncertainty of the LG concentration is 15%. The uncertainty of EC_{nf} is calculated by 53 combining all the uncertainties from EC concentrations, f_{NF} , f_M and f_{ref} . The average uncertainty of 54 OC_{bb} is 48.6%.

55 Determination of OC/EC_{f, min} and OC/EC_{nf, min} ratios and the estimation of POC_f and POC_{nf}

56 OC/EC ratios are seen as an indicator of aerosol emission sources to estimate the POC and SOC 57 concentrations. ¹⁴C analysis can provide OC to EC ratios from fossil and non-fossil sources (OC/EC_f 58 and OC/EC_{nf}). Herein, we use the lowest OC/EC_f and OC/EC_{nf} ratios (OC/EC_f, min and OC/EC_{nf}, min, 59 respectively) to represent primary OC/EC emission ratio to calculate primary fossil-derived and non-60 fossil-derived OC (POC_f and POC_{nf}) respectively. To avoid the overestimation of POC_f and POC_{nf} 61 from the measured OC/EC_f, min and OC/EC_{nf}, min due to the limited samples for ¹⁴C analysis in this 62 study, it is necessary to evaluate OC/EC_{nf}, min and OC/EC_f, min ratios for the whole sampling period.

63 The relationship of OC/EC_{nf} and OC/EC_{f} with OC/EC can be described as follow,

$$64 \qquad \frac{OC}{EC_{nf}} = \frac{f_{NF,OC}}{f_{NF,EC}} \times \frac{OC}{EC}$$

65
$$\frac{\text{OC}}{\text{EC}_{f}} = \left(\frac{1 - f_{\text{NF,OC}}}{1 - f_{\text{NF,EC}}}\right) \times \frac{\text{OC}}{\text{EC}}$$

66 where $f_{NF, OC}$ and $f_{NF, EC}$ are the non-fossil fractions of OC and EC, (1- $f_{NF, OC}$) and (1- $f_{NF, EC}$) are the 67 fossil fractions of OC and EC.

Ratios of OC/EC_{nf} are determined by $\frac{f_{NF,OC}}{f_{NF,EC}}$ and OC/EC, therefore OC/EC_{nf, min} can be roughly 68 quantified by multiplying the lowest 5% OC/EC ratios with the lowest two $\frac{f_{NF,OC}}{f_{NF,FC}}$ ratios. Similarly, 69 70 OC/EC_{f, min} can be estimated by multiplying the lowest 5% OC/EC ratios with the lowest two $\left(\frac{1-f_{NF,OC}}{1-f_{NF,EC}}\right)$ ratios. The estimated OC/EC_{nf, min} and OC/EC_{f, min} ratios for IAP and PG sites in winter and 71 72 summer sampling period were listed in Table S4. The estimated OC/ECnf, min and OC/ECf, min ratios 73 are within the values of OC/EC emission ratios from coal combustion (1.5-15), traffic emission (0.69-1.01), and biomass burning (3-7) (Ni et al., 2018). Higher OC/ECf, min ratios in winter are consistent 74 75 with the fact of elevated coal combustion compared to traffic emissions. It indicated the evaluation of OC/ECnf, min and OC/ECf, min ratios are reasonable. 76

78 **References**

- Bhattarai, H., Saikawa, E., Wan, X., Zhu, H., Ram, K., Gao, S., Kang, S., Zhang, Q., Zhang, Y., Wu,
 G., Wang, X., Kawamura, K., Fu, P., and Cong, Z.: Levoglucosan as a tracer of biomass burning:
 Recent progress and perspectives, Atmos. Res., 220, https://doi.org/10.1016/j.atmosres.2019.01.004
- 82 20-33, 2019.
- 83 Dhammapala, R., Claiborn, C., Jimenez, J., Corkill, J., Gullett, B., Simpson, C., and Paulsen, M.:
- 84 Emission factors of PAHs, methoxyphenols, levoglucosan, elemental carbon and organic carbon from
- simulated wheat and Kentucky bluegrass stubble burns, Atmos. Environ., 41, 2660-2669,
- 86 https://doi.org/10.1016/j.atmosenv.2006.11.023, 2007.
- Fine, P. M., Cass, G. R., and Simoneit, B. R. T.: Chemical characterization of fine particle emissions
 from fireplace combustion of woods grown in the northeastern United States, Environ. Sci. Technol.,
 35, 2665-2675, https://doi.org/10.1021/es001466k, 2001.
- Fine, P. M., Cass, G. R. and Simoneit, B. R. T.: Chemical characterization of fine particle emissions
 from the fireplace combustion of woods grown in the southern United States, Environ. Sci. Technol.,
 1442 1451 https://doi.org/10.1021/oc0108088.2002
- 92 36, 1442-1451, https://doi.org/10.1021/es0108988, 2002.
- Fine, P. M., Cass, G. R., and Simoneit, B. R. T.: Chemical characterization of fine particle emissions
 from the wood stove combustion of prevalent United States tree species, Environ. Eng. Sci., 21, 705-
- 95 721, https://doi.org/10.1089/ees.2004.21.705, 2004.
- 96 Fushimi, A., Saitoh, K., Hayashi, K., Ono, K., Fujitani, Y., Villalobos, A. M., Shelton, B. R., Takami,
- A., Tanabe, K. & Schauer, J. J.: Chemical characterization and oxidative potential of particles
 emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions,
- 99 Atmos. Environ., 163, 118-127, https://doi.org/10.1016/j.atmosenv.2017.05.037, 2017.
- 100 Gonçalves, C., Alves, C., Evtyugina, M., Mirante, F., Pio, C., Caseiro, A., Schmidl, C., Bauer, H., 101 and Carvalho, F.: Characterisation of PM₁₀ emissions from woodstove combustion of common 102 woods grown in Portugal, Environ., 44, 4474-4480, Atmos. 103 https://doi.org/10.1016/j.atmosenv.2010.07.026, 2010.
- Hays, M. D., Geron, C. D., Linna, K. J., Smith, N. D., and Schauer, J. J.: Speciation of gas-phase
 and fine particle emissions from burning of foliar fuels, Environ. Sci. Technol., 36, 2281-2295,
 https://doi.org/10.1021/es0111683, 2002.
- Hays, M. D., Fine, P. M., Geron, C. D., Kleeman, M. J., and Gullett, B. K.: Open burning of
 agricultural biomass: Physical and chemical properties of particle-phase emissions, Atmos. Environ.,
 39, 6747-6764, https://doi.org/10.1016/j.atmosenv.2005.07.072, 2005.
- Mazzoleni, L. R., Zielinska, B., and Moosmüller, H.: Emissions of levoglucosan, methoxy phenols, and organic acids from prescribed burns, laboratory combustion of wildland fuels, and residential
- 112 wood combustion, Environ. Sci. Technol., 41, 2115-2122, https://doi.org/10.1021/es061702c, 2007.

- 113 Ni, H. Y., Huang, R.-J., Cao, J. J., Liu, W. G., Zhang, T., Wang, M., Meijer, H. A. J., and Dusek, U.:
- 114 Source apportionment of carbonaceous aerosols in Xi'an, China: insights from a full year of
- measurements of radiocarbon and the stable isotope ¹³C, Atmos. Chem. Phys., 18, 16,363-16,383,
- 116 https://doi.org/10.5194/acp-18-16363-2018, 2018.
- 117 Sang-Arlt, X., Fu, H. X., Zhang, Y. A., Ding, X., Wang, X. M., Zhou, Y. N., Zou, L. L., Zellmer, G.
- 118 F., and Engling, G.: Carbonaceous aerosol emitted from biofuel household stove combustion in
- 119 South China, Atmosphere, 11, 112, https://doi.org/10.3390/atmos11010112, 2020.
- 120 Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions from
- 121 air pollution sources. 3. C₁-C₂₉ organic compounds from fireplace combustion of wood, Environ. Sci.
- 122 Technol., 35, 1716-1728, https://doi.org/10.1021/es001331e, 2001.
- 123 Schmidl, C., Bauer, H., Dattler, A., Hitzenberger, R., Weissenboeck, G., Marr, I. L., and Puxbaum,
- H.: Chemical characterisation of particle emissions from burning leaves, Atmos. Environ., 42,
 9070-9079, https://doi.org/10.1016/j.atmosenv.2008.09.010, 2008a.
- 126 Schmidl, C., Marr, L. L., Caseiro, A., Kotianová, P., Berner, A., Bauer, H., Kasper-Giebl, A., and
- 127 Puxbaum, H.: Chemical characterisation of fine particle emissions from wood stove combustion of 128 common woods growing in mid-European Alpine regions, Atmos. Environ., 42, 126-141,
- 120 between 101016 is stranger way 2007 00 020 2000k
- 129 https://doi.org/10.1016/j.atmosenv.2007.09.028, 2008b.
- Sun, J., Shen, Z. X., Zhang, Y., Zhang, Q., Lei, Y. L., Huang, Y., Niu, X. Y., Xu, H. M., Cao, J. J.,
 Ho, S. S. H., and Li, X. X.: Characterization of PM_{2.5} source profiles from typical biomass burning
- 132 of maize straw, wheat straw, wood branch, and their processed products (briquette and charcoal) in
- 133 China, Atmos. Environ., 205, 36-45, https://doi.org/10.1016/j.atmosenv.2019.02.038, 2019.
- Wang, Z., Bi, X., Sheng, G., and Fu, J.: Characterization of organic compounds and molecular
 tracers from biomass burning smoke in South China I: Broad-leaf trees and shrubs, Atmos. Environ.,
 43, 3096-3102, https://doi.org/10.1016/j.atmosenv.2009.03.012, 2009.
- 137 Yan, C., Zheng, M., Sullivan, A. P., Shen, G., Chen, Y., Wang, S., Zhao, B., Cai, S., Desyaterik, Y.,
- Li, X., Zhou, T., Gustafsson, Ö., and Collett, Jr. J. L.: Residential coal combustion as a source of levoglucosan in China, Environ. Sci. Technol., 52, 1665-1674,
- 140 https://doi.org/10.1021/acs.est.7b05858, 2018.
- I41 Zhang, X., Lu, Y., Wang, Q. G., and Qian, X.: A high-resolution inventory of air pollutant
 I42 emissions from crop residue burning in China, Atmos. Environ., 213, 207-214,
 I43 https://doi.org/10.1016/j.atmosenv.2019.06.009, 2019.
- 144 Zhang, Y.-X., Shao, M., Zhang, Y.-H., Zeng, L.-M., He, L.-Y., Zhu, B., Wei, Y.-J., and Zhu, X.-L.:
- 145 Source profiles of particulate organic matters emitted from cereal straw burnings, J. Environ. Sci.,
- 146 19, 167-175, https://doi.org/10.1016/S1001-0742(07)60027-8, 2007.
- 147 Zhou, Y., Xing, X., Lang, J., Chen, D., Cheng, S., Wei, L., Wei, X., and Liu, C.: A comprehensive
- 148 biomass burning emission inventory with high spatial and temporal resolution in China, Atmos.
- 149 Chem. Phys., 17, 2839-2864, https://doi.org/10.5194/acp-17-2839-2017, 2017.

Table S1. Average concentrations of $PM_{2.5}$, EC, OC, fossil and non-fossil fractions of EC and OC 151 on ¹⁴C sampling period.

		Summer				
	IAP haze	IAP non-	PG haze	G haze PG non-		DC(n-5)
	(n=5)	haze (n=2)	(n=5)	haze (n=2)	IAP (n=6)	PG (n=5)
	11/24, 11/26,		11/24, 11/26,		5/24, 5/26,	5/26, 5/27,
	12/02, 12/03,	11/22, 12/01	12/02, 12/03,	11/22, 12/01	5/27, 6/10,	6/10, 6/16,
	12/04		12/04		6/16, 6/17	6/17
PM _{2.5} (µg m ⁻³)	158.7±62.1	30.1±27.3	212.1±84.9	28.9±17.1	42.5±26.5	42.7±21.2
EC (µg m ⁻³)	4.8±1.3	$1.2{\pm}1.4$	6.7±1.6	2.0±0.5	1.1±0.3	2.0±0.7
$f_{\text{NF, EC}}$	0.32 ± 0.03	0.45 ± 0.07	0.39 ± 0.07	0.52 ± 0.00	0.46 ± 0.09	0.41 ± 0.10
OC (µg m ⁻³)	33.8±8.6	9.4±7.4	62.0±19.4	16.4±6.1	8.3±3.2	11.5±4.9
$f_{\text{NF, OC}}$	0.32 ± 0.05	0.32±0.03	0.40 ± 0.07	0.42 ± 0.02	0.46 ± 0.12	0.50 ± 0.09

 $f_{NF, EC}$ and $f_{NF, OC}$ are the non-fossil fractions of EC and OC.

Site	Site Date	PM _{2.5}	EC_{nf}	LG	Fire spots	Transport	Sources of biomass
5110	Date	μg m ⁻³	μg m ⁻³	ng m ⁻³	intensity	Tansport	burning
[AP	2016/11/22	10.9	0.14	96.1	Low	from IM and HB	Low intensity
[AP	2016/11/24	117.1	1.35	458.7	Low	from IM and HB	Local
[AP	2016/11/26	209.4	1.43	227.4	High	from IM and HB	Regional
[AP	2016/12/1	49.4	0.82	192.3	High	from IM and HB	Regional
[AP	2016/12/2	98.6	1.51	515.4	High	from IM and HB	Regional + local
[AP	2016/12/3	239.9	1.94	634.8	Low	from HB and SX	local
[AP	2016/12/4	128.6	1.02	321.7	Low	from IM and HB	local
PG	2016/11/22	16.8	0.85	216.6	Low	from IM and HB	Local
PG	2016/11/24	106.8	2.52	915.6	Low	from IM and HB	Local
PG	2016/11/26	239.6	4.34	913.7	High	from IM and HB	Regional + local
PG	2016/12/1	41.0	1.22	311.2	High	from IM and HB	Regional
PG	2016/12/2	138.2	1.34	780.0	High	from IM and HB	Regional + local
PG	2016/12/3	281.5	2.62	1406.3	Low	from HB and SX	Strong local
PG	2016/12/4	294.3	2.70	1796.1	Low	from IM and HB	Strong local
[AP	2017/5/24	12.2	0.55	13.0	High	from IM, LN, HB	Regional
[AP	2017/5/26	34.7	0.44	22.1	High	from IM, HB	Regional
[AP	2017/5/27	78.8	0.49	20.1	High	from IM, HB	Regional
[AP	2017/6/10	18.6	0.46	11.6	Low	from IM, LN, HB	Low intensity
[AP	2017/6/16	44.3	0.40	51.9	High	from SD, HB	Regional + local
[AP	2017/6/17	66.7	0.77	179.6	High	from SX, HB	Regional + local
PG	2017/5/26	37.4	0.58	56.4	High	from SD, HB	Regional
PG	2017/5/27	70.3	0.85	89.8	High	from IM, HB	Regional + local
PG	2017/6/10	11.6	0.65	56.9	Low	from HB, TJ	Local
PG	2017/6/16	47.4	0.72	107.1	Very high	from HB	Regional + local
PG	2017/6/17	46.7	0.96	219.8	Very high	from IM, SX, HB	Regional + local

Table S2. Summary of fire spot intensity, transport direction and sources of biomass burning.

155 IM: Inner Mongolia, HB: Hebei, SD: Shandong, SX: Shanxi, TJ: Tianjin

No.	Sample	EC/OC	OC/LG	Reference
1	Slash pine	0.141	0.341	Fine et al., 2002
2	Ponderosa pine	0.014	7.83	Fine et al., 2001
3	Western hemlock	0.050	2.52	Hays et al., 2002
4	Loblolly pine	0.178	1.02	Fine et al., 2002
5	Douglas fir	0.098	2.45	Fine et al., 2004
6	Eastern hemlock	0.053	10.5	Fine et al., 2001
7	White pine needle	0.078	7.18	Mazzoleni et al., 2007
8	Larch	0.176	3.68	Schmidl et al., 2008b
9	Balsam fir	0.066	12.3	Fine et al., 2001
10	Douglas fir (catalyst)	0.338	2.52	Fine et al., 2004
11	Loblolly pine	0.307	3.95	Fine et al., 2004
12	Chestnut oak	0.312	3.94	Wang et al., 2009
13	White pine needle	0.282	4.71	Mazzoleni et al., 2007
14	White pine needle	0.242	6.61	Mazzoleni et al., 2007
15	Spruce	0.384	5.02	Schmidl et al., 2008b
16	Mixed wood	0.288	6.76	Mazzoleni et al., 2007
17	White pine needle	0.331	6.64	Mazzoleni et al., 2007
18	Chinese evergreen Chinkapin	0.078	33.8	Wang et al., 2009
19	Chinese red pine	0.375	8.33	Sang-Arlt et al., 2020
20	Cape jasmine	0.137	27.9	Wang et al., 2009
21	Ponderosa pine needles	0.401	10.2	Mazzoleni et al., 2007
22	Common aporusa	0.095	43.3	Wang et al., 2009
23	Samak	0.054	137	Wang et al., 2009
24	Cedar wood	0.090	96.9	Mazzoleni et al., 2007
25	Excelsior	1.080	5.87	Mazzoleni et al., 2007
26	Excelsior	1.090	6.13	Mazzoleni et al., 2007
27	Eastern white pine	0.426	19.1	Fine et al., 2001
28	Maritime pine	1.420	6.87	Goncalves et al., 2010
29	China fir	0.651	16.7	Sang-Arlt et al., 2020
30	Ponderosa pine needles	1.320	15.4	Mazzoleni et al., 2007
31	Cedar wood	0.264	94.4	Mazzoleni et al., 2007
32	Ponderosa pine needles	1.500	17.4	Mazzoleni et al., 2007
33	Wood	0.500	55.6	Schmidl et al., 2008a
34	Ponderosa pine needles	0.632	55.4	Mazzoleni et al., 2007
35	Tamarak pine wood	0.330	137	Mazzoleni et al., 2007
36	Ponderosa pine sticks	3.320	20.1	Mazzoleni et al., 2007
37	Ponderosa pine sticks	3.680	25.6	Mazzoleni et al., 2007
38	Wood branch charcoal	0.393	625	Sun et al., 2019
39	Spruce with green needles	0.401	2128	Schmidl et al., 2008b

157 Table S3. Summary of EC/OC and OC/LG ratios of different biomass types and the ranges of158 fractions in LG.

40	Pine	0.508	2128	Schauer et al., 2001
41	Pine with green needles	0.600	3571	Schauer et al., 2001
No.	Sample	EC/OC	OC/LG	Reference
42	Wheat straw	0.223	4.07	Sun et al., 2019
43	Wheat straw	0.068	15.4	Fushimi et al., 2017
44	Wheat straw	0.083	15.2	Fushimi et al., 2017
45	Wheat straw	0.184	12.5	Dhammapala et al., 2007
46	Wheat straw	0.422	10	Hays et al., 2005
47	Wheat straw	0.510	9.09	Mazzoleni et al., 2007
48	Maize straw	0.257	3.18	Sun et al., 2019
49	Maize straw	0.106	55.6	Yan et al., 2018
50	Cereal straw	0.130	12	Zhang et al., 2007

	lowest 5 % OC/EC	lowest 2 ^{f_{NF,OC} _{f_{NF,EC}}}	lowest 2 $\left(\frac{1-f_{NF,OC}}{1-f_{NF,EC}}\right)$	Estimated OC/EC _{nf, min}	Estimated OC/EC _{f, min}
IAP winter	4.35	0.70	0.96	3.06	4.16
PG winter	6.27	0.76	0.81	4.76	5.09
IAP summer	4.65	0.73	0.78	3.41	3.62
PG summer	4.45	0.88	0.62	3.92	2.76

Table S4. The estimated $OC/EC_{nf, min}$ and $OC/EC_{f, min}$ ratios for IAP and PG sites during the whole 161 winter and summer sampling period

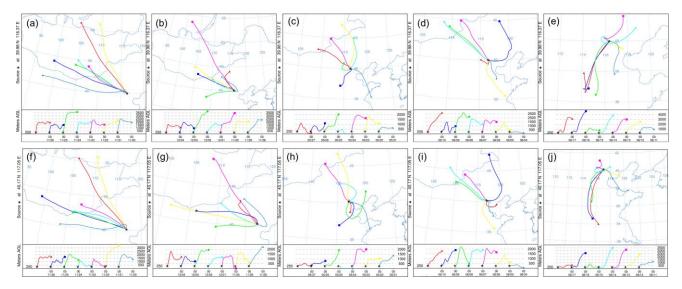
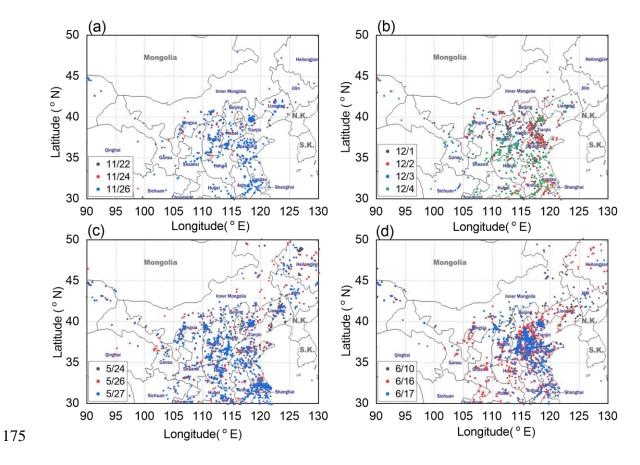
 $f_{NF, OC}$ and $f_{NF, EC}$ are the non-fossil fractions of OC and EC, (1- $f_{NF, OC}$) and (1- $f_{NF, EC}$) are the fossil 163 fractions of OC and EC.

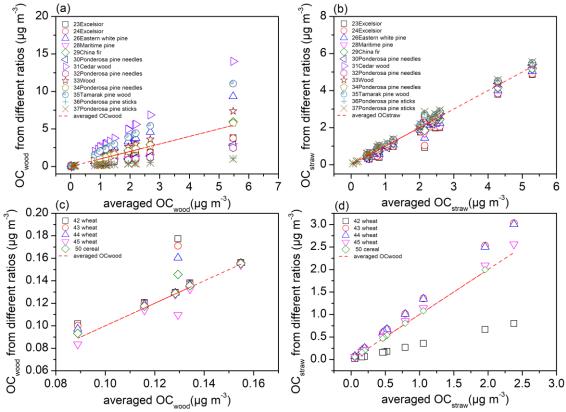
х	у	IAP wit	IAP winter		PG winter		IAP summer		PG summer	
		slope	\mathbb{R}^2	slope	\mathbb{R}^2	slope	\mathbb{R}^2	slope	\mathbb{R}^2	
POC _f	WINSOC _f	1.11	0.97	1.23	0.97	0.92	0.93	0.84	0.82	
	$WSOC_{\mathrm{f}}$	0.57	0.99	0.61	0.84	0.96	0.92	0.58	0.55	
$\mathbf{SOC}_{\mathrm{f}}$	WINSOC _f	1.53	0.96	1.27	0.89	0.99	0.91	0.98	0.45	
	$WSOC_{f}$	0.78	0.93	0.69	0.96	1.05	0.93	0.89	0.67	
OC _{bb}	WINSOC _{nf}	1.59	1.00	2.38	0.94	1.16	0.44	1.58	0.91	
	WSOC _{nf}	1.64	0.94	1.70	0.92	3.41	0.93	1.54	0.93	
00	WINSOC _{nf}	3.54	0.88	1.68	0.69	1.08	0.74	2.26	0.27	
OC_{ck}	WSOC _{nf}	3.83	0.94	1.21	0.69	1.53	0.19	2.29	0.32	
SOC _{nf}	WINSOC _{nf}	0.85	0.98	0.98	0.83	0.42	0.65	0.79	0.92	
	WSOC _{nf}	0.90	0.99	0.71	0.83	1.09	0.97	0.75	0.88	

Table S5. Correlations and slopes among WINSOC, WSOC, POC, SOC, OC_{bb} and OC_{ck} at IAP
 and PG in winter and summer.

167 f: fossil sources, nf: non-fossil sources, bb: biomass burning, ck: cooking. Concentrations of fossil

and non-fossil sources of WINSOC and WSOC were from ${}^{14}C$ measurement. POC, SOC, OC_{bb} and OC_{ck} are from extended Gelencsér method.


Figure S1. 48 h air-mass back trajectories with 24 h interval at 250 m, (a)-(e): destination at IAP,
(f)-(j): destination at PG. (<u>https://ready.arl.noaa.gov/HYSPLIT.php</u>, last access: 12 June 2020)

176 **Figure S2.** Fire spots observed by MODIS (AQUA/TERRA)

177 (<u>https://firms.modaps.eosdis.nasa.gov/alerts/</u>, last access: 16 April 2020) around Beijing, coloured

- dots refer to fire spots on (a): 22, 24, 26 Nov 2016, (b): 1-4 Dec 2016, (c): 24, 26, 27 May 2017, (d)
 10, 16, 17 Jun 2017.
- 180

181

Figure S3. Correlations of averaged OC_{wood} with OC_{wood} from different ratios and averaged OC_{straw} with OC_{straw} from different ratios. (a), the influence of ratios from softwood on the estimation of OC_{wood} ; (b), the influence of ratios from softwood on the estimation of OC_{straw} ; (c), the influence of ratios from wheat straws on the estimation of OC_{wood} ; (d), the influence of ratios from wheat straws on the estimation of OC_{straw} . As there is only one set of ratios from maize straw which matches the selection limitation, the influence of ratios from maize straw was not plotted. The legends correspond to the No. and types of samples in Table S3.

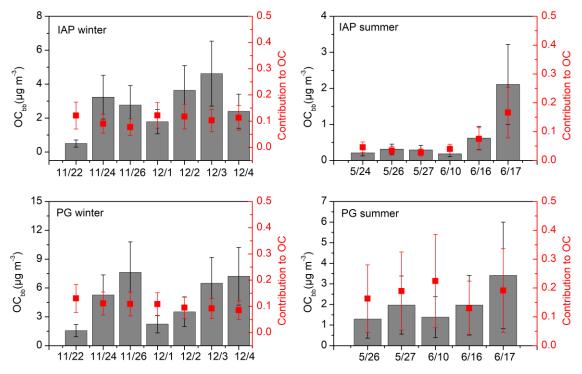
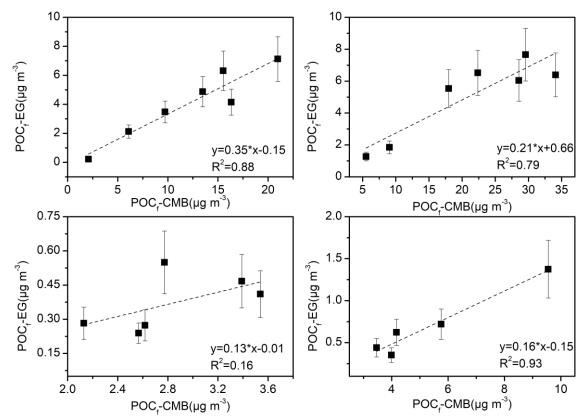



Figure S4. The mass concentrations and % contributions of OC_{bb} at IAP and PG during winter and
 summer.

 $POC_f CMB(\mu g m^2)$ $POC_f CMB(\mu g m^2)$ 195Figure S5. Correlations of POC_f from the extended Gelencsér method (POC_f-EG) and CMB if196using (POC/EC)_f ratios 1.12–2.08 in winter, 0.40–0.77 in summer.

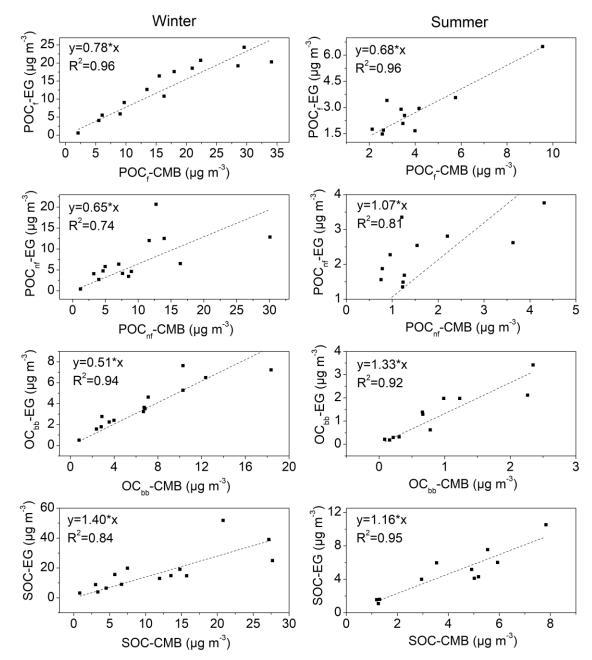
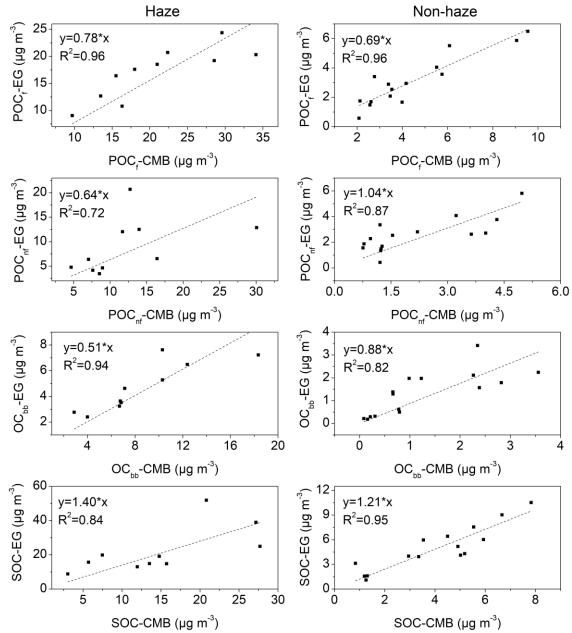



Figure S6. Correlations of OC sources from extended Gelencsér method with those from CMB
 model in winter (left) and summer (right). EG denotes extended Gelencsér method.

202SOC-CMB (μg m³)SOC-CMB (μg m³)203Figure S7. Correlations of OC sources from extended Gelencsér method with those from CMB204model during haze period (left) and non-haze period (right). EG denotes extended Gelencsér method.