1 SUPPLEMENTARY INFORMATION

- Insight into PM_{2.5} Sources by Applying Positive Matrix Factorization
 (PMF) at an Urban and Rural Site of Beijing
- 4 Deepchandra Srivastava, Jingsha Xu, Tuan V. Vu, Di Liu, Linjie Li, Pingqing Fu,
- 5 Siqi Hou, Zongbo Shi and Roy M. Harrison 6
- 7
- '
- 8
- 9

Figure S1: Map of the sampling sites in Beijing (IAP - urban site: Institute of Atmospheric Physics of the Chinese Academy of Sciences; Pinggu - rural site) (source: Xu et al., 2020).

Species	Detection limit (ng m ⁻³)				
PM _{2.5}	50				
OC	30				
EC	50				
K^+	10				
Na ⁺	32				
Ca ²⁺	10.8				
$\mathrm{NH_{4}^{+}}$	76				
NO ₃ -	240				
SO4 ²⁻	142				
Cl	138				
Ti	3.2				
V	4.3				
Mn	0.5				
Ni	5.2				
Zn	2.0				
Pb	3.0				
Cu	26.4				
Fe	43.6				
Al	220.6				
C26	0.004				
C29	0.004				
C31	0.004				
17α(H)-22,29,30-Trisnorhopane	0.009				
$17\beta(H),21\alpha(H)-30$ -norhopane	0.009				
Chrysene	0.008				
Benzo(b)fluoranthene	0.008				
Benzo(a)pyrene	0.008				
Picene	0.009				
Coronene	0.008				
Levoglucosan	0.0197				
Stearic acid	0.004				

13	Table S1.	Detection	limits	of the	species	used in	the l	PMF	model.

Species	Correlation coefficient(r ²)
PM _{2.5}	0.90
OC	0.69
EC	0.80
K+	0.90
Na ⁺	0.79
Ca ²⁺	0.41
NH4 ⁺	0.97
NO ₃ -	0.92
SO4 ²⁻	0.79
Cl-	0.98
Ti	0.66
V	0.66
Mn	0.95
Ni	0.78
Zn	0.89
Pb	0.96
Cu	0.54
Fe	0.94
Al	0.71
C26	0.52
C29	0.47
C31	0.65
17α(H)-22,29,30-Trisnorhopane	0.57
$17\beta(H),21\alpha(H)-30$ -norhopane	0.51
Chrysene	0.56
Benzo(b)fluoranthene	0.63
Benzo(a)pyrene	0.55
Picene	0.55
Coronene	0.63
Levoglucosan	0.77
Stearic acid	0.43

15 Tab	le S2. Comparison	between	modeled	and	measured	species.
15 I ab	le S2. Comparison	between	modeled	and	measured	species.

Table S3. Results from bootstrap runs.

	Coal	Road	Traffic	Oil	Secondary	Biomass	Soil
	combustion	dust	emissions	combustion	inorganics	burning	dust
Coal combustion	98	0	0	0	0	0	0
Road dust	0	98	0	0	0	0	0
Traffic emissions	0	0	98	0	0	0	0
Oil combustion	0	0	1	97	0	0	0
Secondary inorganics	0	0	0	0	98	0	0
Biomass burning	0	0	0	0	0	96	0
Soil dust	0	0	0	0	0	0	98

Table S4. Observed P-value for each factor obtained using t-test.

	Coal	Road	Traffic	Oil	Secondary	Biomass	Soil
	combustion	dust	emissions	combustion	inorganics	burning	dust
P<0.05	0.17191	0.12272	0.27713	0.10883	0.22586	0.16272	0.07998

Figure S2. Comparison of reconstructed PM_{2.5} mass using PMF model with PM_{2.5} measurements at both
 sites, IAP and PG, respectively.

Figure S3. NWR (non parametric wind regression) and CWT (concentrated weighted trajectories results
 for Coal combustion source and Levoglucosan (a) IAP winter (b) IAP summer (c) PG winter (d) PG
 summer.

Figure S5. NWR (non parametric wind regression) and CWT (concentrated weighted trajectories results
 for biomass burning (a) IAP winter (b) PG winter.

Figure S6. Temporal evolution of the secondary inorganics factor ($\mu g m^{-3}$), relative humidity (RH) and ozone ($\mu g m^{-3}$).

- **Figure S7.** NWR (non parametric wind regression) and CWT (concentrated weighted trajectories results
- 71 for traffic emissions (a) IAP winter (b) IAP summer (c) PG winter (d) PG summer.

Figure S8. Comparison of estimated Crustal Dust with Road Dust factor resolved at both sites, IAP and
 PG, respectively.

Figure S9. NWR (non parametric wind regression) and CWT (concentrated weighted trajectories results
 for Soil dust- IAP summer

Figure S10. Comparison of Si and Al concentrations at both sites, IAP and PG, respectively.

Figure S11. OC mass closure observed at IAP during the winter period: OC modelled by online AMS
PMF vs OC model by filter based PMF, OC measured OC model by filter based PMF, OC measured vs
OC modelled by online AMS PMF, OC modelled by offline AMS PMF vs OC model by filter based
PMF, OC measured vs OC modelled by offline AMS PMF, OC measured vs WSOA.

Figure S12. OC mass closure: CMB vs filter-based PMF (right=PG, left =IAP, summer+winter).

99 Figure S13. PM mass closure at IAP during the wintertime: NR-PM measured vs PM measured, NR100 PM measured vs PM modelled by filter based PMF.

Reference

Xu, J., Liu, D., Wu, X., Vu, T., V.;, Zhang, Y., Fu, P., Sun, Y., Harrison, R., M.;, and Shi, Z.: Source
apportionment of fine aerosol at an urban site of Beijing using a chemical mass balance model in
preparation, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1020, in review, 2020.