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Abstract:  12 

Biomass burning activities are ubiquitous in China, especially in North China, where there is an 13 

enormous rural population and winter heating custom. Biomass burning tracers (i.e., levoglucosan, 14 

mannosan and potassium (K+)), as well as other chemical components were quantified at a rural site 15 

(Gucheng, GC) in North China from 15 October to 30 November, during a transition heating season, 16 

when the field burning of agricultural residues was becoming intense. The measured daily average 17 

concentrations of levoglucosan, mannosan and K+ in PM2.5 during this study were 0.79 ± 0.75 μg 18 

m-3, 0.03 ± 0.03 μg m-3 and 1.52 ± 0.62 μg m-3, respectively. Carbonaceous components and biomass 19 

burning tracers showed higher levels at nighttime than daytime, while secondary inorganic ions 20 

were enhanced during daytime. An episode with high levels of biomass burning tracers was 21 

encountered at the end of October, 2016, with high levoglucosan at 4.37 µg m-3. Based on the 22 

comparison of chemical components during different biomass burning pollution periods, it appeared 23 

that biomass combustion can obviously elevate carbonaceous components levels, whereas no 24 

essentially effect on secondary inorganic aerosols in the ambient air. Moreover, the 25 

levoglucosan/mannosan ratios during different biomass burning pollution periods remained at high 26 

values (in the range of 18.3 - 24.9), however, the levoglucosan/K+ ratio was significantly elevated 27 

during the intensive biomass burning pollution period (1.67) when air temperatures decreasing, 28 
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substantially higher than in other biomass burning periods (averaged at 0.47).  29 

Keywords: Biomass burning; Organic tracers; Levoglucosan; Mannosan; Potassium 30 

1. Introduction 31 

Particulate air pollution is attracting more and more concerns in China because of their obvious 32 

adverse impact on visibility reduction, as well as health implication and regional or global climate 33 

change (Kanakidou et al., 2009; Pope and Dockery, 2006; Cheng et al., 2016). Carbonaceous species, 34 

i.e., organic carbon (OC) and elemental carbon (EC), and water-soluble inorganic ions, e.g., SO42−, 35 

NO3− and NH4+ are the major components of ambient aerosols (Liang et al., 2017; Du et al., 2014; 36 

Zheng et al., 2015; Tan et al., 2016). Biomass burning (BB) emissions constitute a large source of 37 

ambient particulate pollution, especially for carbonaceous components, i.e., primary organic carbon 38 

(POC) and black carbon (BC) on global scale (Bond et al., 2004; Tang et al., 2018; Salma et al., 39 

2017; Titos et al., 2017). As an important aerosol component, black carbon from industrial and 40 

combustion emissions contributes to the enhanced PM2.5 (particulate matter with aerodynamic 41 

diameters less than 2.5 µm) mass concentrations and influences regional radiative forcing (Chen et 42 

al., 2017). Fresh biomass burning aerosol was found to be mainly comprised of carbonaceous 43 

species which typically constitutes 50-60% of the total particle mass (Hallquist et al., 2009). Yao et 44 

al. (2016) identified approximately half of carbonaceous aerosols being contributed by biomass 45 

burning at Yucheng, a rural site in the North China Plain.  46 

Biomass burning emissions also represent a potentially large source of secondary organic 47 

aerosol (SOA). The precursors and formation pathways of SOA from biomass burning emissions 48 

were investigated by extensive field observations (e.g., Zhu et al., 2015; 2017; Adler et al., 2011; 49 

Zhang et al., 2010; 2015). Based on morphological particle analysis, Yao et al. (2016) investigated 50 

the smoke emitted from biomass burning impacting SOA production. Sun et al. (2010) found that 51 

phenolic compounds, which were emitted in large amounts from wood combustion, can form SOA 52 

at high yields in aqueous-phase reactions. In addition, smoke from biomass burning can be 53 

transported thousands of kilometers downwind from the source areas. Biomass burning aerosol from 54 

Southeast Asia can be transported to China, Singapore and even further to North America (Liang et 55 

al., 2017; Hertwig et al., 2015; Peltier et al., 2008). Based on molecular tracer measurements, 56 
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synoptic data as well as air mass back trajectory analysis, a fire episode was captured at a 57 

background site of East China with smoke advected from Southeast Asia (Liang et al., 2017).  58 

The North China Plain (NCP) is one of the most polluted regions in China. Severe haze–fog of 59 

longer duration and more extensive coverage has occurred frequently in the NCP area, especially 60 

during the seasons of autumn and winter. NCP covers one quarter of China's cultivated land and 61 

yields 35% of the agricultural products in China (Boreddy et al., 2017). The rural population in NCP 62 

is also large and dense, and biomass burning activities are common in this region in form of cooking 63 

and heating. Intense fire activity typically occurs in October after the corn harvest. Abundant smoke 64 

is emitted from agricultural burning, i.e., residential biofuel combustion, open field burns, etc. 65 

Various field observations have investigated different aspects of biomass burning, e.g., seasonal 66 

variations, chemical and physical properties of smoke particles, spatial distribution, sources, 67 

transport, etc., in the NCP region (Cheng et al., 2013; Shen et al., 2018; Sun et al., 2013; 2016; 68 

Boreddy et al., 2017; Xu et al., 2019). However, these field investigations of the contribution of 69 

biomass burning to ambient aerosols in the NCP region were concentrated on the city of Beijing 70 

(Cheng et al., 2013; Zheng et al., 2015; Duan et al., 2004). Little field research about biomass 71 

burning was reported for rural areas in the NCP. In fact, biomass burning activities are common in 72 

the rural areas of the NCP region, and the resulting smoke aerosol can be transported to urban areas, 73 

e.g., the city of Beijing, resulting in haze episodic events. Meanwhile, biomass burning studies at 74 

rural sites can provide valuable source information of the biomass burning pollution in the North 75 

China region.  76 

The objective of this study is to gain insights about the abundance of smoke during the typical 77 

biomass burning season, i.e., autumn-winter transition season, following the corn harvest. In this 78 

paper, we focus on quantifying multiple biomass burning tracers, i.e., levoglucosan, mannosan and 79 

K+ as well as other chemical species in PM2.5 in the rural areas of the NCP region during the typical 80 

biomass burning season. The results of this study demonstrated the biomass burning pollution status, 81 

as well as chemical properties of ambient aerosols under different biomass burning pollution levels 82 

in the rural atmosphere of North China. 83 

 84 
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2. Site description and experimental Methods 85 

2.1 Site description and sampling 86 

Samples were collected at a rural site, Gucheng (GC, 39°09'N, 115°44'E; 15.2 m a.s.l), located 87 

on a platform at the China Meteorological Administration farm in the town of Gucheng (GC site), 88 

approximately 110 km southwest of Beijing and 35 km north of the city of Baoding (population of 89 

about 5 million) in Hebei province, as shown in Figure S1. The station is surrounded by agricultural 90 

fields, with major crop species being corn and wheat. The dominant wind direction at GC is 91 

southwest and northeast during the study period. This site is upwind of Beijing, when the wind 92 

blows from the south or southwest, where heavily polluted cities and regions of Hebei province, i.e., 93 

Baoding, Shijiazhuang, Xingtai, Handan, are located. Thus, it is an appropriate station for 94 

representing the air pollution situation in the NCP region (Sheng et al., 2018; Chi et al., 2018; Xu 95 

et al., 2019; 2020; Kuang et al., 2020).  96 

Daytime and nighttime PM2.5 samples were collected from 15 October, 2016 to 23 November, 97 

2016, by using PM2.5 High-volume (Hi-Vol) sampler (GUV-15HBL1, Thermo Fisher Scientific CO., 98 

LTD), at the nominal flow rate of 1.13 m3 min-1. The daytime samples were collected from 07:00 to 99 

19:00, while nighttime samples were collected from 19:00 to 07:00 local time of the next day. All 100 

PM2.5 samples were collected on quartz fiber filters, prebaked at 850 °C for at least 5 h to remove 101 

carbonaceous material. A total of 33 couples of daytime/nighttime samples and 6 whole-day samples 102 

as well as 4 field blank samples were collected during the sampling period. The filters were stored 103 

at -20 °C after sample collection.  104 

2.2 Experimental Methods 105 

2.2.1 Anhydrosugar and water-soluble inorganic ion analysis 106 

The quartz filter samples were analyzed for biomass burning anhydrosugar tracers, i.e., 107 

levoglucosan and mannosan using an improved high-performance anion-exchange chromatography 108 

(HPAEC) method with pulsed amperometric detection (PAD) on a Dionex ICS-5000+ system. 109 

Levoglucosan and mannosan were separated by a Dionex Carbopac MA1 analytical column and 110 

guard column with an aqueous sodium hydroxide (NaOH, 480 mM) eluent at a flow rate of 0.4 mL 111 

min-1. The detection limit of levoglucosan and mannosan was 0.002 mg L-1 and 0.005 mg L-1, 112 
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respectively. More details about the HPAEC-PAD method can be found elsewhere (Iinuma et al., 113 

2009).  114 

The quartz filter samples were also analyzed for water-soluble inorganic ions by a Dionex ICS-115 

5000+ ion chromatograph, including SO42−, NO3−, NH4+, Cl−, Ca2+, Na+, K+ and Mg2+, and the 116 

method detection limits for the individual ionic species were 0.18 µg L-1, 0.15 µg L-1, 0.03 µg L-1, 117 

0.048 µg L-1, 0.08 µg L-1, 0.01 µg L-1, 0.01 µg L-1, 0.008 µg L-1, respectively. The cations were 118 

separated on an Ionpac CS12 analytical column and CG12 guard column with a 20 mM 119 

methanesulfouic acid as eluent at a flow rate of 1.0 mL min-1, while the anions were separated on 120 

an Ionpac AS11-HC column and AG11-HC guard column with 21.5 mM KOH eluent at a flow rate 121 

of 1.0 mL min-1. The water-soluble inorganic ion data were corrected by field blanks. 122 

2.2.2 Organic carbon/elemental carbon analysis 123 

OC and EC were measured on a punch (0.526 cm2) of each quartz sample by a thermal/optical 124 

carbon analyzer (DRI Model 2001, Desert Research Institute, USA), using the Interagency 125 

Monitoring of Protected Visual Environments (IMPROVE) thermal evolution protocol with 126 

reflectance charring correction. The analytical error of OC was within 10%, and one sample of every 127 

10 samples was selected at random for duplicate analysis. The detection limit of OC was 0.82 µgC 128 

cm−2 (Liang et al., 2017). 129 

2.2.3 Gas online monitoring (i.e., NO, NO2, SO2, O3, CO and NH3) 130 

During this campaign, commercial instruments from Thermo Fisher Scientific Co., LTD were 131 

used to measure O3 (TE 49C), NO/NO2/NOx (Model 42CTL), CO (TE 48CTL), and SO2 132 

(TE43CTL), while NH3 was measured by an ammonia analyzer (DLT-100, Los Gatos Research, 133 

USA) at GC station. All measurement data quality was controlled according to standard gases (Xu 134 

et al., 2019; Lin et al., 2011; Meng et al., 2018; Ge et al., 2018). 135 

2.2.4 Meteorological parameters 136 

The meteorological parameters, including air temperature, relative humidity (RH) and wind 137 

speed at a 24-h resolution at the GC site are presented in Figure 1. During this campaign, the daily 138 

average RH value was observed at 77 ± 13%, with a range from 48% to 99%, while the daily wind 139 

speed was observed with an average value of 1.07 ± 1.14 m s-1, exhibiting moist and stable synoptic 140 

conditions at this rural site during the autumn-winter transition season. Moreover, there was rare 141 
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precipitation during the sampling period at the GC site, except for two days, i.e., 20 and 27 October, 142 

2016 (Figure 1).  143 

2.2.5 Back trajectory and fire spot analysis 144 

To characterize the transport pathways of the aerosol at the Gucheng site, back-trajectories 145 

were calculated with the NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory 146 

(HYSPLIT) model via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php).  147 

To investigate the influence of biomass burning activities in surrounding areas, fire hot spot 148 

counts were obtained from the Fire Information for Resource Management System (FIRMS) 149 

(available at https://firms.modaps.eosdis.nasa.gov/download/). 150 

2.2.6 Statistical analysis 151 

Statistical analysis of data, i.e., the correlation analysis between the concentrations of 152 

levoglucosan, mannosan and K+ at the Gucheng site during the sampling period were conducted 153 

with the linear fitting method. 154 

3. Results and discussion 155 

3.1 Characteristics of chemical components in PM2.5  156 

In this study, the mass concentration of PM2.5-cal was reconstituted by the sum of carbonaceous 157 

components (1.6×OC + EC) and inorganic ions (SO42− + NH4+ + NO3− + Cl− + Ca2+ + Na+ + K+ + 158 

Mg2+). Figure 1 describes the time-series variation obtained for daily PM2.5-cal, OC, EC, biomass 159 

burning tracers (levoglucosan, mannosan and K+), ratios of levoglucosan/OC and meteorological 160 

factors (temperature, RH, wind speed and planetary boundary layer (PBL) height) during the 161 

sampling period. The average daily PM2.5-cal mass concentration in the autumn-winter transition 162 

season at GC reached 137 ± 72.4 µg m-3, ranging from 23.3 µg m-3 to 319 µg m-3 (Table 1, Figure 163 

1a), which is higher than during the severe winter haze in January, 2013 at an urban site in Beijing 164 

(121 μg m-3) (Zheng et al., 2015). The mass concentrations of these chemical species during the day 165 

are distributed as follows (from highest to lowest): OC > EC > NO3− > SO42− > NH4+ > Cl− > Ca2+ > 166 

K+ > Na+ > Mg2+. Organic matter (OM), calculated by multiplying OC values with a coefficient of 167 

1.6, was the most abundant PM component, the daily average value of which was 70.4 ± 49.6 μg 168 

m−3, accounting for nearly half (46.7%) of PM2.5-cal mass, indicating obvious organic pollution at 169 

https://firms.modaps.eosdis.nasa.gov/download/
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the rural site in the North China Plain during the sampling season. 170 

The measured daily average concentrations of biomass burning tracers, i.e., levoglucosan, 171 

mannosan and K+ in PM2.5 during our study were 0.79 ± 0.75 μg m-3, 0.03 ± 0.03 μg m-3 and 1.52 ± 172 

0.62 μg m-3, respectively (Table 1). The ambient concentrations of levoglucosan in this study were 173 

higher than those observed in the city of Beijing during the summer (averaged at 0.23 ± 0.37 μg m-174 

3, in the range of 0.06 to 2.30 μg m-3) and winter (averaged at 0.59 ± 0.42 μg m-3, in the range of 175 

0.06 to 1.94 μg m-3) of 2010-2011 (Cheng et al., 2013). The highest concentrations of levoglucosan 176 

in GC were observed on 31 October, 2016 with 4.37 μg m–3, which is a sharp increase (over 30 177 

times) of the minimum concentration (0.14 μg m–3) during that period (Figure 1c). Accordingly, the 178 

PM2.5-cal concentration during that period was also elevated (as high as 236 μg m-3) (Figure 1a). 179 

Secondary inorganic aerosol (sulfate, SO42−; nitrate, NO3− and ammonium, NH4+, SNA) species, 180 

were the major water soluble ions, accounting for 82.8% of total water soluble ions, the daily 181 

average values of which were 10.5 ± 6.87 μg m−3, 15.9 ± 9.29 μg m−3 and 10.9 ± 5.51 μg m−3, 182 

respectively (Table 1). SNA species exhibited a synchronous temporal trend (Figure 1c), while the 183 

NO3
–concentrations exceeded those of SO42– at the GC site, in contrast to the results of previous 184 

studies, e.g., Tan et al. (2016), who found SO42− to be the dominant species in PM2.5 during winter 185 

in 2006 in Beijing. Similarly, Chi et al., (2018) also found NO3– concentrations exceeded those of 186 

SO42– at both Beijing and GC sites during the winter in 2016, although they observed that NH4+ was 187 

the dominant component of SNA (the concentrations of SO42−, NO3− and NH4+ were 14.0 μg m–3, 188 

14.2 μg m–3, and 24.2 μg m–3, respectively).     189 

3.2 Day-night variations in the characteristics of PM2.5 chemical components   190 

Carbonaceous components and biomass burning tracers exhibited higher levels during 191 

nighttime than daytime, while secondary inorganic ions showed the opposite pattern, i.e., higher 192 

concentrations during daytime than nighttime (Figure 2 and Figure S2). Besides, the gap of 193 

carbonaceous components and anhydrosugars between daytime and nighttime (two-fold) was more 194 

significant than for secondary inorganic ions. EC, POC are not subject to significant differences in 195 

chemical reactions in ambient air between daytime and nighttime, and they will be mainly 196 

influenced by the variations of the PBL height. In the night, the PBL height decreases, compressing 197 

air pollutants into a shallow layer, and subsequently resulting in faster accumulation and higher 198 
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concentrations of pollutants (Zheng et al., 2015; Zhong et al., 2018; 2019). The contributions of OM 199 

and EC to PM2.5-cal were observed to be higher at nighttime (53.9% and 16.6%) than daytime (43.8% 200 

and 13.7%) as well (Figure 3). Besides the influence from variations of the PBL height, the chemical 201 

degradation of levoglucosan may occur due to photochemical reaction in the ambient aerosols 202 

during daytime, further enlarging the gap of levoglucosan levels between daytime and nighttime 203 

(Sang et al., 2016; Gensch et al., 2018). Consequently, the contribution of levoglucosan to PM2.5-cal 204 

during daytime (0.45%) was observed to be considerably lower than that during nighttime (0.64%) 205 

(Figure 3). However, secondary inorganic ions have an important formation pathway, i.e., 206 

photochemical processing, during daytime. Thus, the secondary inorganic species (SO42-, NO3- and 207 

NH4+) were enhanced during daytime due to photochemical formation (Sun et al., 2013; Zheng et 208 

al., 2015; Wu et al., 2018). The mass contributions of SO42−, NO3− and NH4+ to PM2.5-cal were 209 

decreased from daytime (9.9%, 14.5% and 10.0%) to nighttime (6.5%, 9.6% and 7.1%) (Figure 3). 210 

Such an enhancement in secondary transformations during daytime is more evident in terms of the 211 

sulfur and nitrogen oxidation ratios (SOR and NOR, molar ratio of sulfate or nitrate to the sum of 212 

sulfate and SO2 or nitrate and NO2), which have been used previously as indicators of secondary 213 

transformations (Sun et al., 2013; Zheng et al., 2015). Both SOR and NOR during daytime were 214 

higher than those during nighttime (Figure S3), further confirming the elevated secondary 215 

formations of sulfate and nitrate during daytime.  216 

In addition, the concentrations of other water-soluble inorganic ions, i.e., K+ and Cl− during 217 

nighttime (1.78 ± 0.95 μg m-3 and 6.08 ± 4.00 μg m-3) were higher than those in daytime (1.43 ± 218 

0.54 μg m-3 and 4.33 ± 2.30 μg m-3), while their contributions to PM2.5-cal were reversed, due to the 219 

significant accumulation and higher concentrations of pollutants during nighttime. As Ca2+, Mg2+ 220 

and Na+, mainly emitted from primary natural sources, such as dust, soil resuspension and sea salt, 221 

are subject to more activity during the daytime and also influenced by the airflow dynamics, the 222 

contribution of those species in nighttime were lower than those during daytime, especially for Ca2+, 223 

decreasing from 2.2% in daytime to 0.9% at nighttime (Figure 3).  224 

3.3 Biomass burning episodes and the impacts on chemical PM2.5 characteristics  225 

An episode with high biomass burning tracer levels was encountered on 31 October, 2016. 226 

The concentrations of levoglucosan in PM2.5 during this one-day episode (4.37 µg m-3) were 227 
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significantly higher than those during typical transition season at the GC site (0.69 ± 0.47 µg m-3) 228 

(Figure 1d). Meanwhile, there was significant change in the meteorological conditions, i.e., the wind 229 

direction changed from southwesterly to northerly winds (Figure S4). Northerly winds advected 230 

cold and dry air masses, with the lowest hourly temperature observed at -5.3 °C (Figure S5). This 231 

notable temperature decline before the commencing of the operation of the central heating systems 232 

should have caused intense combustion activities for heating purposes at the rural site. Moreover, 233 

the synoptic situation on 31 October, 2016 was under weaker turbulence with low PBL height and 234 

small wind speeds (Figure 1f). These worsened meteorological conditions would further enhance 235 

aerosol accumulation. 236 

Here, we mainly distinguish four sub-periods based on daily levoglucosan concentrations 237 

during the time frame from 15 October to 23 November, 2016. The four periods were separated as 238 

follows: 15-30 October (Period I: Minor biomass burning), 31 October (Period II: Intensive biomass 239 

burning), 1-14 November (Period III: Major biomass burning), 15-23 November (Period IV: 240 

Heating season). Table 2 compares the concentrations of PM2.5-cal mass, chemical components and 241 

gases at the GC site during these four periods, as well as the ratios between the intensive, major BB 242 

periods and heating season to minor BB period. The level of levoglucosan during the intensive BB 243 

episode II was about 12 times of that during the minor BB period I. K+ and Cl-, the common biomass 244 

burning tracers utilized in many studies (Duan et al., 2004; Cheng et al., 2013), were also observed 245 

with increased abundance during intensive BB episode II. When entering into November, the 246 

weather was becoming cold, and thus combustion activities for heating in the rural areas commenced, 247 

resulting in the ambient levels of levoglucosan to increase to 0.92 ± 0.47 µg m-3 during period III, 248 

about 3 times of those in Period I. The central heating systems in North China cities were operated 249 

during period IV, and the ambient level of levoglucosan was observed at 0.96 ± 0.63 µg m-3, which 250 

was similar to that observed in period III.  251 

The concentrations of OC and EC were also observed to be strongly elevated in period II (Table 252 

2), and especially OC levels increased to 96.3 µg m-3 during the intensive BB episode II, nearly 6 253 

times of those during the minor BB period (16.2 ± 7.52 µg m-3). The levoglucosan/OC ratio was 254 

utilized to estimate the effect of biomass burning to ambient organic aerosols. Accordingly, 255 

levoglucosan/OC ratios sharply increased to 0.045 during period II, which was noticeably higher 256 
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than during other periods in this study (Figure 1e). Moreover, this level is also higher than most of 257 

the published field observations, i.e., at urban sites (Zhang et al., 2008; Cheng et al., 2013; Zhang 258 

et al., 2014), rural sites (Sang et al., 2013; Ho et al., 2014; Pietrogrande et al., 2015; Mkoma et al., 259 

2013) and agricultural sites (Ho et al., 2014; Jung et al., 2014), yet lower than at an urban site in 260 

northern Italy during winter time (in the range of 0.01 to 0.13) (Pietrogrande et al., 2015). This 261 

illustrates that biomass combustion played an important role in organic aerosol pollution during the 262 

intensive BB episode II. However, due to other emissions of OC enhanced during the major BB 263 

episode (period III) and heating season (period IV), i.e., combustion of coal and biofuel for heating, 264 

OC increased to a higher level (55.2 ± 17.1 µgC m-3 and 69.4 ± 24.6 µgC m-3, respectively). Due to 265 

the abundance of organic aerosols, the contribution from biomass burning emission was thereby 266 

reduced and the levoglucosan/OC ratios during periods III and IV decreased to 0.016 ± 0.005 and 267 

0.014 ± 0.006, respectively, even lower than those observed in the minor BB period I (0.025 ± 0.008).  268 

Compared to the carbonaceous components, the concentrations of secondary inorganic aerosol 269 

species (SO42-, NO3-, NH4+) exhibited a different pattern, i.e., showing no obvious differences 270 

between minor BB period I and other three periods. The ratios of SO42-, NO3-, NH4+ during periods 271 

II, III and IV to period I were all around 1.0 (Table 2), with no increasing trend. Moreover, the 272 

relationships between levoglucosan and OC (and EC) were better than those between levoglucosan 273 

and SNA during daytime and nighttime (Figure S3). The precursor gases of SNA, i.e., SO2, NO, 274 

NO2 and NH3, were observed to have an increasing trend when biomass burning was prevalent 275 

during periods III and IV, with the ratios to period I arranged from 1.13 to 1.90 (Table 2). The time-276 

series variations of the gases (SO2, NOx, NH3, CO and O3) and PBL during the sampling period are 277 

shown in Figure S4. The primary emission gases were exhibited negative relationships with PBL, 278 

while O3 exhibited obvious positive relationship with PBL (Figure S5). Combustion from different 279 

fossil fuels (coal, gasoline, diesel, etc.) and biomasses (straws, woods, leaves, etc.) can all emit CO 280 

into the atmosphere (Streets et al., 2003; Chantara et al., 2019; Merico et al., 2020). Due to the more 281 

abundant combustion in the colder weather, the concentrations of CO also increased to 1.65 ± 0.53 282 

ppm and 1.18 ± 0.83 ppm during the major biomass burning period III and the heating season period 283 

IV, respectively. 284 

The combustion of biomass, especially of agricultural residues (e.g., wheat and corn straw) is 285 
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very common in the rural areas in North China during the autumn-winter transition period. During 286 

the autumn harvest season in North China, wheat and corn straw burning is common practice, 287 

resulting in more abundant fire spots when entering into November than period I (Figure 4). The 288 

intense biomass burning event on 31 October, 2016 was also supported by air mass back trajectory 289 

analysis (Figure 5), performed with the TrajStat software. Based on the 48 h back trajectories at the 290 

GC site at 00:00 (UTC time) on 1 November, 2016, the air mass at the GC site was restricted in the 291 

region of Bejing-Tianjing-Hebei, the polluted area where fire spots were numerous. However, on 292 

the previous and following day of this episode, i.e., 31 October and 2 November onward, the air 293 

masses arriving at GC were advected from the northwest of Mongolia, where mostly desert areas 294 

are present, with less farm land and rare biomass burning activities (Figure 5).  295 

Mean percentiles of major components in PM2.5 with respect to different BB pollution periods 296 

at GC site during the sampling time are shown in Figure 6. With the variation of BB pollution 297 

periods, the EC fraction seems to exhibit no obvious change during periods I, II and III, but slightly 298 

increased during the heating season (period IV), while the OC fraction increased significantly from 299 

34.0% during the minor BB period I elevated to 65.4% during the intense BB period II. The 300 

contributions of sulfate, nitrate and ammonium to PM2.5-cal all decreased sharply from the minor BB 301 

period to the intense period (Figure 6). This suggests that organic aerosol species become more 302 

important during BB pollution periods, concerning their contribution to the PM2.5-cal, while EC has 303 

no such character. The OM percentage during intense BB period II was 65.4%, about double of that 304 

during the minor biomass burning period (34.0%), indicating that there was a large fraction of OM 305 

in PM2.5-cal originating from BB at the GC site during intensive BB period II. Opposite to OM, 306 

contributions of secondary inorganic ions to PM2.5-cal significantly decreased with the BB pollution 307 

becoming more severe. The contributions of SO42−, NO3− and NH4+ to PM2.5-cal during the minor BB 308 

episode (11.6%, 20.5% and 12.5%) obviously declined during the intense BB episode (1.93%, 7.67% 309 

and 4.24%). 310 

3.4 Relationships among tracers during different biomass burning pollution 311 

periods 312 

In addition to pollution level information of biomass burning molecular tracers, the ratios 313 
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between them could also be used to identify the different biomass types or indicate the burning 314 

formation processes of atmospheric aerosols. Levoglucosan and mannosan showed a good 315 

relationship during the entire sampling period (Figure 7a, r = 0.97, p < 0.01). The 316 

levoglucosan/mannosan ratios during minor, intense, major biomass pollution and heating season 317 

periods were observed at high values, i.e., 24.9, 24.1, 24.8 and 18.3 respectively (Table 2, Figure 7). 318 

Compared to the former three episodes (24.1 to 24.9, averaged at 24.6), the levoglucosan/mannosan 319 

ration during the heating season period (18.3) decreased by 25.6%. Based on source emission studies, 320 

the levoglucosan/mannosan ratios from crop residue burning, i.e., rice straw, wheat straw and corn 321 

straw, are similar and are characterized by high values (averaged at 29, in the range of 12 to 55) 322 

(Zhang et al., 2007; Engling et al., 2009; Cheng et al., 2013; Jung et al., 2014), yet overlapping with 323 

those from hardwood (averaged at 28, in the range of 11 to 146) (Bari et al., 2009; Jung et al., 2014) 324 

and grass burning (18.2 ± 10.2) (Sullivan et al., 2008), while softwood is characterized by relatively 325 

lower levoglucosan/mannosan ratios (averaged at 4.3, in the range of 2.5 to 4.7) (Engling et al., 326 

2006; Cheng et al., 2013; Jung et al., 2014). Subsequently, this declining trend in the 327 

levoglucosan/mannosan ratios during the heating season period was partly caused by the higher 328 

proportion of softwood combustion, which is characterized by relatively lower 329 

levoglucosan/mannosan ratios. According to the local habits, soft woods, e.g. China fir and pine are 330 

also commonly used as biofuels for stove heating in North China, since they allow sustained heating 331 

duration.  332 

The concentrations of levoglucosan and K+ during minor, major BB episode and heating season 333 

were correlated well (Figure 7b, r = 0.84, p < 0.01), while the red dot of period II being off from the 334 

fitted regression line. The levoglucosan/K+ ratios during periods III and IV (0.51 and 0.53) were 335 

similar to those during a BB episode at an urban site in Beijing during winter time (levoglucosan/K+ 336 

= 0.51) (Cheng et al., 2013). However, the levoglucosan/K+ ratio during the intense BB period II 337 

increased to 1.67, which was significantly higher than that in typical straw combustion (< 1.0). 338 

Correspondingly, there was a significant drop in temperatures at the GC site during period II, with 339 

the average daily temperature sharply decreasing from 7.5 °C on 30 Oct to 0.31 °C on 31 October, 340 

2016, and the average temperature at night of 31 October even decreased to -3.4 °C (Figure 1g). 341 

Hence, the combustion activities were apparently intense around the sampling site for heating 342 
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purposes. Compared to K+, there is a large enrichment of levoglucosan in wood burning emissions, 343 

based on the results from previous biomass source combustion studies (Engling et al., 2006; 344 

Chantara et al., 2019). The influence of softwood and/or other materials from softwood, which are 345 

commonly used as biofuels for stove heating in North China (Cheng et al., 2013; Zhou et al., 2017), 346 

should be larger during this low temperature period. Moreover, levoglucosan/K+ ratios also can be 347 

influenced by combustion conditions, i.e., smoldering versus flaming burns. Biofuels are typically 348 

subject to smoldering combustion condition in residential stoves for heating purposes in the rural 349 

areas in North China, which was reflected in relatively higher levoglucosan/K+ ratios than during 350 

flaming combustion (Schkolnik et al., 2005; Lee et al., 2010).  351 

4. Summary and conclusion 352 

Anhydrosugars, including levoglucosan and mannosan, and water-soluble potassium ion were 353 

employed as molecular tracers to investigate the characteristics of biomass burning activities as well 354 

as chemical properties of ambient aerosols under different biomass burning pollution levels. The 355 

measured daily average concentrations of levoglucosan, mannosan and K+ in PM2.5 during a typical 356 

biomass burning season from 15 October to 30 November, 2016 were 0.79 ± 0.75 μg m-3, 0.03 ± 357 

0.03 μg m-3 and 1.52 ± 0.62 μg m-3, respectively. The concentrations of carbonaceous components 358 

and biomass burning tracers were observed higher at nighttime than daytime, while the patterns of 359 

secondary inorganic ions (SO42-, NO3- and NH4+) were opposite, since they were enhanced by 360 

photochemical formation during daytime. An episode with extreme biomass burning tracer levels 361 

was encountered on 31 October, 2016, with concentrations of levoglucosan as high as 4.37 µg m-3. 362 

Comparing the chemical compositions between different biomass burning periods, it was apparent 363 

that biomass burning can considerably elevate the levels of organic components, while not showing 364 

a significant effect on the production of secondary inorganic ions. Compared to the other biomass 365 

burning episodes, the levoglucosan/mannosan ratios during the heating season period slightly 366 

decreased, while levoglucosan/K+ ratio during the intensive BB period was unusually higher than 367 

those in the other three biomass burning periods.  368 
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Table 1. Average concentrations and the range of PM2.5-cal and its chemical components, biomass burning 640 

tracers (μg m−3), gaseous species, ratios of OC/EC and levoglucosan /OC, as well as meteorological data 641 

observed at GC site at daytime, nighttime and whole day, respectively, during the sampling period from 642 

15 Oct to 23 Nov 2016. 643 

Species 

Daytime (N = 34) Nighttime (N = 33) Whole period (N = 37)* 

Average  
concentration 

Range 
Average 
concentration 

Range 
Average 

concentration 
Range 

PM2.5-cal  117 ± 58.8 19.0 - 225 170 ± 116 21.1 - 465 137 ± 72.4 23.3 - 319 

OC 26.8 ± 15.7 3.78 - 64.8 61.6 ± 49.5 2.88 - 175 44.0 ± 31.0 4.13 - 117 

EC 13.4 ± 8.49 1.44 - 34.0 30.9 ± 28.5 2.21 - 129 21.7 ± 15.8  2.46 - 74.9 

TC 49.3 ± 27.6 5.76 - 124 92.5 ± 73.6 5.10 - 289 65.8 ± 44.1 7.36 - 192 

OC/EC 2.02 ± 1.26 1.09 - 3.31 2.25 ± 1.04 1.04 - 6.72 1.95 ± 0.60 0.83 - 3.10 

SO42- 12.1 ± 9.31 1.65 - 39.7 9.02 ± 6.22 1.55 - 23.2 10.5 ± 6.87 1.66 - 29.5 

NO3- 16.9 ± 9.96 1.85 - 41.2 13.1 ± 8.52 1.56 - 38.0 15.9 ± 9.29 2.40 - 45.2 

Cl- 4.33 ± 2.30 0.82 - 9.46 6.08 ± 4.00 0.62 – 16.0 4.90 ± 2.46 0.93 - 9.37 

NH4+ 11.7 ± 6.76 1.84 - 26.0 10.0 ± 5.75 1.33 - 22.2 10.9 ± 5.51 1.99 - 25.4 

K+ 1.43 ± 0.54 0.20 - 2.64 1.78 ± 0.95 0.22 - 4.19 1.52 ± 0.62 0.50 - 2.96 

Mg2+ 0.26 ± 0.14 0.07-0.64 0.19 ± 0.09 0.06 - 0.38 0.14 ± 0.12 0.04 - 0.43 

Ca2+ 2.24 ± 1.01 1.02-4.75 1.56 ± 0.08 0.77 - 3.56 1.54 ± 0.90 0.49 - 3.84 

Na+ 0.44 ± 0.17 0.10 - 0.79 0.43 ± 0.24 0.10 - 1.31 0.42 ± 0.17 0.11 - 0.88 

NO3- / SO42- 1.67 ± 0.82 0.75 - 5.52 1.54 ± 0.57 0.74 - 3.50 1.65 ± 0.62 0.78 ± 3.96 

Levoglucosan  0.57 ± 0.62 0.05 - 3.74 1.10 ± 0.99 0.05 - 4.82 0.79 ± 0.75 0.14 - 4.37 

Mannosan 0.024 ± 0.023 0.00 - 0.14 0.05 ± 0.04 0.00 - 0.21 0.03 ± 0.03 0.00 - 0.18 

levoglucosan/OC 0.018 ± 0.011 0.005 - 0.067 0.020 ± 0.010 0.004 - 0.047 0.020 ± 0.009 0.006 - 0.045 

NO (ppb) 23.0 ± 14.7 2.07 - 56.0 45.9 ± 29.5 1.59 - 96.9 31.8 ± 18.3 1.81 - 68.5 

NO2 (ppb) 25.8 ± 10.4 8.18 - 51.6 29.3 ± 9.37 8.81 - 51.1 26.6 ± 8.74 8.62 - 51.4 

SO2 (ppb) 9.78 ± 4.96 3.11 - 22.5 9.63 ± 5.67 2.91 - 28.7 8.61 ± 4.04 3.37 - 20.4 

CO (ppm) 0.96 ± 0.73 0.03 - 2.49 1.29 ± 1.04 0.02 - 3.26 1.05 ± 0.76 0.12 - 2.48 

O3 (ppb) 13.0 ± 9.10 1.42 - 41.84 5.00 ± 5.73 1.60 - 24.30 9.25 ± 5.78 1.67 - 24.0 

NH3 (ppb) 16.4 ± 11.3 1.68 - 46.2 18.3 ± 10.7 1.03 - 42.7 17.1 ± 9.88 1.46 - 44.4 

Temperature (°C) 7.71 ± 4.01 - 2.07-15.9 3.30 ± 4.69 - 6.60 - 14.5 6.95 ± 4.58 - 4.33 - 15.4 

Relative Humidity (%) 68 ± 17 31 - 98 85 ± 14 34 - 100 77 ± 13 48 - 99 

Wind speed (m s-1) 1.43 ± 1.17 0.09 - 5.65 0.79 ± 1.55 0.03 - 7.19 1.07 ± 1.14 0.04 - 5.02 

* Six whole-day samples were included in the data analysis of the “Whole period”. 644 
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Table 2. Concentrations of chemical components in PM2.5 aerosols as well as their ratios and gaseous 651 

species collected at the GC site, during the four biomass burning periods (i.e., Minor, Intensive, Major 652 

and Heating period) from 15 Oct to 23 Nov 2016. 653 

Species Period I (15-30 Oct) 
Minor BB 

Period II (31 Oct)    
Intensive BB 

Period III (1 -14, Nov) 
Major BB  

Period IV (15 -23, Nov) 
Heating period 

Average 
concentration 

Average 
concentration Ratio* Average 

concentration Ratio* Average 
concentration Ratio* 

PM2.5-cal 81.0 ± 44.5 235 2.91  163 ± 46.7 2.01  189 ± 83.0 2.33  

Levoglucosan  0.36 ± 0.14 4.37 12.1  0.90 ± 0.37 2.50  0.96 ± 0.63 2.67  

Mannosan 0.015 ± 0.005 0.18 12.0  0.038 ± 0.015 2.53  0.050 ± 0.026 3.33  

OC 16.2 ± 7.52 96.3 5.93  55.2 ±17.1 3.41  69.4 ± 24.6 4.28  

EC 12.2 ± 5.85 36.0 2.96  25.5 ± 10.1 2.09  36.4 ± 21.5 2.98  

TC 28.4 ± 13.1 132 4.66  80.9 ± 34.6 2.85  106 ± 55.3 3.73  

SO42- 10.3 ± 8.96 4.56 0.44  11.8 ± 6.02 1.15  9.08 ± 3.87 0.88  

NO3- 16.6 ± 12.9 18.1 1.09  16.5 ± 6.42 0.99  12.6 ± 5.76 0.76  

NH4+ 10.1 ± 7.40 10.0 0.99  12.0 ± 4.35 1.19  10.3 ± 3.62 1.02  

K+ 1.16 ± 0.36 2.61 2.25  1.76 ± 0.46 1.52  1.65 ± 0.84 1.42  

Cl- 3.46 ± 1.97 7.49 2.16  5.58 ± 2.16 1.61  6.27 ± 2.58 1.81  

OC/EC 1.53 ± 0.35 2.67 1.75  2.31 ± 0.59 1.51  2.04 ± 0.31 1.33  

NO3-/ SO42- 1.74 ± 0.60 3.96 2.28  1.50 ± 0.35 0.86  1.42 ± 0.47 0.82  

levoglucosan/OC 0.025 ± 0.008 0.045 1.80  0.016 ± 0.005 0.64  0.014 ± 0.006 0.56  

levoglucosan/EC 0.039 ± 0.019 0.121 3.10  0.038 ± 0.017 0.97  0.028 ± 0.013 0.72  
levoglucosan/ 
mannosan 

24.9 ± 4.44 24.1 0.97  24.8 ± 6.46 1.00  18.3 ± 4.27 0.73  

levoglucosan/K+ 0.36 ± 0.081 1.67 4.64 0.51 ± 0.16 1.42  0.53 ± 0.15 1.47  

NO (ppb) 21.7 ± 12.5  21.7 1.00 39.6 ± 15.4 1.82  39.3 ± 23.6 1.81  

NO2 (ppb) 21.8 ± 4.95 26.5 1.22 32.7 ± 7.27 1.50  24.6 ± 10.2 1.13  

NOX (ppb) 43.6 ± 16.3 48.2 1.11 72.4 ± 17.8 1.66  64.0 ± 33.4 1.47  

SO2 (ppb) 5.83 ± 2.46 8.04 1.38 11.1 ± 4.10 1.90  9.75 ± 3.31 1.67  

CO (ppm) 0.44 ± 0.33 0.70 1.59 1.65 ± 0.53 3.75  1.18 ± 0.83 2.68  

O3 (ppb) 9.79 ± 4.88 23.2 2.37 7.51 ± 3.87 0.77  9.59 ± 7.55 0.98  

NH3 (ppb) 14.3 ± 6.12 11.1 0.78 18.6 ± 8.03 1.30  21.2 ± 14.2 1.48  

*: indicates that the ratios of the heating period, intense BB period or major biomass burning period  654 
were divided by those from the minor BB period. 655 
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 663 

Figure 1. Time-series variation obtained for PM2.5-cal and its major components, biomass burning tracers 664 

as well as meteorological factors at the GC site during the sampling period from 15 Oct to 23 Nov 2016. 665 

(a) PM2.5-cal, (b) OC and EC, (c) secondary inorganic aerosols, i.e., SO4
2−, NO3

− and NH4
+, (d) 666 

levoglucosan, mannosan and K+, (e) ratios of levoglucosan to OC (LG/OC) and levoglucosan to EC 667 

(LG/EC), (f) PBL and wind speed (WS), (g) temperature (T) and relative humidity (RH). 668 
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 679 
Figure 2. Day and night distributions of mean concentrations of main chemical components (OC, EC, 680 

SO4
2−, NO3

− and NH4
+) and biomass burning tracers (levoglucosan and mannosan) in PM2.5 observed at 681 

GC site during the sampling period. 682 
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        701 

Figure 3. Percent contributions of individual component mass concentrations to total estimated PM2.5-cal 702 

mass in daytime and nighttime during the sampling period. 703 

 704 
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 712 

Figure 4. Fire spots at GC site and the surrounding provinces from (a) 15-30 October, 2016 and (b) 1 -713 

23, November, 2016, observed by MODIS Terra satellites (blue dot is GC station).  714 

 715 
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 717 
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  719 

Figure 5. 48 h back trajectories at 500 m at GC site (39°09'N, 115°44'E) at 00:00 (UTC time) from 31 720 

October to 2 November, 2016. 721 
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 734 

Figure 6. Mean percentiles of major components in PM2.5 with respect to different biomass burning 735 

pollution periods at GC site during the sampling time.  736 
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 753 

 754 

Figure 7. Scatter plots of (a) levoglucosan versus mannosan, (b) levoglucosan versus K+. Statistical 755 

analysis of sampling data was conducted with the linear fitting method. 756 
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