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Abstract  43 

Following the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-44 

CoV-2) responsible for COVID-19 in December 2019 in Wuhan (China) and its spread to the 45 

rest of the world, the World Health Organization declared a global pandemic in March 2020. 46 

Without effective treatment in the initial pandemic phase, social distancing and mandatory 47 

quarantines were introduced as the only available preventative measure. In contrast to the 48 

detrimental societal impacts, air quality improved in all countries that strict lockdowns were 49 

applied, due to lower pollutant emissions. Here we investigate the effects of the COVID-19 50 

lockdowns in Europe on ambient black carbon (BC), which affects climate and damages health, 51 

using in-situ observations from 17 European stations in a Bayesian inversion framework. BC 52 

emissions declined by 23 kt in Europe (20% in Italy, 40% in Germany, 34% in Spain, 22% in 53 

France) during lockdowns compared to the same period in the previous five years, which is 54 

partially attributed to COVID-19 measures. BC temporal variation in the countries enduring 55 

the most drastic restrictions showed the most distinct lockdown impacts. Increased particle light 56 

absorption in the beginning of the lockdown, confirmed by assimilated satellite and remote 57 

sensing data, suggests residential combustion was the dominant BC source. Accordingly, in 58 

Central and Eastern Europe, which experienced lower than average temperatures, BC was 59 

elevated compared to the previous five years. Nevertheless, an average decrease of 11% was 60 

seen for the whole of Europe compared to the start of the lockdown period, with the highest 61 

peaks in France (42%), Germany (21%), UK (13%), Spain (11%) and Italy (8%). Such a 62 

decrease was not seen in the previous years, which also confirms an impact of COVID-19 on 63 

the European emissions of BC. 64 

 65 

  66 
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1 Introduction 67 

The identification of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 68 

or COVID-19) in December 2019 (WHO, 2020) in Wuhan (China) and its subsequent 69 

transmission to South Korea, Japan, and Europe (initially mainly Italy, France and Spain) and 70 

the rest of the world led the World Health Organization to declare a global pandemic by March 71 

2020 (Sohrabi et al., 2020). Although the symptoms are normally mild or not even detected for 72 

most of the population, people with underlying diseases or elderly are very vulnerable showing 73 

complications that can lead to death (Huang et al., 2020). Considering the lack of available 74 

treatment and vaccination to combat further spread of the virus, the only prevention measures 75 

included strict social, travel and working restrictions in a so-called lockdown period that lasted 76 

for several weeks (mid-March to end of April 2020 for most of Europe). The most drastic 77 

measures were taken in China, where the outbreak started, in Italy that faced large human losses 78 

and later in the United States. Despite all these restriction, still six months after the first 79 

lockdown, several countries are reporting severe human losses due to the virus (John Hopkins 80 

University of Medicine, 2020). 81 

Despite the dramatic health and socioeconomic consequences of COVID-19 lockdowns, 82 

their environmental impact might be beneficial. Bans on mass gatherings, mandatory school 83 

closures, and home confinement (He et al., 2020; Le Quéré et al., 2020) during lockdowns have 84 

all resulted in lower traffic-related pollutant emissions and improved air quality in Asia, Europe 85 

and America (Adams, 2020; Bauwens et al., 2020; Berman and Ebisu, 2020; Conticini et al., 86 

2020; Dantas et al., 2020; Dutheil et al., 2020; He et al., 2020; Kerimray et al., 2020; Le et al., 87 

2020; Lian et al., 2020; Otmani et al., 2020; Sicard et al., 2020; Zheng et al., 2020). The 88 

restrictions also present an opportunity to evaluate the cascading responses from the interaction 89 

of humans, ecosystems, and climate with the global economy (Diffenbaugh et al., 2020). 90 

Strongly light absorbing black carbon (BC, or ‘soot’), is produced from incomplete 91 

combustion of carbonaceous fuels e.g. fossil fuels, wood burning, biofuels (Bond et al., 2013). 92 

By absorbing solar radiation, it warms the air, reduces tropical cloudiness (Ackerman, 2000) 93 

and atmospheric visibility (Jinhuan and Liquan, 2000). BC causes pulmonary diseases (Wang 94 

et al., 2014a), may act as cloud condensation nuclei affecting cloud formation and precipitation 95 

(Wang et al., 2016) and contributes to global warming (Bond et al., 2013; Myhre et al., 2013; 96 

Wang et al., 2014a). When deposited on snow, it reduces snow albedo (Clarke and Noone, 97 

1985; Hegg et al., 2009) accelerating melting. Since BC is both climate relevant and strongly 98 
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linked to anthropogenic activity, it is important to determine the effects of the COVID-19 99 

lockdowns thereon. 100 

Here, we present a rigorous assessment of temporal and spatial changes BC emissions 101 

over Europe (including Middle East and parts of North Africa), combining in situ observations 102 

from the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS) network and 103 

state-of-the-art emission inventories within a Bayesian inversion. We validate our results with 104 

independent satellite data and compare them to inventories and baseline and optimized 105 

emissions calculated for previous years.  106 

2 Methods  107 

This section gives a detailed description of all datasets and methods used for the 108 

calculation of COVID-19 impact. Section 2.1 describes the instrumentation of the particle light 109 

absorption measurements from Aerosol, Clouds and Trace Gases Research Infrastructure 110 

(ACTRIS), and the networks European Monitoring and Evaluation Program (EMEP) and 111 

Global Atmosphere Watch (GAW). These measurements were used in the inverse modelling 112 

algorithm (dependent measurements) and to validate the optimised (posterior) emissions of BC 113 

(independent measurements). For each of the observations and stations, the source – receptor 114 

matrices (SRMs), also known as “footprint emission sensitivities” or “footprints”, were 115 

calculated as described in section 2.2. The latter together with the observations were fed in the 116 

inversion algorithm described in section 2.3. To overcome classic inverse problems (Tarantola, 117 

2005), prior (a priori) emissions of BC were used in the inverse modelling algorithm calculated 118 

using bottom-up approaches (section 2.4). The optimised (a posteriori) emissions of BC were 119 

compared with reanalysis data from MERRA-2 (Modern-Era Retrospective Analysis for 120 

Research and Applications Version 2), which are described in section 2.5, while MERRA-2 121 

Ångström exponent data together with absorption Ångström exponent from the aerosol robotic 122 

network (AERONET) (section 2.6) were used to examine the presence of biomass burning 123 

aerosols in Europe. A description of the statistical tests and the country definitions used in the 124 

paper is given in sections 2.7 and 2.8, respectively. 125 

2.1 Particle light absorption measurements 126 

The measurement sites contributing data to this paper are regional background sites 127 

(except for one site in Germany) and all contribute to the research infrastructure ACTRIS, and 128 

the networks EMEP and GAW. The measurement data used for the period 2015 - May 2020 129 

consist of hourly-averaged, quality-checked, particle light absorption measurements.  The 130 
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quality assurance and quality control correspond to the Level 2 requirements for ACTRIS, 131 

EMEP and GAW data, as described in detail in Laj et al. (2020). 132 

All absorption measurements within ACTRIS and EMEP are taken using a variety of 133 

filter-based photometers: Multi-Angle Absorption Photometers (MAAP), Particle Soot 134 

Absorption Photometers (PSAP) Continuous Light Absorption Photometers (CLAP), and the 135 

Aethalometer (AE31). Information on instrument type at the various sites are included in Table 136 

1 and procedures for harmonization of measurement protocols to produce comparable data seta 137 

are described in Laj et al. (2020) in detail. Zanatta et al. (2016) suggested that a mass absorption 138 

cross-section (MAC) value of 10 m2 g-1 (geometric standard deviation of 1.33) at a wavelength 139 

of 637 nm can be considered to be representative of the mixed boundary layer at European 140 

ACTRIS background sites, where BC is expected to be internally mixed to a large extent. 141 

Assuming an absorption Ångström exponent (AAE) is equal to unity, i.e. assuming no change 142 

in MAC for different sources (Zotter et al., 2017), we extrapolated the MACs at 637 nm 143 

(𝑀𝐴𝐶@"# ) to the measurement wavelengths of our study (𝑀𝐴𝐶@"$ ) using the following 144 

equation:  145 

𝑀𝐴𝐶@"$ = 𝑀𝐴𝐶@"#(
"#
"$
)%%& 					

'()*+,
(⎯⎯⎯*					𝑀𝐴𝐶@"$ = 10(-./

"$
)#  (1) 146 

following Lack and Langridge (2013). The resulting MAC values for each measurement 147 

station are shown in Table 1. 148 

2.2 Source – receptor matrix (SRM) calculations 149 

SRMs for each of the 17 receptor sites (Table 1) were calculated using the Lagrangian 150 

particle dispersion model FLEXPART version 10.4 (Pisso et al., 2019). The model releases 151 

computational particles that are tracked backward in time based on 3-hourly operational 152 

meteorological analyses from the European Centre for Medium-Range Weather Forecasts 153 

(ECMWF) with 137 vertical layers and a horizontal resolution of 1°×1°. The tracking of BC 154 

particles includes gravitational settling for spherical particles with an aerosol mean diameter of 155 

0.25 μm and a logarithmic standard deviation of 0.3 and a particle density of 1500 kg m−3 (Long 156 

et al., 2013). FLEXPART also simulates dry and wet deposition (Grythe et al., 2017), 157 

turbulence (Cassiani et al., 2014), unresolved mesoscale motions (Stohl et al., 2005) and 158 

includes a deep convection scheme (Forster et al., 2007). SRMs were calculated for 30 days 159 

backward in time, at temporal intervals that matched measurements at each receptor site. This 160 

backward tracking is sufficiently long to include almost all BC sources that contribute to surface 161 
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concentrations at the receptors given a typical atmospheric lifetime of 3–11 days (Bond et al., 162 

2013). 163 

2.3 Bayesian inverse modelling  164 

The Bayesian inversion framework FLEXINVERT+ described in detail in Thompson 165 

and Stohl (2014) was used to optimize emissions of BC before (January to mid-March 2020) 166 

and during the COVID-19 lockdown period in Europe (mid-March to end of April 2020). To 167 

show potential differences on the signal from the 2020 restrictions, emissions were optimised 168 

with the same set up during the same period (January to April) in the previous five years (2015–169 

2019). Note that the number of stations in the inversions of 2015–2019 was slightly higher (20 170 

stations against 15 that were used in 2020), due to different data availability. The algorithm 171 

finds the optimal emissions, which lead to FLEXPART modelled concentrations that better 172 

match the observations considering the uncertainties for observations, prior emissions and 173 

SRMs. Specifically, the state vector of BC concentrations, 𝑦(1×#)45+ , at 𝑀 points in space and 174 

time can be modelled given an estimate of the emissions, 𝒙(𝑵×𝟏) , of the 𝑵state variables 175 

discretised in space and time, while atmospheric transport and deposition are linear operations 176 

described by the Jacobian matrix of SRMs, 𝐇(𝑴×𝑵): 177 

𝑦45+ = Η𝑥 + 𝜖  (2) 178 

where 𝜖 is an error associated with model representation, such as the modelled transport and 179 

deposition or the measurements. Since Η is not invertible or may not have unique inverse, 180 

according to Bayesian statistics, the inverse problem can be described as the maximization of 181 

the probability density function of the emissions given the prior information and observations. 182 

This is equivalent to the minimun of the cost function: 183 

𝐉(𝒙) = 𝟏
𝟐
(𝒙 − 𝒙𝒃)𝑻𝐁<𝟏(𝒙 − 𝒙𝒃) +

𝟏
𝟐
(𝒚 − 𝐇𝒙)𝑻𝐑<𝟏(𝒚 − 𝐇𝒙)  (3) 184 

where 𝒚 is the vector of observed BC concentrations, 𝒙 and 𝒙𝒃 the vectors of optimized and 185 

prior emissions, respectively, while 𝐁 and 𝐑 are the error covariance matrices that weight the 186 

posterior–prior flux and observation–model mismatches, respectively. Based on the Bayes’ 187 

theorem, the most probable posterior emissions, 𝒙  are given by the following equation 188 

(Tarantola, 2005): 189 

𝒙 = 𝒙𝒃 + 𝐁𝐇𝐓(𝐇𝐁𝐇𝐓 +𝐑)<𝟏(𝒚 − 𝐇𝒙𝒃)  (4) 190 

Here, posterior emissions were calculated weekly between 1 January and 30 April 2020. 191 

The aggregated inversion grid (25°N–75°N and 10°W–50°E) and the average SRM for 192 

inversions are shown in Figure 1, while the measurement stations are listed in Table 1. The 193 
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variable grid uses high resolution at regions, where there are many stations and hence strong 194 

contribution from emissions, while it lowers resolution at regions that lack measurement 195 

stations following a method proposed by Stohl et al. (2010). 196 

Prior emission errors 𝐁 are correlated in space and time, but very little is known about 197 

the true temporal and spatial error correlation patterns. The spatial error correlation for the 198 

emissions is defined as an exponential decay over distance (we assume that emissions on land 199 

and ocean are not correlated). The temporal error correlation matrix is described similarly using 200 

the time difference between grid cells in different time steps. The full temporal and spatial 201 

correlation matrix is given by the Kronecker product (see Thompson and Stohl, 2014). The 202 

error covariance matrix for the emissions is the matrix product of correlation pattern and the 203 

error covariance of the prior fluxes. We calculate the error on the emissions in each grid-cell 204 

(on the fine grid) as a fraction of the maximum value out of that grid cell and the eight 205 

surrounding ones. 206 

The observation error covariance matrix 𝐑 combines measurement, transport model and 207 

representation errors. For the measurement errors, we use values given by the data providers. 208 

Transport model errors are difficult to quantify and depend not only on the model but also on 209 

the meteorological inputs. Therefore, we do not quantify the full transport error, but only the 210 

part of it that can be estimated from FLEXPART, i.e. the stochastic uncertainty (see Stohl et 211 

al., 2005). As regards to representation errors, we consider observation representation error and 212 

model aggregation error. The observation representation error is calculated from the standard 213 

deviation of all measurements available in a user-specified measurement averaging time 214 

interval, based on the idea that if the measurements are fluctuating strongly within that interval 215 

then their mean value is associated with higher uncertainty than if the measurements are steady 216 

(Bergamaschi et al., 2010). The aggregation error is attributed to reduction of the spatial 217 

resolution of the model and is calculated by projecting the loss of information in the state space 218 

into the observation space (Kaminski et al., 2001). Hence, the observation error covariance 219 

matrix is defined as the diagonal matrix with elements equal to the quadratic sum of the 220 

measurement, transport model and measurement representation errors (Thompson and Stohl, 221 

2014). 222 

Theoretically, the algorithm can calculate negative posterior emissions, which are 223 

physically unlikely. To tackle this problem, an inequality constraint was applied on the 224 

emissions following the method of Thacker (2007) that applies the constraint as “error-free” 225 

observations: 226 

𝒙: = 𝒙 + 𝐀𝐏𝐓(𝐏𝐀𝐏𝐓)<𝟏(𝒄 − 𝐏𝒙)  (5) 227 
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where 𝐀 is the posterior error covariance matrix, 𝐏 is a matrix operator to select the variables 228 

that violate the inequality constraint, and 𝒄 is a vector of the inequality constraint, which in this 229 

case is zero. 230 

We evaluated the assumptions made on the error covariance matrices for the prior 231 

emissions and the observations using the reduced 𝜒$ statistics (𝐁	and	𝐑). When 𝜒$ is equal to 232 

unity, the posterior solution is within the limits of the prescribed uncertainties. The latter is the 233 

value of the cost function at the optimum (Thompson et al., 2015). In the inversions performed 234 

here, the calculated 𝜒$ values were between 0.8 and 1.5 indicating that the chosen uncertainty 235 

parameters are close to the ideal ones. The number of measurements used in each inversion was 236 

equal to 12538 from 17 stations. To select the inversion that provides the most statistically 237 

significant result, an evaluation of the improvement in the posterior modelled concentrations, 238 

with respect to the prior ones, against the observations was performed (Figure 2). The resulting 239 

values of each of the statistical measures that were performed are given in detail in Table 2. 240 

Note that this is not a validation of the posterior emissions, because the comparison is only done 241 

for the observations that were included in the inversion (dependent observations), and the 242 

inversion algorithm has been designed to reduce the model–observation mismatches. This 243 

means that the reduction of the posterior concentration mismatches to the observations is 244 

determined by the weighting that is given to the observations with respect to the prior emissions. 245 

A proper validation of the posterior emissions is performed against observations that were not 246 

included in the inversion (independent observations) in section 3.3. 247 

2.4 Prior emissions 248 

As a priori emissions in the inversions, the ECLIPSE version 5 and 6 (Evaluating the 249 

CLimate and Air Quality ImPacts of ShortlivEd Pollutants) (Klimont et al., 2017), EDGAR 250 

(Emissions Database for Global Atmospheric Research) version HTAP_v2.2 (Janssens-251 

Maenhout et al., 2015), ACCMIP (Emissions for Atmospheric Chemistry and Climate Model 252 

Intercomparison Project) version 5 (Lamarque et al., 2013) and PKU (Peking University) 253 

(Wang et al., 2014b) were used (Figure 3). All inventories include the basic emission sectors 254 

(e.g., waste burning, industrial combustion and processing, all means of transportation (aerial, 255 

surface, ocean), energy conversion, residential and commercial combustion (see references 256 

therein). Biomass burning emissions were adopted from the Global Fire Emissions Database, 257 

Version 4.1s (GFEDv4.1s)(Giglio et al., 2013). Note that the a priori emissions used in the 258 

inversions of 2015–2019 period corresponded to year 2015 of ECLIPSEv6 and they were not 259 

interpolated for the years between 2015 and 2020, where the ECLIPSEv6 emissions were 260 
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calculated for. We calculate that the anthropogenic emissions of BC in Europe between 261 

January-April 2015 and January-April 2020 in ECLIPSEv6 differ by 3.4% only, and therefore 262 

we expect that this would not add significant bias in our calculations. 263 

2.5 MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications 264 

Version 2)  265 

The MERRA-2 reanalysis dataset for BC (Randles et al., 2017) assimilates bias-corrected 266 

AOD from Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High 267 

Resolution Radiometer (AVHRR) instruments, Multiangle Imaging SpectroRadiometer 268 

(MISR) and Aerosol Robotic Network (AERONET) with the Goddard Earth Observing System 269 

Model Version 5 (GEOS-5). BC and other aerosols in MERRA-2 are simulated with the 270 

Goddard Chemistry, Aerosol, Radiation and Transport (GOCART) model and delivered in 271 

hourly to monthly temporal resolution and 0.5°×0.625° spatial. The product has been validated 272 

for AOD, PM and BC extensively (Buchard et al., 2017; Qin et al., 2019; Randles et al., 2017; 273 

Sun et al., 2019). Ångström exponent (AE), a measure of how the AOD changes relative to the 274 

various wavelength of light, is derived here from AOD469, AOD550, AOD670, and AOD865, 275 

by fitting the data to the linear transform of Ångström's empirical expression: 276 

𝜏" = 𝜏"!(
"
"!
)<>  (6) 277 

where 𝜏" is the known AOD at wavelength 𝜆 (in nm), 𝜏"! is the AOD at 1000 nm, and α stands 278 

for AE (Gueymard and Yang, 2020).  279 

2.6 Absorption Ångström exponent from Aerosol Robotic Network (AERONET) 280 

data 281 

Aerosol composition over Europe during the COVID-19 lockdown was confirmed using 282 

the AERONET data (Holben et al., 1998). AERONET provides globally distributed 283 

observations of spectral aerosol optical depth (AOD), inversion products, and precipitable 284 

water in diverse aerosol regimes. The AE for a spectral dependence of 440-870 nm is related to 285 

the aerosol particle size. Values less than 1 suggest an optical dominance of coarse particles 286 

corresponding to dust, ash and sea spray aerosols, while values greater than one imply 287 

dominance of fine particles such as smoke and industrial pollution (Eck et al., 1999). We chose 288 

data from five stations covering Western, Central and Eastern Europe, for which cloud-free 289 

measurements exist for the lockdown period, namely Ben Salem (9.91°E, 35.55°N), Minsk 290 

(27.60°E, 53.92°N), Montsec (0.73°E, 42.05°N), MetObs Lindenberg (14.12°E, 52.21°N) and 291 
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Munich University (11.57°E, 48.15°N). We used Level 1.5 absorption AE (AAE) 292 

measurements for the COVID-19 lockdown period (14 March to 30 April 2020). 293 

2.7 Statistical measures 294 

For the performance evaluation of the inversion results against dependent (observations 295 

that were included in the inversion) and independent observations (observations that were not 296 

included in the inversion), four different statistical quantities were used:  297 

(1) Pearson’s correlation coefficient: 298 

𝑅45 =
?∑ 4"5"

#
"$% <∑ 4"	 ∑ 5"

#
"$%

#
"$%

A?∑ 4"
'#

"$% <(∑ 4"
#
"$% )'A?∑ 5"

'#
"$% <(∑ 5"#

"$% )'
  (7) 299 

where 𝑛 is sample size, 𝑚 and 𝑜 the individual sample points for model concentrations and 300 

observations indexed with 𝑖.  301 

(2) The normalized root mean square error (nRMSE): 302 

𝑛𝑅𝑀𝑆𝐸 =
A∑ %

#
#
"$% (4"<5")'

5"
()*<5"

("#   (8) 303 

(3) The mean fractional bias 𝑀𝐹𝐵 was selected as a symmetric performance indicator that gives 304 

equal weights to under- or over-estimated concentrations (minimum to maximum values range 305 

from -200% to 200%) and is defined as: 306 

𝑀𝐹𝐵 = #
?
∑ (4"<5")
#
"$%
∑ (

("+,"
' )#

"$%
  (9) 307 

(4) The mean absolute error was computed normalized (𝑛𝑀𝐴𝐸) over the average of all the 308 

actual values (observations here), which is a widely used simple measure of error: 309 

𝑛𝑀𝐴𝐸 = ∑ |4"<5"|
#
"$%
∑ 5"#
"$%

  (10) 310 

2.8 Region definitions 311 

All country and regional masks are publicly available. Regions used for statistical 312 

processing purposes were adopted from the United Nations Statistics Division 313 

(https://unstats.un.org/home/). Accordingly, Northern Europe includes UK, Norway, Denmark, 314 

Sweden, Finland, Iceland, Estonia, Latvia and Lithuania. Southern Europe includes Spain, Italy, 315 

Greece, Slovenia, Croatia, Bosnia, Serbia, Albania and North Macedonia. Western Europe is 316 

defined by France, Belgium, Holland, Germany, Austria and Switzerland. Eastern Europe 317 

includes Poland, Czechia, Slovakia, Hungary, Romania, Bulgaria, Moldova, Ukraine, Belarus 318 

and Russia. 319 
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3 Results 320 

3.1 Optimized (posterior) emissions from Bayesian inversion  321 

We performed five inversions for BC over Europe for 1st January- 30th April 2020, each 322 

with different prior emissions from ECLIPSE version 5 and 6, EDGAR version HTAP_v2.2, 323 

ACCMIP version 5 and PKU (Figure 3). Total prior emissions of BC in Europe from the five 324 

emission inventories for the period of the inversion ranged between 192-377 kt. We evaluated 325 

the assumptions made on the error covariance matrices for the prior emissions and the 326 

observations using the reduced 𝜒$ statistic (𝐁 and 𝐑, see section 2.3). When 𝜒$ is equal to 327 

unity, the posterior solution is within the limits of the prescribed uncertainties. The performance 328 

of the inversions with the five different prior inventories was evaluated using four statistical 329 

parameters (see section 2.7). The best performance of the inversions was achieved using 330 

ECLIPSEv6 (Table 2 and Figure 2) with the smallest 𝑛𝑅𝑀𝑆𝐸  (0.073) value, the largest 331 

Pearson’s 𝑅$  (0.60), the closest to zero 𝑀𝐹𝐵  value (0.03) and the smallest 𝑛𝑀𝐴𝐸  (714). 332 

Therefore, all the results presented below correspond to this inversion. 333 

Posterior emissions of BC were calculated to be 191 kt in the inversion domain (10°W–334 

50°E, 25°N–75°N) or approximately 20% smaller than those in ECLIPSEv6 (239 kt) (Figure 335 

4). Note that these numbers refer to the whole inversion domain (not only Europe) and the 336 

whole study period (January – April 2020). The largest posterior differences were found in the 337 

eastern part of the domain (20°E–50°E, 45°N–55°N), where emissions dropped from 35 to 29 338 

kt. Emissions of BC in the western part of the inversion domain (10°W–20°E, 45°N–55°N) 339 

declined by almost 11% (from 45 to 40 kt), as those in the north part (5°W–35°E, 55°N–70°N) 340 

that covers Scandinavian countries (from 8.7 to 6.4 kt). Finally, in the southern part (10°W–341 

50°E, 35°N–45°N) of the domain (Spain, Italy, Greece) the posterior emissions also decreased 342 

by 21% relative to the priors (from 61 to 48 kt). The largest country decreases were seen in 343 

France (from 14 to 8.2 kt), Italy (from 8.0 to 5.9 kt), UK (from 4.4 to 3.1 kt) and Germany 344 

(from 4.5 to 4.1 kt). Surprisingly, BC emissions were slightly enhanced in Poland (from 21 to 345 

23 kt), and in Spain (from 6.3 to 7.5 kt). In general, inversion algorithms reduce the mismatches 346 

between modelled concentrations and observation by correcting emissions (section 2.3). If 347 

decreased posterior emissions are calculated during the whole inversion period (before and 348 

during the lockdowns), impact from the COVID-19 restrictions cannot be concluded and, most 349 

likely, the reduced emissions are due to errors in the prior emissions. In the next section (3.2), 350 

we demonstrate that this decrease was due to the COVID-19 lockdowns, by comparing 351 
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posterior emissions with emissions from previous years, as well as with the respective 352 

emissions before and during the lockdown measures. 353 

3.2 Comparison with previous years 354 

We also performed inversions for 2015–2019 for the same period as the 2020 lockdowns 355 

(January- April) using almost the same measurement stations and keeping the same settings. 356 

The difference in BC emissions during the lockdown in 2020 (14 March to 30 April) from the 357 

respective emissions during the same period in 2015–2019 (14 March to 30 April) are shown 358 

in Figure 5 (a, emission anomaly) together with the gross domestic product (GDP) (Kummu et 359 

al., 2020) (b) , and (c) temperature anomaly from ERA-5 (Copernicus Climate Change Service 360 

(C3S), 2020) for the same period as the emission anomaly. The difference in the 2020 emissions 361 

of BC during the lockdown from the respective emissions in the same period in each of the 362 

previous years (2015–2019) is illustrated in Supplementary Figure 1. As an independent source 363 

of information, active fires from MODIS satellite product MCD14DL (Giglio et al., 2003) are 364 

also shown in Figure 5a and Supplementary Figure 1. 365 

Overall, BC emissions decreased by ⁓46 kt during the COVID-19 lockdown in the 366 

inversion domain (10°W–50°E, 25°N–70°N) as compared with the same period in the previous 367 

five years. We record a significant decrease in BC emissions in Central Europe (Northern Italy, 368 

Austria, Germany, Spain and some Balkan countries) (Figure 5). On average, emissions were 369 

23 kt lower (63 to 40 kt) over Europe during the lockdown in 2020 than in the same period of 370 

2015–2019 (Figure 5). The decrease has the same characteristics when compared to each of 371 

previous years since 2015 (Supplementary Figure 1) based on measurements of BC at similar 372 

regions as those used for the 2020 inversion. The countries that showed drastic reductions in 373 

BC emissions during the lockdowns were those that suffered from the pandemic dramatically, 374 

with many human losses, strict social distancing rules and consequently less transport. 375 

Specifically, comparing with the previous five years, the 2020 emissions of BC during the 376 

lockdowns dropped by 20% in Italy (3.4 to 2.7 kt), 40% in Germany (3.3 to 2.0 kt), 34% in 377 

Spain (4.7 to 3.1 kt), 22% in France (3.5 to 2.7 kt) and remained the same or were slightly 378 

enhanced in Poland (~9.2 kt), and Scandinavia (~1.2 kt). Overall, BC emissions during the 2020 379 

lockdowns in Western Europe declined by 32% (8.8 to 6.0 kt), in Southern Europe by 42% (17 380 

to 9.9 kt) and in Northern Europe by 29% (5.4 to 3.8 kt) as compared with the 2015–2019 381 

period. BC emissions in Eastern Europe were slightly increased during the 2020 lockdown as 382 

compared to the same period in the last five years (28 to 31 kt). The hot-spot emissions in 383 

Eastern Europe coincide with the presence of active fires as revealed from MODIS (Figure 5a). 384 
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Note that these numbers correspond to BC emissions during the COVID-19 lockdown period 385 

only (mid-March – April 2020). 386 

Some localised areas of increased BC emissions exist in Southern France, Belgium, 387 

Northern Germany and Eastern Europe (Figure 5), which are observed relative to almost every 388 

year since 2015 (Supplementary Figure 1). While some hotspots in France cannot be easily 389 

explained, increased emissions in Eastern European countries are likely due to increased 390 

residential combustion, as people had to stay home during the lockdown. The combination of 391 

the financial consequences of the COVID-19 lockdown with the relatively low GDP per capita 392 

in these countries and the fact that from mid-March to end of April 2020 surface temperatures 393 

in these countries were significantly lower than in previous years is suggestive of increased 394 

emissions due to residential combustion. This source is most important in Eastern Europe 395 

(Klimont et al., 2017). Although residential combustion can be performed for heating or 396 

cooking needs in poorer countries, it is also believed to provide a more natural type of warmth 397 

and a comfortable and relaxing environment. Hence, it should not be assumed as an emission 398 

source in countries with lower GDPs only, especially as people spent more time at home. 399 

Moreover, the prevailing average temperatures over Europe during the lockdown were below 400 

15°C (Supplementary Figure 2), a temperature used as a basis temperature below which 401 

residential combustion increases (Quayle and Diaz, 1980; Stohl et al., 2013). 402 

3.3 Uncertainty and validation of the posterior emissions 403 

One of the basic problems when dealing with inverse modelling is that changing model, 404 

observational, or prior uncertainties can have drastic impacts on posterior emissions. We 405 

addressed this issue by finding the optimal parameters, in order to have a reduced 𝜒$ statistic 406 

around unity (see section 2.3). However, there are two other sources of uncertainty that, 407 

although not linked with the inversion algorithm, could affect posterior emissions drastically. 408 

The first is the use of different prior emissions; to estimate this type of uncertainty, we 409 

performed five inversions for January to April 2020 using each of the prior emission datasets 410 

(ECLIPSEv6 and v5, EDGAR_HTAPv2.2, ACCMIPv5 and PKU). The uncertainty was 411 

calculated as the gridded standard deviation of the posterior emissions resulting from the five 412 

inversions. The second type of uncertainty concerns measurement of BC, which is defined as a 413 

function of five properties (Petzold et al., 2013). However, as of today, no single instrument 414 

exists that could measure all of these properties at the same time. Hence, BC is not a single 415 

particle conistuent, rather an operational definition depending on the measurement technique 416 

(Petzold et al., 2013). Here we use light absorption coefficients (Petzold et al., 2013) converted 417 
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to equivalent BC (eBC) using the mass absorption cross section (MAC). The MAC is 418 

instrument specific and wavelength dependent. The site-specific MAC values used to convert 419 

the filter-based light absorption to eBC can be seen in Table 1. It has been reported that MAC 420 

values vary from 2 – 3 m2 g-1 up to 20 m2 g-1 (Bond and Bergstrom, 2006). To estimate the 421 

uncertainty of the posterior fluxes associated with the variable MAC, we performed a sensitivity 422 

study for January to April 2020 using MAC values of 5, 10 and 20 m2 g-1 in all stations, as well 423 

as variable MAC values for each station (Table 1). Since these values are lognormally 424 

distributed, the uncertainty is calculated as the geometric standard deviation. The impact of 425 

other sources of uncertainty, such as those referring to scavenging coefficients, particle size and 426 

density that are used in the model have been studied before and are significantly smaller than 427 

the sources of uncertainty that are considered here (Evangeliou et al., 2018; Grythe et al., 2017). 428 

The posterior emissions are less sensitive to the use of different MACs than the use of 429 

different prior inventories (Figure 6). The relative uncertainty due to different use of MAC 430 

values was up to 20–30% in most of Europe and increases dramatically (~100%) far from the 431 

observations. The emission uncertainty of BC from the use of different priors was estimated to 432 

be up to 40% in Europe and shows very similar characteristics (same hot-spot regions and larger 433 

values where measurements lack). Overall, the combined uncertainty of BC emissions was 434 

⁓60% in Europe. 435 

Validation of top-down emissions obtained by inversion algorithms can be proper only if 436 

measurements that were not included in the inversion are to be used (independent observations). 437 

For this reason, we left out of the inversion observations from two stations (DE0054K and 438 

DE0066R, Table 1). Due to the higher measurement station density in Central Europe, we 439 

randomly selected two German stations, rather than from a country that is adjacent to regions 440 

that lack observations. 441 

The prior, optimized and measured concentrations are shown in Figure 7 together with 442 

MERRA-2 surface BC concentrations at the same stations. The average footprint emission 443 

sensitivities are also given for the period of the lockdown. At station DE0054K, prior emissions 444 

represent observations very well until the beginning of the lockdown and then fail (Figure 7). 445 

On the other hand, the posterior emissions represent the variant concentrations during the 446 

lockdown effectively and also manage to capture some concentration peaks, which is reflected 447 

by lower 𝑛𝑅𝑀𝑆𝐸 . Backward modelling showed that the enhanced concentrations originate 448 

from Northern Germany and the Netherlands, where posterior emissions were increased 449 

compared with the prior ones (Figure 4). A similar pattern was seen at station DE0066K, 450 
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although this station showed concentrations up to 4 mg m-3 (Figure 7). Again, the optimized 451 

emissions managed to represent the peaks at the end of January 2020 and at the beginning of 452 

the lockdown, which is again reflected by a half 𝑛𝑅𝑀𝑆𝐸 values and 𝑀𝐹𝐵 close to zero as 453 

compared to the priors. The larger concentrations during the lockdown result from increased 454 

emissions over Eastern Germany, Poland and the Netherlands, as well as in oil industries in the 455 

North Sea (Figure 4b). In all these regions the footprint emissions sensitivities corresponding 456 

to the two independent stations were the highest.  457 

4 Discussion 458 

The improved air quality that Europe during the lockdown was also evident from the 459 

assimilated MERRA-2 satellite-based BC data. The latter are plotted in Supplementary Figure 460 

3 (left axis) for 2015–2020, together with the posterior emissions calculated in the present study 461 

(right axis). For instance, weekly average concentrations of BC over Europe in MERRA-2 462 

(Supplementary Figure 3, bottom). Many of the ACTRIS stations reported increased light 463 

absorption in the beginning of the lockdown (e.g., Figure 7); MERRA-2 data show the same 464 

patterns in France, Italy, UK and in Spain, and in all of Europe, in general. This can be explained 465 

by residential combustion considering that the surface temperature during the lockdown was 466 

lower than in previous years (Figure 5). The latter was confirmed by MERRA-2 reanalysis 467 

Ångström Exponent (AE) parameter at 470–870 nm, which shows higher values over Central 468 

and Eastern Europe during the lockdown in 2020 than in the same period of the previous years 469 

(Figure 8a,b). Larger AE values confirm the presence of wood burning aerosols (Eck et al., 470 

1999). The fact that during the COVID-19 lockdown, residential combustion was a significant 471 

aerosol source in Europe, as compared to the previous years, was also confirmed by real-time 472 

observations of absorption AE from the AERONET data in five selected stations over Europe 473 

(Figure 8c). Measured absorption AE was higher during mid-March to April 2020 than in the 474 

same period of the last five years. 475 

Emissions of BC calculated with Bayesian inversion for the lockdown period dropped 476 

substantially in most of the countries that suffered from further spread of the virus and, 477 

accordingly, from strict lockdown measures, as compared to the respective emissions before 478 

the lockdowns (Supplementary Figure 3). Specifically, the decrease in France was as high as 479 

42%, 8% in Italy, 21% in Germany, 11% in Spain and 13% in the UK. Emissions also declined 480 

in Scandinavia by 5%, although Sweden did not enforce a lockdown. Overall, a reduction in 481 

BC emissions of about 11% can be concluded for Europe as a whole due to the lockdown. 482 
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Stronger decreases in Eastern Europe were likely partly compensated by increased residential 483 

combustion in resulting from the prevailing low temperatures. 484 

We report a 23 kt decrease in BC emissions in Europe during the lockdown that partially 485 

resulted from the COVID-19 outbreak, as compared to the same period in all previous years 486 

since 2015, based on particle light absorption measurements. We highlight these changes in BC 487 

emissions partially as a result of COVID-19 restrictions by plotting the temporal variability of 488 

the BC emissions in the 5 previous years (2015 – 2019) for France, Italy, Germany, Spain, 489 

Scandinavia and Europe (Figure 9). We record decreases in BC emissions in France, Italy, 490 

Germany and Scandinavia in mid-March to April 2020, opposite to what was estimated for all 491 

years between 2015 and 2019, which is obviously due to COVID-19. The UK and Spain showed 492 

a similar decrease in mid-March to April 2020 emissions as in all previous years (2015–2019). 493 

However, the estimated posterior BC emissions during the 2020 lockdowns were significantly 494 

lower than those of the same period in any of the previous years. Overall, emissions declined 495 

by 20% in Italy, 40% in Germany, 34% in Spain, 22% in France and remained the same and 496 

slightly enhanced in Scandinavia or Poland as compared to those of the last five years. 497 

5 Conclusions 498 

The impact of the COVID-19 lockdowns over Europe on the BC emissions, in response 499 

to the pandemic was assessed in the present manuscript. Particle light absorption measurements 500 

from 17 ACTRIS stations all around Europe were rapidly gathered and cleaned to produce a 501 

high-quality product. The latter was used in a well-established Bayesian inversion framework 502 

and BC emissions were optimised over Europe to better capture the observations. However, 503 

one should be careful not to overinterpret the emission changes at regional scales, due to the 504 

poor station data density used and the high resolution timesteps of the inversions (weekly 505 

posterior emissions). We calculate that the optimised (posterior) BC emissions declined from 506 

63 to 40 kt (23%) during the lockdowns over Europe, as compared to the same period in the 507 

previous five years (2015–2019). The largest reductions were calculated for countries that 508 

suffered from the pandemic dramatically, such as Italy (3.4 to 2.7 kt), Germany (3.3 to 2.0 kt), 509 

Spain (4.7 to 3.1 kt), France (3.5 to 2.7 kt). BC emissions in Western Europe during the 2020 510 

lockdowns were decreased from 8.8 to 6.0 kt (32%), in Southern Europe from 17 to 9.9 kt 511 

(42%) and in Northern Europe from 5.4 to 3.8 kt (29%) as compared to the same period in the 512 

last five years. BC emissions were slightly enhanced in Eastern Europe (from 28 to 31 kt) and 513 

remained unchanged in Scandinavia during the lockdown, due to increased residential 514 
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combustion, as people had to stay home and temperatures at that time were the lowest of the 515 

last five years. The presence of wood burning aerosols during the lockdowns was confirmed by 516 

large MERRA-2 AE, as well as from absorption AE measurements from AERONET that were 517 

higher in the lockdowns than in the same period of the last five years. The impact of the 518 

European lockdowns on BC emissions was also confirmed by a 11% decrease of the posterior 519 

emissions over Europe during the lockdowns, as compared to the period before, opposite to 520 

what was calculated in the previous years, which is obviously due to COVID-19. This decrease 521 

was more pronounced in France (42%), Italy (8%), Germany (21%), Spain (11%), UK (13%) 522 

and in Scandinavian countries (5%). The full impact of the disastrous pandemic will likely take 523 

years to assess. Nevertheless, with COVID-19 cases once again increasing in many countries, 524 

the information presented here are essential to understand the full health and climate impacts 525 

of lockdown measures. 526 
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TABLES & FIGURES 815 

 816 

Table 1. Observation sites from the ACTRIS platform used to perform the inversions 817 

(dependent observations) and to validate the posterior emissions (independent observations) 818 

(the altitude indicates the sampling height in meters above sea level). Multi-Angle Absorption 819 

Photometers (MAAP) were used at all sites, except El Arenosillo (ES0100R) where a 820 

Continuous Light Absorption Photometer (CLAP) was used, Birkenes (NO0002R), where a 821 

Particle Soot Absorption Photometer (PSAP) and Observatoire Perenne de l' Environnement 822 

(FR0022R) and Zeppelin (NO0042G) where Aethalometers (AW31) were used. 823 

Name Latitude Longitude Altitude Type Wavelength 
(nm) 

MAC@637 
(m2 g-1) 

Jungfraujoch 
(CH0001G) 46.55 7.99 3578 Dependent 637 10 

Hohenpeissenberg 
(DE0043G) 47.80 11.01 985 Dependent 660 9.65 

Melpitz 
(DE0044K) 51.53 12.93 86 Dependent 670 8.78 

Zugspitze-
Schneefernerhaus 
(DE0054R) 

47.42 10.98 2671 Independent 670 9.51 

Leipzig-
Eisenbahnstrasse 
(DE0066K) 

51.35 12.41 120 Independent 670 9.51 

Izaña (ES0018G) 28.41 -16.50 2373 Dependent 670 9.51 
Granada 
(ES0020U) 37.16 -3.61 680 Dependent 670 9.51 

Montsec 
(ES0022R) 42.05 0.73 1571 Dependent 670 9.51 

El Arenosillo 
(ES0100R) 37.10 -6.73 41 Dependent 652 13.64 

Montseny 
(ES1778R) 41.77 2.35 700 Dependent 670 8.48 

Pallas (FI0096G) 67.97 24.12 565 Dependent 637 10.00 
Observatoire 
Perenne de l' 
Environnement 
(FR0022R) 

48.56 5.51 392 Dependent 880 7.24 

Puy de Dôme 
(FR0030R) 45.77 2.96 1465 Dependent 670 9.51 

Ispra (IT0004R) 45.80 8.63 209 Dependent 880 6.96 
Mt Cimone 
(IT0009R) 44.18 10.70 2165 Dependent 670 9.51 

Birkenes II 
(NO0002R) 58.39 8.25 219 Dependent 660 7.59 

Zeppelin mountain 
(NO0042G) 78.91 11.89 474 Dependent 880 7.24 
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Table 2. Statistical measures (𝑹𝑴𝑺𝑬, Pearson’s 𝑹𝟐, 𝑴𝑭𝑩 and 𝒏𝑴𝑨𝑬) for each of the prior 825 

and posterior concentrations against dependent observations (observations that were used in the 826 

inversion algorithm) for BC (eBC). Note that the inversion using ECLIPSEv6 prior emission 827 

dataset gave the best agreement with the observations and therefore the results of this inversion 828 

are presented here. 829 

 𝒏𝑹𝑴𝑺𝑬 Pearson’s 𝑹𝟐 MFB nMAE 
Prior ECLIPSEv6 0.102 0.30 0.52 997 
Prior ECLIPSEv5 0.098 0.18 -0.04 996 
Prior EDGAR_HTAPv2.2 0.105 0.11 0.34 1017 
Prior ACCMIPv5 0.101 0.28 0.36 971 
Prior PKU 0.101 0.21 0.25 983 
Posterior ECLIPSEv6 0.073 0.60 0.03 714 
Posterior ECLIPSEv5 0.084 0.52 0.09 819 
Posterior EDGAR_HTAPv2.2 0.084 0.53 0.20 815 
Posterior ACCMIPv5 0.091 0.55 0.26 787 
Posterior PKU 0.082 0.55 0.24 795 
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	832 
Figure 1. Aggregated inversion grid used for the (a) 2015–2019 and (b) 2020 inversions, 833 

respectively. The dependent measurements that were used in the inversion were taken from 834 

stations highlighted in red. The two independent stations that were used for the validation are 835 

shown in blue. (c, d) Footprint emission sensitivity (i.e. SRM) averaged over all observations 836 

and time steps for each of the inversions. Red points denote the location of each measurement 837 

site.  838 
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 839 
Figure 2. Scatter plots of prior and posterior concentrations against dependent observations 840 

(observations that were included in the inversion framework) from ACTRIS from January to 841 

April 2020. Four statistical measures (𝒏𝑹𝑴𝑺𝑬, Pearson’s 𝑹𝟐, 𝑴𝑭𝑩 and 𝒏𝑴𝑨𝑬) were used to 842 

assess the performance of each inversion using five different prior emission inventories for BC 843 

(ECLIPSEv5, v6, ACCMIPv5, EDGAR_HTAPv2.2 and PKU). 844 

  845 
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 846 
Figure 3. Prior emissions of black carbon (BC) used in the inversions. BC emissions from 847 

anthropogenic sources were adopted from ECLIPSE version 5 and 6 (Evaluating the CLimate 848 

and Air Quality ImPacts of ShortlivEd Pollutants) (Klimont et al., 2017), EDGAR (Emissions 849 

Database for Global Atmospheric Research) version HTAP_v2.2 (Janssens-Maenhout et al., 850 

2015), ACCMIP (Emissions for Atmospheric Chemistry and Climate Model Intercomparison 851 

Project) version 5 (Lamarque et al., 2013) and PKU (Peking University) (Wang et al., 2014b). 852 

Biomass burning emissions of BC from Global Fire Emissions Database (GFED) version 4.1 853 

(Giglio et al., 2013) were added in each of the aforementioned inventories. 854 

 	855 
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		856 
Figure 4. (a) Prior emissions of BC from ECLIPSEv6, (b) optimized (posterior) BC emissions 857 

after processing the ACTRIS data into the inversion algorithm, and (c) difference between 858 

posterior and prior emissions. All the results correspond to the inversion yielding the best results 859 

(Table 2 and Figure 2). 860 
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 862 
Figure 5. (a) Difference in posterior BC emissions during the lockdown (14 March to 30 April 863 

2020) in Europe from the respective emissions during the same period in 2015 – 2019, (b) GDP 864 

from Kummu et al. (2020), and (c) temperature anomaly from ERA-5 (Copernicus Climate 865 

Change Service (C3S), 2020) for the same period as the emission anomaly. The base GDP value 866 

below which a low income can be assumed was set to 12 thousand US dollars. Active fires from 867 

MODIS are plotted together with emission anomaly (green dots). 868 
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 870 
Figure 6. (a) Uncertainty of BC emissions due to the use of variable MAC values to convert 871 

from aerosol absorption to eBC concentrations that are used by the inversion algorithm. (b) 872 

Uncertainty due to the use of five different prior emissions inventories for BC. (c) Combined 873 

uncertainty. 874 
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 876 
Figure 7. Prior and posterior BC concentrations at DE0054K and DE0066R stations that were 877 

not included in the inversion are compared with observations. The validation is done by 878 

calculating the 𝒏𝑹𝑴𝑺𝑬𝒔  and 𝑴𝑭𝑩𝒔  for the prior and posterior concentrations. The 879 

uncertainty of the observations is also given together with the posterior uncertainties in the 880 

concentrations calculated from the use of different MAC and prior emissions. For comparison, 881 

we plot the concentrations from MERRA-2 at the same two stations. The vertical dashed lines 882 

denote the period of the lockdown in most of Europe. On the right, the average footprint 883 

emission sensitivities are given at each independent station for the period of the lockdown. 884 
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 886 
Figure 8. (a) Average total aerosol Ångström parameter (470-870 nm) over Europe (mid-887 

March to April) in the five previous years (2015–2019) and (b) in 2020 (lockdown). (c) 888 

AERONET Absorption AE in Ben Salem (9.91°E, 35.55°N, in red), Minsk (27.60°E, 889 

53.92°N, green), Montsec (0.73°E, 42.05°N, blue), MetObs Lindenberg (14.12°E, 52.21°N, 890 

magenta) and Munich University (11.57°E, 48.15°N) during mid-March to April in all years 891 

since 2015. 892 
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 894 
Figure 9. Posterior BC emissions in the most highly affected European countries (France, Italy, 895 

Germany, Spain and UK), Scandinavia and Europe from the COVID-19 pandemic (2020). 896 

Posterior BC emissions for every year since 2015 are also plotted in the same temporal 897 

resolution to show changes in BC emissions characteristics during the 2020 COVID-19 898 

pandemic. The grey shaded area corresponds to the BC emission uncertainty, while the vertical 899 

yellow dashed lines correspond to the beginning and end of the 2020 lockdown.  900 
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SUPPLEMENTARY FIGURE LEGENDS 901 

 902 

Supplementary Figure 1. Comparison with BC emissions in previous years.	903 

Difference of optimised (posterior) BC emissions over Europe during the 2020 lockdown (14 904 

March to 30 April) from respective BC emissions in previous years (same period) constrained 905 

with the same inversion algorithm and the same settings. Active fires from MODIS are plotted 906 

together with emission anomaly (green dots). 907 

Supplementary Figure 2. Surface temperature during the 2020 lockdown. 908 

Average surface temperature at 2 m over Europe during the COVID-19 lockdown (14 March 909 

to 30 April) from ERA-5 (ECMWF)(Copernicus Climate Change Service (C3S), 2020). Note 910 

that prevailing average temperatures over Europe during the lockdown were below 15°C. This 911 

temperature has been used as the basis temperature, below which residential combustion has 912 

been found to increase(Quayle and Diaz, 1980; Stohl et al., 2013). 913 

Supplementary Figure 3. Weekly posterior BC emissions against MERRA-2 914 

concentrations. 915 

Average surface BC concentrations from MERRA-2 (left axis) since 2015 in the most highly 916 

affected European countries (France, Italy, Germany, Spain and UK), Scandinavia and Europe 917 

from the pandemic, in contrast to the calculated optimized BC emissions (right axis). The grey 918 

shaded area corresponds to the BC emission uncertainty calculated as described in section 3.3. 919 

The vertical yellow dashed lines correspond to the beginning and end of the COVID-19 920 

lockdown (14 March to 30 April 2020). 921 


