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Abstract. The ambient concentrations of particulate matters (PM2.5 and PM10) are significant indicators for monitoring 13 

the air quality relevant to living conditions. Most of the existing approaches for the estimation of PM2.5 and PM10 14 

employed the remote sensing Aerosol Optical Depth (AOD) products as the main variate. Nevertheless, the coverage of 15 

missing data is generally large in AOD products, which can cause inconvenience to the researchers. To efficiently address 16 

this issue, our study explores a novel approach using the datasets of the precursors & chemical compositions for PM2.5 17 

and PM10 instead of AOD products. Specifically, the daily full-coverage ambient concentrations of PM2.5 and PM10 are 18 

estimated at 5-km (0.05°) spatial girds across China based on Sentinel-5P and GEOS-FP. In this paper, the Light Gradient 19 

Boosting Machine is exploited to train the estimation models, which will fully fuse the multi-source data. For comparison, 20 

the Deep Blue AOD product from VIIRS is adopted in a similar framework as a baseline (AOD-based). The validation 21 

results show that the ambient concentrations are well estimated through the proposed approach, with the sample-based 22 

Cross-Validation R2s and RMSEs of 0.93 (0.9) and 8.982 (17.604) μg/m3 for PM2.5 (PM10), respectively. Meanwhile, the 23 

proposed approach achieves better performance than the AOD-based in different cases (e.g., overall and seasonal). 24 

Compared to the related previous works over China, the estimation accuracy of our method is also satisfactory. 25 

Furthermore, all the variates of the precursors & chemical compositions for PM2.5 and PM10 positively contribute to the 26 

estimation in the proposed approach, as expected. With regard to the mapping, the estimated results through the proposed 27 

approach present consecutive spatial distribution and can exactly express the seasonal variations of PM2.5 and PM10. It is 28 

concluded that the full-coverage estimated results in our study are conducive to the researches on PM2.5 and PM10 over 29 

the regions where the AOD values are missing.  30 
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1 Introduction 31 

Particulate matters with aerodynamic equivalent diameters less than 2.5 μm (PM2.5) and 10 μm (PM10) have been 32 

considered as major air pollutants for decades (Finlayson-Pitts et al., 1997; Hall et al., 1992; Lee, 1972), which can hazard 33 

the environment and human health (Crippa et al., 2019; Liu et al., 2020; Ma et al., 2017; Venkataraman et al., 2018). The 34 

ambient concentrations of PM2.5 and PM10 are strongly relevant to living conditions and required to be accurately 35 

monitored. Generally, ground-based stations are recognized as the most direct and dependable approach to obtain the 36 

ambient concentrations of PM2.5 and PM10 (Engel-Cox et al., 2013; Li et al., 2017a; Yang et al., 2020a, 2020b). 37 

Nevertheless, the establishing of ground-based stations is costly, which causes difficulties in the implementation (Shen et 38 

al., 2020). Meanwhile, the measurements from ground-based stations are only applicable in small regions and fail to 39 

provide a global perspective (Li et al., 2020). Hence, the approaches based on Chemical Transport Models (CTMs) (Van 40 

Donkelaar et al., 2010; Wang et al., 2016; Weagle et al., 2018) or remote sensing satellites (Chen et al., 2018; Li et al., 41 

2020; Stafoggia et al., 2019; Shtein et al., 2020; Wei et al., 2019; Yao et al., 2019; You et al., 2015) have been developed 42 

to enlarge the spatial coverage of the PM2.5 and PM10 monitoring. Since the uncertainties of the emission inventories 43 

adopted in CTMs could be large in some areas (Li et al., 2017b), the approaches based on remote sensing satellites usually 44 

achieve better performance than those based on CTMs. 45 

 46 

Figure 1. The spatial distribution of the ground-based stations over China. The base-map is the true color image of MODIS. 47 

To date, numerous studies have researched on the estimation of the ambient particulate matters concentrations (PM2.5 and 48 

PM10) using the observations from remote sensing satellites (Chen et al., 2018; Li et al., 2020; Stafoggia et al., 2019; 49 
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Shtein et al., 2020; Wei et al., 2019; Yao et al., 2019; You et al., 2015). Thereinto, most of them will adopt a key 50 

atmospheric parameter, i.e., Aerosol Optical Depth (AOD) (Wang et al., 2019a, 2019b), which presents high correlations 51 

with the ambient concentrations of PM2.5 and PM10 (Guo et al., 2017; Li et al., 2019; Yang et al., 2019). For instance, 52 

Chen et al. (2018) exploited the Random Forest (RF) to acquire the daily ambient concentrations of PM10 in China 53 

employing the Deep Blue (DB) and Dark Target (DT) combined AOD products from the Moderate Resolution Imaging 54 

Spectroradiometer (MODIS); Wei et al. (2019) proposed the Space-Time Random Forest model for the mapping of the 55 

daily 1-km ambient concentrations of PM2.5 over China on the basis of the Multi-Angle Implementation of Atmospheric 56 

Correction AOD product; Li et al. (2020) developed a brand-new method, i.e., the Geographically and Temporally 57 

Weighted Neural Network, to obtain the daily ambient concentrations of PM2.5 across China, which is devised to fix the 58 

spatiotemporal heterogeneous issues of the AOD-PM2.5 relationships. There is no doubt that these works have provided 59 

wonderful results and made contributions to the atmospheric environment field. Nevertheless, the data is usually 60 

unavailable in the AOD products from remote sensing satellites due to the influences from clouds, ice/snow, and 61 

arid/semiarid surface (only for DT-like AOD products) (Levy et al., 2013; Sayer et al., 2019). As a consequence, the 62 

completeness of valid values in the estimated results (PM2.5 and PM10) are also poor through the above-mentioned 63 

approaches, which can result in inconvenience to the researchers. To remedy this deficiency, the algorithm of AOD 64 

recovery is generally utilized as one of the preprocessing steps to fill the missing data in the AOD products. So far, these 65 

algorithms achieve expected performance in local regions (Hua et al., 2019; Xiao et al., 2017) while still likely signify 66 

considerable uncertainties for large scale. Hence, it is necessary to explore a novel approach for the estimation of PM2.5 67 

and PM10 using other data sources instead of AOD products. 68 

 69 

Figure 2. The flowchart of the proposed approach in our study. The models for the estimation of PM2.5 and PM10 are separately trained. 70 

As is well-known, PM2.5 and PM10 consist of multiple chemical compositions (Dabek-Zlotorzynska et al., 2011; Tao et 71 

al., 2017; Wang et al., 2019c), including sulfate, nitrate, black carbon, dust, etc. In the meantime, some chemical species 72 
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are considered as the precursors for PM2.5 and PM10 (Baker et al., 2007; Heo et al., 2016; Tucker et al., 2000), such as 73 

sulfur dioxide (SO2) and nitrogen dioxide (NO2). It is reasonable to estimate the ambient concentrations of PM2.5 and 74 

PM10 based on these precursors & chemical compositions. The Sentinel-5 Precursor (Sentinel-5P) satellite (Veefkind et 75 

al., 2012) was launched on 13 October 2017, carrying the TROPOspheric Monitoring Instrument (TROPOMI) to generate 76 

global high-coverage total/tropospheric vertically column of the precursors (e.g., NO2) for PM2.5 and PM10. Therefore, it 77 

is feasible to adopt the atmospheric products of TROPOMI after the missing data recovery for small regions. However, it 78 

would be insufficient for the estimation of the ambient particulate matters concentrations (PM2.5 and PM10), only using 79 

the datasets from TROPOMI as the major factors. The GEOS Forward Processing (GEOS-FP) (Lucchesi et al., 2013) 80 

assimilated datasets from the Global Modeling and Assimilation Office (GMAO) can provide the seamless prior 81 

information of the precursors & chemical compositions for PM2.5 and PM10, which ought to be also introduced as the 82 

major factors in our study. 83 

The purpose of this study is to develop a novel approach to estimate the daily full-coverage 5-km (0.05°) ambient 84 

concentrations of PM2.5 and PM10 using the datasets from TROPOMI and GEOS-FP. In our study, one of the ensemble 85 

learning methods, i.e., the Light Gradient Boosting Machine (LGBM) (Ke et al., 2017), is applied for the estimation by 86 

fusing the multi-source (TROPOMI, GEOS-FP, and ground-based stations) data. Meanwhile, the DB AOD product from 87 

the Visible Infrared Imager Radiometer Sensor (VIIRS) (Hus et al., 2019) is employed in a similar framework as a baseline 88 

(AOD-based) for comparison, which replaces the atmospheric products of TROPOMI and GEOS-FP. Comprehensive 89 

experiments show that the approach proposed in our study well estimates the ambient particulate matters concentrations 90 

and achieves better performance than the AOD-based, signified in both estimation accuracy and completeness of valid 91 

values. 92 

The remainder of this study is arranged as follows. Section 2 describes the study area and the datasets adopted in our 93 

study. The methodology of the proposed approach is presented in Section 3. Section 4 provides the experiment results, 94 

covering the model performance in different cases (e.g., overall and seasonal), the spatial distribution analyses, and some 95 

discussions. At last, the conclusions are given in Section 5. 96 

2 Study area and datasets 97 

2.1 Study area 98 

As the country with the largest population in the world (~18% out of the world population by March 2019), China is 99 

regarded as the study area in this paper (shown in Figure 1). For more than ten years, air pollution issues (e.g., high-100 

polluted particulate matters) are rapidly emerging in China, which results from the acceleration of economic developments 101 
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(Wang et al., 2019a). Thanks to the relevant regulations formulated by the government and the endeavors from social 102 

various circles, the air quality has been greatly improved today, including the marked descent of particulate matters (Lin 103 

et al., 2018; Ma et al., 2019). However, the pollutions of particulate matters are not optimistic over China by comparison 104 

with a few developed countries in the world. Meanwhile, PM2.5 and PM10 are still deemed as the primary air pollutants of 105 

urban areas in the eastern and northwestern China, respectively. It is necessary to develop an approach that can monitor 106 

PM2.5 and PM10 across China continuously and precisely. 107 

 108 
Figure 3. The schematic diagram of the validation methods in our study. 109 

2.2 Datasets 110 

In this study, the datasets from TROPOMI and GEOS-FP during June 1, 2018 to March 31, 2020 over China are deemed 111 

as the main variates of the inputs in the proposed approach. Meanwhile, some other datasets are adopted as the auxiliary 112 

variates of inputs to enlarge the applicability of the trained models, such as meteorological factors (e.g., planetary 113 

boundary layer height and air temperature), Normalized Difference Vegetation Index (NDVI) (Beck et al., 2006), and 114 

population density (Bai et al., 2018). In addition, the measurements from the China National Environmental Monitoring 115 

Center (CNEMC) are considered as the ground truth-values, consisting of the hourly ambient concentrations of PM2.5 and 116 

PM10. The descriptions of all datasets are provided as follows. 117 

2.2.1 Ground-based measurements 118 

In the study area, the hourly measurements of PM2.5 and PM10 during June 1, 2018 to March 31, 2020 are firstly allocated 119 

from CNEMC, which can be obtained at http://106.37.208.233:20035/. The spatial distribution of ground-based stations 120 

utilized in this study is demonstrated in Figure 1, using the marks of circles with pentacles inside. As illustrated, a total 121 

of ~1640 ground-based sites (by March 2020) are established in the study area to monitor the pollution of PM2.5 and PM10, 122 

densely covering most territories of China, except some regions (e.g., Qinghai). The daily ambient concentrations of PM2.5 123 

and PM10 are deemed as the ground truth-values (output), which are acquired by averaging the hourly measurements 124 

within a day. It’s worth noting only the records with no less than 16 hourly measurements in a single day will be adopted. 125 
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2.2.2 TROPOMI atmospheric products 126 

The TROPOMI is the single instrument of the Sentinel-5P spacecraft (Veefkind et al., 2012), which covers the wavelength 127 

of UltraViolet (UV), Near InfraRed (NIR), and ShortWave InfraRed (SWIR). This hyperspectral spectrometer is devised 128 

to provide daily observations of SO2, NO2, ozone (O3), etc., at high spatial resolutions, using passive remote sensing 129 

methods. The typical pixel size (near-nadir) is set as 7×3.5 km2 for all spectral bands, except the UV1 band (7×28 km2) 130 

and SWIR bands (7×7 km2). As for the evaluation, the TROPOMI atmospheric products are routinely compared to ground-131 

based measurements and observations from other instruments carried onboard remote sensing satellites, such as the Ozone 132 

Monitoring Instrument (Levelt et al., 2006). The evaluation results show that the qualities of the TROPOMI atmospheric 133 

products compile with the mission requirements (Garane et al., 2019; Griffin et al., 2019; Theys et al., 2017). In our study, 134 

the records of “sulfurdioxide_total_vertical_column_1km” and “nitrogendioxide_tropospheric_column” are regarded as 135 

the main variates in the proposed approach, which are related to sulfate and nitrate, respectively. In addition, particulate 136 

matters (PM2.5 and PM10) were discovered to be associated with O3 (Chen et al., 2019, 2020). Therefore, the record of 137 

“ozone_total_vertical_column” is also introduced in the proposed approach as one of the auxiliary variates. The 138 

information about the TROPOMI atmospheric products used in this study is specifically provided in Table S1 of the 139 

supplementary materials. 140 

2.2.3 GEOS-FP assimilated products 141 

The GEOS-FP data assimilation system employs an analysis designed collectively with the National Centers for 142 

Environmental Prediction (Lucchesi et al., 2013), which is the current operational met data product from GMAO. 143 

Generally, the GEOS-FP can provide the time-averaged (e.g., hourly) assimilated datasets performed at a spatial resolution 144 

of 0.25º0.3125º, including the atmospheric chemical species and meteorological factors. In our study, the records of the 145 

precursor/chemical compositions for PM2.5 and PM10 from GEOS-FP are considered as the main variates of the inputs, 146 

including the nitrate-related (i.e., Nitrate Column Mass Concentration), carbon-related (e.g., Organic Carbon Column 147 

Mass Concentration), sulfate-related (i.e., SO4 Column Mass Density), etc. Furthermore, a few meteorological factors 148 

from GEOS-FP are also adopted as the auxiliary variates in the proposed approach, such as wind speed, specific humidity, 149 

and planetary boundary layer height. The relevant information of the GEOS-FP datasets used in our study is presented in 150 

the supplementary materials (see Table S1). 151 

2.2.4 Geographical factors 152 

Some geographical factors are usually exploited as the ancillary variates to estimate the ambient concentrations of PM2.5 153 

and PM10 in previous studies, including the land cover classifications (Zhang et al., 2017), population density, NDVI, and 154 
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road density (Haklay et al., 2008). Hence, these factors are also introduced in our study, which are associated with PM2.5 155 

and PM10. The detailed information about the geographical factors utilized in our study is listed in Table S1 of 156 

supplementary materials, which will not be repeatedly described here. 157 

2.2.5 VIIRS DB AOD product 158 

The DB algorithm (Hsu et al., 2019) was first proposed to retrieve aerosol properties of the observations from MODIS 159 

over arid/semiarid and urban areas. After a decade, an enhanced DB algorithm was developed and applicable for all areas 160 

without snow/ice. In the latest Collection 6.1 (C6.1), the scheme of DB was upgraded once again with several updates, 161 

such as the heavy smoke detection. With regard to VIIRS, the procedures are similar to the one for MODIS in C6.1, while 162 

a few marked differences still exist. For example, a modified NIR method is employed to acquire the surface reflectance 163 

in croplands. The evaluation results showed that the VIIRS DB algorithm performs better than the one for MODIS over 164 

Asia (Wang et al., 2020). Due to the similar spatial resolution (6-km) with TROPOMI, the DB AOD from VIIRS is 165 

deemed as the main variate in a framework (baseline, AOD-based) for comparison, which is close to the proposed 166 

approach (with the same auxiliary variates expect the O3 product from TROPOMI). The specific information about the 167 

VIIRS DB AOD product is appended in the supplementary materials (Table S2). 168 

3 Methodology 169 

The flowchart of the proposed approach is depicted in Figure 2. As can be seen, the datasets (main and auxiliary variates) 170 

are initially preprocessed in advance of being adopted as the inputs, e.g., the resampling and missing data recovery. 171 

Meanwhile, the ground truth-values (output) are obtained by averaging the hourly ground-based measurements within a 172 

day (≥ 16 out of 24). Next, the inputs and ground truth-values ought to be spatially matched considering the differences 173 

between them. After the data matching, the data pairs (matched samples) will be fed into the LGBM to train the model. 174 

Eventually, a total of three 10-fold Cross-Validation (CV) methods are exploited to validate the performance of the 175 

proposed approach. The specific procedures are stated in the following subsections. It’s worth noting that the models for 176 

the estimation of PM2.5 and PM10 are separately trained. In addition, the methodology of the baseline (AOD-based) is 177 

close to the proposed approach, which is appended in Figure S1 of the supplementary materials. 178 

3.1 Data preprocessing 179 

Firstly, the spatial resolutions of the datasets (main and auxiliary variates) should be adjusted to coincident. In our study, 180 

the datasets from TROPOMI, GEOS-FP, and geographical factors are resampled to 5-km through the nearest neighbor 181 

interpolation (Olivier et al., 2012), bicubic interpolation (Nuno-Maganda et al., 2005), and area-weighted aggregation 182 
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(Liu et al., 2019), respectively. In the meantime, the daily datasets of GEOS-FP are acquired by averaging the hourly/3-183 

hour records within a day. Next, the missing values for small regions in the datasets from TROPOMI are filled through 184 

the exemplar-based algorithm (Criminisi et al., 2004). Since the missing coverage of the TROPOMI SO2 and O3 products 185 

is little, only the examples of the simulated experiments for the TROPOMI NO2 product are demonstrated in the 186 

supplementary materials (Figure S2). Besides, the missing values for some pixels in the NDVI product are also filled 187 

using the Inverse Distance Weighted interpolation (Wang et al., 2019b). 188 

 189 
Figure 4. The density scatter plots of the validation results in the study area. The black solid line signifies the fitted line and the color 190 

bar denotes the density of samples. Y: estimated ambient concentrations of PM2.5 and PM10; X: ground-based ambient concentrations 191 

of PM2.5 and PM10. 192 

3.2 Data matching 193 

Generally, the datasets (main and auxiliary variates) are grid-based at different spatial resolutions, while ground-based 194 

stations only measure the ambient concentrations of PM2.5 and PM10 for small regions. Therefore, the grid-based datasets 195 

and ground-based measurements should be spatially matched. In brief, all the ground truth-values falling in one spatial 196 

grid (5-km) are averaged to match the datasets from TROPOMI, GEOS-FP, and geographical factors. 197 

3.2 Light Gradient Boosting Machine 198 

LGBM is a newly devised and advanced ensemble learning method based on the Gradient Boosting Decision Tree (Ke et 199 

al., 2017). As one of the gradient boosting algorithms, the targets for each training round in LGBM are residual, which 200 
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are computed from the truth-value and the estimations after previous training rounds. In other words, the learners in 201 

LGBM are mutually associated and consequently the dependencies between learners will be employed. For instance, the 202 

overall performance can be significantly improved by assigning higher weights to the samples estimated with larger errors 203 

in previous training rounds. Compared to previous gradient boosting algorithms, LGBM is capable of easily achieving 204 

higher accuracy with fewer sample features, less memory, and faster speed. In general, the highlights of LGBM mainly 205 

consists of two parts: Gradient-based One-Side Sampling and Exclusive Feature Bundling. Both of them are designed to 206 

decrease the number of samples in each training round and retained the estimation accuracy. The specific structures of 207 

LGBM are complicated and will not be described in our study. For more information, readers could refer to Ke et al., 208 

2017. 209 

LGBM can process high-dimensional big data of large scale, presenting higher efficiency and better performance by 210 

comparison with conventional machine learning methods, e.g., the RF, Generalized Regression Neural Network 211 

(Cigizoglu et al., 2005), and Support Vector Regression (Drucker et al., 1997). Hence, it is reasonable to adopt LGBM in 212 

our study. The general scheme of the model for estimating the ambient concentrations of PM2.5 and PM10 can be expressed 213 

as Eq. (1). 214 

𝐶௉ெ = 𝑓(𝑉𝑀௉ , 𝑉𝑀஼஼ , 𝑉𝐴ைଷ, 𝑉𝐴ெி , 𝑉𝐴ீி)                                                           (1) 215 

where CPM signifies the estimated ambient concentrations of PM2.5 and PM10. f denotes the estimation function for the 216 

ambient concentrations of PM2.5 and PM10 based on LGBM. VMP and VMCC include the main variates of the precursors 217 

and chemical compositions, respectively, for PM2.5 and PM10. VAO3, VAMF, and VAGF represent the auxiliary variates of 218 

the O3 from TROPOMI, meteorological factors, and geographical factors, respectively. The detailed information about 219 

each variate can be found in Table S1 and S3 of the supplementary materials. The setting of the LGBM parameters is 220 

listed in Table S4. 221 

3.3 Validation methods 222 

To sufficiently validate the performance of the proposed approach, a total of three 10-fold CV methods, i.e., the sample-223 

based CV, space-based CV, and time-based CV, are exploited in our study. With regard to the sample-based CV, all the 224 

matched samples are divided into 10 folds at random (the number is approximately identical). Next, nine folds are 225 

employed to train the model and the remaining one is considered for the validation. At last, the previous step is repeatedly 226 

performed 10 times and consequently each fold can be validated. As for the space-based CV and time-based CV, the steps 227 

are close to those for the sample-based CV. The only distinction is that the 5-km spatial grids (space-based CV) or temporal 228 

sequences (time-based CV) are randomly separated into 10 folds, rather than the matched samples. The schematic diagram 229 
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of the three 10-fold CV methods is illustrated in Figure 3. In this study, the estimated results are validated through three 230 

metrics: the coefficient of determination (R2), the Root Mean Square Error (RMSE), and the Relative Percentage Error 231 

(RPE). It is worth noting that all the metrics are computed at the significance levels of p<0.01 in our study. 232 

Table 1. The validation results for the proposed and AOD-based considering whether the values of VIIRS DB AOD are missing. VR: 233 

valid regions (the values of VIIRS DB AOD are available); MR: missing regions (the values of VIIRS DB AOD are unavailable); T: 234 

true; F: false. 235 

CV method Region Approach 
PM2.5 PM10 

N R2 RMSE RPE N R2 RMSE RPE 

Sample-based 

VR 
Proposed 

122614 
0.92 9.753 μg/m3 21.61% 

121098 
0.89 22.295 μg/m3 25.53% 

AOD-based 0.87 12.535 μg/m3 27.77% 0.82 28.436 μg/m3 32.57% 

MR Proposed 620742 0.93 8.826 μg/m3 23.61% 597471 0.9 16.517 μg/m3 25.9% 

Space-based 

VR 
Proposed 

122614 
0.87 12.43 μg/m3 27.54% 

121098 
0.82 28.878 μg/m3 33.07% 

AOD-based 0.83 14.311 μg/m3 31.7% 0.74 34.803 μg/m3 39.86% 

MR Proposed 620742 0.88 11.691 μg/m3 31.28% 597471 0.83 21.629 μg/m3 33.92% 

Time-based 

VR 
Proposed 

122614 
0.71 18.795 μg/m3 41.64% 

121098 
0.65 39.906 μg/m3 45.7% 

AOD-based 0.68 19.58 μg/m3 43.38% 0.62 41.181 μg/m3 47.16% 

MR Proposed 620742 0.73 17.153 μg/m3 45.89% 597471 0.67 29.91 μg/m3 46.91% 

Note: The numbers of the matched samples in VR are less than those for the AOD-based (see Figure 4) since the original swath files 236 

of TROPOMI are not available on several days. 237 

4 Experiment results and discussions 238 

4.1 Overall validation results 239 

The density scatter plots of the sample-based CV, space-based CV, and time-based CV for the estimated ambient 240 

concentrations of PM2.5 and PM10 are depicted in Figure 4. As can be seen, the estimated concentrations through the 241 

proposed approach are validated with sufficient matched samples (742932 and 718177) in the study area, indicating the 242 

reliability of the validation results. By contrast, the number of matched samples for the AOD-based (123695 and 122172) 243 

is much less due to the missing values in the VIIRS DB AOD product. As for all matched samples, the estimated ambient 244 

concentrations of PM2.5 and PM10 through the proposed approach achieve a better performance compared to those through 245 

the AOD-based, with higher R2s for three CV methods (e.g., PM2.5: 0.93, 0.88, and 0.73). In the meantime, the 246 

performance difference of the estimation between PM2.5 and PM10 for the proposed approach is smaller than that for the 247 

AOD-based, suggesting the robustness and applicability of our approach. To further validate the proposed approach, the 248 
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experiment results of some related previous works over China are provided in the supplementary materials. It is worth 249 

noting that only the metrics computed from the estimated results of 2019 (a whole year) in our study are presented for 250 

fairness. As listed in Table S5, the proposed approach shows a satisfactory performance by comparison with these works, 251 

which is reflected in the estimation accuracy or completeness of valid values. 252 

 253 

Figure 5. The spatial distribution of R2s for the space-based CV at each matched grid over China. The black crosses denote that the 254 

significance levels (p) of the metrics are not less than 0.01 at these matched grids. 255 

4.2 Seasonal and regional validation results 256 

The density scatter plots of three CV methods for four seasons (2019), i.e., DJF (Dec., Jan., and Feb.), MAM (Mar., Apr., 257 

and May.), JJA (Jun., Jul., and Aug.), and SON (Sep., Oct., and Nov.), are appended in the supplementary materials. As 258 

demonstrated in Figure S3-S6, the performance of the proposed approach is also as expected in different seasons, of which 259 

the metrics generally overmatch those of the AOD-based, especially for JJA. Next, the matched samples are divided into 260 

two parts according to whether the values of VIIRS DB AOD are missing to compare the proposed approach and the 261 

AOD-based under the equal condition. As listed in Table 1, the proposed approach presents a superior estimation accuracy 262 

of PM2.5 and PM10 for three CV methods in the valid regions, with differences of 0.03-0.08 in R2s and 1.46-7.04% in 263 

RPEs. Besides, it’s observed that the proposed approach performs well in the missing regions, showing similar metrics 264 

to those in the valid regions. 265 
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 266 

Figure 6. The bar graphs of the feature importance for the proposed and AOD-based. The full names of the features can be found in 267 

Table S3. 268 

4.3 Grid-based validation results 269 

The performance at each matched grid is important, which is able to reveal the influence from the spatial heterogeneity 270 

of PM2.5 and PM10. Since the division of matched samples as per spatial grids could represent the spatial patterns, the 271 

space-based CV results are adopted to map the spatial distributions of the metrics at each matched grid in our study. As 272 

shown in Figure 5, a total of 974/79.6% and 945/77.27% matched grids present the R2s>0.8 (p<0.01) of PM2.5 and PM10 273 

for the proposed approach, respectively. In contrast, the numbers of the matched grids showing the R2s>0.8 (p<0.01) 274 

visibly reduce (by 352/28.78% of PM2.5 and 420/34.34% of PM10) for the AOD-based. Meanwhile, the proposed approach 275 

also displays higher R2s compared to the AOD-based in some regions, where the ground-based stations are sparse, such 276 

as Xinjiang. In addition, the spatial distributions of RMSEs, RPEs, and sample numbers for the space-based CV at each 277 

matched grid are appended in Figure S7-S9 of the supplementary materials. Since RMSE is one of the absolute metrics, 278 

which are relevant to the magnitudes, the spatial distribution distinctions of RMSEs at matched grids for the proposed 279 

and AOD-based will be not discussed. By comparison with R2s, the differences of the matched grids between the proposed 280 

and AOD-based are smaller for RPEs (<=30%, p<0.01), with the numbers of 126/10.3% and 150/12.26% of PM2.5 and 281 
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PM10, respectively. From Figure S9, most of the matched grids exceed 600 samples for the proposed approach, while 282 

almost all the sample numbers of the AOD-based are less than 300. As a consequence, the non-significant metrics 283 

(p>=0.01) are numerous in the space-based CV results through the AOD-based due to the missing coverage. 284 

 285 
Figure 7. The daily estimated ambient concentrations of PM2.5 and PM10 for the proposed and AOD-based across China in 2019. The 286 

color bars represent the values of the estimated results. Units: µg/m3. 287 

4.4 Feature importance of variates 288 

The bar (pie) graphs that provide the feature importance (percentages) of the inputs in the proposed and AOD-based are 289 

illustrated in Figure 6. With regard to the proposed approach, the variates from TROPOMI, i.e., NO2_T and SO2_T, play 290 

an important part in estimating the results, which are the precursors for PM2.5 and PM10. In the meantime, the rank of 291 

DUCMASS rises for the estimation of PM10 compared to that of PM2.5, indicating the flexibility of our approach. 292 

Furthermore, all the variates of the precursors & chemical compositions for PM2.5 and PM10 (e.g., carbon-related) 293 

positively contribute to the estimation through the proposed approach, which is as expected. By contrast, most of the 294 

contributions in the results estimated by the AOD-based mainly stem from the meteorological factors. 295 
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 296 
Figure 8. The seasonal estimated ambient concentrations of PM2.5 and PM10 for the proposed and AOD-based across China in 2019. 297 

The color bars represent the values of the estimated results. Units: µg/m3. 298 

4.5 Evaluation of the spatial distribution 299 

At first, the estimated ambient concentrations of PM2.5 and PM10 for a total of four days, i.e., 20190122, 20190501, 300 

20190803, and 20191111, are utilized to evaluate the spatial distribution of the daily estimated results. As demonstrated 301 

in Figure 7, the daily estimated results through the proposed approach present consecutive spatial distribution without 302 

distinctly incorrect structures, suggesting that our approach is reliable. On the contrary, the absence of a large scale can 303 

be discovered in the daily ambient concentrations of PM2.5 and PM10 estimated by the AOD-based. Next, the estimated 304 

results for four seasons in 2019 are also mapped to evaluate the seasonal spatial distribution. As illustrated in Figure 8, 305 

the proposed approach is capable of exactly expressing the seasonal variations of PM2.5 and PM10. For instance, the high 306 

values of the seasonal estimated PM2.5 principally emerge in DJF, which is caused by the heating emissions (e.g., fossil 307 

fuels combustion) and adverse meteorological conditions (Cao et al., 2012); The seasonal estimated ambient 308 

concentrations of PM10 mainly appear large in MAM due to the sand storms and dry weathers (Li et al., 2017c). With 309 

regard to most areas of China (except the Northwest), the seasonal estimated results through the proposed and AOD-based 310 

display similar spatial patterns, with the distinctions of the values. In DJF, the differences between the proposed and AOD-311 

based are the greatest for four seasons, which likely results from the influence of the missing values (AOD) on time-312 

averaged results. Meanwhile, it is observed that the seasonal estimated ambient concentrations of PM2.5 and PM10 through 313 
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the proposed are generally larger than those through the AOD-based in arid/semiarid regions, such as Xinjiang. As stated 314 

in Section 4.3, the proposed approach shows higher R2s at matched grids compared to the AOD-based in Xinjiang. 315 

Therefore, the discrepancy possibly derives from the overestimation of VIIRS DB AOD in arid/semiarid regions (Sayer 316 

et al., 2019; Wang et al., 2020). 317 

 318 

Figure 9. The annual estimated ambient concentrations of PM2.5 for the proposed and AOD-based over local regions in 2019. The left 319 

color bar represents the values of the estimated results and ground truth-values. The right color bar denotes the completeness of VIIRS 320 

DB AOD. Units: µg/m3 for PM2.5 and % for completeness. 321 

4.6 Discussions of the time-averaged results 322 

To further explore the influence of the missing values (AOD) on time-averaged results, the annual estimated ambient 323 

concentrations of PM2.5 and PM10 are mapped over local regions in Figure 9 and S10. In the meantime, the annual ground 324 

truth-values are also provided in the figures, which is conducive to indicating the real spatial distribution of PM2.5 and 325 

PM10. As depicted in Figure 9, the annual estimated ambient concentrations of PM2.5 through the AOD-based present 326 

great distinctions by comparison with the ground truth-values in the selected regions. This suggests that the influence of 327 

the missing values in the AOD product on time-averaged results is nonnegligible. Namely, the AOD-based likely 328 

incorrectly estimates the time-averaged (e.g., annual) ambient concentrations of PM2.5 in some regions. By contrast, the 329 

proposed approach achieves a satisfactory performance compared to the ground truth-values. As for PM10, the discovery 330 
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is similar (see Figure S10) and will not be repeatedly stated. The full-coverage results estimated by the proposed approach 331 

are conducive to the researches on PM2.5 and PM10 over the regions where the AOD values are missing. In addition, the 332 

box plots displaying the variations of the absolute relative difference between annual estimated results (over China) 333 

through the proposed and AOD-based (see Eq. s1) with the increment of annual AOD completeness are shown in Figure 334 

10. It can be observed that the overall means of the absolute relative difference are 26.54% and 29.78% for PM2.5 and 335 

PM10, respectively. Meanwhile, the absolute relative difference (mean) and annual AOD completeness appear negative 336 

correlations, especially for the regions where the AOD values are largely missing (<20%). 337 

 338 

Figure 10. The variations (box plots) of the absolute relative difference between annual estimated results (over China) through the 339 

proposed and AOD-based with the increment of annual AOD completeness. For each box, the middle line, rectangle dot, top, and 340 

bottom hinges are the median, mean, 25th, and 75th percentiles, respectively. 341 

5 Conclusions 342 

In this study, a novel approach is developed, which can estimate the daily full-coverage ambient concentrations of PM2.5 343 

and PM10 considering their precursors & chemical compositions at a 5-km (0.05°) spatial resolution over China from 344 

TROPOMI and GEOS-FP. To sufficiently fuse the multi-source data, one of the ensemble learning methods, i.e., LGBM, 345 

is employed to train the estimation models. In the meantime, the DB AOD product from VIIRS is applied in a similar 346 

framework (AOD-based) for comparison. The validation results show that the ambient concentrations are well estimated 347 

through the proposed approach in the study area, with the sample-based CV R2s and RMSEs of 0.93 (0.9) and 8.982 348 

(17.604) μg/m3 for PM2.5 (PM10), respectively. Meanwhile, the proposed approach achieves better performance than the 349 

AOD-based in different situations (e.g., overall and seasonal), suggesting that our approach is reliable. Compared to the 350 

related previous works, the estimation accuracy of the proposed approach is also satisfactory. For the feature importance, 351 

all the variates of the precursors & chemical compositions for PM2.5 and PM10 (e.g., carbon-related) positively contribute 352 

to the estimation in our approach, which is as expected. As for the mapping, the estimated results through the proposed 353 
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approach appear consecutive spatial distribution without visibly incorrect structures and can exactly express the seasonal 354 

variations of PM2.5 and PM10. In addition, it is discovered that the AOD-based likely incorrectly estimates the time-355 

averaged ambient concentrations of PM2.5 and PM10. The full-coverage estimated results through the proposed approach 356 

are conducive to the studies on PM2.5 and PM10 in the regions where the AOD values are missing. 357 
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