Estimating daily full-coverage and high-accuracy 5-km ambient particulate matters across China: considering their precursors and chemical compositions

Yuan Wang1, Qiangqiang Yuan1,4,5, Tongwen Li2, Siyu Tan1, Liangpei Zhang3,5

1School of Geodesy and Geomatics, Wuhan University, Wuhan, Hubei, 430079, China.
2School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai, Guangdong, 519082, China.
3The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, 430079, China.
4The Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan, Hubei, 430079, China.
5The Collaborative Innovation Center for Geospatial Technology, Wuhan, Hubei, 430079, China.

Correspondence to: Qiangqiang Yuan (yqiang86@gmail.com)

Abstract. The ambient concentrations of particulate matters (PM\textsubscript{2.5} and PM\textsubscript{10}) are significant indicators for monitoring the air quality relevant to living conditions. Most of the existing approaches for the estimation of PM\textsubscript{2.5} and PM\textsubscript{10} employed the remote sensing Aerosol Optical Depth (AOD) products as the main variate. Nevertheless, the coverage of missing data is generally large in AOD products, which can cause inconvenience to the researchers. To efficiently address this issue, our study explores a novel approach using the datasets of the precursors & chemical compositions for PM\textsubscript{2.5} and PM\textsubscript{10} instead of AOD products. Specifically, the daily full-coverage ambient concentrations of PM\textsubscript{2.5} and PM\textsubscript{10} are estimated at 5-km (0.05°) spatial grids across China based on Sentinel-5P and GEOS-FP. In this paper, the Light Gradient Boosting Machine is exploited to train the estimation models, which will fully fuse the multi-source data. For comparison, the Deep Blue AOD product from VIIRS is adopted in a similar framework as a baseline (AOD-based). The validation results show that the ambient concentrations are well estimated through the proposed approach, with the sample-based Cross-Validation R2s and RMSEs of 0.93 (0.9) and 8.982 (17.604) μg/m3 for PM\textsubscript{2.5} (PM\textsubscript{10}), respectively. Meanwhile, the proposed approach achieves better performance than the AOD-based in different cases (e.g., overall and seasonal). Compared to the related previous works over China, the estimation accuracy of our method is also satisfactory.

Furthermore, all the variates of the precursors & chemical compositions for PM\textsubscript{2.5} and PM\textsubscript{10} positively contribute to the estimation in the proposed approach, as expected. With regard to the mapping, the estimated results through the proposed approach present consecutive spatial distribution and can exactly express the seasonal variations of PM\textsubscript{2.5} and PM\textsubscript{10}. It is concluded that the full-coverage estimated results in our study are conducive to the researches on PM\textsubscript{2.5} and PM\textsubscript{10} over the regions where the AOD values are missing.
1 Introduction

Particulate matters with aerodynamic equivalent diameters less than 2.5 μm (PM$_{2.5}$) and 10 μm (PM$_{10}$) have been considered as major air pollutants for decades (Finlayson-Pitts et al., 1997; Hall et al., 1992; Lee, 1972), which can hazard the environment and human health (Crippa et al., 2019; Liu et al., 2020; Ma et al., 2017; Venkataraman et al., 2018). The ambient concentrations of PM$_{2.5}$ and PM$_{10}$ are strongly relevant to living conditions and required to be accurately monitored. Generally, ground-based stations are recognized as the most direct and dependable approach to obtain the ambient concentrations of PM$_{2.5}$ and PM$_{10}$ (Engel-Cox et al., 2013; Li et al., 2017a; Yang et al., 2020a, 2020b). Nevertheless, the establishing of ground-based stations is costly, which causes difficulties in the implementation (Shen et al., 2020). Meanwhile, the measurements from ground-based stations are only applicable in small regions and fail to provide a global perspective (Li et al., 2020). Hence, the approaches based on Chemical Transport Models (CTMs) (Van Donkelaar et al., 2010; Wang et al., 2016; Weagle et al., 2018) or remote sensing satellites (Chen et al., 2018; Li et al., 2020; Stafoggia et al., 2019; Shtein et al., 2020; Wei et al., 2019; Yao et al., 2019; You et al., 2015) have been developed to enlarge the spatial coverage of the PM$_{2.5}$ and PM$_{10}$ monitoring. Since the uncertainties of the emission inventories adopted in CTMs could be large in some areas (Li et al., 2017b), the approaches based on remote sensing satellites usually achieve better performance than those based on CTMs.

Figure 1. The spatial distribution of the ground-based stations over China. The base-map is the true color image of MODIS.
Shtein et al., 2020; Wei et al., 2019; Yao et al., 2019; You et al., 2015). Thereinto, most of them will adopt a key atmospheric parameter, i.e., Aerosol Optical Depth (AOD) (Wang et al., 2019a, 2019b), which presents high correlations with the ambient concentrations of PM$_{2.5}$ and PM$_{10}$ (Guo et al., 2017; Li et al., 2019; Yang et al., 2019). For instance, Chen et al. (2018) exploited the Random Forest (RF) to acquire the daily ambient concentrations of PM$_{10}$ in China employing the Deep Blue (DB) and Dark Target (DT) combined AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS); Wei et al. (2019) proposed the Space-Time Random Forest model for the mapping of the daily 1-km ambient concentrations of PM$_{2.5}$ over China on the basis of the Multi-Angle Implementation of Atmospheric Correction AOD product; Li et al. (2020) developed a brand-new method, i.e., the Geographically and Temporally Weighted Neural Network, to obtain the daily ambient concentrations of PM$_{2.5}$ across China, which is devised to fix the spatiotemporal heterogeneous issues of the AOD-PM$_{2.5}$ relationships. There is no doubt that these works have provided wonderful results and made contributions to the atmospheric environment field. Nevertheless, the data is usually unavailable in the AOD products from remote sensing satellites due to the influences from clouds, ice/snow, and arid/semiarid surface (only for DT-like AOD products) (Levy et al., 2013; Sayer et al., 2019). As a consequence, the completeness of valid values in the estimated results (PM$_{2.5}$ and PM$_{10}$) are also poor through the above-mentioned approaches, which can result in inconvenience to the researchers. To remedy this deficiency, the algorithm of AOD recovery is generally utilized as one of the preprocessing steps to fill the missing data in the AOD products. So far, these algorithms achieve expected performance in local regions (Hua et al., 2019; Xiao et al., 2017) while still likely signify considerable uncertainties for large scale. Hence, it is necessary to explore a novel approach for the estimation of PM$_{2.5}$ and PM$_{10}$ using other data sources instead of AOD products.

Figure 2. The flowchart of the proposed approach in our study. The models for the estimation of PM$_{2.5}$ and PM$_{10}$ are separately trained.

As is well-known, PM$_{2.5}$ and PM$_{10}$ consist of multiple chemical compositions (Dabek-Zlotorzynska et al., 2011; Tao et al., 2017; Wang et al., 2019c), including sulfate, nitrate, black carbon, dust, etc. In the meantime, some chemical species
are considered as the precursors for PM\textsubscript{2.5} and PM\textsubscript{10} (Baker et al., 2007; Heo et al., 2016; Tucker et al., 2000), such as sulfur dioxide (SO\textsubscript{2}) and nitrogen dioxide (NO\textsubscript{2}). It is reasonable to estimate the ambient concentrations of PM\textsubscript{2.5} and PM\textsubscript{10} based on these precursors & chemical compositions. The Sentinel-5 Precursor (Sentinel-5P) satellite (Veefkind et al., 2012) was launched on 13 October 2017, carrying the TROPOspheric Monitoring Instrument (TROPOMI) to generate global high-coverage total/tropospheric vertically column of the precursors (e.g., NO\textsubscript{2}) for PM\textsubscript{2.5} and PM\textsubscript{10}. Therefore, it is feasible to adopt the atmospheric products of TROPOMI after the missing data recovery for small regions. However, it would be insufficient for the estimation of the ambient particulate matters concentrations (PM\textsubscript{2.5} and PM\textsubscript{10}), only using the datasets from TROPOMI as the major factors. The GEOS Forward Processing (GEOS-FP) (Lucchesi et al., 2013) assimilated datasets from the Global Modeling and Assimilation Office (GMAO) can provide the seamless prior information of the precursors & chemical compositions for PM\textsubscript{2.5} and PM\textsubscript{10}, which ought to be also introduced as the major factors in our study.

The purpose of this study is to develop a novel approach to estimate the daily full-coverage 5-km (0.05°) ambient concentrations of PM\textsubscript{2.5} and PM\textsubscript{10} using the datasets from TROPOMI and GEOS-FP. In our study, one of the ensemble learning methods, i.e., the Light Gradient Boosting Machine (LGBM) (Ke et al., 2017), is applied for the estimation by fusing the multi-source (TROPOMI, GEOS-FP, and ground-based stations) data. Meanwhile, the DB AOD product from the Visible Infrared Imager Radiometer Sensor (VIIRS) (Hus et al., 2019) is employed in a similar framework as a baseline (AOD-based) for comparison, which replaces the atmospheric products of TROPOMI and GEOS-FP. Comprehensive experiments show that the approach proposed in our study well estimates the ambient particulate matters concentrations and achieves better performance than the AOD-based, signified in both estimation accuracy and completeness of valid values.

The remainder of this study is arranged as follows. Section 2 describes the study area and the datasets adopted in our study. The methodology of the proposed approach is presented in Section 3. Section 4 provides the experiment results, covering the model performance in different cases (e.g., overall and seasonal), the spatial distribution analyses, and some discussions. At last, the conclusions are given in Section 5.

2 Study area and datasets

2.1 Study area

As the country with the largest population in the world (~18% out of the world population by March 2019), China is regarded as the study area in this paper (shown in Figure 1). For more than ten years, air pollution issues (e.g., high-polluted particulate matters) are rapidly emerging in China, which results from the acceleration of economic developments.
(Wang et al., 2019a). Thanks to the relevant regulations formulated by the government and the endeavors from social various circles, the air quality has been greatly improved today, including the marked descent of particulate matters (Lin et al., 2018; Ma et al., 2019). However, the pollutions of particulate matters are not optimistic over China by comparison with a few developed countries in the world. Meanwhile, PM$_{2.5}$ and PM$_{10}$ are still deemed as the primary air pollutants of urban areas in the eastern and northwestern China, respectively. It is necessary to develop an approach that can monitor PM$_{2.5}$ and PM$_{10}$ across China continuously and precisely.

![Figure 3](#). The schematic diagram of the validation methods in our study.

2.2 Datasets

In this study, the datasets from TROPOMI and GEOS-FP during June 1, 2018 to March 31, 2020 over China are deemed as the main variates of the inputs in the proposed approach. Meanwhile, some other datasets are adopted as the auxiliary variates of inputs to enlarge the applicability of the trained models, such as meteorological factors (e.g., planetary boundary layer height and air temperature), Normalized Difference Vegetation Index (NDVI) (Beck et al., 2006), and population density (Bai et al., 2018). In addition, the measurements from the China National Environmental Monitoring Center (CNEMC) are considered as the ground truth-values, consisting of the hourly ambient concentrations of PM$_{2.5}$ and PM$_{10}$. The descriptions of all datasets are provided as follows.

2.2.1 Ground-based measurements

In the study area, the hourly measurements of PM$_{2.5}$ and PM$_{10}$ during June 1, 2018 to March 31, 2020 are firstly allocated from CNEMC, which can be obtained at http://106.37.208.233:20035/. The spatial distribution of ground-based stations utilized in this study is demonstrated in Figure 1, using the marks of circles with pentacles inside. As illustrated, a total of ~1640 ground-based sites (by March 2020) are established in the study area to monitor the pollution of PM$_{2.5}$ and PM$_{10}$, densely covering most territories of China, except some regions (e.g., Qinghai). The daily ambient concentrations of PM$_{2.5}$ and PM$_{10}$ are deemed as the ground truth-values (output), which are acquired by averaging the hourly measurements within a day. It’s worth noting only the records with no less than 16 hourly measurements in a single day will be adopted.
2.2.2 TROPOMI atmospheric products

The TROPOMI is the single instrument of the Sentinel-5P spacecraft (Veefkind et al., 2012), which covers the wavelength of UltraViolet (UV), Near InfraRed (NIR), and ShortWave InfraRed (SWIR). This hyperspectral spectrometer is devised to provide daily observations of SO$_2$, NO$_2$, ozone (O$_3$), etc., at high spatial resolutions, using passive remote sensing methods. The typical pixel size (near-nadir) is set as 7×3.5 km2 for all spectral bands, except the UV1 band (7×28 km2) and SWIR bands (7×7 km2). As for the evaluation, the TROPOMI atmospheric products are routinely compared to ground-based measurements and observations from other instruments carried onboard remote sensing satellites, such as the Ozone Monitoring Instrument (Levelt et al., 2006). The evaluation results show that the qualities of the TROPOMI atmospheric products compile with the mission requirements (Garane et al., 2019; Griffin et al., 2019; Theys et al., 2017). In our study, the records of “sulfurdioxide_total_vertical_column_1km” and “nitrogendioxide_tropospheric_column” are regarded as the main variates in the proposed approach, which are related to sulfate and nitrate, respectively. In addition, particulate matters (PM$_{2.5}$ and PM$_{10}$) were discovered to be associated with O$_3$ (Chen et al., 2019, 2020). Therefore, the record of “ozone_total_vertical_column” is also introduced in the proposed approach as one of the auxiliary variates. The information about the TROPOMI atmospheric products used in this study is specifically provided in Table S1 of the supplementary materials.

2.2.3 GEOS-FP assimilated products

The GEOS-FP data assimilation system employs an analysis designed collectively with the National Centers for Environmental Prediction (Lucchesi et al., 2013), which is the current operational met data product from GMAO. Generally, the GEOS-FP can provide the time-averaged (e.g., hourly) assimilated datasets performed at a spatial resolution of 0.25º×0.3125º, including the atmospheric chemical species and meteorological factors. In our study, the records of the precursor/chemical compositions for PM$_{2.5}$ and PM$_{10}$ from GEOS-FP are considered as the main variates of the inputs, including the nitrate-related (i.e., Nitrate Column Mass Concentration), carbon-related (e.g., Organic Carbon Column Mass Concentration), sulfate-related (i.e., SO4 Column Mass Density), etc. Furthermore, a few meteorological factors from GEOS-FP are also adopted as the auxiliary variates in the proposed approach, such as wind speed, specific humidity, and planetary boundary layer height. The relevant information of the GEOS-FP datasets used in our study is presented in the supplementary materials (see Table S1).

2.2.4 Geographical factors

Some geographical factors are usually exploited as the ancillary variates to estimate the ambient concentrations of PM$_{2.5}$ and PM$_{10}$ in previous studies, including the land cover classifications (Zhang et al., 2017), population density, NDVI, and
road density (Haklay et al., 2008). Hence, these factors are also introduced in our study, which are associated with PM$_{2.5}$ and PM$_{10}$. The detailed information about the geographical factors utilized in our study is listed in Table S1 of supplementary materials, which will not be repeatedly described here.

2.2.5 VIIRS DB AOD product

The DB algorithm (Hsu et al., 2019) was first proposed to retrieve aerosol properties of the observations from MODIS over arid/semiarid and urban areas. After a decade, an enhanced DB algorithm was developed and applicable for all areas without snow/ice. In the latest Collection 6.1 (C6.1), the scheme of DB was upgraded once again with several updates, such as the heavy smoke detection. With regard to VIIRS, the procedures are similar to the one for MODIS in C6.1, while a few marked differences still exist. For example, a modified NIR method is employed to acquire the surface reflectance in croplands. The evaluation results showed that the VIIRS DB algorithm performs better than the one for MODIS over Asia (Wang et al., 2020). Due to the similar spatial resolution (6-km) with TROPOMI, the DB AOD from VIIRS is deemed as the main variate in a framework (baseline, AOD-based) for comparison, which is close to the proposed approach (with the same auxiliary variates expect the O$_3$ product from TROPOMI). The specific information about the VIIRS DB AOD product is appended in the supplementary materials (Table S2).

3 Methodology

The flowchart of the proposed approach is depicted in Figure 2. As can be seen, the datasets (main and auxiliary variates) are initially preprocessed in advance of being adopted as the inputs, e.g., the resampling and missing data recovery. Meanwhile, the ground truth-values (output) are obtained by averaging the hourly ground-based measurements within a day (≥ 16 out of 24). Next, the inputs and ground truth-values ought to be spatially matched considering the differences between them. After the data matching, the data pairs (matched samples) will be fed into the LGBM to train the model. Eventually, a total of three 10-fold Cross-Validation (CV) methods are exploited to validate the performance of the proposed approach. The specific procedures are stated in the following subsections. It’s worth noting that the models for the estimation of PM$_{2.5}$ and PM$_{10}$ are separately trained. In addition, the methodology of the baseline (AOD-based) is close to the proposed approach, which is appended in Figure S1 of the supplementary materials.

3.1 Data preprocessing

Firstly, the spatial resolutions of the datasets (main and auxiliary variates) should be adjusted to coincident. In our study, the datasets from TROPOMI, GEOS-FP, and geographical factors are resampled to 5-km through the nearest neighbor interpolation (Olivier et al., 2012), bicubic interpolation (Nuno-Maganda et al., 2005), and area-weighted aggregation.
respectively. In the meantime, the daily datasets of GEOS-FP are acquired by averaging the hourly/3-hour records within a day. Next, the missing values for small regions in the datasets from TROPOMI are filled through the exemplar-based algorithm (Criminisi et al., 2004). Since the missing coverage of the TROPOMI SO2 and O3 products is little, only the examples of the simulated experiments for the TROPOMI NO2 product are demonstrated in the supplementary materials (Figure S2). Besides, the missing values for some pixels in the NDVI product are also filled using the Inverse Distance Weighted interpolation (Wang et al., 2019b).

Figure 4

Figure 4. The density scatter plots of the validation results in the study area. The black solid line signifies the fitted line and the color bar denotes the density of samples. Y: estimated ambient concentrations of PM2.5 and PM10; X: ground-based ambient concentrations of PM2.5 and PM10.

3.2 Data matching

Generally, the datasets (main and auxiliary variates) are grid-based at different spatial resolutions, while ground-based stations only measure the ambient concentrations of PM2.5 and PM10 for small regions. Therefore, the grid-based datasets and ground-based measurements should be spatially matched. In brief, all the ground truth-values falling in one spatial grid (5-km) are averaged to match the datasets from TROPOMI, GEOS-FP, and geographical factors.

3.2 Light Gradient Boosting Machine

LGBM is a newly devised and advanced ensemble learning method based on the Gradient Boosting Decision Tree (Ke et al., 2017). As one of the gradient boosting algorithms, the targets for each training round in LGBM are residual, which
are computed from the truth-value and the estimations after previous training rounds. In other words, the learners in LGBM are mutually associated and consequently the dependencies between learners will be employed. For instance, the overall performance can be significantly improved by assigning higher weights to the samples estimated with larger errors in previous training rounds. Compared to previous gradient boosting algorithms, LGBM is capable of easily achieving higher accuracy with fewer sample features, less memory, and faster speed. In general, the highlights of LGBM mainly consists of two parts: Gradient-based One-Side Sampling and Exclusive Feature Bundling. Both of them are designed to decrease the number of samples in each training round and retained the estimation accuracy. The specific structures of LGBM are complicated and will not be described in our study. For more information, readers could refer to Ke et al., 2017.

LGBM can process high-dimensional big data of large scale, presenting higher efficiency and better performance by comparison with conventional machine learning methods, e.g., the RF, Generalized Regression Neural Network (Cigizoglu et al., 2005), and Support Vector Regression (Drucker et al., 1997). Hence, it is reasonable to adopt LGBM in our study. The general scheme of the model for estimating the ambient concentrations of PM$_{2.5}$ and PM$_{10}$ can be expressed as Eq. (1).

$$ C_{PM} = f(V_{MP}, V_{MC}, V_{AO3}, V_{AMR}, V_{AGF}) $$

where C_{PM} signifies the estimated ambient concentrations of PM$_{2.5}$ and PM$_{10}$. f denotes the estimation function for the ambient concentrations of PM$_{2.5}$ and PM$_{10}$ based on LGBM. V_{MP} and V_{MC} include the main variates of the precursors and chemical compositions, respectively, for PM$_{2.5}$ and PM$_{10}$. V_{AO3}, V_{AMR}, and V_{AGF} represent the auxiliary variates of the O$_3$ from TROPOMI, meteorological factors, and geographical factors, respectively. The detailed information about each variate can be found in Table S1 and S3 of the supplementary materials. The setting of the LGBM parameters is listed in Table S4.

3.3 Validation methods

To sufficiently validate the performance of the proposed approach, a total of three 10-fold CV methods, i.e., the sample-based CV, space-based CV, and time-based CV, are exploited in our study. With regard to the sample-based CV, all the matched samples are divided into 10 folds at random (the number is approximately identical). Next, nine folds are employed to train the model and the remaining one is considered for the validation. At last, the previous step is repeatedly performed 10 times and consequently each fold can be validated. As for the space-based CV and time-based CV, the steps are close to those for the sample-based CV. The only distinction is that the 5-km spatial grids (space-based CV) or temporal sequences (time-based CV) are randomly separated into 10 folds, rather than the matched samples. The schematic diagram
of the three 10-fold CV methods is illustrated in Figure 3. In this study, the estimated results are validated through three metrics: the coefficient of determination (R²), the Root Mean Square Error (RMSE), and the Relative Percentage Error (RPE). It is worth noting that all the metrics are computed at the significance levels of p<0.01 in our study.

Table 1. The validation results for the proposed and AOD-based considering whether the values of VIIRS DB AOD are missing. VR: valid regions (the values of VIIRS DB AOD are available); MR: missing regions (the values of VIIRS DB AOD are unavailable); T: true; F: false.

<table>
<thead>
<tr>
<th>CV method</th>
<th>Region</th>
<th>Approach</th>
<th>PM$_{2.5}$</th>
<th>PM$_{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>R²</td>
</tr>
<tr>
<td>Sample-based</td>
<td>VR</td>
<td>Proposed</td>
<td>122614</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AOD-based</td>
<td>121098</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>Proposed</td>
<td>620742</td>
<td>0.93</td>
</tr>
<tr>
<td>Space-based</td>
<td>VR</td>
<td>Proposed</td>
<td>122614</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AOD-based</td>
<td>121098</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>Proposed</td>
<td>620742</td>
<td>0.88</td>
</tr>
<tr>
<td>Time-based</td>
<td>VR</td>
<td>Proposed</td>
<td>122614</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AOD-based</td>
<td>121098</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>Proposed</td>
<td>620742</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Note: The numbers of the matched samples in VR are less than those for the AOD-based (see Figure 4) since the original swath files of TROPOMI are not available on several days.

4 Experiment results and discussions

4.1 Overall validation results

The density scatter plots of the sample-based CV, space-based CV, and time-based CV for the estimated ambient concentrations of PM$_{2.5}$ and PM$_{10}$ are depicted in Figure 4. As can be seen, the estimated concentrations through the proposed approach are validated with sufficient matched samples (742932 and 718177) in the study area, indicating the reliability of the validation results. By contrast, the number of matched samples for the AOD-based (123695 and 122172) is much less due to the missing values in the VIIRS DB AOD product. As for all matched samples, the estimated ambient concentrations of PM$_{2.5}$ and PM$_{10}$ through the proposed approach achieve a better performance compared to those through the AOD-based, with higher R²s for three CV methods (e.g., PM$_{2.5}$: 0.93, 0.88, and 0.73). In the meantime, the performance difference of the estimation between PM$_{2.5}$ and PM$_{10}$ for the proposed approach is smaller than that for the AOD-based, suggesting the robustness and applicability of our approach. To further validate the proposed approach, the
experiment results of some related previous works over China are provided in the supplementary materials. It is worth noting that only the metrics computed from the estimated results of 2019 (a whole year) in our study are presented for fairness. As listed in Table S5, the proposed approach shows a satisfactory performance by comparison with these works, which is reflected in the estimation accuracy or completeness of valid values.

Figure 5. The spatial distribution of R^2's for the space-based CV at each matched grid over China. The black crosses denote that the significance levels (p) of the metrics are not less than 0.01 at these matched grids.

4.2 Seasonal and regional validation results

The density scatter plots of three CV methods for four seasons (2019), i.e., DJF (Dec., Jan., and Feb.), MAM (Mar., Apr., and May.), JJA (Jun., Jul., and Aug.), and SON (Sep., Oct., and Nov.), are appended in the supplementary materials. As demonstrated in Figure S3-S6, the performance of the proposed approach is also as expected in different seasons, of which the metrics generally overmatch those of the AOD-based, especially for JJA. Next, the matched samples are divided into two parts according to whether the values of VIIRS DB AOD are missing to compare the proposed approach and the AOD-based under the equal condition. As listed in Table 1, the proposed approach presents a superior estimation accuracy of PM$_{2.5}$ and PM$_{10}$ for three CV methods in the valid regions, with differences of 0.03-0.08 in R^2's and 1.46-7.04% in RPEs. Besides, it’s observed that the proposed approach performs well in the missing regions, showing similar metrics to those in the valid regions.
4.3 Grid-based validation results

The performance at each matched grid is important, which is able to reveal the influence from the spatial heterogeneity of PM$_{2.5}$ and PM$_{10}$. Since the division of matched samples as per spatial grids could represent the spatial patterns, the space-based CV results are adopted to map the spatial distributions of the metrics at each matched grid in our study. As shown in Figure 5, a total of 974/79.6% and 945/77.27% matched grids present the R2s >0.8 (p <0.01) of PM$_{2.5}$ and PM$_{10}$ for the proposed approach, respectively. In contrast, the numbers of the matched grids showing the R2s >0.8 (p <0.01) visibly reduce (by 352/28.78% of PM$_{2.5}$ and 420/34.34% of PM$_{10}$) for the AOD-based. Meanwhile, the proposed approach also displays higher R’s compared to the AOD-based in some regions, where the ground-based stations are sparse, such as Xinjiang. In addition, the spatial distributions of RMSEs, RPEs, and sample numbers for the space-based CV at each matched grid are appended in Figure S7-S9 of the supplementary materials. Since RMSE is one of the absolute metrics, which are relevant to the magnitudes, the spatial distribution distinctions of RMSEs at matched grids for the proposed and AOD-based will be not discussed. By comparison with R’s, the differences of the matched grids between the proposed and AOD-based are smaller for RPEs (\leq30%, p <0.01), with the numbers of 126/10.3% and 150/12.26% of PM$_{2.5}$ and
PM$_{10}$, respectively. From Figure S9, most of the matched grids exceed 600 samples for the proposed approach, while almost all the sample numbers of the AOD-based are less than 300. As a consequence, the non-significant metrics (p>=0.01) are numerous in the space-based CV results through the AOD-based due to the missing coverage.

<table>
<thead>
<tr>
<th>PM2.5</th>
<th>AOD-based</th>
<th>PM10</th>
<th>AOD-based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7. The daily estimated ambient concentrations of PM$_{2.5}$ and PM$_{10}$ for the proposed and AOD-based across China in 2019. The color bars represent the values of the estimated results. Units: µg/m3.

4.4 Feature importance of variates

The bar (pie) graphs that provide the feature importance (percentages) of the inputs in the proposed and AOD-based are illustrated in Figure 6. With regard to the proposed approach, the variates from TROPOMI, i.e., NO$_2$ T and SO$_2$ T, play an important part in estimating the results, which are the precursors for PM$_{2.5}$ and PM$_{10}$. In the meantime, the rank of DUCMASS rises for the estimation of PM$_{10}$ compared to that of PM$_{2.5}$, indicating the flexibility of our approach. Furthermore, all the variates of the precursors & chemical compositions for PM$_{2.5}$ and PM$_{10}$ (e.g., carbon-related) positively contribute to the estimation through the proposed approach, which is as expected. By contrast, most of the contributions in the results estimated by the AOD-based mainly stem from the meteorological factors.
Figure 8. The seasonal estimated ambient concentrations of PM$_{2.5}$ and PM$_{10}$ for the proposed and AOD-based across China in 2019. The color bars represent the values of the estimated results. Units: µg/m3.

4.5 Evaluation of the spatial distribution

At first, the estimated ambient concentrations of PM$_{2.5}$ and PM$_{10}$ for a total of four days, i.e., 20190122, 20190501, 20190803, and 20191111, are utilized to evaluate the spatial distribution of the daily estimated results. As demonstrated in Figure 7, the daily estimated results through the proposed approach present consecutive spatial distribution without distinctly incorrect structures, suggesting that our approach is reliable. On the contrary, the absence of a large scale can be discovered in the daily ambient concentrations of PM$_{2.5}$ and PM$_{10}$ estimated by the AOD-based. Next, the estimated results for four seasons in 2019 are also mapped to evaluate the seasonal spatial distribution. As illustrated in Figure 8, the proposed approach is capable of exactly expressing the seasonal variations of PM$_{2.5}$ and PM$_{10}$. For instance, the high values of the seasonal estimated PM$_{2.5}$ principally emerge in DJF, which is caused by the heating emissions (e.g., fossil fuels combustion) and adverse meteorological conditions (Cao et al., 2012); The seasonal estimated ambient concentrations of PM$_{10}$ mainly appear large in MAM due to the sand storms and dry weathers (Li et al., 2017c). With regard to most areas of China (except the Northwest), the seasonal estimated results through the proposed and AOD-based display similar spatial patterns, with the distinctions of the values. In DJF, the differences between the proposed and AOD-based are the greatest for four seasons, which likely results from the influence of the missing values (AOD) on time-averaged results. Meanwhile, it is observed that the seasonal estimated ambient concentrations of PM$_{2.5}$ and PM$_{10}$ through
Section 4.4 Discussions of the time-averaged results

To further explore the influence of the missing values (AOD) on time-averaged results, the annual estimated ambient concentrations of PM$_{2.5}$ and PM$_{10}$ are mapped over local regions in Figure 9 and S10. In the meantime, the annual ground truth-values are also provided in the figures, which is conducive to indicating the real spatial distribution of PM$_{2.5}$ and PM$_{10}$. As depicted in Figure 9, the annual estimated ambient concentrations of PM$_{2.5}$ through the AOD-based present great distinctions by comparison with the ground truth-values in the selected regions. This suggests that the influence of the missing values in the AOD product on time-averaged results is nonnegligible. Namely, the AOD-based likely incorrectly estimates the time-averaged (e.g., annual) ambient concentrations of PM$_{2.5}$ in some regions. By contrast, the proposed approach achieves a satisfactory performance compared to the ground truth-values. As for PM$_{10}$, the discovery...
is similar (see Figure S10) and will not be repeatedly stated. The full-coverage results estimated by the proposed approach are conducive to the researches on PM$_{2.5}$ and PM$_{10}$ over the regions where the AOD values are missing. In addition, the box plots displaying the variations of the absolute relative difference between annual estimated results (over China) through the proposed and AOD-based (see Eq. s1) with the increment of annual AOD completeness are shown in Figure 10. It can be observed that the overall means of the absolute relative difference are 26.54% and 29.78% for PM$_{2.5}$ and PM$_{10}$, respectively. Meanwhile, the absolute relative difference (mean) and annual AOD completeness appear negative correlations, especially for the regions where the AOD values are largely missing (<20%).

Figure 10. The variations (box plots) of the absolute relative difference between annual estimated results (over China) through the proposed and AOD-based with the increment of annual AOD completeness. For each box, the middle line, rectangle dot, top, and bottom hinges are the median, mean, 25$^{	ext{th}}$, and 75$^{	ext{th}}$ percentiles, respectively.

5 Conclusions

In this study, a novel approach is developed, which can estimate the daily full-coverage ambient concentrations of PM$_{2.5}$ and PM$_{10}$ considering their precursors & chemical compositions at a 5-km (0.05°) spatial resolution over China from TROPOMI and GEOS-FP. To sufficiently fuse the multi-source data, one of the ensemble learning methods, i.e., LGBM, is employed to train the estimation models. In the meantime, the DB AOD product from VIIRS is applied in a similar framework (AOD-based) for comparison. The validation results show that the ambient concentrations are well estimated through the proposed approach in the study area, with the sample-based CV R2s and RMSEs of 0.93 (0.9) and 8.982 (17.604) μg/m3 for PM$_{2.5}$ (PM$_{10}$), respectively. Meanwhile, the proposed approach achieves better performance than the AOD-based in different situations (e.g., overall and seasonal), suggesting that our approach is reliable. Compared to the related previous works, the estimation accuracy of the proposed approach is also satisfactory. For the feature importance, all the variates of the precursors & chemical compositions for PM$_{2.5}$ and PM$_{10}$ (e.g., carbon-related) positively contribute to the estimation in our approach, which is as expected. As for the mapping, the estimated results through the proposed
approach appear consecutive spatial distribution without visibly incorrect structures and can exactly express the seasonal variations of PM$_{2.5}$ and PM$_{10}$. In addition, it is discovered that the AOD-based likely incorrectly estimates the time-averaged ambient concentrations of PM$_{2.5}$ and PM$_{10}$. The full-coverage estimated results through the proposed approach are conducive to the studies on PM$_{2.5}$ and PM$_{10}$ in the regions where the AOD values are missing.

Author contributions

YW designed the study, collected and processed the data, analyzed the results, and wrote the paper. QQY provided constructive comments on the paper. TWL, SYT, and LPZ revised the paper. All authors contributed to the study.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 41922008). The authors would like to be greatly grateful to the institutions for providing the datasets used in this paper.

References

Lee, R. E.: The size of suspended particulate matter in air: size distributions of ambient aerosols must be studied in order to determine their effects on the environment, Science., 178(4061), 567-575, doi: 10.1126/science.178.4061.567, 1972.

Nuno-Maganda, M. A. and Arias-Estrada, M. O.: Real-time FPGA-based architecture for bicubic interpolation: an application for digital image scaling, In 2005 International Conference on Reconfigurable Computing and FPGAs (ReConFig'05), IEEE., 8, 2005.

