
Response to Comments on the Manuscript (acp-2020-1004): 

“Estimating daily full-coverage and high-accuracy 5-km ambient 

particulate matters across China: considering their precursors and 

chemical compositions” 
 

Response to Comments of Referee #2: 

General comment: 

In this paper, Wang et al. proposed a framework to estimate the daily PM2.5 and PM10 

concentration over China by combining multiple data sources with a Light Gradient Boosting 

Machine learning method. They included satellite product (TROPOMI) and modeled data 

assimilation dataset (GEOS-FP) as main predictors. Even though they showed some reasonable 

statistics from the validation process, the advantages of this method are not well justified. Also, 

some flaws are found in their validation process. As a result, I do not recommend this paper for 

publication in ACP. 

Response: We would like to express our sincere gratitude to the referee for his/her comments and 

recommendations for improving the paper. An item-by-item response to the comments raised by the 

referee follows. Thanks for your time. 

 

Major comments: 

Q2.1: The selection of predicting variables from TROPOMI is too arbitrary and lacks 

justification. In this paper, the authors only considered column NOx and SO2 observations, 

which are the precursors of sulfate and nitrate. Both of them are large components of PM2.5. 

However, other components are also important. For example organic aerosols. Why the 

precursors of organic aerosols were not chosen as input predictors? Also, this idea of “PM is 



associated with ozone, so choose column ozone as one of the predictors” needs more justifications. 

Response: Thank the referee for his/her significant comments. The purpose of our study is to estimate 

daily full-coverage PM at high spatial resolution using the datasets of their precursors & chemical 

compositions instead of AOD products. Therefore, the selection of predicting variables should be 

carefully considered. As for remote sensing sensors, only TROPOMI can generate daily high-spatial-

resolution (e.g., 5-km) and high-coverage chemical species at present. In our study, the atmospheric 

products of NO2 and SO2 from TROPOMI were adopted, regarded as two precursors of PM. However, 

there is merely one precursor of organic aerosol, i.e., formaldehyde, belonging to the atmospheric 

products from TROPOMI (see https://earth.esa.int/web/guest/missions/esa-eo-missions/sentinel-5p). 

Since formaldehyde is generally not a major organic aerosol precursor (Hallquist et al., 2009; Volkamer 

et al., 2006), this product was not utilized. By contrast, the Organic Carbon Column Mass Density 

(carbon-related) from GEOS-FP was used in this paper. Furthermore, some other chemical 

compositions of PM were also acquired from GEOS-FP, including the Nitrate Column Mass Density 

(nitrate-related), SO4 Column Mass Density (sulfate-related), Black Carbon Column Mass Density 

(carbon-related), Dust Column Mass Density (dust-related), Ammonium Column Mass Density 

(ammonium-related), and Sea Salt Column Mass Density (sea salt-related). All of these variables are 

employed according to the major chemical compositions of PM (i.e., nitrate, sulfate, carbon, dust, 

ammonium, and sea salt) (Baker et al., 2007; Tucker et al., 2000; Zheng et al., 2005; Wang et al., 2019; 

Pui et al., 2014). We have appended this statement in the manuscript. It is concluded that the selected 

variables are sufficient to estimate PM over China. The validation results show that the estimation 

model achieves a satisfactory performance (e.g., space-based CV R2: 0.88 for PM2.5 and 0.83 for PM10) 

in our study, which also signify this point. 

The justification for the adoption of total O3 column is presented as follows. With regard to 

stratospheric O3, a latest study (Chen et al., 2020) has shown that the downward transport of O3 

stemming from the stratosphere-to-troposphere exchange can be a significant contributor to 

background O3. Such enhancement of background O3 will affect ambient PM. In addition, ambient O3 

pollution is rapidly increasing over China in recent years (Liu et al., 2020; Wang et al., 2020) and the 

proportion of it may also rise in the total O3 column. At present, the total O3 column has been used to 

estimate ambient O3 over China (Liu et al., 2020) and Tibetan Plateau (Li et al., 2020), suggesting its 



surface predictive capacity. In China, ambient PM is associated with ambient O3 (Chen et al., 2019). 

Therefore, the total O3 column is introduced as an auxiliary variable in our study. 

The main revision is as follows: 

In our study, all of the chemical species are selected in accordance with the major component of PM2.5 

and PM10 (i.e., nitrate, sulfate, carbon, dust, ammonium, and sea salt) (Baker et al., 2007; Tucker et al., 

2000; Zheng et al., 2005; Wang et al., 2019; Pui et al., 2014). 
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Q2.2: By using GEOS-FP, this method loses its flexibility to adjust its input conditions. GEOS-

FP is one of the data assimilation products from GMAO. It is based largely on the model output 

of GEOS. The method in this paper is largely based on this dataset. According to their fig 6, 4 

out of 6 top feature importance for their PM2.5 prediction are from GEOS-FP. What this means 

is that their prediction is mostly controlled by a dataset that they could not make any 

modifications to. For example, the GEOS-FP system has been updated to version 5.25 in January 

2020. Let alone some discontinuous issues posed by all the updates along with the release of each 

GEOS-FP products. On the other hand, the authors argue that previous studies using CTMs 

have the limitation of large uncertainty in the emission inventories of the CTMs. By saying that, 

GEOS-FP also has the same problem of large uncertainty in their emission inventories. By using 

CTMs instead of data assimilation datasets as prediction inputs, researchers can do their best to 

narrow the uncertainty in their model simulations and could also conduct sensitivity experiments. 

From this point of view, methods using CTMs or earth models (e.g. GEOS) would be better for 

this kind of prediction. 

Response: Thank the referee for his/her valuable comments. To be clearer, the total comments are 

divided into two parts, which are replied as follows. 

“By using GEOS-FP, this method loses its flexibility to adjust its input conditions. GEOS-FP is 

one of the data assimilation products from GMAO. It is based largely on the model output of 

GEOS. The method in this paper is largely based on this dataset. According to their fig 6, 4 out 

of 6 top feature importance for their PM2.5 prediction are from GEOS-FP. What this means is 

that their prediction is mostly controlled by a dataset that they could not make any modifications 

to. For example, the GEOS-FP system has been updated to version 5.25 in January 2020. Let 

alone some discontinuous issues posed by all the updates along with the release of each GEOS-

FP products.” 



 

Figure r1：Daily (20190101) spatial distribution of the GEOS-FP, estimated, and ground-based PM2.5. The circles represent 

the ground-based sites. 

Apart from GEOS-FP, multiple datasets from other sources were adopted in our study, including 



TROPOMI, MODIS, GPW, and OpenStreetMap. Especially, high-resolution geographical factors, 

such as NDVI, road density, and population density, could maintain the spatial information. In addition, 

an advance ensemble learning method, i.e., light gradient boosting machine, was exploited to fuse the 

multisource data using ground-truth values. Space-based CV results show that the proposed framework 

performs well in the study area (e.g., R2: 0.88 for PM2.5 and 0.83 for PM10), suggesting that GEOS-FP 

data did not introduce large uncertainties. An example to compare the spatial distribution between the 

estimated and GEOS-FP PM2.5 is demonstrated in Figure r1. The GEOS-FP PM2.5 is calculated via this 

formula: PM2.5=1.375*SO4+2.1*OC+BC+DS2.5+SS2.5 (Xiao et al., 2018). As can be seen, the spatial 

patterns of the estimated PM2.5 are much closer to the actual measurements than GEOS-FP, with a 

higher spatial resolution. Therefore, the estimation accuracy is greatly improved compared to GEOS-

FP based on posterior techniques. 

“On the other hand, the authors argue that previous studies using CTMs have the limitation of 

large uncertainty in the emission inventories of the CTMs. By saying that, GEOS-FP also has the 

same problem of large uncertainty in their emission inventories. By using CTMs instead of data 

assimilation datasets as prediction inputs, researchers can do their best to narrow the 

uncertainty in their model simulations and could also conduct sensitivity experiments. From this 

point of view, methods using CTMs or earth models (e.g. GEOS) would be better for this kind of 

prediction.” 

In this paper, the previous studies using CTMs refer to the works merely considering CTMs without 

other techniques. Our study does not focus on comparing to or arguing about the methods using CTMs. 

The mention of CTMs in the introduction was only to elicit that the approaches based on remote 

sensing satellites have been greatly developed in recent years. The statements about CTMs is confusing 

and has been rephrased in the manuscript. CTMs and GEOS-FP both potential present large uncertainty 

in their emission inventories. At present, the outputs of CTMs have been combined with other datasets 

(e.g., remote sensing) to estimate PM2.5, such as the mentioned work (van Donkelaar et al., 2019). In 

our study, we also fused multiple datasets from new sources, including new remote sensing sensor 

(TROPOMI) and new data assimilation (GEOS-FP). Moreover, the present study is a novel attempt to 

estimate daily full-coverage PM based on the datasets of their precursors & chemical compositions 

instead of AOD products. The validation results show that the proposed framework can perform well 



without the input of AOD in the study area. 

The main revision is as follows: 

With regard to CTMs, the uncertainties of the emission inventories could be large in some areas (Li et 

al., 2017b) and it will consume time and energy to collect the necessary information for simulation 

(Chu et al., 2016). The approaches based on remote sensing satellites have been greatly developed in 

recent years (Sorek-Hamer et al., 2020). 
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Q2.3: The validation process exists flows. First, the authors defined their “AOD-based” control 

estimate, which is using VIIRS AOD to replace the TROPOMI and GEOS-FP in their estimating 

framework. However, this is not the case of previous AOD based studies, especially those most 

influential ones, for example, van Donkelaar et al. 2019. Previous AOD based studies usually 

combined with model simulations and ground-based measurements to best use the information 

of satellite AOD products. What has been done in the paper was that comparing an estimate 

from a missing data AOD product with an estimate from the combination of satellite 

observations and model output. So that it caused the issue of comparing apple with orange; 

moreover, the selling point of this paper is the daily PM2.5 estimate. So validation regarded to a 

daily resolution would be the most convincing. Otherwise, why not just estimate the seasonal or 

annual PM concentrations, which are more useful in current epidemiological studies. The 

validation results from the time-based cross-validation method were the worst according to their 

table1. 

Response: Thank the referee for his/her important comments. To fully validate the estimated results, 

a total of three CV schemes (i.e., sample-based, space-based, and time-based) were considered in our 

study. Meanwhile, all of the validation results were performed at daily resolution, including the overall 

validation (Figure 4), regional validation (Table 1), seasonal validation (Fig. S3-S6), and grid-based 

validation (Figure 5, S7-S9). The examples of daily estimated results in different seasons (20190122, 



20190501, 20190803, and 20191111) were also provided in Figure 7 to show the daily spatial 

distributions. 

Moreover, a baseline was devised in our study. Since a large number of related studies over China 

based on machine learning methods only adopted remote sensing AOD products (no model simulations) 

to estimate PM (Li et al., 2020; Yang et al., 2019; Wei et al., 2019; He et al., 2018, 2020; Yao et al., 

2019; Ma et al., 2016; Chen et al., 2018a, 2018b, 2019; Wang et al., 2019; Zhang et al., 2019; Xue et 

al., 2020), the VIIRS DB AOD product was selected as the AOD-based. However, related studies could 

utilize various techniques to improve their estimation performance. For instance, Li et al. (2020) 

proposed GTWNN; Wei et al. (2019) developed STRF; Kong et al. (2020) combined model 

simulations and ground-based measurements. It is very difficult to duplicate their experiments as 

baselines due to different hardware facilities, large time consumptions, closed data sources, 

unspecified model parameters, etc. By contrast, we compared our metrics to those of related studies 

over China in recent years, which are listed in Table r1 (or see Table S5 in the supplementary materials). 

This is a common strategy used in previous studies for comparison with other works (Wei et al., 2019; 

Jiang et al., 2020; Kong et al., 2020). Apart from Kong et al. (2020) (model simulations), another two 

related studies over China using model simulations or reanalysis datasets have been appended in the 

table (Xue et al., 2017; Xiao et al., 2018), as the referee pointed out. The study area of the mentioned 

work (van Donkelaar et al., 2019) is North America and its temporal resolution is annual. Therefore, 

this work cannot be compared in our study. 

Table r1: Detailed information about the previous related works over China. SACV: sample-based CV; SPCV: space-based 
CV; TICV: time-based CV; SR: spatial resolution; TR: temporal resolution; FC: full-coverage; T: true; F: false; MF: the 
factors which lead to the missing values in the estimated results. 

Type Reference Metric SACV SPCV TICV SR TR Study period FC MF 

PM2.5 

Proposed 

R2 0.93 0.88 0.73 

5-

km 
Daily 2019※ T None RMSE 

8.87 

μg/m3 

11.56 

μg/m3 

17.3 

μg/m3 

RPE 22.8% 29.8% 44.5% 

Wei et al., 

2019 

R2 0.85 0.83 0.63 

1-

km 
Daily 2016 F Cloud, snow/ice RMSE 

15.57 

μg/m3 

16.63 

μg/m3 

24.83 

μg/m3 

RPE - - - 

He et al., 

2018 

R2 0.8 

- - 
3-

km 
Daily 2015 F 

Cloud, snow/ice, 

bright surface RMSE 
18 

μg/m3 



RPE - 

Yao et al., 

2019 

R2 

- 

0.6 

- 
6-

km 
Daily 2014 F 

Cloud, snow/ice, 

bright surface 
RMSE 

21.76 

μg/m3 

RPE - 

Li et al., 

2020 

R2 0.8 0.79 

- 
10-

km 
Daily 2015 F Cloud, snow/ice RMSE 

17.38 

μg/m3 

17.81 

μg/m3 

RPE 31.5% 32.29% 

Jiang et al., 

2020 

R2 0.85 0.74 

- 
1-

km 
Daily* 

2018.03.01-

2019.02.28 
T None RMSE 

11.02 

μg/m3 

14.65 

μg/m3 

RPE - - 

Kong et al., 

2020 

R2 

- 

0.86 

- 
15-

km 
Daily* 2013–2018 T None RMSE 

15.1 

μg/m3 

RPE - 

Xue et al., 

2017 

R2 

- 

0.72 

- 
10-

km 
Daily 2014 T None RMSE 23 μg/m3 

RPE 41% 

Xiao et al., 

2018 

R2 0.79 0.76 0.73 
10-

km 
Daily 2013-2016 T None RMSE 

- - - 
RPE 

PM10 

Proposed 

R2 0.91 0.84 0.67 

5-

km 
Daily 2019※ T None RMSE 

16.92 

μg/m3 

22.03 

μg/m3 

31.33 

μg/m3 

RPE 24.5% 31.9% 45.4% 

Chen et al., 

2018b 

R2 

- 

0.78 

- 
10-

km 
Daily 2005–2016 F Cloud, snow/ice RMSE 

31.54 

μg/m3 

RPE - 

Kong et al., 

2020 

R2 

- 

0.81 

- 
15-

km 
Daily* 2013–2018 T None RMSE 

28.8 

μg/m3 

RPE - 

Note:  
1. The symbols of * represent that the works could provide the estimated results at various temporal resolutions, while the 
metrics listed in the table are computed from the daily estimation. 
2. ※: Only the metrics computed from the estimated results through the proposed approach for a whole year (2019) are 
listed in the table to be fairly compared to previous works. The study period of this paper is from June 1, 2018 to March 
31, 2020. 

The validation results from the time-based CV were the worst since the temporal heterogeneity of 

PM is usually strong (Li et al., 2017, 2020). In other word, the temporal variations of PM could not be 

fully captured. This phenomenon can be discovered in previous related studies over China, such as 



Wei et al. (2019) (time-based CV R2: 0.63) and Xiao et al. (2018) (time-based CV R2: 0.73). Compared 

to them, the time-based CV results in our study are acceptable. 

In conclusion, it is believed that the validation process was justified in this paper. 
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Specific comments: 

Q2.4: Line 99: is it necessary to mention that the area of this study was chosen because that 

China has the largest population in the world? Maybe rephrase this sentence or delete it. 

Response: Thank the referee for his/her comment. This statement has been removed in the manuscript. 

Q2.5: Line 106: “monitor”? maybe use “estimate”. 

Response: Thank the referee for his/her comment. The word “monitor” has been replaced with 

“estimate” in the manuscript. 

The main revision is as follows: 

It is necessary to develop an approach that can estimate PM2.5 and PM10 across China continuously 

and precisely. 

Q2.6: Line 120: any publications about the data validation, calibration, and uncertainty analysis 

of the Chinese PM2.5/PM10 measurements from CNEMC? 

Response: Thank the referee for his/her comment. The required contents have been appended in the 

manuscript. The ground-based measurements from CNEMC have been widely used to estimate PM 

across China (Li et al., 2020; Yang et al., 2019; Wei et al., 2019; He et al., 2018, 2020; Yao et al., 2019; 

Ma et al., 2016; Chen et al., 2018a, 2018b, 2019; Wang et al., 2019; Zhang et al., 2019; Xue et al., 



2017, 2019, 2020; Kong et al., 2020), suggestion their reliability and accuracy. 

The main revision is as follows: 

The CNEMC can provide hourly ambient concentrations of PM2.5 and PM10 over China, which are 

obtained according to the technical specification of HJ 817-2018 (i.e., tapered element oscillating 

microbalance method or beta-attenuation method). 
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Q2.7: Follow point 3, the authors could try to use this method on other regions where have an 

extensive ground-based measurements network, for example, North America, to test their 

validity. 

Response: Thank the referee for his/her comment. At present, the study area of our study focuses on 

China. In the future, we will use this method on other regions, such as North America, to test its validity. 

 

Technical corrections: 

Q2.8: Section index is wrong. For example, two “3.2” sections exist in the main text. 

Response: Thank the referee for his/her comment. This issue has been fixed in the manuscript. 

Q2.9: Line40: should be “van Donkelaar” instead of “Van Donkelaar”. 

Response: Thank the referee for his/her comment. This name has been revised in the manuscript. 

The main revision is as follows: 

Hence, the approaches based on Chemical Transport Models (CTMs) (van Donkelaar et al., 2010; 

Wang et al., 2016; Weagle et al., 2018) or remote sensing satellites (Chen et al., 2018; Li et al., 2020; 

Stafoggia et al., 2019; Shtein et al., 2020; Wei et al., 2019; Yao et al., 2019; You et al., 2015) have been 

exploited to enlarge the spatial coverage of the PM2.5 and PM10 monitoring. 

Q2.10: Define “DUCMASS” in the main text. 

Response: Thank the referee for his/her comment. The full name of “DUCMASS” has been provided 



in the manuscript. 

The main revision is as follows: 

In the meantime, the rank of DUst Column MASS density (DUCMASS) rises for the estimation of 

PM10 compared to that of PM2.5, indicating the flexibility of our approach. 


