
Response to Comments on the Manuscript (acp-2020-1004): 

“Estimating daily full-coverage and high-accuracy 5-km ambient 

particulate matters across China: considering their precursors and 

chemical compositions” 
 

Response to Comments of Referee #1: 

General comment: 

Wang et al. present an analysis of particulate matter over China. They use a Light Gradient 

Boosting Machine regression technique to combine satellite observations and model simulations 

to estimate surface PM 2.5 and PM 10. While the broad topics addressed in this manuscript (i.e. 

pollutant estimation, data-model fusion, machine learning, etc.) are important areas of research, 

I cannot recommend this paper for publication due to serious methodological issues and the fact 

that very similar and more comprehensive work has already been published. 

Response: We would like to take this opportunity to gratefully thank the referee for his/her comments 

and recommendations for improving the paper. An item-by-item response to the interesting comments 

raised by the referee follows. Thanks for your time. 

 

Similarity to previous works: 

Van Donkelaar et al. (2019) and Hammer et al. (2020) use a far simpler statistical method to 

achieve similar performance at across larger temporal, spatial, and chemical scales. As a specific 

example, Hammer et al. (2020) use a relatively simple linear adjustment of satellite observations 

to achieve similar performance at similar resolution globally for 20 years. 

Response: Thank the referee for his/her important comments. The mentioned works (Van Donkelaar 

et al., 2019; Hammer et al., 2020) provided valuable results and made a significant contribution to the 



scientific community. However, the proposed study is not similar to these works and many 

distinctions/highlights can be found in our study compared to them, which are described as follows. 

1) The purpose of our study is different from those of them. The proposed study aims at estimating the 

daily full-coverage PM using the datasets of their precursors & chemical compositions instead of 

AOD products. In our study, the validation results signify that the estimation model can perform 

well without the input of AOD. By contrast, the mentioned works adopted numerous AOD products 

(e.g., MAIAC, DB, and MISR) as major variates. To be specific, see “We use AOD retrieved from 

radiances measured by four satellite instruments...” in Hammer et al. (2020) and “We combined 

AOD from multiple satellite products…” in Van Donkelaar et al. (2019). As for chemical species, 

these works employed a CTM (GEOS-Chem), while our study utilizes the datasets from two sources: 

remote sensing (S5P-TROPOMI) and data assimilation (GEOS-FP). These indicate that the 

intention (or emphasis) of the proposed study entirely differs from these works. 

2) The temporal resolution of the estimated PM in the proposed study (daily) is much higher than those 

in the mentioned works (annual). To be specific, see “The temporal resolution of these globally 

fused PM2.5 estimates focused on annual mean values to inform global health assessments…” in 

Hammer et al. (2020) and “ Annual PM2.5 composition estimates resulting from this effort…” in 

Van Donkelaar et al. (2019). 

3) Only the annual estimated results of the mentioned works were validated at a global scale (Hammer 

et al., 2020) or over North America (Van Donkelaar et al., 2019). Meanwhile, the ground-based sites 

over China were not selected for an individual validation in these works. By contrast, the daily 

estimated PM are validated across China with multiple methods in our study. As a consequence, it 

cannot be concluded that the mentioned works achieved similar performance. 

4) These works exploited an empirical method and the widely used GWR. The specific steps of these 

works (see their Supplement Information) are complicated and include plenty of data preprocessing 

procedures. By contrast, the proposed study adopts a convenient end-to-end approach based on an 

advanced gradient boosting algorithm (i.e., Light-GBM). 

5) The motioned works only considered the estimation of ambient PM2.5. In our study, ambient PM2.5 

and PM10 are both estimated with high accuracy through the proposed approach. 
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Methodological Issues: 

Section 3.1: This data processing is inappropriate for the input data as described in the 

supplement. In particular, downscaling wind fields through bicubic interpolation does not 

preserve mass or energy, nor does it accurately reproduce any higher order variability in the 

wind fields. More advanced statistical approaches (e.g. Kirchmeier et al., 2014) are necessary to 

produce physically consistent informations. 

Response: Thank the referee for his/her valuable comments. The resampling method is an important 

part of the data preprocessing steps. The recommended resampling method (Kirchmeier et al., 2014) 

is advanced and can preserve mass or energy. However, it requires ground-based stations of wind fields 

to acquire the Probability Density Function (PDF). Since the historical ground measurements of 

meteorological factors are undisclosed in China, this method is difficult to be employed. For previous 

related works about the estimation of PM, they usually adopted some simple methods to resample 

meteorological factors, such as the nearest neighbor method (Hu et al., 2014, 2017; Yao et al., 2019) 

and bilinear/bicubic/inverse distance weighted interpolation (Chen et al., 2019; Li et al., 2017; Wei et 

al., 2019; Yang et al., 2020; Shen et al., 2018; Ma et al., 2019). Therefore, the bicubic interpolation is 

selected as the resampling method in our study and the validation results do not suggest that the 

adoption of it will introduce large errors. At present, the researches about the influence of the errors 

from resampling methods on the estimated PM are scarce. This is a topic that is worth exploring and 

we will study it in our future works. 

References:  

Chen, Z. Y., Zhang, T. H., Zhang, R., Zhu, Z. M., Yang, J., Chen, P. Y., ... & Guo, Y. (2019). Extreme gradient boosting 

model to estimate PM2.5 concentrations with missing-filled satellite data in China. Atmospheric environment, 202, 180-

189. 
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concentrations in the conterminous United States using the random forest approach. Environmental science & technology, 

51(12), 6936-6944. 
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concentrations across China using the space-time random forest approach. Remote Sensing of Environment, 231, 111221. 

Yang, Q., Yuan, Q., Yue, L., Li, T., Shen, H., & Zhang, L. (2020). Mapping PM2. 5 concentration at a sub-km level 
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Yao, F., Wu, J., Li, W., & Peng, J. (2019). A spatially structured adaptive two-stage model for retrieving ground-level PM2. 

5 concentrations from VIIRS AOD in China. ISPRS Journal of Photogrammetry and Remote Sensing, 151, 263-276. 

 

Section 3.3: The 10x cross validation scheme described in this section does not account for the 

very large amount of spatial and temporal correlation present in environmental data. This will 

substantially and inappropriately bias the estimated skill of the machine learning model (e.g. 

Hastie et al. 2001, Roberts et al., 2017). The authors should perform a more rigorous evaluation 

of the model skill consistent with the standard in the field (e.g. Barnes et al., 2020). For example, 

the authors could cross validate through block methods by removing longer time periods of data 

or removing entire spatial regions of data beyond the autocorrelation length scale. 

Response: Thank the referee for his/her significant comments. The 10x cross validation scheme was 

widely used in previous related works about the estimation of PM over China (Chen et al., 2018a, 

2018b; Wei et al., 2019; He et al., 2018; Zhang et al., 2019; Fang et al., 2016; Ma et al., 2014, 2016, 

2019). The mentioned works (Van Donkelaar et al., 2019; Hammer et al., 2020) also utilized the 10x 

cross validation scheme. For instance, see “Performance was evaluated using a 10-fold cross-

validation…” in Van Donkelaar et al. (2019) and “The scatterplot shows 10-fold out-of-sample 10% 

cross validation at sites...” in Hammer et al. (2020). In our study, a total of three 10x cross validation 



schemes (i.e., sample-based, space-based, and time-based) are adopted. Among them, the space-based 

cross validation scheme is the most commonly used to evaluate the spatial accuracy of the estimated 

results (Li et al., 2020). Since we need to compare the validation results with the related works, these 

cross validation schemes are necessary in our study. The recommended methods (region-based or 

historical validation) are occasionally employed to verify the spatial or temporal predictive ability of 

the model, such as in Li et al. (2017) and Wei et al. (2019). At present, our study does not focus on the 

improvement to the predictive ability of the model. However, the historical validation results 

(removing longer time periods of data) are listed in Table r1 to present the temporal predictive ability 

of the proposed approach. For comparison, the historical validation results of some related works (Wei 

et al., 2019; Ma et al., 2016; He et al., 2018) are also provided in Table r2. As can be seen, the temporal 

predictive ability of the proposed approach is desired compared to these works. 

Table r1: Metrics of the historical validation results in our study. 

Type Training period Validation period Approach R2 RMSE (μg/m3) 

PM2.5 

2018.06.01-2019.05.31 (365) 2019.06.01-2020.03.31 (305) 

Proposed 0.59 21.28 

AOD-based 0.54 22.37 

PM10 
Proposed 0.5 36.82 

AOD-based 0.42 48.12 

Table r2: Metrics of the historical validation results in previous related works over China. 

Type Reference R2 RMSE (μg/m3) Validation period Full-coverage 

PM2.5 

Wei et al., 2019 0.55 27.38 2016 (366) 

False He et al., 2018 0.47 37.57 2014 (365) 

Ma et al., 2016 0.41 - 2014.01.01-2014.06.30 (181) 
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Section 4.4: The feature importance results in this section call in question the validity of the 

modelling approach here. The top ranked variables include those that were unphysically 

downscaled: wind speeds (U, V, and Ustar) and turbulent evaporation, as well as total column 

ozone. As the vast majority of the ozone within a total column is present in the stratosphere, any 

surface predictive capacity associated with that variable is dubious. Additionally, the high 

importance ranking of NO2 potentially indicates that the machine learning model is predicting 

based simply off the proximity to combustion sources. This explains why the model performance 

is so poor over more remote regions in Western China and limits the applicability of the method 

developed. 

Response: Thank the referee for his/her meaningful comments. The total comments can be divided 

into three parts, which are replied as follows. 



1) “unphysically downscaled meteorological factors (e.g., wind speed)”: The reasons for the adoption 

of bicubic interpolation in our study have been explained above. Previous related works about the 

estimation of PM usually applied some simple methods to resample meteorological factors. There 

is no indication that bicubic interpolation will lead to large errors in our study. 

2) “total column ozone”: For the stratospheric O3, a latest study (Chen et al., 2020) has shown that 

the downward transport of O3 stemming from the stratosphere-to-troposphere exchange can be a 

significant contributor to background O3. Such enhancement of background O3 will affect ambient 

PM. In addition, ambient O3 pollution is rapidly increasing over China in recent years (Liu et al., 

2020; Wang et al., 2020) and the proportion of it may also rise in the total O3 column. It is inferred 

that more surface information can be extracted from the total O3 column in China compared to 

other regions. At present, the total O3 column has been used to estimate ambient O3 over China 

(Liu et al., 2020) and Tibetan Plateau (Li et al., 2020a), suggesting its surface predictive capacity. 

In China, ambient PM is associated with ambient O3 (Chen et al., 2019). Therefore, the total O3 

column is introduced as an auxiliary variate in our study and the feature importance of it is ranked 

9th and 7th for PM2.5 and PM10, respectively. 

3) “poor model performance in Western China”: The poor performance of the proposed approach in 

Western China primarily results from the imbalanced matched samples. Since most of the ground-

based sites distribute in the populous regions, the matched samples are small in Western China. 

This makes it difficult to extract useful information over these regions. In our study, the high 

importance ranking of NO2 potentially signifies that nitrate is generally the major contribution to 

ambient PM in China according to the current distribution of ground-based sites. Ambient PM 

presents strong heterogeneous spatial patterns over China (Li et al., 2017, 2020b); consequently, 

the model performance is spatially various due to the imbalanced matched samples. In previous 

related works about the estimation of PM over China, this phenomenon is common. Some 

examples (Chen et al., 2019; Wei et al., 2019; Li et al., 2020b) are provided in Figure r1-r3. At 

present, the purpose of our study does not aim at addressing the issue caused by the imbalanced 

(or small) matched samples. We will study it in our future works. 



 

Figure r1: Distribution of the (a) sample-based CV R2 and (b) site-based CV R2 of the GTW-GRNN model (Li 

et al., 2020b). 

 

Figure r2: Spatial distribution of the spatial cross-validation result (blue color indicates a better fit) with each 

grid with PM2.5 monitors (Chen et al., 2019). 

 

Figure r3: Spatial distributions of R2 between PM2.5 estimations and measurements from 2016 in China. 

Results are from the sample-based 10-cross-validation (Wei et al., 2019). 
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Figures: All figures with maps in this paper violate the ACP maps policy: 

https://www.atmospheric-chemistry-and-physics.net/submission.html#mapsaerials. “In order to 

depoliticize scientific articles, authors should avoid the drawing of borders or use of contested 

topographical names.” The inset of the South China Sea does not aid in the scientific 

interpretation of the results presented in this manuscript in any way, and only confuses the 

figures. 

Response: Thank the referee for his/her comment. These figures have been redrawn in the manuscript. 

An example of revision is as follows: 



 

Figure 1. The spatial distribution of the ground-based stations over China. The base-map is the true color image of 

MODIS. 

Specific Comments: 

Q1.1: L14 “Most of the existing approaches for the estimation of PM 2.5 and PM 10 employed 

the remote sensing Aerosol Optical Depth (AOD) products as the main variate.” I don’t believe 

this is the case. Most approaches to estimate PM 2.5 and PM 10 come from in situ observations 

of aerosol mass and size distributions. 

Response: Thank the referee for his/her comment. This statement is inaccurate and has been reworded 

in the manuscript. 

The main revision is as follows: 

At present, most of remote sensing based approaches for the estimation of PM2.5 and PM10 employed 

Aerosol Optical Depth (AOD) products as the main variate. 

 

Q1.2: L29 “conducive to the researches”. I’m not sure what this sentence means. 

Response: Thank the referee for his/her comment. This statement has been reworded in the manuscript. 



The main revision is as follows: 

It is concluded that the full-coverage estimated results from our study will be helpful in the field of 

large-scale PM2.5 and PM10 monitoring over the regions where the AOD values are missing. 

 

Q1.3: L38 Satellite observations are much more expensive than ground-based monitoring. 

Response: Thank the referee for his/her comment. This statement is intended to express that the 

observations from existing atmospheric satellites (e.g., Terra, Himawari-8, and Suomi-NPP) can be 

adopted. We have deleted it in the manuscript. 

 

Q1.4: L45 This statement needs appropriate citation. 

Response: Thank the referee for his/her comment. This statement is inaccurate and has been reworded 

in the manuscript. 

The main revision is as follows: 

With regard to CTMs, the uncertainties of the emission inventories could be large in some areas (Li et 

al., 2017b) and it will consume time and energy to collect the necessary information for simulation 

(Chu et al., 2016). The approaches based on remote sensing satellites have been greatly developed in 

recent years (Sorek-Hamer et al., 2020). 
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Q1.5: Section 2.2 This section is far too lacking in details to interpret or reproduce the work 

presented in this paper. The authors should explicitly state the variables used in the main body 

of the manuscript. 

Response: Thank the referee for his/her comment. Since numerous variates (30) are introduced in the 

proposed approach, the specific description of them was considered tedious. To be more clear, the 

explicit statement about the variates used in our study has been appended in Section 3.2, following the 



estimation function. 

The main revision is as follows: 

The general scheme of the model for estimating the ambient concentrations of PM2.5 and PM10 can be 

expressed as Eq. (1). 

𝐶ெ = 𝑓(𝑉𝑀, 𝑉𝑀 , 𝑉𝐴ைଷ, 𝑉𝐴ெி , 𝑉𝐴ீி , 𝐷𝑂𝑌)                                        (1) 
where CPM signifies the estimated ambient concentrations of PM2.5 and PM10. f denotes the estimation 

function for the ambient concentrations of PM2.5 and PM10 based on LGBM. VMP and VMCC indicate 

the main variates of the precursors and chemical compositions, respectively, for PM2.5 and PM10. VAO3, 

VAMF, and VAGF represent the auxiliary variates of the O3 from TROPOMI, meteorological factors, and 

geographical factors, respectively; DOY is the day of year. To be specific, VMP consists of 

nitrogendioxide_tropospheric_column and sulfurdioxide_total_vertical_column_1km; VMCC includes 

Black Carbon Column Mass Density, Organic Carbon Column Mass Density, Nitrate Column Mass 

Density, SO4 Column Mass Density, Dust Column Mass Density, Ammonium Column Mass Density, 

and Sea Salt Column Mass Density; VMMF covers 10-meter Specific Humidity, 10-meter Air 

Temperature, 10-meter Eastward Wind, 10-meter Northward Wind, Total Precipitable Water Vapor, 

Pbltop Pressure, Surface Pressure, Planetary Boundary Layer Height, Air Density at Surface, Surface 

Velocity Scale, and Evaporation from Turbulence; and VAGF contains 1_km_16_days_NDVI, the 

fractions of forest, savanna, grassland, cropland, urban, and aridland, road density, and population 

density. 

 

Q1.6: L120 This link does not work for me. 

Response: Thank the referee for his/her comment. This website requires the Microsoft Silverlight (> 

4.0) (https://www.microsoft.com/getsilverlight/get-started/install/default) and the screenshot of it has 

been presented in Figure r4. In addition, the air quality data is also available at http://www.cnemc.cn/. 



 
Figure r4: Screenshot of http://106.37.208.233:20035. 

 

Q1.7: Section 3.2 How were the hyperparameters selected? Was there any optimization or search 

algorithm applied here? 

Response: Thank the referee for his/her comment. Since the matched samples (e.g., 31*742932 for 

PM2.5) are large and the training procedure requires plenty of time, the random search based on cross 

validation is adopted in our study for some key hyperparameters (e.g., num_leaves and learning_rate). 

 

Q1.8: Figure 5 The colors being split into only 5 bins makes assessing performance difficult. 

Consider using a continuous colorbar. 

Response: Thank the referee for his/her comment. These figures have been redrawn in the manuscript. 

An example of revision is as follows: 



 
Figure 5. The spatial distribution of R2s for the space-based CV at each matched grid over China. The black crosses 

denote that the significance levels (p) of the metrics are not less than 0.01 at these matched grids. 

 

Q1.9: L329 The authors should explicitly show evidence for this incorrect estimation through 

sampling. 

Response: Thank the referee for his/her comment. The annual validation results (space-based cross 

validation) of the estimated results (proposed and AOD-based) in 2019 over China are depicted in 

Figure r5. As can be seen, the annual performance of AOD-based is poor (large bias) due to the 

sampling that discards the missing values in the AOD product, with RPEs of 28.07% and 33.62% for 

PM2.5 and PM10, respectively. By contrast, the proposed approach performs well for the annual 

estimation. 



 
Figure r5: The density scatter plots of the annual validation results for PM2.5 and PM10 in 2019 over China. The 

black solid line signifies the fitted line and the color bar denotes the density of samples. Y: annual estimated 

ambient concentrations of PM2.5 and PM10; X: annual ground-based ambient concentrations of PM2.5 and PM10. 


