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Abstract 17 

The South Asian summer monsoon supplies over 80% of India’s precipitation. Industrialization 18 

over the past few decades has resulted in severe aerosol pollution in India. Understanding 19 

monsoonal sensitivity to aerosol emissions in general circulation models (GCMs) could improve 20 

predictability of observed future precipitation changes. The aims here are (1) to assess the role of 21 

aerosols on India’s monsoon precipitation and (2) to determine the roles of local and regional 22 

emissions. For (1), we study the Precipitation Driver Response Model Intercomparison Project 23 

experiments. We find that the precipitation response to changes in black carbon is highly uncertain 24 

with a large intermodel spread due in part to model differences in simulating changes in cloud 25 

vertical profiles. Effects from sulfate are clearer; increased sulfate reduces Indian precipitation, a 26 

consistency through all of the models studied here. For (2), we study bespoke simulations, with 27 

reduced Chinese and/or Indian emissions in three GCMs. A significant increase in precipitation 28 

(up to ~20%) is found only when both countries’ sulfur emissions are regulated, which has been 29 

driven in large part by dynamic shifts in the location of convective regions in India. These changes 30 

have the potential to restore a portion of the precipitation losses induced by sulfate forcing over 31 

the last few decades.  32 

  33 
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Significance Statement 34 

The aims here are to assess the role of aerosols on India’s monsoon precipitation and to determine 35 

the relative contributions from Chinese and Indian emissions using CMIP6 models. We find that 36 

increased sulfur emissions reduce precipitation, which is primarily dynamically driven due to 37 

spatial shifts in convection over the region. A significant increase in precipitation (up to ~20%) is 38 

found only when both Indian and Chinese sulfate emissions are regulated. 39 

  40 
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1. Introduction 41 

The South Asian summer monsoon is the dominant weather pattern over India, lasting typically 42 

from June to September. Over this period, southwesterly winds transport warm, moist air from the 43 

Arabian Sea onto the Indian subcontinent, supplying roughly 80% of the region’s annual rainfall 44 

(Turner and Annamalai, 2012). Since the monsoon provides such a significant source for India’s 45 

water supply, changes in its strength and position would have important socioeconomic 46 

implications including though not simply confined to agricultural production (Kumar et al., 2004; 47 

Douglas et al., 2009) and drought frequency (Subbiah, 2002). Given the rugged orography of the 48 

surrounding region and difficulties in modelling intense precipitation, resolving the future roles of 49 

natural variability and the externally forced signal for the monsoon is a fundamentally difficult – 50 

but important – problem.  51 

 52 

Interannual changes in the monsoon have been linked to internal (natural) variability inherent to 53 

the climate system. For instance, numerous studies have found a potential connection between 54 

variability in the El Niño-Southern Oscillation (ENSO) and the monsoon (Sikka 1980; Shukla and 55 

Paolino 1983; Annamalai and Liu 2005). Such links could be used to improve predictability of 56 

Indian rainfall. While internal variability likely plays a non-negligible role in modulating the South 57 

Asian summer monsoon – and is expected to continue to do so in the future, even in high emissions 58 

scenarios (Annamalai et al. 2007) – changes in the monsoon’s mean state associated with external 59 

forcings are also of fundamental importance. Specifically, determining the anthropogenic impacts 60 

on monsoonal changes associated with emissions of greenhouse gases (GHGs) and aerosols can 61 

provide critical insights that can help better inform policymaking decisions regarding emission 62 

regulations.  63 
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 64 

The steady rise in GHGs over the 20th century has increased the atmosphere’s average temperature 65 

and water vapor content through the Clausius-Clapeyron relation, and might be expected as a result 66 

to contribute to increased precipitation over India. CMIP6 models run with just an increase in CO2 67 

forcing exhibits such an increase uniformly across India (Figure S1). However, in reality the 68 

picture is more complex as the literature has indicated no such observed trend for India over the 69 

last half century (Ramesh and Goswami, 2014; Saha and Ghosh, 2019). Observed monsoon 70 

precipitation aggregated over all of continental India (Figure 1) actually indicates a slight drying 71 

trend over the last few decades. While these trends are not statistically significant at a 95% 72 

confidence level, the purpose of Figure 1 is to illustrate that the increase in monsoon precipitation 73 

expected from the growing greenhouse forcing has certainly not been detected. There may be 74 

several mechanisms invoked to explain why Indian monsoon precipitation has not increased. Land 75 

use changes over the Indo-Gangetic Plain have been implicated as one of the causes, where 76 

decreased evapotranspiration may have limited the amount of available precipitable water in the 77 

region (Paul et al., 2016). It has been shown also that aerosol effects have counterbalanced the 78 

precipitation changes attributable to the greenhouse warming (Bollasina et al., 2011; Turner and 79 

Annamalai, 2012). Ramanathan et al. (2005) found that aerosols over India reduce surface 80 

shortwave radiation, which limits the amount of evaporation and thereby reduces monsoon 81 

precipitation. Additionally, it has been shown that the atmospheric brown cloud (originally so 82 

termed in Ramanathan and Crutzen, 2003, referring to the pervasive light absorbing aerosol layer 83 

akin to the stratocumulus cloud decks observed over the oceans) over the Northern Indian Ocean 84 

is associated with a stable atmosphere that limits convection. Atmospheric brown clouds consist 85 

primarily of black and organic carbon, dust and other anthropogenic aerosols. Sources of aerosols 86 
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and their precursors in South and East Asia (indicated in Figure S2), are tied particularly to energy 87 

production and biomass combustion, which have grown steadily in response to industrialization in 88 

the region, though recent trends in these two regions differ. Meehl et al. (2008) similarly found 89 

that an increased aerosol load reduced precipitation over India during the monsoon season, but that 90 

it also increased rainfall in the pre-monsoon season. Wang et al. (2009) found that absorbing 91 

aerosols were particularly important in influencing the summer monsoon system. The issue with 92 

many of these studies is that they focus on individual models. There is a large spread in the 93 

precipitation response across models reflecting differing representations of cloud and aerosol 94 

processes (e.g. Wilcox et al., 2015), factors that may bias results given the already complex nature 95 

of modelling precipitation over India (Ramanathan et al., 2005; Bollasina et al., 2011; Turner and 96 

Annamalai, 2012; Ramesh and Goswami, 2014; Paul et al., 2016; Saha and Ghosh, 2019). 97 

Multimodel ensembles can improve our understanding and help constrain uncertainty on the 98 

impacts of different aerosol constituents on the monsoon.  99 

 100 

Here, we analyze results from two climate model intercomparisons to better understand the 101 

summer monsoonal impacts from sulfur and black carbon aerosols, two of the dominant 102 

constituents of India’s aerosol pollution. First, we study the Precipitation Driver Response Model 103 

Intercomparison Project (PDRMIP; Samset et al. 2016) experiments to assess the summer 104 

monsoon response to extreme aerosol conditions. The purpose of the PDRIMP experiments is to 105 

determine if a precipitation signal can be detected i.e. a causal link between the emissions of sulfur 106 

and black carbon and changes in the monsoon. Previous analysis of a set of PDRMIP experiments 107 

which increase global BC levels tenfold found a slight enhancement in P-E during the South Asian 108 

summer monsoon, driven by a strengthened land-sea temperature gradient (Xie at al., 2020). We 109 
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focus the first section of our analysis on Asian perturbation experiments as significant emissions 110 

changes are expected over this region in the coming decades (e.g. Samset et al., 2019). We note 111 

that these experiments use artificially large emission perturbations to enable isolation of signal 112 

detection from climatic variability. Second, we study a set of regional aerosol emissions 113 

intercomparison experiments (labeled RAEI experiments for the rest of the paper for convenience) 114 

to assess the relative contributions of Indian and Chinese anthropogenic aerosol emissions to the 115 

monsoon. Because remote emissions may play an important role on India’s monsoon (e.g. Shawki 116 

et al. 2018), in addition to Indian emissions we choose to study emissions from China because this 117 

country is presently the world leading emitter of BC and SO2, is in close proximity to India and its 118 

emissions of both pollutants are expected to decline rapidly over the coming decade. Emissions in 119 

more remote regions are less likely to change in a major way. A robust analysis of these 120 

intercomparisons should refine our understanding of the anthropogenic influence on the South 121 

Asian summer monsoon and reduce uncertainty on future changes given that India’s anthropogenic 122 

emissions are expected to increase at least in the near term, while China’s will likely decrease (Rao 123 

et al. 2016). We decompose precipitation changes into dynamic (i.e. circulation changes) and 124 

thermodynamic (i.e. specific humidity changes) components to assess how aerosols interact with 125 

the monsoon. The rest of the paper is structured as follows: section 2 discusses the simulations 126 

used in the analysis, section 3 presents and analyzes potential monsoonal impacts associated with 127 

sulfur and black carbon emissions and section 4 summarizes the study and highlights needs for 128 

future work. 129 

 130 

2. Data and Methods 131 

2.1 PDRMIP intercomparison  132 
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We first study the Precipitation Driver Response Model Intercomparison Project (PDRMIP) 133 

experiments. PDRMIP is an idealized set of modelling experiments, used to better understand 134 

drivers of regional precipitation change. We focus specifically on two experiments that involve 135 

perturbations to Asian concentrations or emissions (see Table 1), where Asia is defined by the 136 

regional box of 60-140˚E and 10-50˚N. The first is BC10xASIA, representing a tenfold increase 137 

in present-day BC concentrations or emissions in Asia at all vertical levels, and the second is 138 

SULF10xASIA, which explores a similar tenfold increase in present-day sulfate concentrations or 139 

emissions. The BC10xASIA and SULF10xASIA scenarios are compared with control simulations 140 

(henceforth called CTRLPDRMIP) where aerosol concentrations or emissions are maintained at near 141 

current values (either year 2000 or 2005 for each model). We study the six models involved in the 142 

PDRMIP experiments that conduct the Asian perturbation experiments (Table 1). These 143 

experiments will be used to better constrain uncertainty on the direction of precipitation and 144 

circulation changes under anthropogenic aerosol emissions changes. Since these are extreme 145 

perturbations to aerosol concentrations, we use these scenarios not as representative of a future 146 

emissions trajectory, but rather as a way to check if different models with different process 147 

representations indicate a consistent response. Due to inter-model differences in spatial resolution, 148 

all data are rescaled to the lowest model resolution (3.75˚ ´ 2.0˚) when comparing model output. 149 

Variations in aerosol schemes and direct and indirect aerosol effects across the six models will 150 

affect the spread in predicted precipitation changes associated with the increased aerosol 151 

concentrations (Table 1). The different schemes and their effects on precipitation will be discussed 152 

further in the section 3. 153 

 154 
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Table 1. Details of the models analyzed in this work. For the models participating in the 155 

PDRMIP Asian aerosol perturbation simulations, each simulation lasts 100 years. Cloud scheme 156 

refers to the microphysical cloud scheme that describes cloud formation, where a one-moment 157 

scheme considers only changes in mass and a two-moment scheme considers changes in mass 158 

and number concentration. The first indirect effect refers to the aerosol effect on cloud albedo 159 

and the second indirect effect refers to the aerosol effect on cloud lifetime. 160 

Model Spatial 
resolution 

Cloud 
scheme 

Indirect 
effects Model reference Aerosol 

microphysics MIP 

CESM1-CAM5† 1.25˚ ´ 
0.9375˚ 

Two 
moment 

First, 
second 

Neale et al. 
(2012) Full aerosol PDRMIP, 

RAEI 

GISS-E2-R 2.5˚ ´ 2.0˚ One 
moment None* Schmidt et al. 

(2014) No aerosol PDRMIP, 
RAEI 

HadGEM3 1.875˚ ´ 
1.25˚ 

One 
moment First Hewitt et al. 

(2011) 

No BC; 
aerosol-cloud 

interaction 
included 

PDRMIP 

UKESM1-0-LL 1.875˚ ´ 
1.25˚ 

Two 
moment 

First, 
second 

Sellar et al. 
(2019) Full aerosol RAEI 

IPSL-CM 3.75˚ ´ 
1.875˚ 

Two 
moment 

First, 
second 

Dufresne et al. 
(2013) 

Aerosol 
microphysics 
for Twomey 

effect 

PDRMIP 

NorESM 2.5˚ ´ 1.875˚ Two 
moment 

First, 
second 

Bentsen et al. 
(2013) Full aerosol PDRMIP 

MIROC-
SPRINTARS† 1.41˚ ´ 1.41˚ One 

moment 
First, 

second 
Watanabe et al. 

(2011) Full aerosol PDRMIP 
*Indirect effects in the PDRMIP simulations were turned off since these simulations had prescribed aerosol fields 161 

and so changes in the hydrologic cycle could not change the aerosols. The first effect was included in the GISS RAEI 162 
simulations, however, as those are emissions-driven and hence physically consistent. 163 

†Indicate models that change emissions in the PDRMIP experiments. Rows that do not include this mark indicate 164 
models that change concentrations in the PDRMIP experiments. 165 

 166 
2.2 RAEI experiments  167 

The purpose of the RAEI experiments is to assess the relative contributions of aerosol emissions 168 

from China and India on monsoon precipitation over India. Three GCMs with coupled chemistry-169 

climate components are used to study the effects of regional perturbations in aerosol emissions on 170 

the Indian monsoon: GISS-E2-R (Schmidt et al., 2014), CESM1-CAM5 (Neale et al., 2012) and 171 

UKESM1-0-LL (Sellar et al., 2019). Past research has used some of these models to explore the 172 
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effects of regional aerosol reductions on global precipitation, including emissions changes in the 173 

US, Europe, China and India. Some of the experiments from RAEI have been used to study the 174 

global effects of US SO2 emissions on global precipitation (Conley et al., 2018) as well as local 175 

and remote precipitation responses to regional reductions in aerosols (Westervelt et al., 2018). 176 

Here, we study the South Asian summer monsoon response to reductions in anthropogenic aerosol 177 

emissions in China and India, focusing specifically on a set of three experiments: (1) no SO2 178 

emissions in India (IND NO SO2), (2) 80% SO2 emissions reduction in China (CHN 20% SO2) 179 

and (3) no SO2 emissions in India and China (IND+CHN NO SO2). We have run additional BC 180 

experiments that are included only in the SI because we find that changes in BC do not have a 181 

clear impact on precipitation in the summer monsoon. The three SO2 experiments will be compared 182 

to control simulations (CTRL) with emissions set near present-day values (year 2000 or 2005 183 

depending on the model) to determine the relative importance on summer monsoon precipitation 184 

of regional aerosol emissions from India and China. The UKESM experiments were run over a 185 

shorter period (40 years), relative to the other models (~200 years). We found from resampling 186 

that 40 years is sufficient to observe the general precipitation statistics over India. For 187 

climatological variables studied in our PDRMIP and RAEI analysis, we take mean values over the 188 

full simulation period, excluding the first 10 years to allow for spin-up. 189 

 190 

2.3 Precipitation decomposition 191 

In addition to calculating overall precipitation changes due to sulfur and BC emissions, we seek 192 

also to determine the dynamic and thermodynamic components of the changes attributable to these 193 

forcing agents. The dynamic component is representative of precipitation changes caused by a 194 

change in atmospheric circulation, and the thermodynamic component is representative of 195 
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variations in precipitation due to changes in moisture under constant circulation. To perform this 196 

decomposition, we follow the methodology of Chadwick et al. 2016. The total precipitation change 197 

∆P can be expressed as  198 

∆𝑃 = ∆𝑞𝑀∗ + 	𝑞∆𝑀∗ + ∆𝑞∆𝑀∗, 199 

where q is the near-surface specific humidity and M* is a proxy for convective mass flux (M* = 200 

P/q). The first term on the right hand side is representative of thermodynamic changes (∆Ptherm), 201 

the second dynamic changes (∆Pdyn) and the third the nonlinear interaction of these two 202 

components (∆Pcross). ∆Pdyn can be further decomposed into shifts in the circulation patterns 203 

(∆Pshift) and changes in the mean strength of the tropical circulation (∆Pstrength) as 204 

∆𝑃*+,-. = 𝑞∆𝑀*+,-.
∗ , 205 

∆𝑃*+,-. = 𝑞∆𝑀*./012.+
∗ , 206 

where ∆M*strength = -aM*strength (where a = tropical mean ∆M*/tropical mean M*). ∆M*shift is 207 

computed as the residual of ∆M* and ∆M*strength. This decomposition follows the methodology in 208 

Chadwick et al. 2016 and Monerie et al. 2019. 209 

 210 

3. Results  211 

3.1 PDRMIP analysis: summertime Indian precipitation response to large BC and sulfur 212 

perturbations 213 

We start with an evaluation using the PDRMIP experiments (Table 1) of summertime Indian 214 

precipitation changes caused by large BC and sulfate concentration increases over all of Asia. The 215 

difference in summer precipitation between the BC10xASIA and CTRLPDRMIP experiments 216 

provides an estimate for the role of BC in monsoonal changes and is shown in Figures 2a-g. From 217 

the individual models (Figures 2a-f), there is a noticeably large ensemble spread in the 218 
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precipitation response over India due to the increase in BC. In north India, for example, HadGEM3 219 

shows a precipitation decrease of up to 70%, while SPRINTARS exhibits effectively a null 220 

response and GISS is identified with a strong precipitation increase of ~50%. PDRMIP simulations 221 

that globally increase BC tenfold also do not show a consistent multimodel response over India 222 

(Samset et al. 2016; Liu et al 2018). While HadGEM3 and GISS generally underestimate 223 

precipitation over India (Figure S3), it does not appear that these biases are manifest in consistent 224 

precipitation changes in the BC10xASIA experiments. Additionally, while two of the six models 225 

studied increase BC emissions rather than BC concentrations, this does not appear to alter the BC 226 

vertical profile except in the stratosphere (see Figure S4). It is likely that different aerosol schemes 227 

across models (Table 1) may be implicated as the dominant source of the large ensemble spread, 228 

although both the boundary layer scheme and modelling impacts of absorbing aerosols on cloud 229 

formation (Koch and Del Genio, 2010) could play important roles. Specifically, cloud formation 230 

is affected significantly by the BC vertical profile; BC within the cloud layer can burn off moisture 231 

and reduce cloud cover, BC below the cloud layer can enhance convection and increase cloud 232 

cover and BC above the cloud layer can either increase or decrease cloud cover according to the 233 

cloud type. Because of the complexities of the semi-direct effects of absorbing aerosols that are 234 

currently not heavily constrained by observations, the role of BC generally has a diverse response 235 

across climate models (Koch et al., 2009; Stjern et al. 2017). Large variance in the cloud fraction 236 

vertical profile are apparent also in the PDRMIP BC10xASIA simulations (Figure 3). This large 237 

uncertainty does not consistently favor an increase or decrease in cloud fraction across vertical 238 

layers except in NorESM and CESM where a slight increase (on the order of a couple of percent) 239 

can be detected across all layers. Variations in the BC vertical profile as well as its lifetime can 240 

result in significant changes in cloud cover and precipitation even within an individual model by 241 
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changing atmospheric stability and humidity (Samset and Myhre 2015). These effects are manifest 242 

in the diverse shortwave responses (Figure S5), which indicate a large spread between models in 243 

magnitude and sign over parts of India. Additionally, changes in the TOA net radiative forcing 244 

between BC10xASIA and PDRMIPCTRL are generally consistent in magnitude and direction across 245 

models over India (Figures S7a-f). By contrast, the change in Cloud Radiative Effect (CRE; 246 

Figures S7g-l) is not consistent in sign across models, suggesting that the models agree on the 247 

direct aerosol effects but differ on the aerosol-cloud interactions. While there are more causative 248 

factors on precipitation than cloud fraction, the important point is that because of the large cloud 249 

uncertainty that varies in both magnitude and sign, it is difficult to attribute future changes in 250 

Indian precipitation to changes in BC concentration. This is reflected in the precipitation change 251 

which fails to demonstrate a clear spatial coherence in the multimodel mean (Figure 2g).  252 

 253 

The role of sulfate for Indian precipitation is much clearer. The percent change in precipitation 254 

between the SULF10xASIA and CTRL PDRMIP experiments is shown in Figures 2h-n. The sign 255 

of the precipitation change is generally consistent across models, with a large decrease in 256 

precipitation (~50%) over all of India in response to a tenfold increase in sulfate. There is also 257 

large uncertainty in the cloud fraction profile response to sulfate emissions (Figure 3), similar to 258 

the BC PDRMIP experiments. However, five of the six models on average favor a decrease in 259 

cloud fraction with increased SO2 emissions, consistent with the precipitation response. So, while 260 

there is a comparable measure of intermodel spread for the BC10xASIA and SULF10xASIA cloud 261 

responses, the mean change is more consistent in the SULF10xASIA experiments. The results 262 

from the PDRMIP experiments, with their higher sulfate concentrations, constrain uncertainty on 263 
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the sign of precipitation changes, and can be used as a frame of reference for the country-specific 264 

aerosol experiments described in section 3.2 and beyond. 265 

 266 

3.2 RAEI analysis: Indian aerosol burden response to Chinese and Indian aerosol emissions 267 

changes  268 

We now consider the RAEI emissions scenarios for China and India. Percent changes in sulfate 269 

burden between the sulfate regulation scenarios and control runs are shown in Figures S7a-i. Indian 270 

sulfate emissions play an important role on local sulfate concentrations, contributing up to 60% of 271 

the country’s aerosol burden, while China’s emissions can contribute up to 60% over the 272 

Himalayas. The change in Indian aerosol burden for sulfate is notably consistent in terms of both 273 

the magnitude of the change as well as the spatial pattern across the three models studied. Since 274 

the temperature gradient between the Arabian Sea and Bay of Bengal and the Himalayas has been 275 

invoked as a modulator of the South Asian Monsoon (e.g. Priya et al., 2017), both Indian and 276 

Chinese emissions could influence monsoon precipitation over India by modifying the optical 277 

properties of the atmosphere not only over the country but also over surrounding regions. 278 

 279 

3.3 RAEI analysis: summer monsoon precipitation response to regional SO2 emissions changes 280 

The precipitation response associated with SO2 emissions is significant over parts of India (Figures 281 

4a-i), in agreement with the PDRMIP results. Almost all models and scenarios show an increase 282 

in summer precipitation in India when SO2 emissions in China and/or India are reduced. The 283 

strongest response requires regulations from both China and India, with an increase of nearly 20% 284 

in precipitation in some regions of India when SO2 emissions are reduced across the three models 285 

studied here. From these results, changes in India’s precipitation depend not only on local SO2 286 
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emissions, but also on regional sources. These emissions can have a measurable impact on India’s 287 

water availability by altering the underlying statistics in favor of greater precipitation events (e.g. 288 

Sillman et al. 2019). That being said, the spatial patterns associated with these precipitation 289 

changes vary to a large degree between models. For instance, precipitation changes in GISS exhibit 290 

greater consistency across scenarios than they do with the CESM or UKESM. Additionally, 291 

UKESM tends to estimate larger precipitation changes than the other RAEI models, consistent 292 

with the HadGEM3 results indicated in Figure 2 which uses the same physical model. There is, 293 

however, general consistency in the increase in precipitation when SO2 emissions are reduced in 294 

both China and India. The precipitation responses to lower BC regional emissions are indicated in 295 

Figure S8. BC emissions play a much lesser role in GISS and CESM relative to SO2 emissions, 296 

and cause an inconsistent response in UKESM across the three regional emissions experiments. 297 

For all reduced BC scenarios, the changes in India’s precipitation are generally small (~5% locally) 298 

and not statistically significant at a 90% confidence level. The strongest precipitation response 299 

occurs when both Chinese and Indian BC emissions are eliminated, but there is a spread in the 300 

direction of change across models. This spread in precipitation change is consistent with that of 301 

the PDRMIP results in that the intermodel spread in precipitation change due to BC emissions 302 

changes tends to be larger than the magnitude of the precipitation response from any individual 303 

model. This may highlight large process uncertainty generally. Bond et al. (2013), for example, 304 

note that the impact of BC on the cloud radiative forcing in models is highly sensitive to the 305 

nucleation regime in the background atmosphere.  306 

 307 

3.4 RAEI analysis: physical understanding of the SO2-precipitation response 308 
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Physical explanations for the precipitation changes induced by SO2 emissions changes are 309 

explored here. Circulation changes are typically connected to sulfate increases in India; a 310 

weakened land-sea temperature gradient associated with SO2 emissions would inhibit monsoonal 311 

advection of moisture from the Arabian Sea onto the Indian subcontinent. Warming over the 312 

Himalayas can be seen in most of the simulations (Figure S9), as well as changes in 850 hPa winds, 313 

where there is a clear strengthening of the coastal winds when SO2 emissions are reduced (Figure 314 

4). The fact that the land-sea temperature gradient and 850 hPa winds change suggests that 315 

precipitation changes due to SO2 emissions may be dynamically rather than thermodynamically 316 

driven, which motivates the precipitation decomposition analysis discussed later. As shown in 317 

Figure 4, strengthening of the monsoonal winds is largely consistent across models and scenarios, 318 

though there are slight differences in the location of the strongest zonal wind increases; in GISS 319 

and UKESM, the greatest increase is over India itself for most scenarios, while it is further south 320 

in CESM. This suggests that a high sulfate burden reduces the strength of the monsoon winds, 321 

consistent with prior studies that connect these changes to the dimming of the downward solar flux 322 

(Kim et al. 2007). The relative contributions of thermodynamic (i.e. specific humidity) changes to 323 

dynamic (i.e. circulation) changes are indicated in Figure 5. The thermodynamic precipitation 324 

response to sulfur emissions reductions is positive for the three emissions experiments, consistent 325 

with the Clausius-Clapeyron relation as less SO2 increases surface temperatures and consequently 326 

specific humidity. The interaction of dynamic and thermodynamic components (panel c, ∆Pcross) 327 

plays a minimal role. The magnitude of the thermodynamic response is on the order of 50% that 328 

of the dynamic component – i.e. the dynamic component dominates. Panels (d) and (e) of Figure 329 

5 indicate that this effect is driven primarily by shifts in the convective regions, with changes in 330 

the tropical mean circulation having a minimal or slightly negative effect. It is of note that the 331 
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magnitude of each component is consistent across the three models studied here, suggesting 332 

consistency in the mechanistic reasons for increased monsoon precipitation over India when sulfur 333 

emissions are reduced. Changing circulation patterns are suggested as a consequence of changes 334 

in CO2 as well, and potential nonlinear effects of sulfur and greenhouse emissions on monsoon 335 

precipitation highlight an important point that demands further study. 336 

 337 

4. Conclusions 338 

The main purpose of this study was to better understand, through the use of several GCM 339 

experiments, the sensitivity of the South Asian summer monsoon to regional anthropogenic aerosol 340 

emission changes. Given that this is a modelling study, there are a number of caveats that must be 341 

acknowledged. There are often questions of how well GCMs can simulate the Indian monsoon 342 

since their spatial resolution may be too coarse to resolve the complex orography of India and the 343 

surrounding regions (Prell and Kutzbach, 1992). Additionally, representation of cloud 344 

microphysical processes is a known limitation of GCMs (e.g. Wilcox et al., 2015). We find a large 345 

intermodel spread in cloud profile and precipitation changes in the various BC emissions scenarios 346 

studied here. This suggests that discrepancies in representation of cloud processes within GCMs 347 

constrain uncertainty in the precipitation response from BC perturbations, which cannot be 348 

accounted for simply by differences in the BC vertical profiles (Figure S4). In contrast, the 349 

precipitation responses for SO2 emission changes as well as the dynamic mechanism for these 350 

responses are largely consistent across models, suggesting that there is relative certainty in the 351 

models ability to simulate precipitation changes due to SO2 emissions. So, while it may be difficult 352 

to extrapolate on the basis of these simulations from modelled to real-world monsoon precipitation 353 
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changes induced by anthropogenic aerosols, consistency in the SO2 response across models lends 354 

confidence in a potential observed response for future emissions changes. 355 

 356 

On investigating the response of the monsoon to a tenfold increase of Asian BC and sulfate 357 

concentrations, we found that the role of BC on Indian precipitation is uncertain but that increased 358 

sulfate concentrations over India reduce precipitation across five of the six models studied. Large 359 

uncertainty in the precipitation response to changing Asian BC is notably consistent with previous 360 

PDRMIP analysis studying monsoon changes to a tenfold increase in global BC levels (Xie et al. 361 

2020). Consistency between the global and regional PDMRIP simulations in this context suggests 362 

further that a BC signal is difficult to detect for the South Asian summer monsoon. 363 

 364 

When assessing the relative contributions of Chinese and Indian anthropogenic SO2 emissions to 365 

aerosol loading over South Asia (the RAEI emissions experiments), and the consequent 366 

precipitation responses, we find that there is only a statistically significant difference in monsoon 367 

precipitation when there is regulation of both China and India’s SO2 emissions, which leads to on 368 

the order of a 20% precipitation increase locally. Consistency in the precipitation responses 369 

between the increased sulfate scenario (PDRMIP SULF10xASIA) and the decreased sulfate 370 

scenario (RAEI) suggests that the aerosol-precipitation link may be a reversible process, and is 371 

attributable in large part to dynamical changes specifically shifts in convective patterns over the 372 

region. Additionally, these results are significant because Chinese emissions of SO2 have declined 373 

over the past decade, while Indian emissions have grown steadily. There is also anticipated growth 374 

in CO2 emissions and concentrations over the coming decades and this is expected to result in an 375 

increase in the atmospheric water vapor content. These concurrent events will have important 376 
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implications for policy going forward, as water deficits present a major issue for India that may be 377 

exacerbated given the country’s exponential population growth. Regions that exhibit large 378 

variability in summertime precipitation such as Chennai and Delhi (as indicated in Figure S10) 379 

may be particularly sensitive to future monsoon changes because interannual shifts between wet 380 

and dry years at present impose important strains on the available water resource. Moreover, the 381 

benefits of policies to control SO2 emissions will have significant impacts not only on mitigating 382 

water deficits but also in terms of alleviation of air pollution, estimated to be responsible for 383 

hundreds of thousands of premature deaths per year in India (Health Effects Institute, 2019).  384 

 385 

While China’s pollution is expected to decline in most socio-economic projections, India’s is 386 

expected to grow except under strong emissions controls (Samset et al., 2019). Regardless of the 387 

realism of these scenarios, the results should be seen as further impetus for regional policies to 388 

reduce SO2 emissions given that we have found combined emissions reductions from China and 389 

India can increase monsoon precipitation over the country by 5% on average and by up to 20% 390 

locally. This effect, in combination with consequent impacts of continued growth in GHGs (Figure 391 

S1), could result in an overabundance. This calls therefore for careful consideration of implications 392 

for both precipitation and health over multiple timescales. 393 

 394 

Code and data availability 395 

All code and model data to make the figures used in this paper will be made publicly available 396 

through Zenodo following acceptance of the paper. The ESRL database makes gridded 397 

precipitation data publicly available for both the. University of Delaware data 398 

https://doi.org/10.5194/acp-2020-1001
Preprint. Discussion started: 12 October 2020
c© Author(s) 2020. CC BY 4.0 License.



 20 

(https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html) and for the GPCC 399 

data (https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html). 400 
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Figures 528 

 529 
Figure 1. Average cumulative summer (JJAS) precipitation [cm] over land in all of India from 530 
1900 to 2016 for two observational datasets: (red) University of Delaware (UDel; Willmot and 531 
Matsuura, 2001) (blue) the Global Precipitation Climatology Center (GPCC; Schneider et al. 532 
2018). Data are smoothed using a moving mean with a window size of five years. Linear trend 533 
lines are indicated for the last 40 years for each dataset as dashed lines, and the slopes [cm yr-1] 534 
are denoted by the arrows.  535 
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 536 

Figure 2. Percent change in summertime (JJAS) precipitation between (a-f) the BC10xASIA and 537 
the CTRLPDRMIP runs; (g) the multimodel mean of the change. Similarly, (h-m) represent the 538 
precipitation change in JJAS precipitation between the SULF10xASIA scenarios and the 539 
CTRLPDRMIP runs, and (n) represents the multimodel mean of the change. Stippled grid cells in 540 
(g) and (n) denote regions where at least five of the six models agree on the sign of the change. 541 
Grey contours indicate mean JJAS precipitation from the control experiment for each model at 5 542 
mm day-1 intervals.  543 
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 544 

Figure 3. JJAS difference in cloud fraction between (blue) the BC10xASIA and the CTRLPDRMIP 545 
runs and (red) the SULF10xASIA scenarios and the CTRLPDRMIP runs. The bold lines represent 546 
the mean difference and the shadings represent 25th and 75th percentiles. 547 

  548 
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 549 
Figure 4. JJAS precipitation percentage difference between the SO2 regional emissions scenarios 550 
and the CTRL runs. JJAS 850 hPa wind changes are overlaid for each simulation. The columns 551 
represent the different models and rows represent the different emissions scenarios. Stippled 552 
regions denote areas where the difference is significant at a 90% confidence level for a two-553 
sample t-test. Grey contours indicate mean JJAS precipitation from the control experiment for 554 
each model at 5 mm day-1 intervals. 555 
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 557 

 558 

Figure 5. Boxplots indicating the decomposition of area averaged JJAS precipitation anomalies 559 
[mm day-1] into a) ∆Ptherm, b) ∆Pdyn, c) ∆Pcross, d) ∆Pstrength and e) ∆Pshift components over India. 560 
Different colors represent the three RAEI scenarios relative to the respective CTRL run with 561 
green representing the IND NO SO2 experiment, purple the CHN 20% SO2 experiment and 562 
orange the IND+CHN NO SO2 experiment. The range for each boxplot corresponds to 563 
intermodel variability from the three different models studied in the RAEI experiments.  564 
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