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Abstract 17 

The South Asian summer monsoon supplies over 80% of India’s precipitation. Industrialization 18 

over the past few decades has resulted in severe aerosol pollution in India. Understanding 19 

monsoonal sensitivity to aerosol emissions in general circulation models (GCMs) could improve 20 

predictability of observed future precipitation changes. The aims here are (1) to assess the role of 21 

aerosols on India’s monsoon precipitation and (2) to determine the roles of local and regional 22 

emissions. For (1), we study the Precipitation Driver Response Model Intercomparison Project 23 

experiments. We find that the precipitation response to changes in black carbon is highly uncertain 24 

with a large intermodel spread due in part to model differences in simulating changes in cloud 25 

vertical profiles. Effects from sulfate are clearer; increased sulfate reduces Indian precipitation, a 26 

consistency through all of the models studied here. For (2), we study bespoke simulations, with 27 

reduced Chinese and/or Indian emissions in three GCMs. A significant increase in precipitation 28 

(up to ~20%) is found only when both countries’ sulfur emissions are regulated, which has been 29 

driven in large part by dynamic shifts in the location of convective regions in India. These changes 30 

have the potential to restore a portion of the precipitation losses induced by sulfate forcing over 31 

the last few decades.  32 

  33 
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Significance Statement 34 

The aims here are to assess the role of aerosols on India’s monsoon precipitation and to determine 35 

the relative contributions from Chinese and Indian emissions using CMIP6 models. We find that 36 

increased sulfur emissions reduce precipitation, which is primarily dynamically driven due to 37 

spatial shifts in convection over the region. A significant increase in precipitation (up to ~20%) is 38 

found only when both Indian and Chinese sulfate emissions are regulated. 39 

  40 



 4 

1. Introduction 41 

The South Asian summer monsoon is the dominant weather pattern over India, lasting typically 42 

from June to September. Over this period, southwesterly winds transport warm, moist air from the 43 

Arabian Sea onto the Indian subcontinent, supplying roughly 80% of the region’s annual rainfall 44 

(Turner and Annamalai, 2012). Since the monsoon provides such a significant source for India’s 45 

water supply, changes in its strength and position would have important socioeconomic 46 

implications including though not simply confined to agricultural production (Kumar et al., 2004; 47 

Douglas et al., 2009) and drought frequency (Subbiah, 2002). Given the rugged orography of the 48 

surrounding region and difficulties in modelling intense precipitation, resolving the future roles of 49 

natural variability and the externally forced signal for the monsoon is a fundamentally difficult – 50 

but important – problem.  51 

 52 

Interannual changes in the monsoon have been linked to internal (natural) variability inherent to 53 

the climate system. For instance, numerous studies have found a potential connection between 54 

variability in the El Niño-Southern Oscillation (ENSO) and the monsoon (Sikka 1980; Shukla and 55 

Paolino 1983; Annamalai and Liu 2005). Such links could be used to improve predictability of 56 

Indian rainfall. While internal variability likely plays a non-negligible role in modulating the South 57 

Asian summer monsoon – and is expected to continue to do so in the future, even in high emissions 58 

scenarios (Annamalai et al. 2007) – changes in the monsoon’s mean state associated with external 59 

forcings are also of fundamental importance. Specifically, determining the anthropogenic impacts 60 

on monsoonal changes associated with emissions of greenhouse gases (GHGs) and aerosols can 61 

provide critical insights that can help better inform policymaking decisions regarding emission 62 

regulations.  63 
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 64 

The steady rise in GHGs over the 20th century has increased the atmosphere’s average temperature 65 

and water vapor content through the Clausius-Clapeyron relation, and might be expected as a result 66 

to contribute to increased rainfall events over India (Goswami et al., 2006; Turner and Slingo, 67 

2009; Salzmann et al., 2014). CMIP6 models run with just an increase in CO2 forcing generally 68 

exhibit such an increase uniformly across India (Figure S1). However, in reality the picture is more 69 

complex as the literature has indicated no such observed trend for India over the last half century 70 

(Ramesh and Goswami, 2014; Saha and Ghosh, 2019). Observed monsoon precipitation 71 

aggregated over all of continental India (Figure 1) actually indicates a slight drying trend over the 72 

last few decades. While these trends are not statistically significant at a 95% confidence level, the 73 

purpose of Figure 1 is to illustrate that the increase in monsoon precipitation expected from the 74 

growing greenhouse forcing has certainly not been detected. There may be several mechanisms 75 

invoked to explain why Indian monsoon precipitation has not increased. Land use changes over 76 

the Indo-Gangetic Plain have been implicated as one of the causes, where decreased 77 

evapotranspiration may have limited the amount of available precipitable water in the region (Paul 78 

et al., 2016). It has been shown also that aerosol effects have counterbalanced the precipitation 79 

changes attributable to the greenhouse warming (Bollasina et al., 2011; Turner and Annamalai, 80 

2012; Westervelt et al., 2020). Ramanathan et al. (2005) found that aerosols over India reduce 81 

surface shortwave radiation, which limits the amount of evaporation and thereby reduces monsoon 82 

precipitation. Additionally, it has been shown that the atmospheric brown cloud (originally so 83 

termed in Ramanathan and Crutzen, 2003, referring to the pervasive light absorbing aerosol layer 84 

akin to the stratocumulus cloud decks observed over the oceans) over the Northern Indian Ocean 85 

is associated with a stable atmosphere that limits convection. Atmospheric brown clouds consist 86 
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primarily of black and organic carbon, dust and other anthropogenic aerosols. Sources of aerosols 87 

and their precursors in South and East Asia (indicated in Figure S2), are tied particularly to energy 88 

production and biomass combustion, which have grown steadily in response to industrialization in 89 

the region, though recent trends in these two regions differ. Meehl et al. (2008) similarly found 90 

that an increased aerosol load reduced precipitation over India during the monsoon season, but that 91 

it also increased rainfall in the pre-monsoon season. Wang et al. (2009) found that absorbing 92 

aerosols were particularly important in influencing the summer monsoon system. This has been 93 

validated further by a number of studies (highlighted in Li et al., 2016), who found aerosols can 94 

influence the atmospheric dynamics and the formation of clouds, with consequent impacts on daily 95 

(Singh et al., 2019), seasonal (Lau et al., 2017) and intraseasonal (Hazra et al., 2013) precipitation. 96 

The issue with many of these studies is that they focus on individual models. There is a large 97 

spread in the precipitation response across models reflecting differing representations of cloud and 98 

aerosol processes (e.g. Wilcox et al., 2015), factors that may bias results given the already complex 99 

nature of modelling precipitation over India (Ramanathan et al., 2005; Bollasina et al., 2011; 100 

Turner and Annamalai, 2012; Ramesh and Goswami, 2014; Paul et al., 2016; Saha and Ghosh, 101 

2019). Multimodel ensembles can improve our understanding and help constrain uncertainty on 102 

the impacts of different aerosol constituents on the monsoon.  103 

 104 

Here, we analyze results from two climate model intercomparisons to better understand the 105 

summer monsoonal impacts from sulfur and black carbon aerosols, two of the dominant 106 

constituents of India’s aerosol pollution. First, we study the Precipitation Driver Response Model 107 

Intercomparison Project (PDRMIP; Samset et al. 2016) experiments to assess the summer 108 

monsoon response to extreme aerosol conditions. The purpose of the PDRIMP experiments here 109 
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is to determine if a precipitation signal in the South Asian summer monsoon can be detected in 110 

scenarios with large emissions perturbations of sulfur and black carbon. Previous analysis of a set 111 

of PDRMIP experiments which increase global BC levels tenfold found a slight enhancement in 112 

P-E during the South Asian summer monsoon, driven by a strengthened land-sea temperature 113 

gradient (Xie at al., 2020). We focus the first section of our analysis on Asian perturbation 114 

experiments as significant emissions changes are expected over this region in the coming decades 115 

(e.g. Samset et al., 2019). We note that these experiments use artificially large emission 116 

perturbations to enable isolation of signal detection from climatic variability. Second, we study a 117 

set of regional aerosol emissions intercomparison experiments (labeled RAEI experiments for the 118 

rest of the paper for convenience) to assess the relative contributions of Indian and Chinese 119 

anthropogenic aerosol emissions to the monsoon. Because emissions outside of India may play an 120 

important role on its summer monsoon (Bollasina et al., 2014; Shawki et al. 2018), in addition to 121 

Indian emissions we choose to study emissions from China because this country is presently the 122 

world leading emitter of BC and SO2, is in close proximity to India and its emissions of both 123 

pollutants are expected to decline rapidly over the coming decade. Emissions in more remote 124 

regions are less likely to change in a major way. A robust analysis of these intercomparisons should 125 

refine our understanding of the anthropogenic influence on the South Asian summer monsoon and 126 

reduce uncertainty on future changes given that India’s anthropogenic emissions are expected to 127 

increase at least in the near term, while China’s will likely decrease (Rao et al. 2016). We 128 

decompose precipitation changes into dynamic (i.e. circulation changes) and thermodynamic (i.e. 129 

specific humidity changes) components to assess how aerosols interact with the monsoon. The rest 130 

of the paper is structured as follows: section 2 discusses the simulations used in the analysis, 131 
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section 3 presents and analyzes potential monsoonal impacts associated with sulfur and black 132 

carbon emissions and section 4 summarizes the study and highlights needs for future work. 133 

 134 

2. Data and Methods 135 

2.1 PDRMIP intercomparison  136 

We first study the Precipitation Driver Response Model Intercomparison Project (PDRMIP) 137 

experiments. PDRMIP is an idealized set of modelling experiments, used to better understand 138 

drivers of regional precipitation change. We focus specifically on two experiments that involve 139 

perturbations to Asian concentrations or emissions (see Table 1), where Asia is defined by the 140 

regional box of 60-140˚E and 10-50˚N. The first is BC10xASIA, representing a tenfold increase 141 

in present-day BC concentrations or emissions in Asia at all vertical levels, and the second is 142 

SULF10xASIA, which explores a similar tenfold increase in present-day sulfate concentrations or 143 

emissions. The BC10xASIA and SULF10xASIA scenarios are compared with control simulations 144 

(henceforth called CTRLPDRMIP) where aerosol concentrations or emissions are maintained at near 145 

current values (either year 2000 or 2005 for each model). We study the six models involved in the 146 

PDRMIP experiments that conduct the Asian perturbation experiments (Table 1). These 147 

experiments will be used to better constrain uncertainty on the direction of precipitation and 148 

circulation changes under anthropogenic aerosol emissions changes. Since these are extreme 149 

perturbations to aerosol concentrations, we use these scenarios not as representative of a future 150 

emissions trajectory, but rather as a way to check if different models with different process 151 

representations indicate a consistent response. Due to inter-model differences in spatial resolution, 152 

all data are rescaled to the lowest model resolution (3.75˚  2.0˚) when comparing model output. 153 

Variations in aerosol schemes and direct and indirect aerosol effects across the six models will 154 
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affect the spread in predicted precipitation changes associated with the increased aerosol 155 

concentrations (Table 1). The different schemes and their effects on precipitation will be discussed 156 

further in the section 3. 157 

 158 

Table 1. Details of the models analyzed in this work. For the models participating in the 159 

PDRMIP Asian aerosol perturbation simulations, each simulation lasts 100 years. Cloud scheme 160 

refers to the microphysical cloud scheme that describes cloud formation, where a one-moment 161 

scheme considers only changes in mass and a two-moment scheme considers changes in mass 162 

and number concentration. The first indirect effect refers to the aerosol effect on cloud albedo 163 

and the second indirect effect refers to the aerosol effect on cloud lifetime. 164 

Model 
Spatial 

resolution 

Cloud 

scheme 

Indirect 

effects 
Model reference 

Aerosol 

microphysics 
MIP 

CESM1-CAM5† 2.5˚  1.875˚ 
Two 

moment 

First, 

second 

Neale et al. 

(2012) 
Full aerosol 

PDRMIP, 

RAEI 

GISS-E2-R 2.5˚  2.0˚ 
One 

moment 
None* Schmidt et al. 

(2014) 
No aerosol 

PDRMIP, 

RAEI 

HadGEM3 
1.875˚  

1.25˚ 

One 

moment 

First, 

second 

Hewitt et al. 

(2011) 

No BC; 

aerosol-cloud 

interaction 

included 

PDRMIP 

IPSL-CM 
3.75˚  

1.875˚ 

Two 

moment 
First 

Dufresne et al. 

(2013) 

Aerosol 

microphysics 

for Twomey 

effect 

PDRMIP 

MIROC-

SPRINTARS† 
1.41˚  1.41˚ 

One 

moment 

First, 

second 

Watanabe et al. 

(2011) 
Full aerosol PDRMIP 

NorESM 2.5˚  1.875˚ 
Two 

moment 

First, 

second 

Bentsen et al. 

(2013) 
Full aerosol PDRMIP 

UKESM1-0-LL 
1.875˚  

1.25˚ 

Two 

moment 

First, 

second 

Sellar et al. 

(2019) 
Full aerosol RAEI 

*Indirect effects in the PDRMIP simulations were turned off since these simulations had prescribed aerosol fields 165 
and so changes in the hydrologic cycle could not change the aerosols. The first effect was included in the GISS RAEI 166 

simulations, however, as those are emissions-driven and hence physically consistent. 167 
†Indicate models that change emissions in the PDRMIP experiments. Rows that do not include this mark indicate 168 

models that change concentrations in the PDRMIP experiments. 169 
 170 

2.2 RAEI experiments  171 
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The purpose of the RAEI experiments is to assess the relative contributions of aerosol emissions 172 

from China and India on monsoon precipitation over India. Three GCMs with coupled chemistry-173 

climate components are used to study the effects of regional perturbations in aerosol emissions on 174 

the Indian monsoon: GISS-E2-R (Schmidt et al., 2014), CESM1-CAM5 (Neale et al., 2012) and 175 

UKESM1-0-LL (Sellar et al., 2019). Past research has used some of these models to explore the 176 

effects of regional aerosol reductions on global precipitation, including emissions changes in the 177 

US, Europe, China and India. Some of the experiments from RAEI have been used to study the 178 

global effects of US SO2 emissions on global precipitation (Westervelt et al., 2017) as well as local 179 

and remote precipitation responses to regional reductions in aerosols (Westervelt et al., 2018). 180 

Here, we study the South Asian summer monsoon response to reductions in anthropogenic aerosol 181 

emissions in China and India, focusing specifically on a set of three experiments: (1) no SO2 182 

emissions in India (IND NO SO2), (2) 80% SO2 emissions reduction in China (CHN 20% SO2) 183 

and (3) no SO2 emissions in India and China (IND+CHN NO SO2). We have run additional BC 184 

experiments that are included only in the SI because we find that changes in BC do not have a 185 

clear impact on precipitation in the summer monsoon. The three SO2 experiments will be compared 186 

to control simulations (CTRL) with emissions set near present-day values (year 2000 or 2005 187 

depending on the model) to determine the relative importance on summer monsoon precipitation 188 

of regional aerosol emissions from India and China. The UKESM experiments were run over a 189 

shorter period (40 years), relative to the other models (~200 years). We found from resampling 190 

that 40 years is sufficient to observe the general seasonally aggregated precipitation statistics over 191 

India. For climatological variables studied in our PDRMIP and RAEI analysis, we take mean 192 

values over the full simulation period, excluding the first 10 years to allow for spin-up. 193 

 194 
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2.3 Precipitation decomposition 195 

In addition to calculating overall precipitation changes due to sulfur and BC emissions, we seek 196 

also to determine the dynamic and thermodynamic components of the changes attributable to these 197 

forcing agents. The dynamic component is representative of precipitation changes caused by a 198 

change in atmospheric circulation, and the thermodynamic component is representative of 199 

variations in precipitation due to changes in moisture under constant circulation. To perform this 200 

decomposition, we follow the methodology of Chadwick et al. 2016. The total precipitation change 201 

∆P can be expressed as  202 

∆𝑃 = ∆𝑞𝑀∗ +  𝑞∆𝑀∗ + ∆𝑞∆𝑀∗, 203 

where q is the near-surface specific humidity and M* is a proxy for convective mass flux (M* = 204 

P/q). The first term on the right hand side is representative of thermodynamic changes (∆Ptherm), 205 

the second dynamic changes (∆Pdyn) and the third the nonlinear interaction of these two 206 

components (∆Pcross). ∆Pdyn can be further decomposed into shifts in the circulation patterns 207 

(∆Pshift) and changes in the mean strength of the tropical circulation (∆Pstrength) as 208 

∆𝑃𝑠ℎ𝑖𝑓𝑡 = 𝑞∆𝑀𝑠ℎ𝑖𝑓𝑡
∗ , 209 

∆𝑃𝑠ℎ𝑖𝑓𝑡 = 𝑞∆𝑀𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
∗ , 210 

where ∆M*
strength = -M*

strength (where  = tropical mean ∆M*/tropical mean M*). ∆M*
shift is 211 

computed as the residual of ∆M* and ∆M*
strength. This decomposition follows the methodology in 212 

Chadwick et al. 2016 and Monerie et al. 2019. 213 

 214 

3. Results  215 

3.1 PDRMIP analysis: summertime Indian precipitation response to large BC and sulfur 216 

perturbations 217 
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We start with an evaluation using the PDRMIP experiments (Table 1) of summertime Indian 218 

precipitation changes caused by large BC and sulfate concentration increases over all of Asia. The 219 

difference in summer precipitation between the BC10xASIA and CTRLPDRMIP experiments 220 

provides an estimate for the role of BC in monsoonal changes and is shown in Figures 2a-g. From 221 

the individual models (Figures 2a-f), there is a noticeably large ensemble spread in the 222 

precipitation response over India due to the increase in BC. In north India, for example, HadGEM3 223 

shows a precipitation decrease of up to 70%, while SPRINTARS exhibits effectively a null 224 

response and GISS is identified with a strong precipitation increase of ~50%. PDRMIP simulations 225 

that globally increase BC tenfold also do not show a consistent multimodel response over India 226 

(Samset et al. 2016). The first regional analysis of the PDRMIP experiments by Liu et al. (2018) 227 

found also a weak precipitation response to BC changes, attributed to insignificant circulation 228 

changes relative to those induced by the sulfur experiments. While HadGEM3 and GISS generally 229 

underestimate precipitation over India (Figure S3), it does not appear that these biases are manifest 230 

in consistent precipitation changes in the BC10xASIA experiments. The weak precipitation over 231 

India in HadGEM3 in the CTRL simulation (Figure S3) also likely explains the large percent 232 

changes indicated in the BC and sulfate experiments. Additionally, while two of the six models 233 

studied increase BC emissions rather than BC concentrations, this does not appear to alter the BC 234 

vertical profile except in the stratosphere (see Figure S4). It is likely that different aerosol schemes 235 

across models (Table 1) may be implicated as one of the dominant sources of the large ensemble 236 

spread by altering simulated clouds radiative properties and lifetimes, as has been shown in 237 

previous studies testing different aerosol schemes in the same coupled climate model (Nazarenko 238 

et al., 2017). Additionally, both the boundary layer scheme and modelling impacts of absorbing 239 

aerosols on cloud formation could play important roles. Specifically, Koch and Del Genio (2010) 240 
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note that cloud formation is affected significantly by the BC vertical profile; BC within the cloud 241 

layer can burn off moisture and reduce cloud cover, BC below the cloud layer can enhance 242 

convection and increase cloud cover and BC above the cloud layer can either increase or decrease 243 

cloud cover according to the cloud type. Because of the complexities of the semi-direct effects of 244 

absorbing aerosols that are currently not heavily constrained by observations, the role of BC 245 

generally has a diverse response across climate models (Koch et al., 2009; Stjern et al. 2017). 246 

Large variance in the cloud fraction vertical profile are apparent also in the PDRMIP BC10xASIA 247 

simulations (Figure 3). This large uncertainty does not consistently favor an increase or decrease 248 

in cloud fraction across vertical layers except in NorESM and CESM where a slight increase (on 249 

the order of a couple of percent) can be detected across all layers. Variations in the BC vertical 250 

profile as well as its lifetime can result in significant changes in cloud cover and precipitation even 251 

within an individual model by changing atmospheric stability and humidity (Samset and Myhre 252 

2015). These effects are manifest in the diverse shortwave responses (Figure S5), which indicate 253 

a large spread between models in magnitude and sign over parts of India. Additionally, changes in 254 

the TOA net radiative forcing between BC10xASIA and PDRMIPCTRL are generally consistent in 255 

magnitude and direction across models over India (Figures S6a-f). By contrast, the change in 256 

Cloud Radiative Effect (CRE; Figures S6g-l) is not consistent in sign across models, suggesting 257 

that the models agree on the direct aerosol effects but differ on the aerosol-cloud interactions. 258 

While there are more causative factors on precipitation than cloud fraction, the important point is 259 

that because of the large cloud uncertainty that varies in both magnitude and sign, it is difficult to 260 

attribute future changes in Indian precipitation to changes in BC concentration. This is reflected in 261 

the precipitation change which fails to demonstrate a clear spatial coherence in the multimodel 262 

mean (Figure 2g).  263 
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 264 

The role of sulfate for Indian precipitation is much clearer. The percent change in precipitation 265 

between the SULF10xASIA and CTRL PDRMIP experiments is shown in Figures 2h-n. The sign 266 

of the precipitation change is generally consistent across models, with a large decrease in 267 

precipitation (~50%) over all of India in response to a tenfold increase in sulfate. There is also 268 

large uncertainty in the cloud fraction profile response to sulfate emissions (Figure 3), similar to 269 

the BC PDRMIP experiments. However, five of the six models on average favor a decrease in 270 

cloud fraction with increased SO2 emissions, consistent with the precipitation response. So, while 271 

there is a comparable measure of intermodel spread for the BC10xASIA and SULF10xASIA cloud 272 

responses, the mean change is more consistent in the SULF10xASIA experiments. The results 273 

from the PDRMIP experiments, with their higher sulfate concentrations, constrain uncertainty on 274 

the sign of precipitation changes, and can be used as a frame of reference for the country-specific 275 

aerosol experiments described in section 3.2 and beyond. 276 

 277 

3.2 RAEI analysis: Indian aerosol burden response to Chinese and Indian aerosol emissions 278 

changes  279 

We now consider the RAEI emissions scenarios for China and India. Percent changes in sulfate 280 

burden between the sulfate reduction scenarios and control runs are shown in Figures S7a-i. Indian 281 

sulfate emissions play an important role on local sulfate concentrations, contributing up to 60% of 282 

the country’s aerosol burden, while China’s emissions can contribute up to 60% over the 283 

Himalayas. The change in Indian aerosol burden for sulfate is notably consistent in terms of both 284 

the magnitude of the change as well as the spatial pattern across the three models studied. Since 285 

the temperature gradient between the Arabian Sea and Bay of Bengal and the Himalayas has been 286 
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invoked as a modulator of the South Asian Monsoon (e.g. Priya et al., 2017), both Indian and 287 

Chinese emissions could influence monsoon precipitation over India by modifying the optical 288 

properties of the atmosphere not only over the country but also over surrounding regions. 289 

 290 

3.3 RAEI analysis: summer monsoon precipitation response to regional SO2 emissions changes 291 

The precipitation response associated with SO2 emissions is significant over parts of India (Figures 292 

4a-i), in agreement with the PDRMIP results. All scenarios across the multi-model ensemble (with 293 

the exception of CESM’s CHN 20% SO2 scenario) show an increase in summer precipitation in 294 

India when SO2 emissions in China and/or India are reduced. The strongest response requires 295 

reductions from both China and India, with an increase of nearly 20% in precipitation in some 296 

regions of India when SO2 emissions are reduced across the three models studied here. From these 297 

results, changes in India’s precipitation depend not only on local SO2 emissions, but also on 298 

regional sources. These emissions can have a measurable impact on India’s water availability by 299 

altering the underlying statistics in favor of greater precipitation events (e.g. Sillman et al. 2019). 300 

That being said, the spatial patterns associated with these precipitation changes vary to a large 301 

degree between models. For instance, precipitation changes in GISS exhibit greater consistency 302 

across scenarios than they do with the CESM or UKESM. Additionally, UKESM tends to estimate 303 

larger precipitation changes than the other RAEI models, consistent with the HadGEM3 results 304 

indicated in Figure 2 which uses the same physical model. There is, however, general consistency 305 

in the increase in precipitation when SO2 emissions are reduced in both China and India. The 306 

precipitation responses to lower BC regional emissions are indicated in Figure S8. BC emissions 307 

play a much lesser role in GISS and CESM relative to SO2 emissions, and cause an inconsistent 308 

response in UKESM across the three regional emissions experiments. For all reduced BC scenarios 309 
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(with the exception of two UKESM scenarios), the changes in India’s precipitation are generally 310 

small (~5% locally) and not statistically significant at a 90% confidence level. The strongest 311 

precipitation response occurs when both Chinese and Indian BC emissions are eliminated, but 312 

there is a spread in the direction of change across models. This spread in precipitation change is 313 

consistent with that of the PDRMIP results in that the intermodel spread in precipitation change 314 

due to BC emissions changes tends to be larger than the magnitude of the precipitation response 315 

from any individual model. This may highlight large process uncertainty generally. Bond et al. 316 

(2013), for example, note that the impact of BC on the cloud radiative forcing in models is highly 317 

sensitive to the nucleation regime in the background atmosphere.  318 

 319 

3.4 RAEI analysis: physical understanding of the SO2-precipitation response 320 

Physical explanations for the precipitation changes induced by SO2 emissions changes are 321 

explored here. Circulation changes are typically connected to sulfate increases in India; a 322 

weakened land-sea temperature gradient associated with SO2 emissions would inhibit monsoonal 323 

advection of moisture from the Arabian Sea onto the Indian subcontinent. Warming over the 324 

Himalayas can be seen in most of the simulations (Figure S9), as well as changes in 850 hPa winds, 325 

where there is a clear strengthening of the coastal winds when SO2 emissions are reduced (Figure 326 

S10). The fact that the land-sea temperature gradient and 850 hPa winds change suggests that 327 

precipitation changes due to SO2 emissions may be dynamically rather than thermodynamically 328 

driven, which motivates the precipitation decomposition analysis discussed later. A similar 329 

analysis by Shawki et al. (2018) also found that reduced Chinese SO2 emissions strengthened the 330 

land-sea temperature contrast and consequently precipitation over India. As shown in Figure 4, 331 

strengthening of the monsoonal winds is largely consistent across models and scenarios, though 332 
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there are slight differences in the location of the strongest zonal wind increases; in GISS and 333 

UKESM, the greatest increase is over India itself for most scenarios, while it is further south in 334 

CESM. This suggests that a high sulfate burden reduces the strength of the monsoon winds, 335 

consistent with prior studies that connect these changes to the dimming of the downward solar flux 336 

(Kim et al. 2007). The relative contributions of thermodynamic (i.e. specific humidity) changes to 337 

dynamic (i.e. circulation) changes are indicated in Figure 5. The thermodynamic precipitation 338 

response to sulfur emissions reductions is positive for the three emissions experiments, consistent 339 

with the Clausius-Clapeyron relation as less SO2 increases surface temperatures and consequently 340 

specific humidity. The interaction of dynamic and thermodynamic components (panel c, ∆Pcross) 341 

plays a minimal role. The magnitude of the thermodynamic response is on the order of 50% that 342 

of the dynamic component – i.e. the dynamic component dominates. Panels (d) and (e) of Figure 343 

5 indicate that this effect is driven primarily by shifts in the convective regions, with changes in 344 

the tropical mean circulation having a minimal or slightly negative effect. It is of note that the 345 

magnitude of each component is consistent across the three models studied here, suggesting 346 

consistency in the mechanistic reasons for increased monsoon precipitation over India when sulfur 347 

emissions are reduced. Changing circulation patterns are suggested as a consequence of changes 348 

in CO2 as well, and potential nonlinear effects of sulfur and greenhouse emissions on monsoon 349 

precipitation highlight an important challenge in predicting future changes to the South Asian 350 

summer monsoon. 351 

 352 

4. Conclusions 353 

The main purpose of this study was to better understand, through the use of several GCM 354 

experiments, the sensitivity of the South Asian summer monsoon to regional anthropogenic aerosol 355 
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emission changes. Given that this is a modelling study, there are a number of caveats that must be 356 

acknowledged. There are often questions of how well GCMs can simulate the Indian monsoon 357 

since their spatial resolution may be too coarse to resolve the complex orography of India and the 358 

surrounding regions (Prell and Kutzbach, 1992). Additionally, representation of cloud 359 

microphysical processes is a known limitation of GCMs (e.g. Wilcox et al., 2015). We find a large 360 

intermodel spread in cloud profile and precipitation changes in the various BC emissions scenarios 361 

studied here. This suggests that discrepancies in representation of cloud processes within GCMs 362 

constrain uncertainty in the precipitation response from BC perturbations, which cannot be 363 

accounted for simply by differences in the BC vertical profiles (Figure S4). In contrast, the 364 

precipitation responses for SO2 emission changes as well as the dynamic mechanism for these 365 

responses are largely consistent across models, suggesting that there is relative certainty in the 366 

models ability to simulate precipitation changes due to SO2 emissions. So, while it may be difficult 367 

to extrapolate on the basis of these simulations from modelled to real-world monsoon precipitation 368 

changes induced by anthropogenic aerosols, consistency in the SO2 response across models lends 369 

confidence in a potential observed response for future emissions changes. 370 

 371 

On investigating the response of the monsoon to a tenfold increase of Asian BC and sulfate 372 

concentrations, we found that the role of BC on Indian precipitation is uncertain but that increased 373 

sulfate concentrations over India reduce precipitation across five of the six models studied. Large 374 

uncertainty in the precipitation response to changing Asian BC is notably consistent with previous 375 

PDRMIP analysis studying monsoon changes to a tenfold increase in global BC levels (Xie et al. 376 

2020). Consistency between the global and regional PDMRIP simulations in this context suggests 377 
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further that a BC signal is difficult to detect for the South Asian summer monsoon (a result found 378 

also in Liu et al., 2018). 379 

 380 

When assessing the relative contributions of Chinese and Indian anthropogenic SO2 emissions to 381 

aerosol loading over South Asia (the RAEI emissions experiments), and the consequent 382 

precipitation responses, we find that there is only a statistically significant difference in monsoon 383 

precipitation when there is reduction of both China and India’s SO2 emissions, which leads to on 384 

the order of a 20% precipitation increase locally. Consistency in the precipitation responses 385 

between the increased sulfate scenario (PDRMIP SULF10xASIA) and the decreased sulfate 386 

scenario (RAEI) suggests that the aerosol-precipitation link may be a reversible process, and is 387 

attributable in large part to dynamical changes specifically shifts in convective patterns over the 388 

region. Additionally, these results are significant because Chinese emissions of SO2 have declined 389 

over the past decade, while Indian emissions have grown steadily. There is also anticipated growth 390 

in CO2 emissions and concentrations over the coming decades and this is expected to result in an 391 

increase in the atmospheric water vapor content. These concurrent events will have important 392 

implications for policy going forward, as water deficits present a major issue for India that may be 393 

exacerbated given the country’s exponential population growth. Regions that exhibit large 394 

variability in summertime precipitation such as Chennai and Delhi (as indicated in Figure S11) 395 

may be particularly sensitive to future monsoon changes because interannual shifts between wet 396 

and dry years at present impose important strains on the available water resource. Moreover, the 397 

benefits of policies to control SO2 emissions will have significant impacts not only on mitigating 398 

water deficits but also in terms of alleviation of air pollution, estimated to be responsible for 399 

hundreds of thousands of premature deaths per year in India (Health Effects Institute, 2019). It is, 400 
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however, important to bear in mind that SO2 emissions reductions could also increase flooding and 401 

extreme precipitation generally (Sillmann et al., 2019). 402 

 403 

While China’s pollution is expected to decline in most socio-economic projections, India’s is 404 

expected to grow except under strong emissions controls (Samset et al., 2019). Regardless of the 405 

realism of these scenarios, the results should be seen as further impetus for regional policies to 406 

reduce SO2 emissions given that we have found combined emissions reductions from China and 407 

India can increase monsoon precipitation over the country by 5% on average and by up to 20% 408 

locally. This effect, in combination with consequent impacts of continued growth in GHGs (Figure 409 

S1), could result in an overabundance. This calls therefore for careful consideration of implications 410 

for both precipitation and health over multiple timescales. 411 

 412 

Code and data availability 413 

All code and model data to make the figures used in this paper will be made publicly available 414 

through Zenodo following acceptance of the paper. The ESRL database makes gridded 415 

precipitation data publicly available for both the. University of Delaware data 416 

(https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html) and for the GPCC 417 

data (https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html). 418 
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Figures 571 

 572 
Figure 1. Average cumulative summer (JJAS) precipitation [cm] over land in all of India from 573 

1900 to 2016 for two observational datasets: (red) University of Delaware (UDel; Willmot and 574 

Matsuura, 2001) (blue) the Global Precipitation Climatology Center (GPCC; Schneider et al. 575 

2018). Data are smoothed using a moving mean with a window size of five years. Linear trend 576 

lines are indicated for the last 40 years for each dataset as dashed lines, and the slopes [cm yr-1] 577 

are denoted by the arrows.  578 
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 579 

Figure 2. Percent change in summertime (JJAS) precipitation between (a-f) the BC10xASIA and 580 

the CTRLPDRMIP runs; (g) the multimodel mean of the change. Similarly, (h-m) represent the 581 

precipitation change in JJAS precipitation between the SULF10xASIA scenarios and the 582 

CTRLPDRMIP runs, and (n) represents the multimodel mean of the change. Stippled grid cells in 583 

(g) and (n) denote regions where at least five of the six models agree on the sign of the change. 584 

Grey contours indicate mean JJAS precipitation from the control experiment for each model at 5 585 

mm day-1 intervals.  586 
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 587 

Figure 3. JJAS difference in cloud fraction between (blue) the BC10xASIA and the CTRLPDRMIP 588 

runs and (red) the SULF10xASIA scenarios and the CTRLPDRMIP runs. The bold lines represent 589 

the mean difference and the shadings represent 25th and 75th percentiles. 590 

  591 
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 592 
Figure 4. JJAS precipitation percentage difference between the SO2 regional emissions scenarios 593 

and the CTRL runs. The columns represent the different models and rows represent the different 594 

emissions scenarios. Stippled regions denote areas where the difference is significant at a 90% 595 

confidence level for a two-sample t-test. Grey contours indicate mean JJAS precipitation from 596 

the control experiment for each model at 5 mm day-1 intervals. 597 

  598 
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 599 

 600 

Figure 5. Boxplots indicating the decomposition of area averaged JJAS precipitation anomalies 601 

[mm day-1] into a) ∆Ptherm, b) ∆Pdyn, c) ∆Pcross, d) ∆Pstrength and e) ∆Pshift components over India. 602 

Different colors represent the three RAEI scenarios relative to the respective CTRL run with 603 

green representing the IND NO SO2 experiment, purple the CHN 20% SO2 experiment and 604 

orange the IND+CHN NO SO2 experiment. The range for each boxplot corresponds to 605 

intermodel variability from the three different models studied in the RAEI experiments.  606 


