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Abstract

The South Asian summer monsoon supplies over 80% of India’s precipitation. Industrialization
over the past few decades has resulted in severe aerosol pollution in India. Understanding
monsoonal sensitivity to aerosol emissions in general circulation models (GCMs) could improve
predictability of observed future precipitation changes. The aims here are (1) to assess the role of
aerosols on India’s monsoon precipitation and (2) to determine the roles of local and regional
emissions. For (1), we study the Precipitation Driver Response Model Intercomparison Project
experiments. We find that the precipitation response to changes in black carbon is highly uncertain
with a large intermodel spread due in part to model differences in simulating changes in cloud
vertical profiles. Effects from sulfate are clearer; increased sulfate reduces Indian precipitation, a
consistency through all of the models studied here. For (2), we study bespoke simulations, with
reduced Chinese and/or Indian emissions in three GCMs. A significant increase in precipitation
(up to ~20%) is found only when both countries’ sulfur emissions are regulated, which has been
driven in large part by dynamic shifts in the location of convective regions in India. These changes
have the potential to restore a portion of the precipitation losses induced by sulfate forcing over

the last few decades.
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Significance Statement

The aims here are to assess the role of aerosols on India’s monsoon precipitation and to determine
the relative contributions from Chinese and Indian emissions using CMIP6 models. We find that
increased sulfur emissions reduce precipitation, which is primarily dynamically driven due to
spatial shifts in convection over the region. A significant increase in precipitation (up to ~20%) is

found only when both Indian and Chinese sulfate emissions are regulated.
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1. Introduction

The South Asian summer monsoon is the dominant weather pattern over India, lasting typically
from June to September. Over this period, southwesterly winds transport warm, moist air from the
Arabian Sea onto the Indian subcontinent, supplying roughly 80% of the region’s annual rainfall
(Turner and Annamalai, 2012). Since the monsoon provides such a significant source for India’s
water supply, changes in its strength and position would have important socioeconomic
implications including though not simply confined to agricultural production (Kumar et al., 2004;
Douglas et al., 2009) and drought frequency (Subbiah, 2002). Given the rugged orography of the
surrounding region and difficulties in modelling intense precipitation, resolving the future roles of
natural variability and the externally forced signal for the monsoon is a fundamentally difficult —

but important — problem.

Interannual changes in the monsoon have been linked to internal (natural) variability inherent to
the climate system. For instance, numerous studies have found a potential connection between
variability in the EI Nifio-Southern Oscillation (ENSO) and the monsoon (Sikka 1980; Shukla and
Paolino 1983; Annamalai and Liu 2005). Such links could be used to improve predictability of
Indian rainfall. While internal variability likely plays a non-negligible role in modulating the South
Asian summer monsoon —and is expected to continue to do so in the future, even in high emissions
scenarios (Annamalai et al. 2007) — changes in the monsoon’s mean state associated with external
forcings are also of fundamental importance. Specifically, determining the anthropogenic impacts
on monsoonal changes associated with emissions of greenhouse gases (GHGs) and aerosols can
provide critical insights that can help better inform policymaking decisions regarding emission

regulations.
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The steady rise in GHGs over the 20™ century has increased the atmosphere’s average temperature
and water vapor content through the Clausius-Clapeyron relation, and might be expected as a result
to contribute to increased rainfall events over India (Goswami et al., 2006; Turner and Slingo,
2009; Salzmann et al., 2014). CMIP6 models run with just an increase in CO2 forcing generally
exhibit such an increase uniformly across India (Figure S1). However, in reality the picture is more
complex as the literature has indicated no such observed trend for India over the last half century
(Ramesh and Goswami, 2014; Saha and Ghosh, 2019). Observed monsoon precipitation
aggregated over all of continental India (Figure 1) actually indicates a slight drying trend over the
last few decades. While these trends are not statistically significant at a 95% confidence level, the
purpose of Figure 1 is to illustrate that the increase in monsoon precipitation expected from the
growing greenhouse forcing has certainly not been detected. There may be several mechanisms
invoked to explain why Indian monsoon precipitation has not increased. Land use changes over
the Indo-Gangetic Plain have been implicated as one of the causes, where decreased
evapotranspiration may have limited the amount of available precipitable water in the region (Paul
et al., 2016). It has been shown also that aerosol effects have counterbalanced the precipitation
changes attributable to the greenhouse warming (Bollasina et al., 2011; Turner and Annamalai,
2012; Westervelt et al., 2020). Ramanathan et al. (2005) found that aerosols over India reduce
surface shortwave radiation, which limits the amount of evaporation and thereby reduces monsoon
precipitation. Additionally, it has been shown that the atmospheric brown cloud (originally so
termed in Ramanathan and Crutzen, 2003, referring to the pervasive light absorbing aerosol layer
akin to the stratocumulus cloud decks observed over the oceans) over the Northern Indian Ocean

is associated with a stable atmosphere that limits convection. Atmospheric brown clouds consist
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primarily of black and organic carbon, dust and other anthropogenic aerosols. Sources of aerosols
and their precursors in South and East Asia (indicated in Figure S2), are tied particularly to energy
production and biomass combustion, which have grown steadily in response to industrialization in
the region, though recent trends in these two regions differ. Meehl et al. (2008) similarly found
that an increased aerosol load reduced precipitation over India during the monsoon season, but that
it also increased rainfall in the pre-monsoon season. Wang et al. (2009) found that absorbing
aerosols were particularly important in influencing the summer monsoon system. This has been
validated further by a number of studies (highlighted in Li et al., 2016), who found aerosols can
influence the atmospheric dynamics and the formation of clouds, with consequent impacts on daily
(Singh et al., 2019), seasonal (Lau et al., 2017) and intraseasonal (Hazra et al., 2013) precipitation.
The issue with many of these studies is that they focus on individual models. There is a large
spread in the precipitation response across models reflecting differing representations of cloud and
aerosol processes (e.g. Wilcox et al., 2015), factors that may bias results given the already complex
nature of modelling precipitation over India (Ramanathan et al., 2005; Bollasina et al., 2011,
Turner and Annamalai, 2012; Ramesh and Goswami, 2014; Paul et al., 2016; Saha and Ghosh,
2019). Multimodel ensembles can improve our understanding and help constrain uncertainty on

the impacts of different aerosol constituents on the monsoon.

Here, we analyze results from two climate model intercomparisons to better understand the
summer monsoonal impacts from sulfur and black carbon aerosols, two of the dominant
constituents of India’s aerosol pollution. First, we study the Precipitation Driver Response Model
Intercomparison Project (PDRMIP; Samset et al. 2016) experiments to assess the summer

monsoon response to extreme aerosol conditions. The purpose of the PDRIMP experiments here
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is to determine if a precipitation signal in the South Asian summer monsoon can be detected in
scenarios with large emissions perturbations of sulfur and black carbon. Previous analysis of a set
of PDRMIP experiments which increase global BC levels tenfold found a slight enhancement in
P-E during the South Asian summer monsoon, driven by a strengthened land-sea temperature
gradient (Xie at al., 2020). We focus the first section of our analysis on Asian perturbation
experiments as significant emissions changes are expected over this region in the coming decades
(e.g. Samset et al., 2019). We note that these experiments use artificially large emission
perturbations to enable isolation of signal detection from climatic variability. Second, we study a
set of regional aerosol emissions intercomparison experiments (labeled RAEI experiments for the
rest of the paper for convenience) to assess the relative contributions of Indian and Chinese
anthropogenic aerosol emissions to the monsoon. Because emissions outside of India may play an
important role on its summer monsoon (Bollasina et al., 2014; Shawki et al. 2018), in addition to
Indian emissions we choose to study emissions from China because this country is presently the
world leading emitter of BC and SOg, is in close proximity to India and its emissions of both
pollutants are expected to decline rapidly over the coming decade. Emissions in more remote
regions are less likely to change in a major way. A robust analysis of these intercomparisons should
refine our understanding of the anthropogenic influence on the South Asian summer monsoon and
reduce uncertainty on future changes given that India’s anthropogenic emissions are expected to
increase at least in the near term, while China’s will likely decrease (Rao et al. 2016). We
decompose precipitation changes into dynamic (i.e. circulation changes) and thermodynamic (i.e.
specific humidity changes) components to assess how aerosols interact with the monsoon. The rest

of the paper is structured as follows: section 2 discusses the simulations used in the analysis,
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section 3 presents and analyzes potential monsoonal impacts associated with sulfur and black

carbon emissions and section 4 summarizes the study and highlights needs for future work.

2. Data and Methods

2.1 PDRMIP intercomparison

We first study the Precipitation Driver Response Model Intercomparison Project (PDRMIP)
experiments. PDRMIP is an idealized set of modelling experiments, used to better understand
drivers of regional precipitation change. We focus specifically on two experiments that involve
perturbations to Asian concentrations or emissions (see Table 1), where Asia is defined by the
regional box of 60-140°E and 10-50°N. The first is BC10xASIA, representing a tenfold increase
in present-day BC concentrations or emissions in Asia at all vertical levels, and the second is
SULF10xASIA, which explores a similar tenfold increase in present-day sulfate concentrations or
emissions. The BC10xASIA and SULF10xASIA scenarios are compared with control simulations
(henceforth called CTRLrormip) Where aerosol concentrations or emissions are maintained at near
current values (either year 2000 or 2005 for each model). We study the six models involved in the
PDRMIP experiments that conduct the Asian perturbation experiments (Table 1). These
experiments will be used to better constrain uncertainty on the direction of precipitation and
circulation changes under anthropogenic aerosol emissions changes. Since these are extreme
perturbations to aerosol concentrations, we use these scenarios not as representative of a future
emissions trajectory, but rather as a way to check if different models with different process
representations indicate a consistent response. Due to inter-model differences in spatial resolution,
all data are rescaled to the lowest model resolution (3.75° x 2.0°) when comparing model output.

Variations in aerosol schemes and direct and indirect aerosol effects across the six models will



155

156

157

158

159

160

161

162

163

164

165
166
167
168
169
170

171

affect the spread in predicted precipitation changes associated with the increased aerosol
concentrations (Table 1). The different schemes and their effects on precipitation will be discussed

further in the section 3.

Table 1. Details of the models analyzed in this work. For the models participating in the
PDRMIP Asian aerosol perturbation simulations, each simulation lasts 100 years. Cloud scheme
refers to the microphysical cloud scheme that describes cloud formation, where a one-moment
scheme considers only changes in mass and a two-moment scheme considers changes in mass
and number concentration. The first indirect effect refers to the aerosol effect on cloud albedo

and the second indirect effect refers to the aerosol effect on cloud lifetime.

Model Spatlgl Cloud Indirect Model reference _Aerosol_ MIP
resolution scheme effects microphysics
Two First Neale et al. PDRMIP
- ¥ o . ' ,
CESM1-CAM5"  2.5°x 1.875 moment second (2012) Full aerosol RAE]
. . One . Schmidt et al. PDRMIP,
GISS-E2-R 2.5°%2.0 moment None (2014) No aerosol RAE]
No BC,;
1.875° x One First, Hewitt et al. aerosol-cloud
HadGEMS3 1.25° moment second (2011) interaction PDRMIP
included
Aerosol
3.75° x Two . Dufresne et al. microphysics
IPSL-CM 1.875° moment First (2013) for Twomey PDRMIP
effect
MIROC- . . One First, Watanabe et al.
SPRINTARS' 1.41° x 1.41 moment second (2011) Full aerosol PDRMIP
. . Two First, Bentsen et al.
NorESM 2.5°x 1.875 moment second (2013) Full aerosol PDRMIP
1.875° x Two First, Sellar et al.
UKESM1-0-LL 125 moment second (2019) Full aerosol RAEI

*Indirect effects in the PDRMIP simulations were turned off since these simulations had prescribed aerosol fields
and so changes in the hydrologic cycle could not change the aerosols. The first effect was included in the GISS RAEI
simulations, however, as those are emissions-driven and hence physically consistent.

"Indicate models that change emissions in the PDRMIP experiments. Rows that do not include this mark indicate
models that change concentrations in the PDRMIP experiments.

2.2 RAEI experiments




172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

The purpose of the RAEI experiments is to assess the relative contributions of aerosol emissions
from China and India on monsoon precipitation over India. Three GCMs with coupled chemistry-
climate components are used to study the effects of regional perturbations in aerosol emissions on
the Indian monsoon: GISS-E2-R (Schmidt et al., 2014), CESM1-CAM5 (Neale et al., 2012) and
UKESM1-0-LL (Sellar et al., 2019). Past research has used some of these models to explore the
effects of regional aerosol reductions on global precipitation, including emissions changes in the
US, Europe, China and India. Some of the experiments from RAEI have been used to study the
global effects of US SO2 emissions on global precipitation (Westervelt et al., 2017) as well as local
and remote precipitation responses to regional reductions in aerosols (Westervelt et al., 2018).
Here, we study the South Asian summer monsoon response to reductions in anthropogenic aerosol
emissions in China and India, focusing specifically on a set of three experiments: (1) no SO2
emissions in India (IND NO SOz2), (2) 80% SOz emissions reduction in China (CHN 20% SO2)
and (3) no SOz emissions in India and China (IND+CHN NO SO3). We have run additional BC
experiments that are included only in the SI because we find that changes in BC do not have a
clear impact on precipitation in the summer monsoon. The three SO2 experiments will be compared
to control simulations (CTRL) with emissions set near present-day values (year 2000 or 2005
depending on the model) to determine the relative importance on summer monsoon precipitation
of regional aerosol emissions from India and China. The UKESM experiments were run over a
shorter period (40 years), relative to the other models (~200 years). We found from resampling
that 40 years is sufficient to observe the general seasonally aggregated precipitation statistics over
India. For climatological variables studied in our PDRMIP and RAEI analysis, we take mean

values over the full simulation period, excluding the first 10 years to allow for spin-up.
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2.3 Precipitation decomposition
In addition to calculating overall precipitation changes due to sulfur and BC emissions, we seek
also to determine the dynamic and thermodynamic components of the changes attributable to these
forcing agents. The dynamic component is representative of precipitation changes caused by a
change in atmospheric circulation, and the thermodynamic component is representative of
variations in precipitation due to changes in moisture under constant circulation. To perform this
decomposition, we follow the methodology of Chadwick et al. 2016. The total precipitation change
AP can be expressed as
AP = AgM* + qAM™ + AqAM™,
where q is the near-surface specific humidity and M* is a proxy for convective mass flux (M* =
P/q). The first term on the right hand side is representative of thermodynamic changes (APtherm),
the second dynamic changes (APdyn) and the third the nonlinear interaction of these two
components (APcross). APgyn can be further decomposed into shifts in the circulation patterns
(APshit) and changes in the mean strength of the tropical circulation (APstrength) as
APgpire = qAMgp;fe,
APgpife = qAM;trength'
where AM “strength = -0.M "strength (Where o = tropical mean AM “/tropical mean M™). AM sift is

computed as the residual of AM™ and AM “strength. This decomposition follows the methodology in

Chadwick et al. 2016 and Monerie et al. 2019.

3. Results

3.1 PDRMIP analysis: summertime Indian precipitation response to large BC and sulfur

perturbations

11
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We start with an evaluation using the PDRMIP experiments (Table 1) of summertime Indian
precipitation changes caused by large BC and sulfate concentration increases over all of Asia. The
difference in summer precipitation between the BC10xASIA and CTRLpprmip experiments
provides an estimate for the role of BC in monsoonal changes and is shown in Figures 2a-g. From
the individual models (Figures 2a-f), there is a noticeably large ensemble spread in the
precipitation response over India due to the increase in BC. In north India, for example, HadGEM3
shows a precipitation decrease of up to 70%, while SPRINTARS exhibits effectively a null
response and GISS is identified with a strong precipitation increase of ~50%. PDRMIP simulations
that globally increase BC tenfold also do not show a consistent multimodel response over India
(Samset et al. 2016). The first regional analysis of the PDRMIP experiments by Liu et al. (2018)
found also a weak precipitation response to BC changes, attributed to insignificant circulation
changes relative to those induced by the sulfur experiments. While HadGEM3 and GISS generally
underestimate precipitation over India (Figure S3), it does not appear that these biases are manifest
in consistent precipitation changes in the BC10xASIA experiments. The weak precipitation over
India in HadGEMS in the CTRL simulation (Figure S3) also likely explains the large percent
changes indicated in the BC and sulfate experiments. Additionally, while two of the six models
studied increase BC emissions rather than BC concentrations, this does not appear to alter the BC
vertical profile except in the stratosphere (see Figure S4). Itis likely that different aerosol schemes
across models (Table 1) may be implicated as one of the dominant sources of the large ensemble
spread by altering simulated clouds radiative properties and lifetimes, as has been shown in
previous studies testing different aerosol schemes in the same coupled climate model (Nazarenko
et al., 2017). Additionally, both the boundary layer scheme and modelling impacts of absorbing

aerosols on cloud formation could play important roles. Specifically, Koch and Del Genio (2010)
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note that cloud formation is affected significantly by the BC vertical profile; BC within the cloud
layer can burn off moisture and reduce cloud cover, BC below the cloud layer can enhance
convection and increase cloud cover and BC above the cloud layer can either increase or decrease
cloud cover according to the cloud type. Because of the complexities of the semi-direct effects of
absorbing aerosols that are currently not heavily constrained by observations, the role of BC
generally has a diverse response across climate models (Koch et al., 2009; Stjern et al. 2017).
Large variance in the cloud fraction vertical profile are apparent also in the PDRMIP BC10xASIA
simulations (Figure 3). This large uncertainty does not consistently favor an increase or decrease
in cloud fraction across vertical layers except in NorESM and CESM where a slight increase (on
the order of a couple of percent) can be detected across all layers. Variations in the BC vertical
profile as well as its lifetime can result in significant changes in cloud cover and precipitation even
within an individual model by changing atmospheric stability and humidity (Samset and Myhre
2015). These effects are manifest in the diverse shortwave responses (Figure S5), which indicate
a large spread between models in magnitude and sign over parts of India. Additionally, changes in
the TOA net radiative forcing between BC10xASIA and PDRMIPctrL are generally consistent in
magnitude and direction across models over India (Figures S6a-f). By contrast, the change in
Cloud Radiative Effect (CRE; Figures S6g-1) is not consistent in sign across models, suggesting
that the models agree on the direct aerosol effects but differ on the aerosol-cloud interactions.
While there are more causative factors on precipitation than cloud fraction, the important point is
that because of the large cloud uncertainty that varies in both magnitude and sign, it is difficult to
attribute future changes in Indian precipitation to changes in BC concentration. This is reflected in
the precipitation change which fails to demonstrate a clear spatial coherence in the multimodel

mean (Figure 29).
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The role of sulfate for Indian precipitation is much clearer. The percent change in precipitation
between the SULF10xASIA and CTRL PDRMIP experiments is shown in Figures 2h-n. The sign
of the precipitation change is generally consistent across models, with a large decrease in
precipitation (~50%) over all of India in response to a tenfold increase in sulfate. There is also
large uncertainty in the cloud fraction profile response to sulfate emissions (Figure 3), similar to
the BC PDRMIP experiments. However, five of the six models on average favor a decrease in
cloud fraction with increased SOz emissions, consistent with the precipitation response. So, while
there is a comparable measure of intermodel spread for the BC10xASIA and SULF10xASIA cloud
responses, the mean change is more consistent in the SULF10xASIA experiments. The results
from the PDRMIP experiments, with their higher sulfate concentrations, constrain uncertainty on
the sign of precipitation changes, and can be used as a frame of reference for the country-specific

aerosol experiments described in section 3.2 and beyond.

3.2 RAEI analysis: Indian aerosol burden response to Chinese and Indian aerosol emissions
changes

We now consider the RAEI emissions scenarios for China and India. Percent changes in sulfate
burden between the sulfate reduction scenarios and control runs are shown in Figures S7a-i. Indian
sulfate emissions play an important role on local sulfate concentrations, contributing up to 60% of
the country’s aerosol burden, while China’s emissions can contribute up to 60% over the
Himalayas. The change in Indian aerosol burden for sulfate is notably consistent in terms of both
the magnitude of the change as well as the spatial pattern across the three models studied. Since

the temperature gradient between the Arabian Sea and Bay of Bengal and the Himalayas has been
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invoked as a modulator of the South Asian Monsoon (e.g. Priya et al., 2017), both Indian and
Chinese emissions could influence monsoon precipitation over India by modifying the optical

properties of the atmosphere not only over the country but also over surrounding regions.

3.3 RAEI analysis: summer monsoon precipitation response to regional SO2 emissions changes

The precipitation response associated with SO2 emissions is significant over parts of India (Figures
4a-i), in agreement with the PDRMIP results. All scenarios across the multi-model ensemble (with
the exception of CESM’s CHN 20% SO scenario) show an increase in summer precipitation in
India when SOz emissions in China and/or India are reduced. The strongest response requires
reductions from both China and India, with an increase of nearly 20% in precipitation in some
regions of India when SOz emissions are reduced across the three models studied here. From these
results, changes in India’s precipitation depend not only on local SO2 emissions, but also on
regional sources. These emissions can have a measurable impact on India’s water availability by
altering the underlying statistics in favor of greater precipitation events (e.g. Sillman et al. 2019).
That being said, the spatial patterns associated with these precipitation changes vary to a large
degree between models. For instance, precipitation changes in GISS exhibit greater consistency
across scenarios than they do with the CESM or UKESM. Additionally, UKESM tends to estimate
larger precipitation changes than the other RAEI models, consistent with the HadGEMS results
indicated in Figure 2 which uses the same physical model. There is, however, general consistency
in the increase in precipitation when SO2 emissions are reduced in both China and India. The
precipitation responses to lower BC regional emissions are indicated in Figure S8. BC emissions
play a much lesser role in GISS and CESM relative to SO2 emissions, and cause an inconsistent

response in UKESM across the three regional emissions experiments. For all reduced BC scenarios
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(with the exception of two UKESM scenarios), the changes in India’s precipitation are generally
small (~5% locally) and not statistically significant at a 90% confidence level. The strongest
precipitation response occurs when both Chinese and Indian BC emissions are eliminated, but
there is a spread in the direction of change across models. This spread in precipitation change is
consistent with that of the PDRMIP results in that the intermodel spread in precipitation change
due to BC emissions changes tends to be larger than the magnitude of the precipitation response
from any individual model. This may highlight large process uncertainty generally. Bond et al.
(2013), for example, note that the impact of BC on the cloud radiative forcing in models is highly

sensitive to the nucleation regime in the background atmosphere.

3.4 RAEI analysis: physical understanding of the SO2-precipitation response

Physical explanations for the precipitation changes induced by SO: emissions changes are
explored here. Circulation changes are typically connected to sulfate increases in India; a
weakened land-sea temperature gradient associated with SO2 emissions would inhibit monsoonal
advection of moisture from the Arabian Sea onto the Indian subcontinent. Warming over the
Himalayas can be seen in most of the simulations (Figure S9), as well as changes in 850 hPa winds,
where there is a clear strengthening of the coastal winds when SO2 emissions are reduced (Figure
S10). The fact that the land-sea temperature gradient and 850 hPa winds change suggests that
precipitation changes due to SO2 emissions may be dynamically rather than thermodynamically
driven, which motivates the precipitation decomposition analysis discussed later. A similar
analysis by Shawki et al. (2018) also found that reduced Chinese SOz emissions strengthened the
land-sea temperature contrast and consequently precipitation over India. As shown in Figure 4,

strengthening of the monsoonal winds is largely consistent across models and scenarios, though

16



333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

there are slight differences in the location of the strongest zonal wind increases; in GISS and
UKESM, the greatest increase is over India itself for most scenarios, while it is further south in
CESM. This suggests that a high sulfate burden reduces the strength of the monsoon winds,
consistent with prior studies that connect these changes to the dimming of the downward solar flux
(Kim et al. 2007). The relative contributions of thermodynamic (i.e. specific humidity) changes to
dynamic (i.e. circulation) changes are indicated in Figure 5. The thermodynamic precipitation
response to sulfur emissions reductions is positive for the three emissions experiments, consistent
with the Clausius-Clapeyron relation as less SOz increases surface temperatures and consequently
specific humidity. The interaction of dynamic and thermodynamic components (panel ¢, APcross)
plays a minimal role. The magnitude of the thermodynamic response is on the order of 50% that
of the dynamic component — i.e. the dynamic component dominates. Panels (d) and (e) of Figure
5 indicate that this effect is driven primarily by shifts in the convective regions, with changes in
the tropical mean circulation having a minimal or slightly negative effect. It is of note that the
magnitude of each component is consistent across the three models studied here, suggesting
consistency in the mechanistic reasons for increased monsoon precipitation over India when sulfur
emissions are reduced. Changing circulation patterns are suggested as a consequence of changes
in CO2 as well, and potential nonlinear effects of sulfur and greenhouse emissions on monsoon
precipitation highlight an important challenge in predicting future changes to the South Asian

summer monsoon.

4. Conclusions

The main purpose of this study was to better understand, through the use of several GCM

experiments, the sensitivity of the South Asian summer monsoon to regional anthropogenic aerosol
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emission changes. Given that this is a modelling study, there are a number of caveats that must be
acknowledged. There are often questions of how well GCMs can simulate the Indian monsoon
since their spatial resolution may be too coarse to resolve the complex orography of India and the
surrounding regions (Prell and Kutzbach, 1992). Additionally, representation of cloud
microphysical processes is a known limitation of GCMs (e.g. Wilcox et al., 2015). We find a large
intermodel spread in cloud profile and precipitation changes in the various BC emissions scenarios
studied here. This suggests that discrepancies in representation of cloud processes within GCMs
constrain uncertainty in the precipitation response from BC perturbations, which cannot be
accounted for simply by differences in the BC vertical profiles (Figure S4). In contrast, the
precipitation responses for SOz emission changes as well as the dynamic mechanism for these
responses are largely consistent across models, suggesting that there is relative certainty in the
models ability to simulate precipitation changes due to SO2 emissions. So, while it may be difficult
to extrapolate on the basis of these simulations from modelled to real-world monsoon precipitation
changes induced by anthropogenic aerosols, consistency in the SO2 response across models lends

confidence in a potential observed response for future emissions changes.

On investigating the response of the monsoon to a tenfold increase of Asian BC and sulfate
concentrations, we found that the role of BC on Indian precipitation is uncertain but that increased
sulfate concentrations over India reduce precipitation across five of the six models studied. Large
uncertainty in the precipitation response to changing Asian BC is notably consistent with previous
PDRMIP analysis studying monsoon changes to a tenfold increase in global BC levels (Xie et al.

2020). Consistency between the global and regional PDMRIP simulations in this context suggests
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further that a BC signal is difficult to detect for the South Asian summer monsoon (a result found

also in Liu et al., 2018).

When assessing the relative contributions of Chinese and Indian anthropogenic SO2 emissions to
aerosol loading over South Asia (the RAEI emissions experiments), and the consequent
precipitation responses, we find that there is only a statistically significant difference in monsoon
precipitation when there is reduction of both China and India’s SO2 emissions, which leads to on
the order of a 20% precipitation increase locally. Consistency in the precipitation responses
between the increased sulfate scenario (PDRMIP SULF10xASIA) and the decreased sulfate
scenario (RAEI) suggests that the aerosol-precipitation link may be a reversible process, and is
attributable in large part to dynamical changes specifically shifts in convective patterns over the
region. Additionally, these results are significant because Chinese emissions of SOz have declined
over the past decade, while Indian emissions have grown steadily. There is also anticipated growth
in CO2 emissions and concentrations over the coming decades and this is expected to result in an
increase in the atmospheric water vapor content. These concurrent events will have important
implications for policy going forward, as water deficits present a major issue for India that may be
exacerbated given the country’s exponential population growth. Regions that exhibit large
variability in summertime precipitation such as Chennai and Delhi (as indicated in Figure S11)
may be particularly sensitive to future monsoon changes because interannual shifts between wet
and dry years at present impose important strains on the available water resource. Moreover, the
benefits of policies to control SO2 emissions will have significant impacts not only on mitigating
water deficits but also in terms of alleviation of air pollution, estimated to be responsible for

hundreds of thousands of premature deaths per year in India (Health Effects Institute, 2019). It is,
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however, important to bear in mind that SO2 emissions reductions could also increase flooding and

extreme precipitation generally (Sillmann et al., 2019).

While China’s pollution is expected to decline in most socio-economic projections, India’s is
expected to grow except under strong emissions controls (Samset et al., 2019). Regardless of the
realism of these scenarios, the results should be seen as further impetus for regional policies to
reduce SOz emissions given that we have found combined emissions reductions from China and
India can increase monsoon precipitation over the country by 5% on average and by up to 20%
locally. This effect, in combination with consequent impacts of continued growth in GHGs (Figure
S1), could result in an overabundance. This calls therefore for careful consideration of implications

for both precipitation and health over multiple timescales.

Code and data availability

All code and model data to make the figures used in this paper will be made publicly available
through Zenodo following acceptance of the paper. The ESRL database makes gridded
precipitation data publicly available for both the. University of Delaware data
(https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html) and for the GPCC

data (https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html).
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Figure 1. Average cumulative summer (JJAS) precipitation [cm] over land in all of India from
1900 to 2016 for two observational datasets: (red) University of Delaware (UDel; Willmot and
Matsuura, 2001) (blue) the Global Precipitation Climatology Center (GPCC; Schneider et al.
2018). Data are smoothed using a moving mean with a window size of five years. Linear trend
lines are indicated for the last 40 years for each dataset as dashed lines, and the slopes [cm yr]
are denoted by the arrows.
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Figure 2. Percent change in summertime (JJAS) precipitation between (a-f) the BC10xASIA and
the CTRLpormip runs; (g) the multimodel mean of the change. Similarly, (h-m) represent the
precipitation change in JJAS precipitation between the SULF10xXASIA scenarios and the
CTRLerprwmip runs, and (n) represents the multimodel mean of the change. Stippled grid cells in
(9) and (n) denote regions where at least five of the six models agree on the sign of the change.
Grey contours indicate mean JJAS precipitation from the control experiment for each model at 5
mm day! intervals.
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Figure 3. JJAS difference in cloud fraction between (blue) the BC10xASIA and the CTRLpprMIP
runs and (red) the SULF10xASIA scenarios and the CTRLporwmip runs. The bold lines represent
the mean difference and the shadings represent 25" and 75™ percentiles.
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Figure 4. JJAS precipitation percentage difference between the SOz regional emissions scenarios
and the CTRL runs. The columns represent the different models and rows represent the different

emissions scenarios. Stippled regions denote areas where the difference is significant at a 90%
confidence level for a two-sample t-test. Grey contours indicate mean JJAS precipitation from
the control experiment for each model at 5 mm day! intervals.
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Figure 5. Boxplots indicating the decomposition of area averaged JJAS precipitation anomalies
[mm day] into a) APtherm, b) APdyn, ¢) APcross, d) APstrength and €) APshift components over India.
Different colors represent the three RAEI scenarios relative to the respective CTRL run with
green representing the IND NO SOz experiment, purple the CHN 20% SOz experiment and
orange the IND+CHN NO SO:2 experiment. The range for each boxplot corresponds to
intermodel variability from the three different models studied in the RAEI experiments.
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