

1 **Sensitivity of modeled Indian Monsoon to Chinese and Indian aerosol**
2 **emissions**

3 Peter Sherman¹, Meng Gao^{2,3}, Shaojie Song³, Alex T. Archibald^{4,5}, Nathan Luke Abraham^{4,5},
4 Jean-François Lamarque⁶, Drew Shindell⁷, Gregory Faluvegi^{8,9}, Michael B. McElroy^{1,3}

5 ¹Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts,
6 United States

7 ²Department of Geography, Hong Kong Baptist University, Hong Kong SAR, China

8 ³School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts,
9 United States

10 ⁴National Centre for Atmospheric Science, University of Cambridge, Cambridge, UK

11 ⁵Department of Chemistry, University of Cambridge, Cambridge, UK

12 ⁶National Center for Atmospheric Research, Boulder, Colorado, USA

13 ⁷Nicholas School of the Environment, Duke University, Durham, NC, USA

14 ⁸NASA Goddard Institute for Space Studies, New York, NY

15 ⁹Center for Climate Systems Research, Earth Institute, Columbia University, New York NY

16

17 **Abstract**

18 The South Asian summer monsoon supplies over 80% of India's precipitation. Industrialization
19 over the past few decades has resulted in severe aerosol pollution in India. Understanding
20 monsoonal sensitivity to aerosol emissions in general circulation models (GCMs) could improve
21 predictability of observed future precipitation changes. The aims here are (1) to assess the role of
22 aerosols on India's monsoon precipitation and (2) to determine the roles of local and regional
23 emissions. For (1), we study the Precipitation Driver Response Model Intercomparison Project
24 experiments. We find that the precipitation response to changes in black carbon is highly uncertain
25 with a large intermodel spread due in part to model differences in simulating changes in cloud
26 vertical profiles. Effects from sulfate are clearer; increased sulfate reduces Indian precipitation, a
27 consistency through all of the models studied here. For (2), we study bespoke simulations, with
28 reduced Chinese and/or Indian emissions in three GCMs. A significant increase in precipitation
29 (up to ~20%) is found only when both countries' sulfur emissions are regulated, which has been
30 driven in large part by dynamic shifts in the location of convective regions in India. These changes
31 have the potential to restore a portion of the precipitation losses induced by sulfate forcing over
32 the last few decades.

33

34 **Significance Statement**

35 The aims here are to assess the role of aerosols on India's monsoon precipitation and to determine
36 the relative contributions from Chinese and Indian emissions using CMIP6 models. We find that
37 increased sulfur emissions reduce precipitation, which is primarily dynamically driven due to
38 spatial shifts in convection over the region. A significant increase in precipitation (up to ~20%) is
39 found only when both Indian and Chinese sulfate emissions are regulated.

40

41 **1. Introduction**

42 The South Asian summer monsoon is the dominant weather pattern over India, lasting typically
43 from June to September. Over this period, southwesterly winds transport warm, moist air from the
44 Arabian Sea onto the Indian subcontinent, supplying roughly 80% of the region's annual rainfall
45 (Turner and Annamalai, 2012). Since the monsoon provides such a significant source for India's
46 water supply, changes in its strength and position would have important socioeconomic
47 implications including though not simply confined to agricultural production (Kumar et al., 2004;
48 Douglas et al., 2009) and drought frequency (Subbiah, 2002). Given the rugged orography of the
49 surrounding region and difficulties in modelling intense precipitation, resolving the future roles of
50 natural variability and the externally forced signal for the monsoon is a fundamentally difficult –
51 but important – problem.

52

53 Interannual changes in the monsoon have been linked to internal (natural) variability inherent to
54 the climate system. For instance, numerous studies have found a potential connection between
55 variability in the El Niño-Southern Oscillation (ENSO) and the monsoon (Sikka 1980; Shukla and
56 Paolino 1983; Annamalai and Liu 2005). Such links could be used to improve predictability of
57 Indian rainfall. While internal variability likely plays a non-negligible role in modulating the South
58 Asian summer monsoon – and is expected to continue to do so in the future, even in high emissions
59 scenarios (Annamalai et al. 2007) – changes in the monsoon's mean state associated with external
60 forcings are also of fundamental importance. Specifically, determining the anthropogenic impacts
61 on monsoonal changes associated with emissions of greenhouse gases (GHGs) and aerosols can
62 provide critical insights that can help better inform policymaking decisions regarding emission
63 regulations.

65 The steady rise in GHGs over the 20th century has increased the atmosphere's average temperature
66 and water vapor content through the Clausius-Clapeyron relation, and might be expected as a result
67 to contribute to increased rainfall events over India (Goswami et al., 2006; Turner and Slingo,
68 2009; Salzmann et al., 2014). CMIP6 models run with just an increase in CO₂ forcing generally
69 exhibit such an increase uniformly across India (Figure S1). However, in reality the picture is more
70 complex as the literature has indicated no such observed trend for India over the last half century
71 (Ramesh and Goswami, 2014; Saha and Ghosh, 2019). Observed monsoon precipitation
72 aggregated over all of continental India (Figure 1) actually indicates a slight drying trend over the
73 last few decades. While these trends are not statistically significant at a 95% confidence level, the
74 purpose of Figure 1 is to illustrate that the increase in monsoon precipitation expected from the
75 growing greenhouse forcing has certainly not been detected. There may be several mechanisms
76 invoked to explain why Indian monsoon precipitation has not increased. Land use changes over
77 the Indo-Gangetic Plain have been implicated as one of the causes, where decreased
78 evapotranspiration may have limited the amount of available precipitable water in the region (Paul
79 et al., 2016). It has been shown also that aerosol effects have counterbalanced the precipitation
80 changes attributable to the greenhouse warming (Bollasina et al., 2011; Turner and Annamalai,
81 2012; Westervelt et al., 2020). Ramanathan et al. (2005) found that aerosols over India reduce
82 surface shortwave radiation, which limits the amount of evaporation and thereby reduces monsoon
83 precipitation. Additionally, it has been shown that the atmospheric brown cloud (originally so
84 termed in Ramanathan and Crutzen, 2003, referring to the pervasive light absorbing aerosol layer
85 akin to the stratocumulus cloud decks observed over the oceans) over the Northern Indian Ocean
86 is associated with a stable atmosphere that limits convection. Atmospheric brown clouds consist

87 primarily of black and organic carbon, dust and other anthropogenic aerosols. Sources of aerosols
88 and their precursors in South and East Asia (indicated in Figure S2), are tied particularly to energy
89 production and biomass combustion, which have grown steadily in response to industrialization in
90 the region, though recent trends in these two regions differ. Meehl et al. (2008) similarly found
91 that an increased aerosol load reduced precipitation over India during the monsoon season, but that
92 it also increased rainfall in the pre-monsoon season. Wang et al. (2009) found that absorbing
93 aerosols were particularly important in influencing the summer monsoon system. **This has been**
94 **validated further by a number of studies (highlighted in Li et al., 2016), who found aerosols can**
95 **influence the atmospheric dynamics and the formation of clouds, with consequent impacts on daily**
96 **(Singh et al., 2019), seasonal (Lau et al., 2017) and intraseasonal (Hazra et al., 2013) precipitation.**
97 The issue with many of these studies is that they focus on individual models. There is a large
98 spread in the precipitation response across models reflecting differing representations of cloud and
99 aerosol processes (e.g. Wilcox et al., 2015), factors that may bias results given the already complex
100 nature of modelling precipitation over India (Ramanathan et al., 2005; Bollasina et al., 2011;
101 Turner and Annamalai, 2012; Ramesh and Goswami, 2014; Paul et al., 2016; Saha and Ghosh,
102 2019). Multimodel ensembles can improve our understanding and help constrain uncertainty on
103 the impacts of different aerosol constituents on the monsoon.

104

105 Here, we analyze results from two climate model intercomparisons to better understand the
106 summer monsoonal impacts from sulfur and black carbon aerosols, two of the dominant
107 constituents of India's aerosol pollution. First, we study the Precipitation Driver Response Model
108 Intercomparison Project (PDRMIP; Samset et al. 2016) experiments to assess the summer
109 monsoon response to extreme aerosol conditions. The purpose of the PDRIMP experiments **here**

110 is to determine if a precipitation signal **in the South Asian summer monsoon** can be detected **in**
111 **scenarios with large emissions perturbations of** sulfur and black carbon. Previous analysis of a set
112 of PDRMIP experiments which increase global BC levels tenfold found a slight enhancement in
113 P-E during the South Asian summer monsoon, driven by a strengthened land-sea temperature
114 gradient (Xie et al., 2020). We focus the first section of our analysis on Asian perturbation
115 experiments as significant emissions changes are expected over this region in the coming decades
116 (e.g. Samset et al., 2019). We note that these experiments use artificially large emission
117 perturbations to enable isolation of signal detection from climatic variability. Second, we study a
118 set of regional aerosol emissions intercomparison experiments (labeled RAEI experiments for the
119 rest of the paper for convenience) to assess the relative contributions of Indian and Chinese
120 anthropogenic aerosol emissions to the monsoon. Because **emissions outside of India may play an**
121 **important role on its summer monsoon** (Bollasina et al., 2014; Shawki et al. 2018), in addition to
122 Indian emissions we choose to study emissions from China because this country is presently the
123 world leading emitter of BC and SO₂, is in close proximity to India and its emissions of both
124 pollutants are expected to decline rapidly over the coming decade. Emissions in more remote
125 regions are less likely to change in a major way. A robust analysis of these intercomparisons should
126 refine our understanding of the anthropogenic influence on the South Asian summer monsoon and
127 reduce uncertainty on future changes given that India's anthropogenic emissions are expected to
128 increase at least in the near term, while China's will likely decrease (Rao et al. 2016). We
129 decompose precipitation changes into dynamic (i.e. circulation changes) and thermodynamic (i.e.
130 specific humidity changes) components to assess how aerosols interact with the monsoon. The rest
131 of the paper is structured as follows: section 2 discusses the simulations used in the analysis,

132 section 3 presents and analyzes potential monsoonal impacts associated with sulfur and black
133 carbon emissions and section 4 summarizes the study and highlights needs for future work.

134

135 **2. Data and Methods**

136 *2.1 PDRMIP intercomparison*

137 We first study the Precipitation Driver Response Model Intercomparison Project (PDRMIP)
138 experiments. PDRMIP is an idealized set of modelling experiments, used to better understand
139 drivers of regional precipitation change. We focus specifically on two experiments that involve
140 perturbations to Asian concentrations or emissions (see Table 1), where Asia is defined by the
141 regional box of 60-140°E and 10-50°N. The first is BC10xASIA, representing a tenfold increase
142 in present-day BC concentrations or emissions in Asia at all vertical levels, and the second is
143 SULF10xASIA, which explores a similar tenfold increase in present-day sulfate concentrations or
144 emissions. The BC10xASIA and SULF10xASIA scenarios are compared with control simulations
145 (henceforth called $\text{CTRL}_{\text{PDRMIP}}$) where aerosol concentrations or emissions are maintained at near
146 current values (either year 2000 or 2005 for each model). We study the six models involved in the
147 PDRMIP experiments that conduct the Asian perturbation experiments (Table 1). These
148 experiments will be used to better constrain uncertainty on the direction of precipitation and
149 circulation changes under anthropogenic aerosol emissions changes. Since these are extreme
150 perturbations to aerosol concentrations, we use these scenarios not as representative of a future
151 emissions trajectory, but rather as a way to check if different models with different process
152 representations indicate a consistent response. Due to inter-model differences in spatial resolution,
153 all data are rescaled to the lowest model resolution ($3.75^\circ \times 2.0^\circ$) when comparing model output.
154 Variations in aerosol schemes and direct and indirect aerosol effects across the six models will

155 affect the spread in predicted precipitation changes associated with the increased aerosol
 156 concentrations (Table 1). The different schemes and their effects on precipitation will be discussed
 157 further in the section 3.

158

159 **Table 1.** Details of the models analyzed in this work. For the models participating in the
 160 PDRMIP Asian aerosol perturbation simulations, each simulation lasts 100 years. Cloud scheme
 161 refers to the microphysical cloud scheme that describes cloud formation, where a one-moment
 162 scheme considers only changes in mass and a two-moment scheme considers changes in mass
 163 and number concentration. The first indirect effect refers to the aerosol effect on cloud albedo
 164 and the second indirect effect refers to the aerosol effect on cloud lifetime.

Model	Spatial resolution	Cloud scheme	Indirect effects	Model reference	Aerosol microphysics	MIP
CESM1-CAM5 [†]	2.5° × 1.875°	Two moment	First, second	Neale et al. (2012)	Full aerosol	PDRMIP, RAEI
GISS-E2-R	2.5° × 2.0°	One moment	None*	Schmidt et al. (2014)	No aerosol	PDRMIP, RAEI
HadGEM3	1.875° × 1.25°	One moment	First, second	Hewitt et al. (2011)	No BC; aerosol-cloud interaction included	PDRMIP
IPSL-CM	3.75° × 1.875°	Two moment	First	Dufresne et al. (2013)	Aerosol microphysics for Twomey effect	PDRMIP
MIROC-SPRINTARS [†]	1.41° × 1.41°	One moment	First, second	Watanabe et al. (2011)	Full aerosol	PDRMIP
NorESM	2.5° × 1.875°	Two moment	First, second	Bentsen et al. (2013)	Full aerosol	PDRMIP
UKESM1-0-LL	1.875° × 1.25°	Two moment	First, second	Sellar et al. (2019)	Full aerosol	RAEI

165 *Indirect effects in the PDRMIP simulations were turned off since these simulations had prescribed aerosol fields
 166 and so changes in the hydrologic cycle could not change the aerosols. The first effect was included in the GISS RAEI
 167 simulations, however, as those are emissions-driven and hence physically consistent.

168 [†]Indicate models that change emissions in the PDRMIP experiments. Rows that do not include this mark indicate
 169 models that change concentrations in the PDRMIP experiments.

170

171 2.2 RAEI experiments

172 The purpose of the RAEI experiments is to assess the relative contributions of aerosol emissions
173 from China and India on monsoon precipitation over India. Three GCMs with coupled chemistry-
174 climate components are used to study the effects of regional perturbations in aerosol emissions on
175 the Indian monsoon: GISS-E2-R (Schmidt et al., 2014), CESM1-CAM5 (Neale et al., 2012) and
176 UKESM1-0-LL (Sellier et al., 2019). Past research has used some of these models to explore the
177 effects of regional aerosol reductions on global precipitation, including emissions changes in the
178 US, Europe, China and India. Some of the experiments from RAEI have been used to study the
179 global effects of US SO₂ emissions on global precipitation (Westervelt et al., 2017) as well as local
180 and remote precipitation responses to regional reductions in aerosols (Westervelt et al., 2018).
181 Here, we study the South Asian summer monsoon response to reductions in anthropogenic aerosol
182 emissions in China and India, focusing specifically on a set of three experiments: (1) no SO₂
183 emissions in India (IND NO SO₂), (2) 80% SO₂ emissions reduction in China (CHN 20% SO₂)
184 and (3) no SO₂ emissions in India and China (IND+CHN NO SO₂). We have run additional BC
185 experiments that are included only in the SI because we find that changes in BC do not have a
186 clear impact on precipitation in the summer monsoon. The three SO₂ experiments will be compared
187 to control simulations (CTRL) with emissions set near present-day values (year 2000 or 2005
188 depending on the model) to determine the relative importance on summer monsoon precipitation
189 of regional aerosol emissions from India and China. The UKESM experiments were run over a
190 shorter period (40 years), relative to the other models (~200 years). We found from resampling
191 that 40 years is sufficient to observe the general **seasonally aggregated** precipitation statistics over
192 India. For climatological variables studied in our PDRMIP and RAEI analysis, we take mean
193 values over the full simulation period, excluding the first 10 years to allow for spin-up.
194

195 2.3 *Precipitation decomposition*

196 In addition to calculating overall precipitation changes due to sulfur and BC emissions, we seek
197 also to determine the dynamic and thermodynamic components of the changes attributable to these
198 forcing agents. The dynamic component is representative of precipitation changes caused by a
199 change in atmospheric circulation, and the thermodynamic component is representative of
200 variations in precipitation due to changes in moisture under constant circulation. To perform this
201 decomposition, we follow the methodology of Chadwick et al. 2016. The total precipitation change
202 ΔP can be expressed as

203
$$\Delta P = \Delta q M^* + q \Delta M^* + \Delta q \Delta M^*,$$

204 where q is the near-surface specific humidity and M^* is a proxy for convective mass flux ($M^* =$
205 P/q). The first term on the right hand side is representative of thermodynamic changes (ΔP_{therm}),
206 the second dynamic changes (ΔP_{dyn}) and the third the nonlinear interaction of these two
207 components (ΔP_{cross}). ΔP_{dyn} can be further decomposed into shifts in the circulation patterns
208 (ΔP_{shift}) and changes in the mean strength of the tropical circulation ($\Delta P_{\text{strength}}$) as

209
$$\Delta P_{\text{shift}} = q \Delta M_{\text{shift}}^*,$$

210
$$\Delta P_{\text{shift}} = q \Delta M_{\text{strength}}^*,$$

211 where $\Delta M^*_{\text{strength}} = -\alpha M^*_{\text{strength}}$ (where α = tropical mean $\Delta M^*/$ tropical mean M^*). $\Delta M^*_{\text{shift}}$ is
212 computed as the residual of ΔM^* and $\Delta M^*_{\text{strength}}$. This decomposition follows the methodology in
213 Chadwick et al. 2016 and Monerie et al. 2019.

214

215 **3. Results**

216 *3.1 PDRMIP analysis: summertime Indian precipitation response to large BC and sulfur
217 perturbations*

218 We start with an evaluation using the PDRMIP experiments (Table 1) of summertime Indian
219 precipitation changes caused by large BC and sulfate concentration increases over all of Asia. The
220 difference in summer precipitation between the BC10xASIA and CTRL_{PDRMIP} experiments
221 provides an estimate for the role of BC in monsoonal changes and is shown in Figures 2a-g. From
222 the individual models (Figures 2a-f), there is a noticeably large ensemble spread in the
223 precipitation response over India due to the increase in BC. In north India, for example, HadGEM3
224 shows a precipitation decrease of up to 70%, while SPRINTARS exhibits effectively a null
225 response and GISS is identified with a strong precipitation increase of ~50%. PDRMIP simulations
226 that globally increase BC tenfold also do not show a consistent multimodel response over India
227 (Samset et al. 2016). **The first regional analysis of the PDRMIP experiments by Liu et al. (2018)**
228 **found also a weak precipitation response to BC changes, attributed to insignificant circulation**
229 **changes relative to those induced by the sulfur experiments.** While HadGEM3 and GISS generally
230 underestimate precipitation over India (Figure S3), it does not appear that these biases are manifest
231 in consistent precipitation changes in the BC10xASIA experiments. **The weak precipitation over**
232 **India in HadGEM3 in the CTRL simulation (Figure S3) also likely explains the large percent**
233 **changes indicated in the BC and sulfate experiments.** Additionally, while two of the six models
234 studied increase BC emissions rather than BC concentrations, this does not appear to alter the BC
235 vertical profile except in the stratosphere (see Figure S4). It is likely that different aerosol schemes
236 across models (Table 1) may be implicated as **one of the dominant** sources of the large ensemble
237 **spread by altering simulated clouds radiative properties and lifetimes, as has been shown in**
238 **previous studies testing different aerosol schemes in the same coupled climate model (Nazarenko**
239 **et al., 2017).** **Additionally,** both the boundary layer scheme and modelling impacts of absorbing
240 aerosols on cloud formation could play important roles. **Specifically, Koch and Del Genio (2010)**

241 note that cloud formation is affected significantly by the BC vertical profile; BC within the cloud
242 layer can burn off moisture and reduce cloud cover, BC below the cloud layer can enhance
243 convection and increase cloud cover and BC above the cloud layer can either increase or decrease
244 cloud cover according to the cloud type. Because of the complexities of the semi-direct effects of
245 absorbing aerosols that are currently not heavily constrained by observations, the role of BC
246 generally has a diverse response across climate models (Koch et al., 2009; Stjern et al. 2017).
247 Large variance in the cloud fraction vertical profile are apparent also in the PDRMIP BC10xASIA
248 simulations (Figure 3). This large uncertainty does not consistently favor an increase or decrease
249 in cloud fraction across vertical layers except in NorESM and CESM where a slight increase (on
250 the order of a couple of percent) can be detected across all layers. Variations in the BC vertical
251 profile as well as its lifetime can result in significant changes in cloud cover and precipitation even
252 within an individual model by changing atmospheric stability and humidity (Samset and Myhre
253 2015). These effects are manifest in the diverse shortwave responses (Figure S5), which indicate
254 a large spread between models in magnitude and sign over parts of India. Additionally, changes in
255 the TOA net radiative forcing between BC10xASIA and PDRMIP_{CTRL} are generally consistent in
256 magnitude and direction across models over India (Figures S6a-f). By contrast, the change in
257 Cloud Radiative Effect (CRE; Figures S6g-1) is not consistent in sign across models, suggesting
258 that the models agree on the direct aerosol effects but differ on the aerosol-cloud interactions.
259 While there are more causative factors on precipitation than cloud fraction, the important point is
260 that because of the large cloud uncertainty that varies in both magnitude and sign, it is difficult to
261 attribute future changes in Indian precipitation to changes in BC concentration. This is reflected in
262 the precipitation change which fails to demonstrate a clear spatial coherence in the multimodel
263 mean (Figure 2g).

264

265 The role of sulfate for Indian precipitation is much clearer. The percent change in precipitation
266 between the SULF10xASIA and CTRL PDRMIP experiments is shown in Figures 2h-n. The sign
267 of the precipitation change is generally consistent across models, with a large decrease in
268 precipitation (~50%) over all of India in response to a tenfold increase in sulfate. There is also
269 large uncertainty in the cloud fraction profile response to sulfate emissions (Figure 3), similar to
270 the BC PDRMIP experiments. However, five of the six models on average favor a decrease in
271 cloud fraction with increased SO₂ emissions, consistent with the precipitation response. So, while
272 there is a comparable measure of intermodel spread for the BC10xASIA and SULF10xASIA cloud
273 responses, the mean change is more consistent in the SULF10xASIA experiments. The results
274 from the PDRMIP experiments, with their higher sulfate concentrations, constrain uncertainty on
275 the sign of precipitation changes, and can be used as a frame of reference for the country-specific
276 aerosol experiments described in section 3.2 and beyond.

277

278 *3.2 RAEI analysis: Indian aerosol burden response to Chinese and Indian aerosol emissions
279 changes*

280 We now consider the RAEI emissions scenarios for China and India. Percent changes in sulfate
281 burden between the sulfate **reduction** scenarios and control runs are shown in Figures S7a-i. Indian
282 sulfate emissions play an important role on local sulfate concentrations, contributing up to 60% of
283 the country's aerosol burden, while China's emissions can contribute up to 60% over the
284 Himalayas. The change in Indian aerosol burden for sulfate is notably consistent in terms of both
285 the magnitude of the change as well as the spatial pattern across the three models studied. Since
286 the temperature gradient between the Arabian Sea and Bay of Bengal and the Himalayas has been

287 invoked as a modulator of the South Asian Monsoon (e.g. Priya et al., 2017), both Indian and
288 Chinese emissions could influence monsoon precipitation over India by modifying the optical
289 properties of the atmosphere not only over the country but also over surrounding regions.

290

291 *3.3 RAEI analysis: summer monsoon precipitation response to regional SO₂ emissions changes*
292 The precipitation response associated with SO₂ emissions is significant over parts of India (Figures
293 4a-i), in agreement with the PDRMIP results. **All scenarios across the multi-model ensemble (with**
294 **the exception of CESM's CHN 20% SO₂ scenario)** show an increase in summer precipitation in
295 India when SO₂ emissions in China and/or India are reduced. The strongest response requires
296 **reductions** from both China and India, with an increase of nearly 20% in precipitation in some
297 regions of India when SO₂ emissions are reduced across the three models studied here. From these
298 results, changes in India's precipitation depend not only on local SO₂ emissions, but also on
299 regional sources. These emissions can have a measurable impact on India's water availability by
300 altering the underlying statistics in favor of greater precipitation events (e.g. Sillman et al. 2019).
301 That being said, the spatial patterns associated with these precipitation changes vary to a large
302 degree between models. For instance, precipitation changes in GISS exhibit greater consistency
303 across scenarios than they do with the CESM or UKESM. Additionally, UKESM tends to estimate
304 larger precipitation changes than the other RAEI models, consistent with the HadGEM3 results
305 indicated in Figure 2 which uses the same physical model. There is, however, general consistency
306 in the increase in precipitation when SO₂ emissions are reduced in both China and India. The
307 precipitation responses to lower BC regional emissions are indicated in Figure S8. BC emissions
308 play a much lesser role in GISS and CESM relative to SO₂ emissions, and cause an inconsistent
309 response in UKESM across the three regional emissions experiments. For all reduced BC scenarios

310 (with the exception of two UKESM scenarios), the changes in India's precipitation are generally
311 small (~5% locally) and not statistically significant at a 90% confidence level. The strongest
312 precipitation response occurs when both Chinese and Indian BC emissions are eliminated, but
313 there is a spread in the direction of change across models. This spread in precipitation change is
314 consistent with that of the PDRMIP results in that the intermodel spread in precipitation change
315 due to BC emissions changes tends to be larger than the magnitude of the precipitation response
316 from any individual model. This may highlight large process uncertainty generally. Bond et al.
317 (2013), for example, note that the impact of BC on the cloud radiative forcing in models is highly
318 sensitive to the nucleation regime in the background atmosphere.

319

320 *3.4 RAEI analysis: physical understanding of the SO₂-precipitation response*

321 Physical explanations for the precipitation changes induced by SO₂ emissions changes are
322 explored here. Circulation changes are typically connected to sulfate increases in India; a
323 weakened land-sea temperature gradient associated with SO₂ emissions would inhibit monsoonal
324 advection of moisture from the Arabian Sea onto the Indian subcontinent. Warming over the
325 Himalayas can be seen in most of the simulations (Figure S9), as well as changes in 850 hPa winds,
326 where there is a clear strengthening of the coastal winds when SO₂ emissions are reduced (Figure
327 S10). The fact that the land-sea temperature gradient and 850 hPa winds change suggests that
328 precipitation changes due to SO₂ emissions may be dynamically rather than thermodynamically
329 driven, which motivates the precipitation decomposition analysis discussed later. A similar
330 analysis by Shawki et al. (2018) also found that reduced Chinese SO₂ emissions strengthened the
331 land-sea temperature contrast and consequently precipitation over India. As shown in Figure 4,
332 strengthening of the monsoonal winds is largely consistent across models and scenarios, though

333 there are slight differences in the location of the strongest zonal wind increases; in GISS and
334 UKESM, the greatest increase is over India itself for most scenarios, while it is further south in
335 CESM. This suggests that a high sulfate burden reduces the strength of the monsoon winds,
336 consistent with prior studies that connect these changes to the dimming of the downward solar flux
337 (Kim et al. 2007). The relative contributions of thermodynamic (i.e. specific humidity) changes to
338 dynamic (i.e. circulation) changes are indicated in Figure 5. The thermodynamic precipitation
339 response to sulfur emissions reductions is positive for the three emissions experiments, consistent
340 with the Clausius-Clapeyron relation as less SO_2 increases surface temperatures and consequently
341 specific humidity. The interaction of dynamic and thermodynamic components (panel c, ΔP_{cross})
342 plays a minimal role. The magnitude of the thermodynamic response is on the order of 50% that
343 of the dynamic component – i.e. the dynamic component dominates. Panels (d) and (e) of Figure
344 5 indicate that this effect is driven primarily by shifts in the convective regions, with changes in
345 the tropical mean circulation having a minimal or slightly negative effect. It is of note that the
346 magnitude of each component is consistent across the three models studied here, suggesting
347 consistency in the mechanistic reasons for increased monsoon precipitation over India when sulfur
348 emissions are reduced. Changing circulation patterns are suggested as a consequence of changes
349 in CO_2 as well, and potential nonlinear effects of sulfur and greenhouse emissions on monsoon
350 precipitation highlight an important challenge in predicting future changes to the South Asian
351 summer monsoon.

352

353 **4. Conclusions**

354 The main purpose of this study was to better understand, through the use of several GCM
355 experiments, the sensitivity of the South Asian summer monsoon to regional anthropogenic aerosol

356 emission changes. Given that this is a modelling study, there are a number of caveats that must be
357 acknowledged. There are often questions of how well GCMs can simulate the Indian monsoon
358 since their spatial resolution may be too coarse to resolve the complex orography of India and the
359 surrounding regions (Prell and Kutzbach, 1992). Additionally, representation of cloud
360 microphysical processes is a known limitation of GCMs (e.g. Wilcox et al., 2015). We find a large
361 intermodel spread in cloud profile and precipitation changes in the various BC emissions scenarios
362 studied here. This suggests that discrepancies in representation of cloud processes within GCMs
363 constrain uncertainty in the precipitation response from BC perturbations, which cannot be
364 accounted for simply by differences in the BC vertical profiles (Figure S4). In contrast, the
365 precipitation responses for SO₂ emission changes as well as the dynamic mechanism for these
366 responses are largely consistent across models, suggesting that there is relative certainty in the
367 models ability to simulate precipitation changes due to SO₂ emissions. So, while it may be difficult
368 to extrapolate on the basis of these simulations from modelled to real-world monsoon precipitation
369 changes induced by anthropogenic aerosols, consistency in the SO₂ response across models lends
370 confidence in a potential observed response for future emissions changes.

371

372 On investigating the response of the monsoon to a tenfold increase of Asian BC and sulfate
373 concentrations, we found that the role of BC on Indian precipitation is uncertain but that increased
374 sulfate concentrations over India reduce precipitation across five of the six models studied. Large
375 uncertainty in the precipitation response to changing Asian BC is notably consistent with previous
376 PDRMIP analysis studying monsoon changes to a tenfold increase in global BC levels (Xie et al.
377 2020). Consistency between the global and regional PDMRIP simulations in this context suggests

378 further that a BC signal is difficult to detect for the South Asian summer monsoon (a result found
379 also in Liu et al., 2018).

380

381 When assessing the relative contributions of Chinese and Indian anthropogenic SO₂ emissions to
382 aerosol loading over South Asia (the RAEI emissions experiments), and the consequent
383 precipitation responses, we find that there is only a statistically significant difference in monsoon
384 precipitation when there is reduction of both China and India's SO₂ emissions, which leads to on
385 the order of a 20% precipitation increase locally. Consistency in the precipitation responses
386 between the increased sulfate scenario (PDRMIP SULF10xASIA) and the decreased sulfate
387 scenario (RAEI) suggests that the aerosol-precipitation link may be a reversible process, and is
388 attributable in large part to dynamical changes specifically shifts in convective patterns over the
389 region. Additionally, these results are significant because Chinese emissions of SO₂ have declined
390 over the past decade, while Indian emissions have grown steadily. There is also anticipated growth
391 in CO₂ emissions and concentrations over the coming decades and this is expected to result in an
392 increase in the atmospheric water vapor content. These concurrent events will have important
393 implications for policy going forward, as water deficits present a major issue for India that may be
394 exacerbated given the country's exponential population growth. Regions that exhibit large
395 variability in summertime precipitation such as Chennai and Delhi (as indicated in Figure S11)
396 may be particularly sensitive to future monsoon changes because interannual shifts between wet
397 and dry years at present impose important strains on the available water resource. Moreover, the
398 benefits of policies to control SO₂ emissions will have significant impacts not only on mitigating
399 water deficits but also in terms of alleviation of air pollution, estimated to be responsible for
400 hundreds of thousands of premature deaths per year in India (Health Effects Institute, 2019). It is,

401 however, important to bear in mind that SO₂ emissions reductions could also increase flooding and
402 extreme precipitation generally (Sillmann et al., 2019).

403

404 While China's pollution is expected to decline in most socio-economic projections, India's is
405 expected to grow except under strong emissions controls (Samset et al., 2019). Regardless of the
406 realism of these scenarios, the results should be seen as further impetus for regional policies to
407 reduce SO₂ emissions given that we have found combined emissions reductions from China and
408 India can increase monsoon precipitation over the country by 5% on average and by up to 20%
409 locally. This effect, in combination with consequent impacts of continued growth in GHGs (Figure
410 S1), could result in an overabundance. This calls therefore for careful consideration of implications
411 for both precipitation and health over multiple timescales.

412

413 **Code and data availability**

414 All code and model data to make the figures used in this paper will be made publicly available
415 through Zenodo following acceptance of the paper. The ESRL database makes gridded
416 precipitation data publicly available for both the University of Delaware data
417 (https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html) and for the GPCC
418 data (<https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html>).

419

420 **Author contribution**

421 ATA, NLA, JFL, DS, GF ran the RAEI experiments for their respective GCMs. PS prepared the
422 manuscript with contributions from all co-authors.

423

424 **Competing interests**

425 The authors declare that they have no conflict of interest.

426

427 **Acknowledgments**

428 This study was supported by the Harvard Global Institute. ATA and NLA thank NERC through
429 NCAS for funding for the ACSIS project and NE/P016383/1. The UKESM work used Monsoon2,
430 a collaborative High Performance Computing facility funded by the Met Office and the Natural
431 Environment Research Council. This work used JASMIN, the UK collaborative data analysis
432 facility. The NCAR-CESM work is supported by the National Science Foundation and the Office
433 of Science (BER) of the U.S. Department of Energy. NCAR is sponsored by the National Science
434 Foundation. Climate modeling at GISS is supported by the NASA Modeling, Analysis and
435 Prediction program. GISS simulations used resources provided by the NASA High-End
436 Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard
437 Space Flight Center.

438

439 **References**

440 Annamalai, H. and Liu, P., 2005: Response of the Asian Summer Monsoon to changes in El Niño
441 properties. *Quart. J. Roy. Meteor. Soc.*, **131**, 805-831.

442 Annamalai, H., Hamilton, K. and Sperber, K.R., 2007: South Asian summer monsoon and its
443 relationship with ENSO in the IPCC AR4 simulations. *J. Clim.*, **20**, 1071-1083.

444 Bentsen, M., et al., 2013: The Norwegian Earth System Model, NorESM1-M – Part 1: Description
445 and basic evaluation of the physical climate. *Geosci. Model Dev.*, **6**, 687-720.

446 Bollasina, M.A., Ming, Y. and Ramaswamy, V., 2011: Anthropogenic aerosols and the weakening
447 of the South Asian Summer Monsoon. *Science*, 6055(**334**), 502-505.

448 Bollasina, M.A., Ming, Y., Ramaswamy, V., Schwarzkopf, M.D., and Naik, V., 2014:
449 Contribution of local and remote anthropogenic aerosols to the twentieth century
450 weakening of the South Asian Monsoon, *Geophys. Res. Lett.*, **41**, 680-687.

451 Bond, T.C., et al., 2013: Bounding the role of black carbon in the climate system: A scientific
452 assessment. *J. Geophys. Res.-Atmos.*, **118**, 5380-5552.

453 Chadwick, R., Good, P., and Willett, K.M., 2016: A simple moisture advection model of specific
454 humidity change over land in response to SST warming. *J. Clim.*, **29**, 7613–7632.

455 Douglas, E.M., Beltrán-Przekurat, A., Niyogi, D., Pielke, R.A. and Vörösmarty, C.J., 2009: The
456 impact of agricultural intensification and irrigation on land–atmosphere interactions and
457 Indian monsoon precipitation – a mesoscale modeling perspective. *Glob. Planet.
458 Change*, **67**, 117-128.

459 Dufresne, J.-L., et al., 2013: Climate change projections using the IPSL-CM5 Earth System Model:
460 from CMIP3 to CMIP5. *Clim. Dyn.*, **10**(**40**), 2123-2165.

461 Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J. and Taylor, K.E., 2016:
462 Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental
463 design and organization. *Geosci. Model Dev.*, **9**, 1937-1958.

464 Goswami, B.N., Venugopal, V., Sengupta, D., Madhusoodanan, M.S., Xavier, P.K., 2006:
465 Increasing trend of extreme rain events over India in a warming environment. *Science*, **314**,
466 1442–1445.

467 Hazra, A., Goswami, B.N., and Chen, J.-P., 2013: Role of Interactions between Aerosol Radiative
468 Effect, Dynamics, and Cloud Microphysics on Transitions of Monsoon Intraseasonal
469 Oscillations. *J. Atmos. Sci.*, **70**, 2073-2087.

470 Health Effects Institute, 2019: State of Global Air 2019. Data source: Global Burden of Disease
471 Study 2017. *IHME*, 2018.

472 Hewitt, H.T., et al., 2011: Design and implementation of the infrastructure of HadGEM3: the next-
473 generation Met Office climate modelling system. *Geosci. Model Dev.*, **4**, 223-253.

474 Kim, M.-K., Lau, W.K.M., Kim, K.-M. and Lee, W.-S., 2007: A GCM study of effects of radiative
475 forcing of sulfate aerosol on large scale circulation and rainfall in East Asia during boreal
476 spring. *Geophys. Res. Lett.*, **34**, L24701.

477 Koch, D. and Del Genio, A.D., 2010: Black carbon semi-direct effects on cloud cover: review and
478 synthesis. *Atmos. Chem. Phys.*, **10**, 7685-7696.

479 Koch, D., et al., 2009: Evaluation of black carbon estimations in global aerosol models. *Atmos.*
480 *Chem. Phys.*, **9**, 9001-9026.

481 Kumar, K.K., Kumar, R.K., Ashrit, R.G., Deshpande, N.R. and Hansen J.W., 2004: Climate
482 impacts on Indian agriculture. *International J. of Clim.*, **24**, 1375-1393.

483 Lau, W.K.M., et al., 2017: Impacts of aerosol–monsoon interaction on rainfall and circulation over
484 Northern India and the Himalaya Foothills. *Clim. Dyn.*, **49**, 1945-1960.

485 Liu, L., et al., 2018: A PDRMIP multimodel study on the impacts of regional aerosol forcings on
486 global and regional precipitation. *J. of Clim.*, **31**, 4429-4447.

487 Meehl, G.A., Arblaster, J.M. and Collins, W.D., 2008: Effects of black carbon aerosols on the
488 Indian Monsoon. *J. Clim.*, **21**, 2869-2882.

489 Monerie, P.-A., Robson, J., Dong, B., Hodson, D. L. R., & Klingaman, N. P. (2019). Effect of the
490 Atlantic multidecadal variability on the global monsoon. *Geophys. Res. Lett.*, **46**, 1765–
491 1775.

492 Nazarenko, L., Rind, D., Tsigaridis, K., Genio, A. D., Kelley, M., and Tausnev, N., 2017:
493 Interactive nature of climate change and aerosol forcing. *J. Geophys. Res. Atm.*, **122**, 3457–
494 3480.

495 Neale, R.B., et al., 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0).
496 NCAR Tech. Note TN-486, 274 pp.

497 Paul, S. et al., 2016: Weakening of Indian summer monsoon rainfall due to changes in land use
498 land cover. *Sci. Rep.*, **6**, 32177.

499 Prell, W.L., and Kutzbach, J.E., 1992: Sensitivity of the Indian monsoon to forcing parameters and
500 implications for its evolution, *Nat.*, **360**, 647–652.

501 Priya, P., Krishnan, R., Mujumdar, M., and Houze Jr., R.A., 2017: Changing monsoon and
502 midlatitude circulation interactions over the Western Himalayas and possible links to
503 occurrences of extreme precipitation. *Clim. Dyn.*, **49**, 2351-2364.

504 Ramanathan, V. and Crutzen, P., 2003: New directions: Atmospheric brown “clouds”. *Atmos.*
505 *Env.*, **37**, 4033-4035.

506 Ramanathan, V., et al., 2005: Atmospheric brown clouds: Impacts on South Asian climate and
507 hydrological cycle. *PNAS*, **102(15)**, 5326-5333.

508 Ramesh, K.V. and Goswami, P., 2014: Assessing reliability of climate projections: the case of
509 Indian monsoon. *Sci. Rep.*, **4**, 161-174.

510 Rao, S., et al., 2017: Future air pollution in the Shared Socio-economic Pathways, *Global Environ.*
511 *Chang.*, **42**, 346-358.

512 Saha, A. and Ghosh, S., 2019: Can the weakening of Indian Monsoon be attributed to
513 anthropogenic aerosols? *Environ. Res. Commun.*, **1**, 061006.

514 Salzmann, M., Weser, H., and Cherian, R., 2014: Robust response of Asian summer monsoon to
515 anthropogenic aerosols in CMIP5 models. *J. Geophys. Res.*, **119**, 11,321-11,337.

516 Samset, B.H. and Myhre, G., 2015: Climate response to externally mixed black carbon as a
517 function of altitude. *J. Geophys. Res.*, **120**, 2913-2927.

518 Samset, B.H., et al., 2016: Fast and slow precipitation responses to individual climate forcers: A
519 PDRMIP multimodel study. *Geophys. Res. Lett.*, **43**, 2782-2691.

520 Samset, B.H., Lund, M.T., Bollasina, M., Myhre, G. and Wilcox, L., 2019: Emerging Asian
521 aerosol patterns. *Nat. Geosci.*, **12**, 582-584.

522 Schmidt, G.A., et al., 2014: Configuration and assessment of the GISS ModelE2 contributions to
523 the CMIP5 archive. *J. Adv. Model. Earth Syst.*, **1**(6), 141-184.

524 Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A. and Ziese, M., 2018: GPCC Full Data
525 Monthly Product Version 2018 at 0.5°: Monthly Land-Surface Precipitation from Rain-
526 Gauges built on GTS-based and Historical Data. DOI:
527 10.5676/DWD_GPCC/FD_M_V2018_050

528 Sellar, A.A., et al., 2019: UKESM1: Description and evaluation of the UK Earth System Model.
529 *J. Adv. Model. Earth Syst.*, **11**.

530 Shawki, D., Voulgarakis, A., Chakraborty, A., Kasoar, M., and Srinivasan, J., 2018: The South
531 Asian Monsoon response to remote aerosols: global and regional mechanisms. *J. Geophys.*
532 *Res.*, **123**, 11,585-11,601.

533 Shukla, J. and Paolino, D.A., 1983: The Southern Oscillation and long-range forecasting of the
534 summer monsoon rainfall over India. *Mon. Wea. Rev.*, **111**, 1830-1837.

535 Sikka, D.R., 1980: Some aspects of the large-scale fluctuations of summer monsoon rainfall over
536 India in relation to fluctuations in the planetary and regional scale circulation
537 parameters. *Proc. Indian Natl. Acad. Sci.*, **89**, 179-195.

538 Sillmann, J., et al., 2019: Extreme wet and dry conditions affected differently by greenhouse gases
539 and aerosols. *npj Clim. Atmos. Sci.*, **2**, 24.

540 Singh, D., Bollasina, M., Ting, M., and Diffenbaugh, N.S., 2019: Disentangling the influence of
541 local and remote anthropogenic aerosols on South Asian monsoon daily rainfall
542 characteristics. *Clim. Dyn.*, **52**, 6301-6320.

543 Stjern, C.W., et al. 2017: Rapid adjustments cause weak surface temperature response to increased
544 black carbon concentrations. *J. Geophys. Res.*, **122**, 11,462-11,481.

545 Subbiah, A. *Initial Report on the Indian Monsoon Drought of 2002* (Asian Disaster Preparedness
546 Center, 2002).

547 Turner, A.G. and Slingo, J.M., 2009: Subseasonal extremes of precipitation and active-break
548 cycles of the Indian summer monsoon in a climate change scenario. *Quart. J. Royal Met.*
549 *Soc.*, **135**, 549–567.

550 Turner, A.G. and Annamalai, H., 2012: Climate change and the South Asian Summer Monsoon.
551 *Nat. Clim. Change*, **2**, 1-9.

552 Wang, C., Kim, D., Ekman, A.M.L., Barth, M.C., Rasch, P.J., 2009: Impact of anthropogenic
553 aerosols on Indian summer monsoon. *Geophys. Res. Lett.*, **36**, L21704.

554 Watanabe, S., et al., 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-
555 20c3m experiments. *Geosci. Model Dev.*, **4**, 845-872.

556 Westervelt, D.M., et al., 2017: Multimodel precipitation responses to removal of U.S. sulfur
557 dioxide emissions. *J. Geophys. Res.*, **122**, 5024–5038.

558 Westervelt, D.M., et al., 2018: Connecting regional aerosol emissions reductions to local and
559 remote precipitation responses. *Atmos. Chem. Phys.*, **18**, 12461-12475.

560 Westervelt, D.M., et al., 2020: Relative importance of greenhouse gases, sulfate, organic carbon,
561 and black carbon aerosol for South Asian monsoon rainfall changes. *Geophys. Res. Lett.*,
562 **47**.

563 Wilcox, L.J., Highwood, E.J., Booth, B.B.B. and Carslaw, K.S., 2015: Quantifying sources of
564 inter-model diversity in the cloud albedo effect. *Geophys. Res. Lett.*, **42**(5), 1568-1575.

565 Willmott, C.J. and Matsuura, K., 2001: Terrestrial Air Temperature and Precipitation: Monthly
566 and Annual Time Series (1950 - 1999),
567 http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html.

568 Xie, X., et al., 2020: Distinct responses of Asian summer monsoon to black carbon aerosols and
569 greenhouse gases. *Atmos. Chem. Phys. Discuss.*, in review.

570

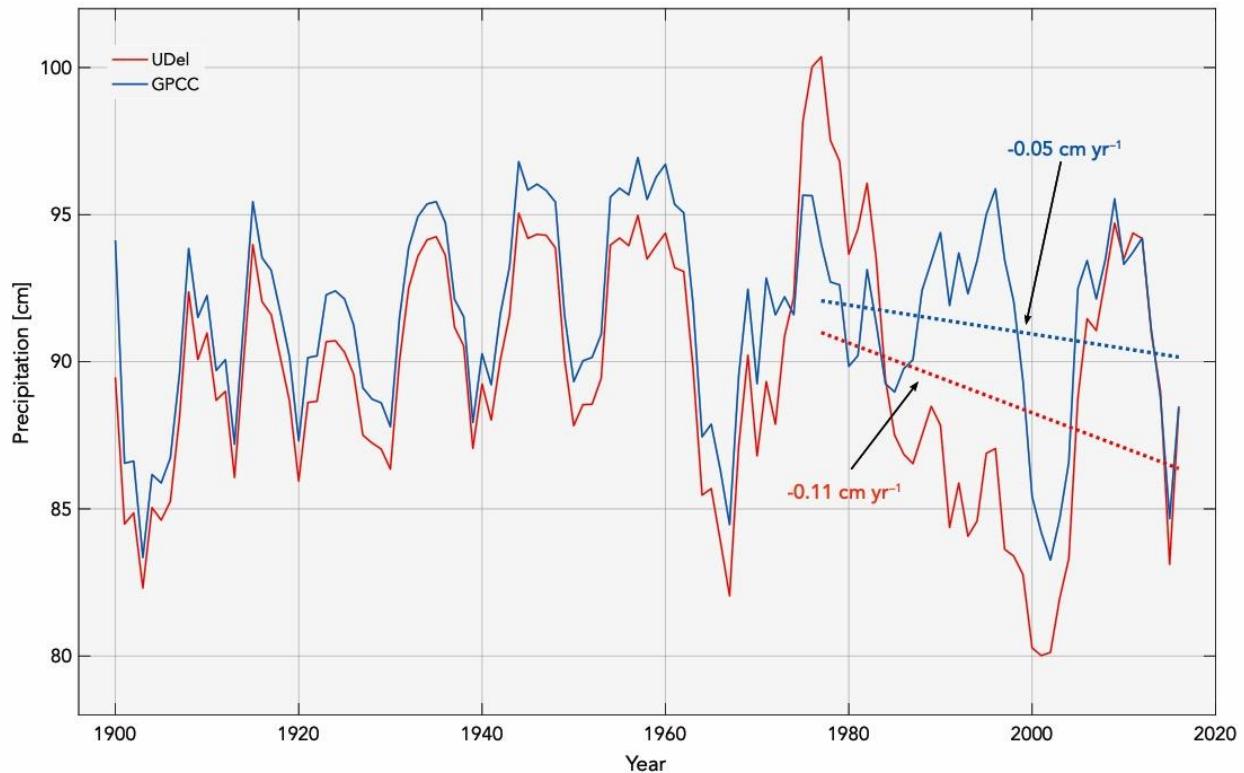
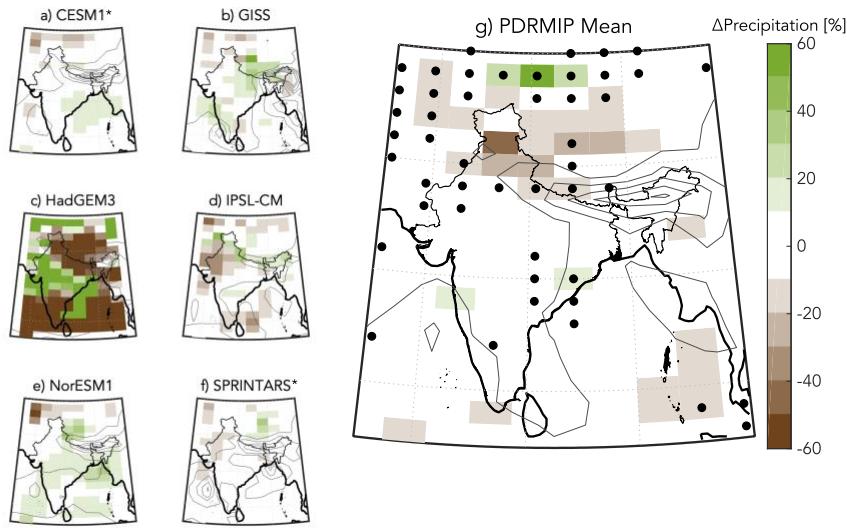
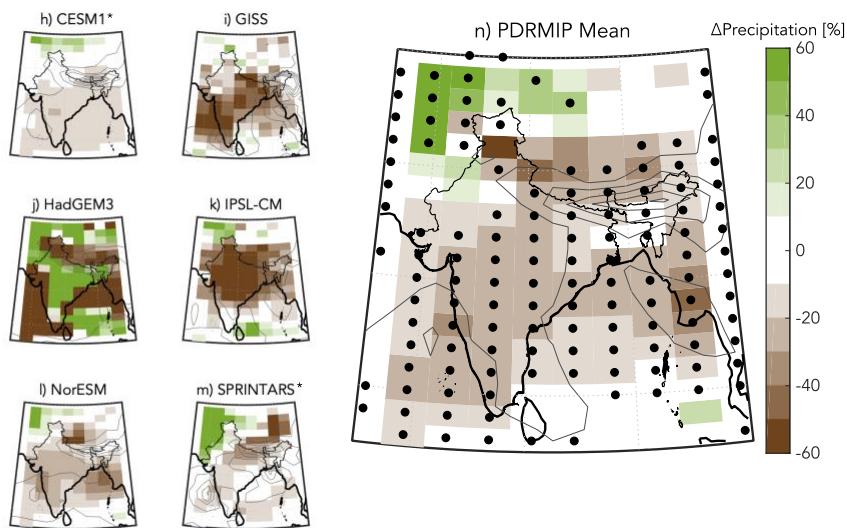
571 **Figures**572
573
574
575
576
577
578

Figure 1. Average cumulative summer (JJAS) precipitation [cm] over land in all of India from 1900 to 2016 for two observational datasets: (red) University of Delaware (UDel; Willmot and Matsuura, 2001) (blue) the Global Precipitation Climatology Center (GPCC; Schneider et al. 2018). Data are smoothed using a moving mean with a window size of five years. Linear trend lines are indicated for the last 40 years for each dataset as dashed lines, and the slopes $[\text{cm yr}^{-1}]$ are denoted by the arrows.

BC10xASIA – CTRL_{PDRMIP}

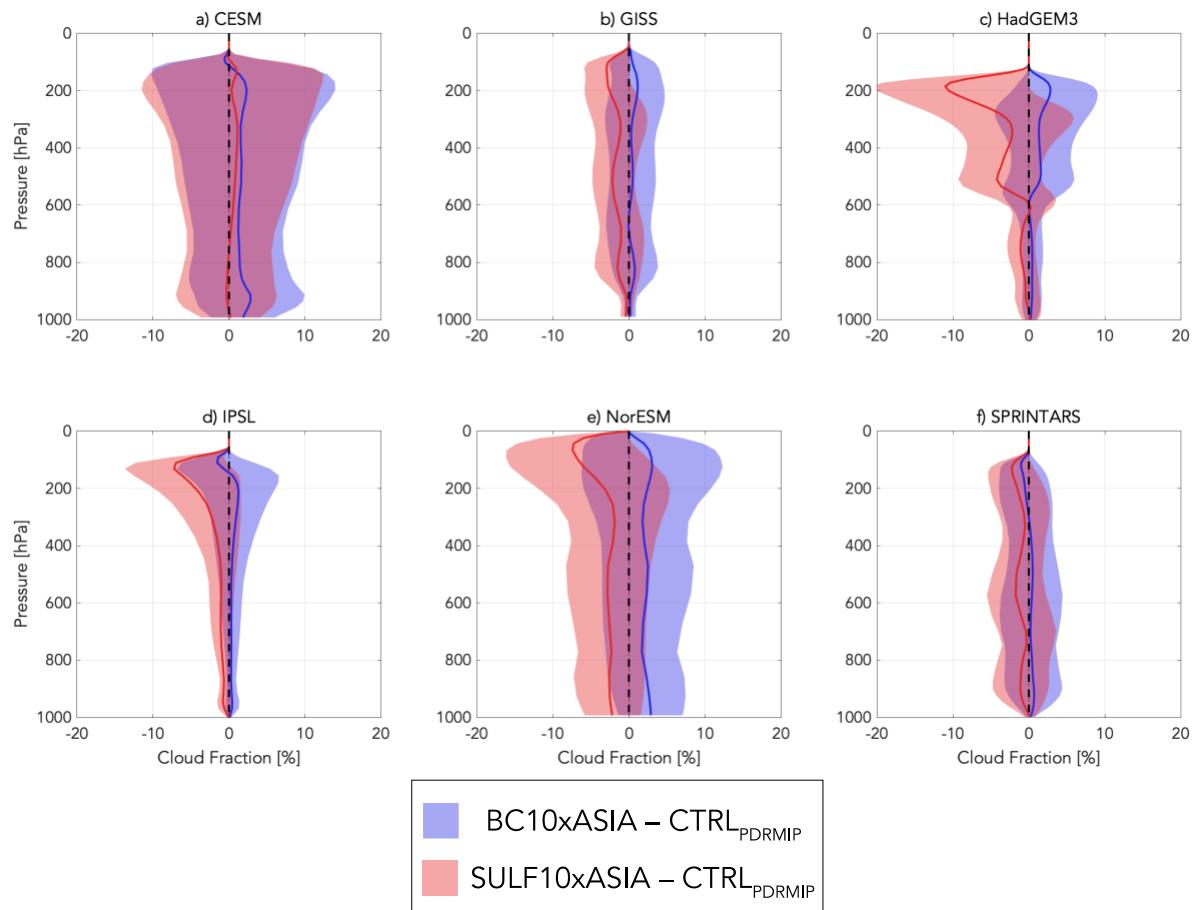


SULF10xASIA – CTRL_{PDRMIP}



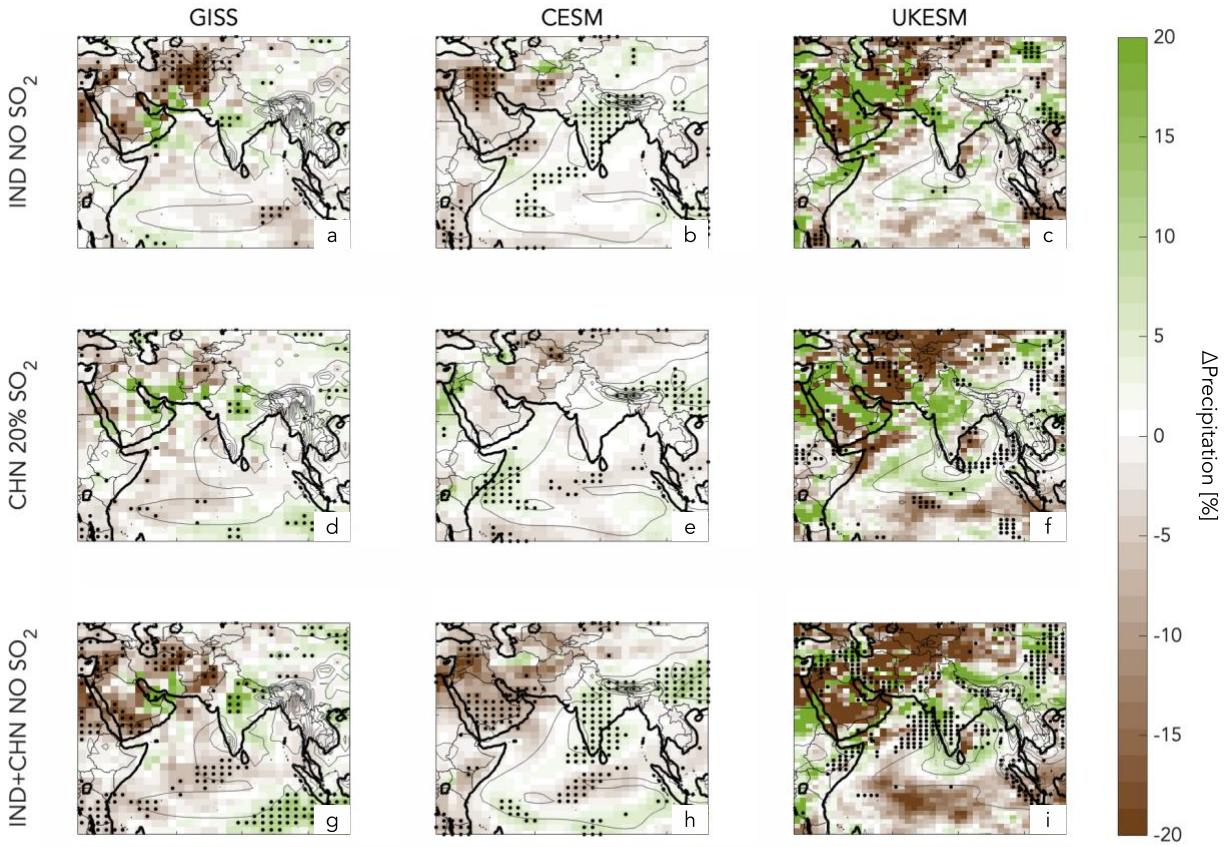
579

580 **Figure 2.** Percent change in summertime (JJAS) precipitation between (a-f) the BC10xASIA and
581 the CTRL_{PDRMIP} runs; (g) the multimodel mean of the change. Similarly, (h-m) represent the
582 precipitation change in JJAS precipitation between the SULF10xASIA scenarios and the
583 CTRL_{PDRMIP} runs, and (n) represents the multimodel mean of the change. Stippled grid cells in
584 (g) and (n) denote regions where at least five of the six models agree on the sign of the change.
585 Grey contours indicate mean JJAS precipitation from the control experiment for each model at 5
586 mm day⁻¹ intervals.



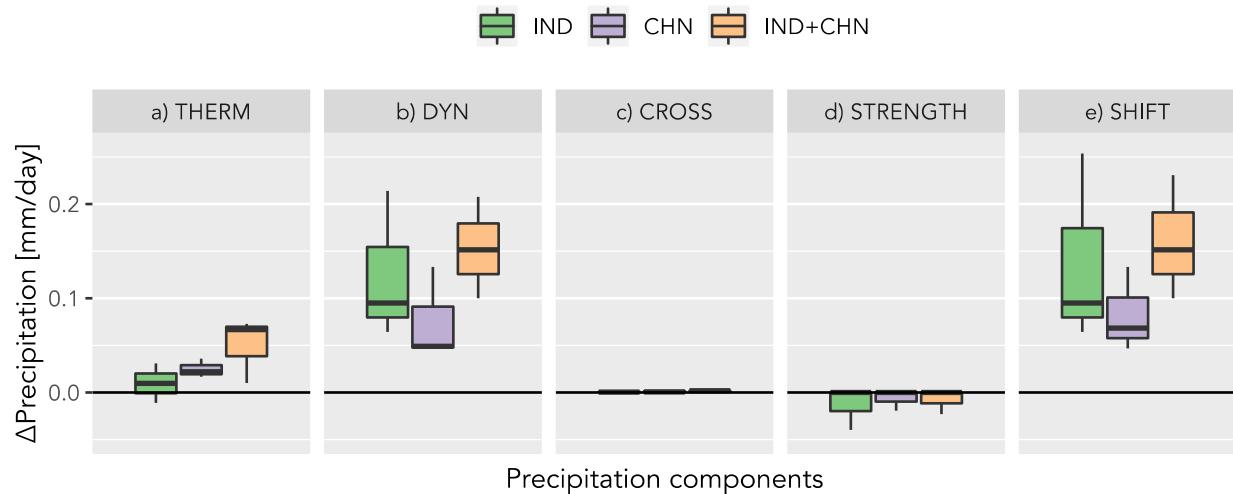
587

588 **Figure 3.** JJAS difference in cloud fraction between (blue) the BC10xASIA and the CTRL_{PDRMIP}
 589 runs and (red) the SULF10xASIA scenarios and the CTRL_{PDRMIP} runs. The bold lines represent
 590 the mean difference and the shadings represent 25th and 75th percentiles.
 591



592
593
594
595
596
597
598

Figure 4. JJAS precipitation percentage difference between the SO₂ regional emissions scenarios and the CTRL runs. The columns represent the different models and rows represent the different emissions scenarios. Stippled regions denote areas where the difference is significant at a 90% confidence level for a two-sample t-test. Grey contours indicate mean JJAS precipitation from the control experiment for each model at 5 mm day⁻¹ intervals.



601 **Figure 5.** Boxplots indicating the decomposition of area averaged JJAS precipitation anomalies
 602 [mm day⁻¹] into a) ΔP_{therm} , b) ΔP_{dyn} , c) ΔP_{cross} , d) $\Delta P_{\text{strength}}$ and e) ΔP_{shift} components over India.
 603 Different colors represent the three RAEI scenarios relative to the respective CTRL run with
 604 green representing the IND NO SO₂ experiment, purple the CHN 20% SO₂ experiment and
 605 orange the IND+CHN NO SO₂ experiment. The range for each boxplot corresponds to
 606 intermodel variability from the three different models studied in the RAEI experiments.