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Abstract. The Weather Reach and Forecasting model coupled with Chemistry (WRF-Chem) is run to 
quantify the in-snow and atmospheric radiative effects of black carbon (BC) and dust on a convective-
allowing (4-km) grid for water year 2009 across a large area of the Rocky Mountains. The snow darkening 
effect (SDE) due to the deposition of these light absorbing particles (LAPs) on surface snow enhances 20 
snowmelt by 3 to 12 mm during late spring and early summer, effectuating surface runoff increases 
(decreases) prior to (after) June. Meanwhile, aerosol-radiation interactions (ARI) associated with LAPs 
generally dim the surface from incoming solar energy, introducing an energy deficit at the surface and 
leading to snowpack preservation by 1 to 5 millimeters. Surface runoff alterations brought forth by LAP 
ARI are of opposite phase to those associated with LAP SDEs, and the BC SDE drives a majority of the 25 
surface energy and hydrological perturbations. More generally, changes in snow water equivalent (SWE) 
brought forth by LAP effects are more a result of perturbations to the surface energy budget rather than 
changes in precipitation amount or type. It is also found that perturbations to the surface energy budget by 
dust ARI can differ in sign from those of BC ARI, with the former being positive, enhancing snow melting 
and changing runoff. 30 
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1. Introduction 

 The arid Rocky Mountains of the western United States (WUS) receive most of their precipitation 

in the form of snowfall from October through March. The resulting snowpack forms a network of natural 

mesoscale storage reservoirs that provide approximately 80% of the surface water across the region during 35 

the warm season (Serreze et al., 1999; Hamlet et al., 2007). All life in the region fundamentally depends on 

the timed release of runoff from snowpack; humans rely on these resources for agriculture and power 

generation. In recent decades however, there have been observed changes in the hydrology across the WUS 

associated with external climate forcings (e.g., anthropogenic climate change) that may be acting to 

compromise the security of water resources across the region and beyond (Hamlet et al., 2007; Kapnick and 40 

Hall, 2012; Fyfe et al., 2017; Mote et al., 2018). 

 Numerous studies have shown that annual maximum snow water equivalent (SWE) values have 

decreased since 1950 (Das et al., 2009; Mote 2006; Pierce et al., 2008), increasing (decreasing) runoff 

discharge in the winter and spring (summer) (Rajagopalan et al., 2009; Qian et al., 2009). Externally forced 

warming associated with greenhouse gases and light-absorbing particles (LAPs; Pierce et al., 2008) and 45 

LAP deposition on snowpack (Flanner et al., 2007; Qian et al., 2009, Wu et al., 2018; Sarangi et al., 2019), 

rather than natural climate variability, are believed to be the major contributors to this decrease. 

 LAPs such as black carbon (BC) and dust can affect the hydrology across the WUS as they 

interact with sunlight, altering the vertical thermodynamic structure of the atmosphere. These aerosol-

radiation interactions (ARI) may lead to changes in clouds and precipitation amount and type (Pederson et 50 

al., 2011). LAPs may also deposit on snowpack, increasing the surface absorptivity and enhancing melting 

in a process referred to as the snow darkening effect (SDE; Warren and Wiscombe, 1980; Painter et al., 

2007). Surface warming is generally brought about by the SDE, while the surface can either cool or warm 

from ARI. Both effects have been shown to be important across the region however, especially since the 

surface radiative budget is sensitive to small perturbations in albedo (Painter et al., 2007; Qian et al., 2009; 55 

Pepin et al., 2015). 

 LAPs find their way into the WUS from both near-field and far-field sources. BC, produced via 

the incomplete combustion of fossil fuels and biomass burning, is primarily emitted in WUS cities and by 

wildfires (Bond et al., 2013). Meanwhile, dust is primarily emitted from southwestern U.S. deserts via wind 
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erosion (Tegen et al., 2004; Painter et al., 2007). Following emission, both aerosols are transported 60 

downstream by prevailing westerlies toward the Rocky Mountain region. Additionally, a sizable 

component of atmospheric dust across the WUS originates from Asian sources (Fischer et al., 2009). 

 LAP SDE and ARI across the WUS have been studied using global climate models (GCMs) 

(Flanner et al., 2007; Qian et al., 2009; Wu C. et al., 2018) and regional climate models (RCMs) (Wu L. et 

al., 2018; Sarangi et al., 2019), each with their own advantages and drawbacks. Heterogeneous mesoscale 65 

meteorology features (i.e., precipitation, temperature, and snow characteristics) can be simulated better 

with RCMs than GCMs, as higher grid resolutions are typically used. Wet removal by precipitation rather 

than dry removal is a more effective pathway for cleansing the atmosphere of LAPs (Zhao et al., 2014). 

Therefore, high-resolution (cloud-resolving) simulations, through their more physically based and pixilated 

treatment of orographically forced precipitation, should better simulate these aerosols’ lifecycle (e.g. 70 

Sarangi et al., 2019). Additionally, RCMs such as the Weather Research and Forecasting model coupled 

with Chemistry (WRF-Chem; Grell et al. (2005)) have chemical and aerosol options that are generally 

more sophisticated than typical GCMs. 

 While WRF-Chem has been used to study the impacts of LAP SDE and ARI across California on 

convective-permitting scales (Wu et al., 2018), the application of this model to the American Rocky 75 

Mountains as a whole has not been made. Smaller inner-continental cities and municipalities across this 

zone may be highly sensitive to changes in hydrology brought about by LAP effects, hence providing 

motivation for this study. 

Using WRF-Chem, we seek to quantify perturbations to WUS meteorology and hydrology 

induced by LAPs for water year 2009. Sensitivity experiments are run on convective-allowing scales (4 km 80 

grid spacing) to isolate the effects of LAP SDE and ARI on temperature, precipitation, snow, and runoff. 

 This study begins with an introduction of the model, methodology, and data in section 2. Section 3 

provides a meteorological and chemical evaluation of WRF-Chem. The radiative effects of LAPs 

associated with SDEs and ARI are explored in section 4, and their effects on WUS weather are examined in 

section 5. Section 6 briefly evaluates the implications of undersimulated dust emissions. Conclusions are 85 

presented in Section 7. 
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2. Model, Experiments, and Data 

2.1 WRF-Chem 

 In this study, WRF-Chem 3.5.1 updated by the University of Science and Technology of China 90 

(USTC) is used. This USTC version of WRF-Chem includes capabilities not available in publicly released 

WRF-Chem versions, such as the diagnosis of radiative effects of aerosol species, land surface coupled 

biogenic VOC emissions, and aerosol-snow interactions (Zhao et al., 2013a,b, 2014, 2016; Hu et al., 2019). 

The model is run on a 4-km grid with 50 vertical levels across a large portion of the WUS (Fig. 1). The 

SNow, ICe, and Aerosol Radiative (SNICAR) model (Flanner et al., 2007), which uses LAP deposition 95 

flux from the atmosphere to treat the SDE and treats ice and snowpack aging, was coupled into the 

Community Land Model version 4.0 (CLM4; Oleson et al., 2010 ) by Zhao et al. (2014). SNICAR uses 

snow water (both ice and liquid) and aerosol loading information to compute the snowpack’s radiative 

properties within multiple snow layers based on the theories by Warren and Wiscombe (1980) and Toon et 

al. (1989). The utility of SNICAR in simulating the albedo reductions in snow has been tested in laboratory 100 

experiments (Hadley and Kirchstetter, 2012). More information on SNICAR can be found in Appendix A1. 

 The MOdel for Simulating Aerosol Interactions and Chemistry (MOSAIC; Zaveri et al., 2008) and 

the Carbon Bond Mechanism version “Z” (CBM-Z; Zaveri and Peters, 1999) photochemical model are 

used to treat aerosol and atmospheric chemistry. MOSAIC uses a 4-bin sectional approach to simulate the 

aerosol size distributions of BC, dust, sulfate, ammonium, nitrate, organic matter, and sea salt for radii of 105 

0.039-10 𝜇m. Additionally, MOSAIC treats the processes of aerosol nucleation, coagulation, condensation, 

water uptake, and aqueous chemistry. Aerosol dry deposition is handled via the method in Binkowski and 

Shankar (1995), which includes Brownian and turbulent diffusion as well as gravitational settling. Wet 

deposition of aerosols and gases by in-cloud and below-cloud scavenging is treated following Easter et al. 

(2004). Similar to Zhao et al. (2013a) and Wu et al. (2017; 2018), aerosols are assumed to be internally 110 

mixed within each size bin. Aerosol optical properties such as extinction, single-scatter albedo (SSA), and 

asymmetry parameter are computed as a function of wavelength at each grid point based on the bin- and 

volume-averaged refractive index for each aerosol species (Fast et al. 2006). ARI are is treated in the 

radiation code via the methodologies in Zhao et al. (2011), in which the direct radiative effect is computed 

diagnostically using the method in Ghan et al. (2012) (briefly described later). Aerosol radiative feedbacks 115 
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are enabled, and aerosol-cloud interactions are enabled within the cloud microphysics scheme (Morrison et 

al. 2009) following Gustafson et al. (2006). 

 

2.2 Emission data 

 Anthropogenic emissions from the Environmental Protection Agency’s (EPA) 2011 National 120 

Emission’s Inventory (EPA NEI-11; https://www.epa.gov/air-emissions-inventories/2011-national-

emissions-inventory-nei-data) are used. These emissions contain location-specific point and area source 

emissions and are interpolated to a 4-km grid using the open-source software emiss_v04.F 

(ftp://aftp.fsl.noaa.gov); anthropogenic emissions from EPA NEI-11 are not simultaneous with our 

experimental time period. Simultaneous biomass burning emissions, available on a ~1 km grid from the 125 

Fire INventory from the National Center for Atmospheric Research (NCAR) (FINN; Wiedinmyer et al., 

2011), are used; FINN makes use of satellite and land coverage observations to estimate emissions from 

wildfires. Both EPA NEI-11 and FINN data are updated hourly to account for the diurnal cycle of their 

respective emissions. Biogenic emissions of isoprene and monoterpenes are calculated online following 

Guenther et al. (1993). In-domain dust emissions are also calculated online following Zhao et al. (2010, 130 

2013b) using the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) dust 

scheme (Ginoux et al., 2001). Short test simulations showed that surface dust concentrations were 

underpredicted. Therefore, the dust-tuning factor was increased from 1.0 to 1.2 in the six WRF-Chem 

experiments. 

 135 

2.3 Chemistry boundary and initial data 

Most far-field cross boundary and initial chemistry conditions for WRF-Chem are handled using 

the open-source software mozbc (NCAR, accessed 2018 at https://www.acom.ucar.edu/wrf-

chem/download.shtml). This software uses simulated chemical output from the Goddard Earth Observing 

System version 5 (GEOS-5) model, coupled to  MOZART-4 (Model for OZone And Related Tracers 140 

version 4), to generate the chemical initialization and lateral boundary condition for WRF-Chem 

simulations. Chemical boundary tendencies are updated every 6 hours beginning on 1 February 2009. 

MOZART-4 chemical input into WRF-Chem is date and time specific, but we note that in-domain 
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anthropogenic emissions are averaged for the year 2011 Relevant to this study, mozbc is used to provide 

the lateral boundary and initial chemistry conditions for chemical constituents and aerosols with the 145 

exception of dust. To avoid the issue of different dust bin cutoff sizes between MOZART-4 and MOSAIC, 

we ran a quasi-global (QG) WRF-Chem simulation to provide initial and cross-boundary dust in our 

simulations. See Appendix A2 for more information. 

 

2.4 Experimental setup 150 

Meteorological forcing at initialization and at the lateral boundaries of the convective-permitting 

experiments is provided from the Climate Forecast System Reanalysis (CFSR; Saha et al., 2010). 

“Convective-permitting” means that convection is not parameterized in the 4-km experiments. A detailed 

list of the physical parameterizations and physics packages used in the 4-km experiments is given in Table 

1. 155 

The original control experiment was initialized on 26 September 2008 at 00:00 UTC and run 

through 1 August 2009. However, this experiment was found to underpredict snow water equivalent (SWE) 

by several hundred millimeters due to underpredicted precipitation across the Rocky Mountains (not 

shown). A companion WRF simulation run without chemistry (NOCHEM) was found to significantly 

outperform WRF-Chem in simulating Rocky Mountain snowpack when compared to ground-based 160 

measurements; hence, a new set of WRF-Chem experiments was designed. 

We restart our WRF-Chem simulations on 1 February 2009 00:00 UTC using surface energy and 

hydrological fields from the NOCHEM restart file and in-snow LAP fields from the original WRF-Chem 

restart file. Six new “branch” WRF-Chem simulations are launched from the new restart file to quantify the 

impacts of LAP across the Rocky Mountains (see Table 2). These experiments, to be run through 1 August 165 

2009, consist of the following: 

 

1. CNT – the control experiment simulates both the SDE and ARI associated with LAPs. CNT 

also includes the indirect effects associated with various aerosols, as the number concentration 

of activated aerosols is calculated based on the local aerosol characteristics in each grid cell. 170 
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2. noSDE – this simulation is identical to CNT except that the deposition fluxes of LAPs and 

snow LAP loading are set to zero in CLM4/SNICAR. The deposition fluxes in the atmospheric 

component of WRF-Chem remain unchanged, effectively allowing LAPs to vanish as they are 

removed from the atmosphere. The ARI associated with LAPs remain in this perturbation 

experiment. 175 

3. noARI – this simulation is identical to CNT except that the contribution of LAPs to the total 

aerosol optical properties is set to zero in the radiation code. Specifically, the contributions of 

BC, dust, and calcium to the atmospheric radiative effects are removed. 

4. noBCD – this simulation is identical to CNT except that the SDE and ARI due to LAPs are 

removed. 180 

5. noBCSDE – this simulation is identical to noSDE except that only the BC SDE is removed. 

6. noBCARI – this simulation is identical to noARI except that only BC ARI are removed.  

By examining the differences between the results of the six simulations, species-specific SDEs and ARI 

associated with LAPs can be quantified across 4 subregions of the Rocky Mountains shown in Fig. 1. These 

subregions include (i) Greater Idaho, (ii) the Northern Rockies, (iii) the Utah Mountains, and (iv) the 185 

Southern Rockies; we consider elevations equal to or greater than 2,200, 2,400, 2,200, and 2,600 meters, 

respectively, in the calculations of all subregional averages. These regions were chosen because the water 

resources of these four areas depend heavily on the timing of local snow cover melt and orographic 

precipitation event characteristics. While BC SDEs and BC ARI are explicitly quantified by the difference 

between CNT and noBCSDE (noBCARI), it must be born in mind that dust SDEs (ARI) are taken to be the 190 

linear difference between noSDE and noBCSDE (noARI and noBCARI). 

 

2.5 Observational data 

 The performance of CNT and NOCHEM in simulating several important meteorological variables 

is first evaluated in this study. Daily point-source measurements of minimum (𝑇!"#), maximum (𝑇!$%), and 195 

average (𝑇$&) 2-m temperature, as well as precipitation and SWE from 418 SNOw TELemetry (SNOTEL; 

Serreze et al., 1999) sites across the WUS are used to evaluate the model performance (see black dots in 

Fig. 1). The spatial distribution of simulated monthly 𝑇!"#, 𝑇!$%, 𝑇$&, and precipitation are evaluated using 
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the Precipitation-elevation Regressions on Independent Slopes Model (PRISM; Daly et al., 1994). PRISM 

fields are available on a ~4-km mesh. The spatial variability of monthly SWE is also evaluated in this study 200 

against data from the University of Arizona (UA). These data are generated with the methodology used to 

generate PRISM and are mapped to a ~4-km grid (Broxton et al., 2016). Model-simulated snow cover 

fraction (SCF) is evaluated against the high-resolution (0.05°) measurements from the MODerate resolution 

Imaging Spectroradiometer (MODIS) Aqua (Hall and Riggs, 2016). 

 Simulated LAPs are compared to measurements from 23 Interagency Monitoring of PROtected 205 

Visual Environments (IMPROVE; Malm et al., 1994) network sites (see yellow triangles in Fig. 1). These 

sites are at relatively high elevations (mean elevation 2,221 m) with the lowest station located at 1,195 m 

and the highest at 3,413 m. Simulated BC is approximated to be fine-mode elemental carbon (EC) from 

IMPROVE. Although EC can be quite different from BC, this type of comparison has been made in other 

studies (e.g., Liu et al., 2012; Wu et al., 2018). Simulated dust concentrations are compared to the 210 

IMPROVE dust observations, which are derived  using the method in Kevouras et al. (2007) by adding 

observed fine-mode soil to the difference between observed particulate matter (PM) having a dry-size 

diameter of less than 10 𝜇m (PM10) and observed PM having a dry-size diameter of less than 2.5 𝜇m 

(PM2.5). This method was found to be reliable at 9 inland rural IMPROVE sites in Malm et al. (2007), in 

which the dust contribution to the coarse mode aerosol mass was 74-90%. 215 

 

3. Evaluation of simulated meteorology, BC, and dust 

 While NOCHEM’s meteorology was evaluated from 1 October 2008 to 1 August 2009 (see 

Appendix A3), we restrict our focus here to CNT’s performance, and detail some of the large differences 

between CNT and NOCHEM in Appendix A4. 220 

 

3.1 Meteorological variables 

 Evaluation of CNT is performed from 1 February 2009 onwards. CNT and NOCHEM simulate 

lower 𝑇$& values than the 418 SNOTEL site average, i.e., by -1.67°C and by -1.84°C, respectively (Fig. 2a) 

in the February-through-July mean. CNT is warmer than NOCHEM, although both simulations have 𝑟-225 

values of +0.98 compared to SNOTEL. CNT and NOCHEM are characterized by a wet bias of 0.71 mm d-1 
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and 1.18 mm d-l, respectively (Fig. 2b), and both simulations have 𝑟-values of +0.81. Despite having 𝑟-

values of +0.98, CNT and NOCHEM overpredict SWE by 5.6 mm and 16.6 mm, respectively (Fig. 2c). 

The reduced precipitation bias in CNT may be related to the prognostic number concentration of activated 

aerosols, but this result is not verified in this study. Fig. 2c also shows that CNT and NOCHEM 230 

misrepresent the meltout (i.e. the date on which SWE = 0 mm) date; both simulations melt out snow too 

slowly compared to SNOTEL. This is true regardless of subregion, with the largest melt out discrepancy 

being simulated across the Utah Mountains and the smallest being simulated across Greater Idaho (Fig. S1). 

However, simulations are skillful in reproducing the timing of maximized SWE during mid-April. CNT’s 

overall performance in simulating meltout should be considered when presented with simulated changes in 235 

meltout dates due to LAP effects (Section 5.4). 

 The spatial distributions of February-through-July-averaged 𝑇$&, 𝑇!"#, and 𝑇!$% for CNT and 

PRISM are shown in Fig. 3, where large terrain-induced heterogeneity in temperature can be seen. For 

validation purposes, we exclude simulation results near CNT’s lateral boundaries in an attempt to remove 

gridpoints whose solutions are relaxed to coarse-resolution CFSR. All subsequent statistics make use of 240 

CNT data only within the black box shown in Fig. 3 (37°N to 47°N; -116.5°E to -103.5°E). The 2-m 

temperature pattern is similar between CNT and PRISM as indicated by 𝑟-values of +0.94, +0.85, and 

+0.96 for 𝑇$&, 𝑇!"#, and 𝑇!$%, respectively. However, a warm bias in 𝑇$& (0.69°C), driven primarily by a 

warm bias in 𝑇!"# (2.00°C), is simulated by CNT.  Meanwhile, cold biases in 𝑇$& and 𝑇!"#	are simulated at 

high elevations. The overall temperature bias is negatively correlated with elevation; the bias becomes 245 

more negative with increasing elevation (third column of Fig. 3). Negative r-values between simulated bias 

and gridcell elevation (𝑟'() in excess of 0.68 are computed for 𝑇$&, 𝑇!"#, and 𝑇!$%. Local cold (warm) 

biases across mountain chains (basins) may be related to CNT’s overprediction (underprediction) of SWE 

and SCF within these zones (Fig. 4). 

 The spatial distributions of February-through-July-averaged precipitation rate, SWE, and SCF are 250 

shown in Fig. 4. These hydrological fields do not correlate as well with observations as in the case of 2-m 

temperature, with 𝑟-values for CNT/PRISM precipitation rate, CNT/UA SWE, and CNT/MODIS SCF of 

+0.78, +0.90, and +0.82, respectively. Domain-averaged precipitation rate is overpredicted in CNT by 0.59 

mm d-1, with biases larger than 1 mm d-1 simulated locally at higher elevations. This wet bias is also 



	 10 

evident in SWE and SCF comparisons, where CNT overpredicts SWE by more than 75 mm and SCF by 255 

30% in several mountain chains. CNT simulates a mean wet bias that increases with increasing elevation; 

𝑟'(-values of +0.37, +0.20, and +0.38 are recorded for precipitation rate, SWE, and SCF, respectively.  

 

3.2 BC and dust 

 Time series of BC and dust surface concentrations ([BC] and [dust], respectively) from CNT and 260 

IMPROVE are shown in Figs. 5a and 5b, respectively. CNT slightly oversimulates [BC] from February 

through April, and undersimulates [BC] from June through July, but otherwise compares well with the site-

averaged [BC] from IMPROVE. CNT and IMPROVE agree on site-averaged [BC] between 0.05-0.11 𝜇g 

m-3, with CNT slightly underpredicting [BC] by ~0.01 𝜇g m-3. Despite this agreement between CNT and 

IMPROVE, CNT simulates a modest temporally averaged [BC] spatial correlation (r-value) of +0.37 (Fig. 265 

5c). 

Dust is undersimulated by CNT throughout the period of simulation (Figs. 5b and 5c). CNT has a 

February-through-July bias of -2.73 𝜇g m-3 with the IMPROVE mean of 4.38 𝜇g m-3. CNT [dust] correlates 

better spatially with IMPROVE than does [BC], with a 𝑟-value of +0.61. In light of the simulated low bias 

in CNT, the dust tuning factor (DTF) was increased to 2.0 in a seventh experiment, DTF=2*(green line in 270 

Fig. 5b). However, despite a 60% increase in dust emissions (1.2/2.0 = 0.6), DTF=2 still simulates a 

February-through-July low bias in [dust] of -1.84 𝜇g m-3 (~43% lower than IMPROVE). The differences 

between the DTF=2 experiment and CNT will be discussed later. 

The undersimulation of [dust] within our domain may be due to many factors. In the QG WRF-

Chem experiment, dust AOD was chosen as the primary reference metric for tuning purposes (see Rahimi 275 

et al. 2019), not [dust] or dust burden. Specifically, the QG WRF-Chem simulation integrated a quasi-

globally (65°S-65°N) February-through-July averaged AOD of 0.025, compared to 0.035 from the 

Community Earth System Model (CESM). The smaller dust AOD in the QG experiment relative to the 

reasonable GCM value may be tied directly to underpredicted [dust] across the WRF-Chem domain, as 

cross-boundary dust transport was probably undersimulated. Biases in [dust] may also be attributed to 280 

 
* The increase in the DTF was arbitrary. Due to the high computational demand of WRF-Chem 
experiments, further simulations with increased DTFs values were not conducted 
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regional underestimations in dust emissions from cropland, pastureland, and other landuse activities within 

our domain. The vertical distribution of dust may have been misrepresented in our simulations as well. 

Perhaps most importantly, the Ginoux et al. (2001) dust emission scheme does not capture major dust 

sources across the southwestern U.S. 

 285 

4. Radiative effects of BC and dust 

 Radiative effects (REs) of LAPs are diagnostically computed following Ghan et al. (2012). A 

short description of RE calculations is given in Appendix 5. In-snow REs are calculated by SNICAR 

following a similar procedure. 

 290 

4.1 In-snow radiative effect 

The geographic distribution of the LAP in-snow radiative effect (ISRE) is tied to the mean 

normalized LAP burdens in the top snow layer (Fig. 6). March-through-June-averaged normalized in-snow 

burdens of BC are generally largest across western upslope regions of our subregions (Fig. 6a) because 1) 

aerosol deposition fluxes are maximized (not shown) and 2) snow burdens are relatively smaller than those 295 

further uphill (see Fig. 4, middle row), leading to maximized in-snow aerosol mass mixing ratios. Here, we 

defined the western upslope areas of our subregions to be western portion of our most highly elevated 

terrain where the terrain height increases with eastward extent. Different from in-snow BC burdens, in-

snow dust burdens generally decrease with northward extent across our domain (Fig. 6b). This is due to the 

fact that southern mountain ranges sit directly downstream of dust emission sources, while northern 300 

mountain chains do not. 

 Figs. 7a and 7b show that the ISRE pattern follows the in-snow impurity pattern in the February-

through-July mean (Fig. 6). BC dominates perturbations to the surface energy budget compared to dust 

over snow-covered areas with ISRE values in excess of 2 W m-2 integrated over mountainous terrain. Dust-

induced ISRE values increase with southward extent, maximized locally over the Utah Mountains and 305 

Southern Rockies. The ISRE values and patterns simulated here are consistent with those of Wu et al. 

(2018) who used a variable-resolution version of CESM to compare the SDEs of LAPs.  It is remarkable 
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that BC ISREs dominate over dust considering that top snow layer burdens of dust are ~2.5 orders of 

magnitude larger than those of BC (7.6 mg m-2 for dust compared to 0.0178 mg m-2 for BC). 

 Table 3 reinforces the finding that BC contributes to a stronger ISRE than dust across our four 310 

subregions in CNT. This result is unsurprising considering WRF-Chem experiments underpredict [dust] 

and reinforces the finding by Wu et al. (2018), who simulated a significantly larger BC ISRE compared to 

that of dust across the region. The BC ISRE is maximized in May across Greater Idaho and the Northern 

Rockies, with values of +0.73 and +1.09 W m-2, respectively. Dust ISRE values across these regions are 

about a quarter of the magnitude comparatively, even in the DTF=2 experiments (dust-induced ISREs are 315 

larger compared to CNT). Across the Utah Mountains and the Southern Rockies, the LAP ISRE peaks in 

April and May, respectively. The peak in ISRE during April across the Utah Mountains, occurring one 

month earlier than the other subregions, is due to maximized upstream dust emissions during April (not 

shown), which drives a fractionally larger dust-induced ISRE across this region. 

 320 

4.2 In-atmosphere radiative effect 

 Figs. 7c and 7d shows that BC and dust have opposite clear-sky TOA radiative effects across the 

CNT domain. March-through-June domain-averaged radiative effects of +0.55 and -0.98 W m-2 (-1.09 W 

m-2 in DTF=2) are simulated for BC and dust, respectively. The largest positive BC RE at the TOA occurs 

over BC emission source regions (cities and power plants; Fig. 7c), while the most negative dust-induced 325 

RE at the TOA occurs over deserts (Fig. 7d). Note that Fig. 7d depicts the negative of the dust TOA RE. 

The spatial distribution of the LAP-induced REs correlate with the spatial distribution of these aerosols’ 

respective burdens (Fig. S2, Sec. S1). The LAP-induced TOA RE magnitudes tend to be smaller across 

pristine mountainous areas. Of the four subregions, the Utah Mountains are characterized by the most 

positive TOA RE of +0.59 W m-2 by BC (Fig. 7c) and the most negative TOA RE of -0.94 W m-2 by dust 330 

(Fig. 7d; -1.06 W m-2 in DTF=2). 

 Table 4 breaks up the LAP TOA REs by month. The BC TOA RE is positive across all 

subregions; the effect is largest across the Utah Mountains (+0.81 W m-2) in April, as these mountains sit 

directly east of Salt Lake City and adjacent anthropogenic BC emission sources. For dust, the TOA RE is 

largest across the Utah Mountains compared to the other subregions. Here, the TOA RE reaches a base in 335 



	 13 

May of -1.11 W m-2 across the Utah Mountains. It is noteworthy that the Southern Rockies have a May 

TOA RE of -1.05 W m-2, but this region’s TOA RE is comparable to other subregions during other months. 

The more negative TOA RE due to dust across the Utah Mountains is due to the fact that this area sits 

immediately downstream of simulated dust source regions. 

 340 

5. SDE and ARI impacts on WUS weather and hydrology 

5.1 SDE  

5.1.1 Spatial patterns of SDE anomalies 

 From March through June, LAP SDE brings forth relatively small 2-m temperature increases of 

0.05°C to 0.5°C across portions of Greater Idaho, the Northern Rockies, the Utah Mountains, and the 345 

Southern Rockies (Fig. 8a) compared to Wu et al. (2018). This warming is comparable however to SDE-

induced warming reported in Qian et al. (2009). Similar to Wu et al. (2018) and Qian et al. (2009), the 

strongest simulated warming does not generally occur across the highest terrain. In fact, the largest SDE-

induced warming occurs across the western upslope regions of the Northern Rockies, the Utah Mountains 

and the Southern Rockies. BC contributes to most of the SDE-induced warming across the northern 350 

subregions (Fig. 8b) compared to that of dust (Fig. 8c), while BC- and dust-induced warming of the air 

temperature are more similar across the southern subregions. This aerosol-warming pattern is generally 

correlated with the LAP ISRE pattern in Fig. 7, where BC ISREs far outweigh those of dust across the 

northern subregions but are more comparable across the southern subregions. 

 While the areas of maximum surface warming tend to be located within moderately elevated 355 

upslope zones, the largest SDE-induced reductions in SWE occur at higher elevations downwind, where 

SWE is largest (Fig. 8d), in correlation with ISRE. Driven primarily by in-snow BC (Fig. 8e), SWE 

reductions of between 2.5 and 10 mm are simulated. Across the Utah Mountains and Southern Rockies, our 

simulated SWE reduction pattern is consistent with Wu et al. (2018) while our anomaly magnitudes are 

smaller; Wu et al. (2018) simulated SWE reductions between 10-50 mm across these mountains during 360 

springtime (March-through-May). We present the March-through-June average; hence, our simulated 

anomalies are different from Wu et al. (2018) comparatively. Another factor potentially contributing to 

SWE anomaly differences is that Wu et al. (2018) used a GCM that explicitly treated large-scale feedbacks 
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whereas our study does not. These large-scale feedbacks led to a positive SWE anomalies across Greater 

Idaho and the Northern Rockies in Wu et al. (2018), a feature not captured in this study. It should be noted 365 

that the LAP effects on WUS meteorology and hydrology considered here are purely local; they are not due 

to LAP SDE and ARI beyond the domain boundaries. More generally, Greater Idaho, the Northern 

Rockies, and the Utah Mountains see simulated SWE reductions across most elevated surfaces above 2200 

m. Across the Southern Rockies meanwhile, reductions in SWE are mostly confined to the western portion 

of the mountainous terrain.  370 

 We note that there are areas where LAP SDE leads to increased SWE amounts across a small 

fraction of gridcells (Fig. 8d). We believe this to be the result of internal model variability rather than a 

physical manifestation (Bassett et al., 2020). Examination of several grid points where the March-through-

June mean SWE anomalies were positive revealed that fine-scale storm location and intensity differences 

between, for instance, CNT and noBCSDE were leading to positive SWE anomalies (not shown). We 375 

expect these positive SDE-induced SWE anomalies to be more uncommon if averaged over climate-

relevant time scales as in Wu et al. (2018). As will be shown in the next section, SDE SWE anomalies are 

negative when averaged regionally. 

 Snow impurities reduce snowpack albedo by as much as 0.02 across many elevated areas (Fig. 

8g). These albedo reductions are mainly driven by BC (Fig. 8h). Overall, the snowpack absorbs more 380 

sunlight with the deposition of LAPs (see Fig. 6 showing in-snow burdens). The additional energy in the 

snowpack (Figs 7a, 7b, and S3) for a given time increases melting rates, leading to ice crystal growth of the 

underlying snow at the expense of liquid; larger ice crystals have a lower albedo than smaller ice crystals 

(Hadley and Kirchstetter, 2012). Increased heat content at the surface can warm the interfacing air via 

conduction, and this warming in turn melts more top snow, completing this feedback. Fig. 8j shows that 385 

mean snow grain radii are mostly enhanced by several microns across snow-covered regions from March 

through June. This enhancement in the snow-albedo feedback is explored in detail in Flanner et al. (2007) 

and Painter et al. (2007). 

Our simulated SWE results differ from those of Wu et al. (2018), who found that the maximum 

reductions in SWE occurred across many basins of the WUS, especially across the northern subregions, 390 

although our results agree with those of Qian et al. (2009). It should be noted that the WRF-Chem 
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experiments undersimulate SWE and SCF across low- and moderate-elevation regions, such as the Snake 

River Basin (southern Idaho) and the Green River Basin (southwestern Wyoming; Fig. 4). Simulated snow 

coverage may therefore have been too low for SDE-induced perturbations across these areas, leading to the 

discrepancies between this study and Wu et al. (2018). 395 

 

5.1.2 Timing of SDE 

 From Fig. 9a it can be seen that LAP SDEs induce regionally averaged warming by no greater 

than 0.2°C across our four subregions. The largest simulated warming occurs across the Utah Mountains in 

late April and Greater Idaho in mid-June (0.15°C). BC almost universally warms the surface air (crosses, 400 

Fig. 9a), but we do note several instances where the dust SDE cools the surface air (hollow circles, Fig. 9a). 

This is most likely the result of internal model variability or the assumption of linearity made in quantifying 

dust SDE as the difference between noBCSDE and noSDE (Section 2.4). 

 Peak SWE reductions are relatively well correlated with peak 2-m temperature increases and 

maximal ISRE values across the southern subregions. Peak SWE reductions of between 8 and 10 mm occur 405 

in mid-April and mid-May across the Utah Mountains and Southern Rockies (between 4% and 5%), 

respectively. These reduction maxima, driven mainly by BC SDEs, occur concurrently with seasonally 

maximized ISRE values of +4 to +5 W m-2 (Fig. S3). SWE reductions across these southern subregions 

have a larger dust SDE-induced component than simulated across northern subregions. As a percentage, 

negative SDE-induced SWE anomalies increase as the warm season progresses, with simulated SWE 410 

reductions of ~65%, ~10%, ~7%, and ~50% across Greater Idaho, the Northern Rockies, the Utah 

Mountains, and the Southern Rockies, respectively, by mid-July. The progressive increase in SWE 

reduction percentages throughout the warm season is the result of decreased overall snowpack concurrent 

with increasing in-snow LAP mixing ratios as the snowpack ages, which increases the efficacy of LAP 

SDEs. 415 

Northern subregions are not characterized by the same seasonal correlation between SWE, 2-m 

temperature, and ISRE. Maximized SWE reductions of 8 mm (4%) occur around 1 June across Greater 

Idaho, which occurs about a week after the ISRE maximum of (+2.9 W m-2) and ~3 weeks before the 2-m 

temperature maximum (+0.15°C). This peculiarity is due to reduced snowmelt (Fig. 2c) through increased 
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cloudiness (not shown) and precipitation frequency (Fig. 2b). Increased snowfall during this period leads to 420 

dilution of the snowpack and a depressed ISRE.  

The largest overall SWE reductions of 11 mm (5%) occur across the Northern Rockies during 

mid-June. This period is characterized by a local minimum in 2-m temperature anomalies and local ISRE 

values brought forth by increased cloud coverage (not shown). The offsets in absolute SWE reductions with 

absolute maxima in 2-m temperature and ISRE across the northern subregions are the result of modulations 425 

in synoptic-scale weather variability that potentially mask these variables’ correlation on time scales shorter 

than weeks. 

SDE-induced anomalies in SWE (Fig. 9b) and precipitation (Fig. 9c) change runoff by fractions of 

millimeters per day across the four subregions. Here, runoff is defined as the sum of surface and 

underground runoff from the model output; runoff from glaciers and lakes is neglected. Driven primarily by 430 

BC SDEs, runoff is mostly increased through late June across all four subregions. Maximum simulated 

precipitation anomalies are generally less than 0.1 mm d-1 (Fig. 9c), while runoff anomalies are typically an 

order of magnitude larger (Fig. 9d). The largest increase in runoff occurs across the Northern Rockies (5.5 

mm d-1, a 90% change from CNT), which is characterized by the largest reductions in SWE. During July, 

negative anomalies in runoff manifest, with the peak reductions simulated across the Northern Rockies (5.5 435 

mm d-1,  July mean: ~1%) and the Southern Rockies (4.5 mm d-1, July mean:  ~2%). Smaller runoff 

reductions of ~1 mm d-1 (2%) are simulated across Greater Idaho, while runoff increases of 1 to 2 mm d-1 

(< 5%) are simulated across the Utah Mountains in phase with precipitation increases across this subregion 

(Fig. 9c). Although Qian et al. (2009) and Wu et al. (2018) emphasized results across basins, the dipole 

signature of runoff increases followed by runoff decreases is consistent with our results, despite primarily 440 

examining SDEs at higher elevations in this study. 

SDE-induced precipitation perturbations of greater than 0.1 mm d-1 are not simulated until mid-

May, but runoff increases due to SDE are simulated beginning around 1 April. In the absence of a coherent 

trend in SDE-induced snowfall (not shown) or overall precipitation (Fig. 9c), we surmise that, at least 

initially, SDE-induced runoff anomalies are mainly driven by the enhanced melting of SWE and not SDE-445 

induced precipitation changes. By mid-May, runoff increases across the Northern Rockies are relatively 

maximized, even as near-zero or slightly negative precipitation anomalies due to SDEs are simulated. 
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There are however some correlations between the runoff time series and precipitation anomalies. For 

example, a local minimum in the runoff anomaly time series (Fig. 9d) is simulated around 1 June which 

correlates with negative precipitation anomalies of 0.3 mm d-1 across the Northern Rockies. This negative 450 

precipitation anomaly is decreasing the enhanced runoff induced by SDE-induced snowmelt. During mid-

June, precipitation increases in excess of 0.4 mm d-1 correlate with the increased positive runoff anomaly 

(Fig. 9d) across Greater Idaho and the Northern Rockies. 

 SDE-induced perturbations to the weather and hydrological cycle generally stem from 

perturbations to the surface energy budget, affecting variables from the “bottom up.” LAP ARI on the other 455 

hand seems to affect downwelled irradiance, atmospheric stability, and clouds in a way that affects the 

underlying snow coverage at the surface, effectively altering variables from the “top down.” Changes in 

clouds and low-level stability were minimal (less than 1% and 0.02°C km-1, respectively) and are not 

discussed. 

 460 

5.2 ARI 

5.2.1 Spatial patterns of ARI anomalies 

 From March through June, LAP ARI-induced 2-m temperature anomalies are minimal (less than 

0.1°C in magnitude) across the WUS (Fig. 10a).  However, BC and dust seem to impart anomalies of 

differing sign across the mountains, with cooling (warming) simulated across the higher elevations due to 465 

BC (dust). This general spatial pattern is correlated with SWE increases due to BC (Fig. 10e) and SWE 

decreases due to dust (Fig. 10f). The cooling and warming patterns associated with BC and dust, 

respectively, can be tied to deficits and surpluses in the surface energy budget imparted by these aerosols’ 

radiative effects (discussed shortly and in Sec. 5.5). 

 Fig. 10d shows that BC ARI-induced SWE increases tend to exceed reductions in SWE associated 470 

with dust ARI. These overall ARI-induced increases in SWE compete against, but do not exceed, LAP 

SDE-induced reductions in SWE (Fig. 8d). Total simulated precipitation (rain+snow) anomalies due to 

LAP ARI are generally less than 0.2 mm d-1, while those due solely to snow are less than 0.1 mm d-1 (not 

shown). Additionally, no precipitation variable shows any discernable weekly, monthly, or seasonal trend. 

This finding lends further credence to the idea that simulated ARI-induced changes to SWE manifest from 475 
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changes to the surface energy budget through LAP ARI. As with SDEs, internal model variability may be 

responsible for unintuitive SWE anomalies, but this issue was not examined in this study due to limited 

computational resources. 

Fig. 10g shows that LAP ARI imparts a negative surface RE. BC and dust have surface REs that 

are opposite in sign (Figs. 10h and 10i). The opposing sign is attributable to the differing microphysical 480 

properties of BC and dust aerosols. Specifically, the key difference between BC and dust is that dust 

aerosols can absorb and re-emit several W m-2 of longwave energy. Depending on the dust size and number 

concentration, this downwelled longwave energy can dominate over the solar dimming, yielding positive 

surface RE values (Fig. 10i; Tegen and Lecis, 2012). BC meanwhile is not an effective attenuator of 

terrestrial energy because of its relatively small size. BC is however a very effective scatterer/absorber of 485 

incoming solar energy. Thus, BC dims the surface (Fig. 10h), yielding a very different surface RE 

compared to dust (Fig. 10i). BC-induced shortwave dimming exceeds the dust-induced longwave RE, 

yielding a negative surface RE across the domain (Fig. 10g). 

 

5.2.2 Timing of ARI 490 

 Fig. 11a shows the seasonality of competing 2-m temperature anomalies with BC (dust) ARI 

inducing surface cooling (warming). Maximum LAP ARI-induced temperature perturbations tend to occur 

from late May into early June. Interestingly, the strongest dust ARI-induced warming (+0.1°C in late May) 

tends to occur across the Northern Rockies, even though this region lies further away from dust emission 

sources. As will be discussed, this region tends to have relatively lower burdens of super-micron dust 495 

particles compared to the other subregions. As smaller (larger) dust particles tend to scatter (absorb) 

incoming and upwelling sunlight, this region tends to see more downward-scattered insolation due to the 

larger fraction of sub-micron dust particles, which results in less surface dimming. BC on the other hand 

absorbs in the atmosphere, leading to surface dimming and weak surface cooling. Otherwise, the strongest 

combined (BC+dust) surface cooling is generally simulated to occur across the southern subregions prior to 500 

mid-May, but all subregions tend to see LAP ARI-induced cooling throughout the simulation period. 

 Overall cooling by LAP ARI is accompanied by increased SWE amounts across the four 

subregions (Fig. 11b). Driven by BC ARI, SWE increases of 5 mm (2%) are simulated across the Northern 
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Rockies during mid-May. By percentage however, the largest SWE increases of ~3 mm (~4%) are 

simulated during the first week of May across the Utah Mountains. Across the southern subregions, the 505 

ARI-induced increases in SWE occur earlier in the spring relative to the northern subregions. Meanwhile, 

the percentage increases in SWE across all four subregions generally increase with time well into the 

summer, with increases in excess of 10% across the Utah Mountains, the Southern Rockies, and the 

Northern Rockies by late July (not shown). 

Overall, the increase in SWE through ARI is predominately due to BC; however, dust ARI does 510 

contribute to SWE increases on the order of 1 mm during mid-May and early June across the Utah 

Mountains and the Southern Rockies, respectively. Interestingly, the Northern Rockies see competition 

between BC and dust ARI in modulating SWE anomalies. Specifically, BC (dust) increases (decreases) 

SWE by 8 mm (4 mm). Differences in these aerosols’ optical properties lead to differences in how these 

aerosols perturb the surface energy budget while they reside in the atmosphere.  515 

SWE (runoff) increases (decreases) from April onward due to LAP ARI across all four subregions 

prior to mid-May. These ARI-induced runoff changes occur in the presence of near-zero and nearly 

trendless precipitation (Fig. S4) and snowfall (not shown) anomalies. The simulation of these features 

suggests that the main driver of runoff changes, at least from April through mid-May, is reduced snowmelt 

from LAP ARI surface dimming. ARI-induced precipitation changes do impact runoff, however. For 520 

example, decreased precipitation from mid-May through 1 June (Fig. S4) correlates with decreased runoff 

during the same time period across Greater Idaho and the Northern Rockies (Fig. 11c). Following 1 June, 

runoff anomalies become less negative and even positive across the four subregions, a pattern opposite to 

that of LAP SDE (Fig. 9d). BC ARI tends to drive a majority of the runoff decreases prior to 1 June and 

promotes increased runoff deep into the summer. Dust ARI on the other hand has the opposite effect on 525 

runoff to that of BC ARI, increasing runoff through mid-May and decreasing runoff after 1 June across the 

Northern Rockies.  

Comparatively, although SDE- and ARI-induced precipitation anomalies are of similar magnitude 

across the four subregions, the relative contribution of LAP ARI-induced precipitation changes to runoff 

anomalies is larger than that of LAP SDE because the overall SWE changes associated with LAP SDE are 530 

larger. Larger snow (and subsequent runoff) changes occur due to LAP SDE, making the relative 
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contribution of LAP SDE-induced precipitation changes to the total runoff changes smaller. Snowmelt and 

precipitation-specific runoff contributions were not output and thus cannot be explored further in this study. 

 

5.3 Combined effects of LAPs 535 

Fig. 12 shows time series of the total radiative (SDEs+ARI) impacts of LAP in the four 

subregions. These aerosols combine to increase the surface temperature by up to 0.15°C, with the largest 

warming across the Utah Mountains in mid-spring and across the Northern Rockies during early summer 

(Fig. 12a). The largest LAP SDE-induced SWE reductions occur across the Southern Rockies (10 mm) and 

Northern Rockies (12 mm) during mid-May and mid-June, respectively (Fig. 12b). As mentioned earlier, 540 

changes in SWE are predominately driven by SDEs, although dust ARI can cause SWE reductions, 

especially across the Northern Rockies. 

With the exception of the Utah Mountains, LAP-induced perturbations in SWE modulate runoff 

increases in the late spring and early summer, decreasing runoff later in the summer (Fig. 12c). Maximum 

runoff changes are simulated across the Northern Rockies, with increases (decreases) of 5 mm d-1 (5 mm d-545 

1) occurring in mid-May (late July). Despite the Utah Mountains being located closest to BC and dust 

emission sources, its SWE and runoff changes are not as large as those across the Southern Rockies and 

Northern Rockies. This may be due to the close positioning of the Utah Mountains relative to the 

southwestern deserts. Larger, more absorbing dust aerosols dim sunlight, effectuating a negative surface 

RE. Combined with BC ARI dimming, the dust ARI offsets snow darkening reductions in SWE, resulting 550 

in relatively smaller net perturbations to the surface water budget. 

 

5.4 Changes in meltout timing 

 Since LAP effects yield SWE changes, we investigate changes in meltout timing for explicitly 

quantified effects across the four subregions. Only in Greater Idaho is CNT able to explicitly melt out 555 

snow; the other subregions simulate vanishing SWE sometime in August, hence our simulation window 

does not capture meltout across the other subregions. Across subregions where meltout is not simulated, we 

estimate it by using the minimum and maximum SWE values at 18:00 UTC on 31 July between the CNT 

and perturbation experiments (e.g., noSDE). The maximum value is used as a threshold, and we count the 
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number of days from the minimum until the threshold is reached. This number of days is a proxy for the 560 

shift in meltout date, assuming that melt rates are the same between the simulations 

 Table 5 shows that, for explicitly simulated effects, BC SDE drives an earlier shift in meltout, 

while ARI generally drives a later meltout. Earlier SDE-induced meltout shifts are more prominent than 

later shifts induced by ARI, and we note that AIR and SDE-induced anomalies in meltout do not add linarly 

. For example, meltout is shifted earlier (later) by 4 (3) days across the Northern Rockies due to SDE 565 

(ARI), but the combined effects still (ARI+SDE) move forward the meltout date by 4 days. This difference 

may be due to internal model variability, as well as uncertainties associated with our proxy for meltout 

shifts. Painter et al. (2007) simulated a dust SDE that accelerated snowpack meltout by more than 20 days 

compared to a simulation without dust-snow-albedo effects, a result of much larger magnitude than ours. 

The authors however did not use a coupled atmospheric chemistry in tandem with a land surface model 570 

capable of physically simulating the SDE. 

 

5.5 Dust ARI-induced warming and attendant SWE reduction 

 ARI due to LAPs tend to dim the surface from insolation, leading to snowpack preservation. 

However, a notable instance in which dust ARI brings forth SWE reductions of 4 mm around 1 June across 575 

the Northern Rockies (Fig. 11b) can be explained by considering the properties of dust particles across the 

subregion. Regional averages of dust- (and BC-) induced anomalies were computed over areas 

characterized by relatively high albedos. Smaller dust particles are generally scattering in nature compared 

to larger dust particles in shortwave bands (Tegen and Lacis, 2012). In a single-layer radiative transfer 

model of the atmosphere, the downward shortwave solar flux 𝑆↓ at the Earth’s surface can be expressed as 580 

follows: 

 𝑆↓ = 𝑆*(1 − 𝑓+ − 𝑓$), (1) 

where 𝑆* is the solar constant at a particular time of day at a latitude characterizing the Northern Rockies 

and subject to molecular scattering, 𝑓+ is the fraction of 𝑆* scattered by aerosols in the atmosphere, and 𝑓$ is 

the fraction of 𝑆* absorbed by aerosols in the atmosphere. The upwelled solar flux immediately above the 

earth’s surface 𝑆↑ can thus be found by multiplying (1) by the surface albedo 𝛼: 585 
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 𝑆↑ = 𝑆*(1 − 𝑓+ − 𝑓$)𝛼. (2) 

This upwelled radiation will be scattered back and forth between the scattering aerosol layer and the 

surface in an iterative process proportional to 𝑓+ and 𝛼: 

 
𝑆-.-$/↓ = 𝑆*(1 − 𝑓+ − 𝑓$) 01 +2(𝛼𝑓+)#

0

#12

3. 
(3) 

Here, n is the number of times the incident beam is scattered between the surface and the aerosol scattering 

layer. 𝑆-.-$/↓ − 𝑆* is negative. By (3), it is clear that when 𝑓$ is negligible, 𝑆-.-$/↓ − 𝑆* becomes less negative 

as 𝛼 approaches unity. For atmospheric dust (and BC) particles residing over the high-albedo surface of the 590 

Northern Rockies, this means that there will be a higher chance of shortwave absorption by the surface 

through a larger 𝑆-.-$/↓ . Together with dust longwave warming (Figs. 10i and 11d), dust ARI contribute to 

snowpack reductions across the Northern Rockies. SWE reductions are most prominent across the Northern 

Rockies subregion where smaller, more scattering dust particles are present. The physical process described 

here is similar to that noted in Stone et al. (2008) who examined the atmospheric REs of wildfire smoke 595 

across northern Alaska’s high albedo surface.  

 

6. Consequences of increased dust 

 The mean [dust] was undersimulated in all WRF-Chem experiments by 63% compared to 

IMPROVE (Section 3.2). Even in the DTF=2 experiment, [dust] is still underpredicted by 43%. Fig. 13 600 

shows the consequences of increasing dust emissions by 60% from March through June. ISRE is increased 

by 0.2 W m-2 in many areas, especially across the southern subregions (Fig. 13a). Additionally, the northern 

subregions see ISRE increases of 0.05 to 0.1 W m-2. Across Greater Idaho and the Northern Rockies, this 

represents a doubling of the ISRE in the DTF=2 experiment compared to CNT. 

As discussed in the previous section, in-atmosphere dust can warm the surface through shortwave 605 

and longwave ARI over high-albedo surfaces. Fig. 13b shows the difference in the net surface RE between 

the DTF=2 experiment and CNT. A positive difference of between 0.01 and 0.05 W m-2 is prevalent across 

the four subregions, especially across the Northern Rockies and Southern Rockies. Immediately 

downstream of major dust emissions sources, such as the Mojave Desert and those of central Montana, we 
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see enhanced surface dimming in excess of 0.2 W m-2 in DTF=2, as larger (more absorbing) dust aerosols 610 

reduce insolation at the surface. 

Enhanced warming of the surface, both through dust ARI and dust SDEs, leads to widespread 

SWE reductions in DTF=2 compared to CNT (Fig. 13c). These reductions exceed 5 mm in many areas and 

are generally accompanied by small temperature increases (Fig. 13d) of less than 0.05°C. The seasonality 

of SWE differences between DTF=2 and CNT are shown in Fig. 13e. It is clear that increasing dust 615 

emissions has consequences for snowmelt across the four subregions, especially across the Northern 

Rockies. Through enlargements in the dust SDE and dust ARI, SWE reduction enhancements of 7.5 mm 

are simulated in DTF=2 compared to CNT across the Northern Rockies. These melting enhancements by 

themselves are ~70% as large as the reductions in snowpack simulated due to the BC SDE. BC SDE-

induced SWE reductions across the Northern Rockies are the largest of any subregion and larger than any 620 

other effect across any of the four subregions. Therefore, it is possible that the dust SDE and dust ARI are 

actually comparable to those induced by BC SDE.  

 While it can be seen that increased dust emissions have consequences on simulated meteorology, 

it cannot be determined whether a majority of changes in meteorological variables are due to enhancements 

in dust SDE or dust ARI without conducting further experiments. We did identify small increases in cloud 625 

amounts (by less than 2%; not shown). In-snow dust burdens, as a percentage, were increased the most 

across the northern subregions, although ISRE perturbations in DTF=2 in the northern subregions were 

smaller compared to the southern subregions (Fig. 13a). Perturbations to the surface RE were generally 

positive across high-elevation areas of the northern subregions, especially in the Northern Rockies (Fig. 

13b). Evaluating enhancements in dust SDE in the DTF=2 experiment is also complicated by the nonlinear 630 

relationship between snow impurity amount and radiation absorption (Flanner et al., 2007; 2012; Painter et 

al., 2007; Hadley and Kirchstetter, 2012; Wiscombe and Warren, 1980). DTF=2 enhancements of dust 

effects over CNT comprise linear and nonlinear ARI and SDE, whereas earlier computation of dust ARI 

and SDE were subject to a linearity assumption, further complicating the comparison of DTF=2-CNT 

anomalies with previously computed dust anomalies (Secs. 5.1, 5.2). We emphasize the limitations of our 635 

assumptions in quantifying dust effects, and call for further studies of dust SDE and ARI across this region. 
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7. Conclusions 

Using seven “branch” WRF-Chem experiments with a horizontal resolution of 4 km, the SDEs of 

LAPs were quantified across four subregions of the WUS for water year 2009. These aerosols’ ARI were 640 

also examined and quantified.  

It was found that BC surface concentrations in the WRF-Chem control experiment (CNT) were 

well simulated compared to observations from IMPROVE, while dust surface concentrations [dust] were 

undersimulated by 63%. An additional simulation was run with domain-resolved dust emissions increased 

by 60% (DTF=2), but this simulation still underpredicted [dust] by a factor of 43% compared to 645 

IMPROVE. It was found that CNT generally overpredicted precipitation compared to PRISM, snow cover 

compared to MODIS, and SWE compared to UA at many elevations; the wet bias increased with increasing 

elevation. Meanwhile, CNT simulated a warm (cold) bias at lower (higher) elevations. The biases/elevation 

Pearson values exceeded +0.3 for hydrologic reference variables and fell below -0.65 for the temperature 

variables. 650 

It was found that LAP SDEs generally reduced springtime and summertime SWE while ARI 

generally increased SWE during this same time period. However, SWE reductions due to the SDE, 

typically on the order of 2% to 5%, far exceeded the increases induced by ARI. SWE changes by these 

LAP effects led to changes in runoff. Specifically, SDEs brought forth runoff increases of 1-5 mm d-1 

before July and runoff reductions of a similar magnitude during July. Runoff increases and decreases were 655 

largest across the Northern Rockies, with runoff increases of 95% during springtime and early summer 

preceding gradual decreases of 5% through the first half of July. BC ARI on the other hand reduced 

incoming solar radiation by 0.5-1.0 W m-2, depressing snowmelt in the late spring. The resulting ARI-

induced perturbation to runoff was generally opposite to that associated with SDE. Meltout is accelerated 

by 3-5 days due primarily to SDEs, although previous studies have found that meltout can be accelerated 660 

by several weeks (Flanner et al., 2007; Painter et al., 2007). 

It was found that BC ARI resulted in a dimming of the surface and a negative surface RE. 

Depending on the subregion however, dust ARI could incite a positive or a positive surface RE. We believe 

this to be the result of differing optical properties associated with dust aerosols of differing size. Across 

subregions in relatively close proximity to dust emissions sources, larger, more absorbing dust particles 665 
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dim the surface, preserving snowpack through a negative surface RE. Across regions further away from 

dust emission zones, namely the Northern Rockies, dust particles tend to be smaller and more scattering. 

Across this high-albedo surface, downwelled solar radiation is reflected upward and subsequently 

backscattered to the surface by the scattering dust layer in an iterative process. Suppressed dimming of 

incoming solar energy, in tandem with a positive longwave RE due to dust ARI, can thus warm the surface 670 

and reduce SWE. Overall, ARI associated with LAPs tend to decelerate meltout by a few days. 

We conclude by noting that there were non-negligible changes in simulated meteorology in the 

instance that dust emissions were increased. Specifically, SWE reduction enhancements of several 

millimeters were simulated across mountainous areas. While our results were consistent with Wu et al. 

(2018), we note that observed [dust] was estimated following Kevouras et al. (2007), and this estimation is 675 

subject to uncertainties therein. There remains a possibility that dust effects may be quite comparable to 

those of BC, although further simulations are required to answer this question. More generally, LAP SDEs 

and ARI can impart significant perturbations of WUS weather and hydrology and corroborate the results of 

coarser resolution GCMs. Future studies should focus on increasing the domain size to quantify larger 

synoptic-scale circulation changes associated with LAP effects; this coupling has been noted in previous 680 

GCM experiments (e.g., Rahimi et al., 2019), but the domain size used in this study was too small to 

resolve these potentially significant larger-scale responses. Internal model variability may also have 

influenced our results; hence we propose that these effects be examined in an ensemble approach. 

Additionally, because convection was not parameterized, an opportunity exists to quantify how 

orographically forced precipitation events are impacted by LAP SDE. Specifically, this output data can be 685 

used to quantify how updraft speeds, convective updraft area, and storm energetics change as a function of 

LAP effects, which will be topics of future study. 
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Appendices 710 

A1. SNICAR 

Simulated snow modification by the SNICAR model begins with LAP deposition flux (wet and 

dry) information calculated by the atmospheric chemistry module. As described in Flanner et al. (2012) and 

Zhao et al. (2014), dust (BC) mixes externally (internally and externally) with falling hydrometeors and is 

deposited on the snowpack. 715 

Upon deposition, LAP is uniformly and immediately mixed throughout the layer. For BC, offline 

calculated Mie parameters (i.e., asymmetry parameter, SSA, extinction) valid for effective radii of 0.1 µm 

are used from Chang and Charalampopoulos (1990). These values were used to derive snow absorption 

enhancement factors for a broad range of snow grain sizes. The mass absorption cross sections of BC are 

scaled by these factors which are found in a lookup table. For dust, optical properties in snowpack are 720 

derived from a combination of the Maxwell-Garnett mixing approximation and Mie theory. An assumed 
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dust composition is used, and its size distribution is defined lognormally with a number median radius of 

0.414 µm and a standard deviation of 2. Snow grains are treated by SNICAR as a collection of ice spheres 

with effective median number radii between 30-1500 µm. Mie parameters for snow are computed in one 

visible and four near-infrared bands offline. 725 

For the final radiative transfer calculations, BC, dust, and snow grains are treated as an external 

mixture by summing the extinction optical depths for each element, weighting the individual SSAs by the 

optical depths, and weighting the asymmetry parameters by the product of optical depths and the SSAs 

(Zhao et al., 2014). More information on the methods used in SNCAR can be found in Flanner et al. 

(2012). 730 

As the snowpack melts, meltwater scavenging of LAP is accounted for in SNICAR. Each layer in 

CLM4 has a threshold liquid capacity. Once this capacity is exceeded in a layer, the excess liquid is added 

to the liquid content of the layer beneath. The amount of scavenged LAP in this meltwater is proportional 

to this excess, the mass mixing ratio of LAP, and a scavenging factor (see Eq. 1; Zhao et al., 2014). 

 735 

A2. The Quasi-Global WRF-Chem Experiment 

In this study, to avoid the issue of different dust bin cutoff sizes between MOZART-4 and 

MOSAIC, we ran a quasi-global (QG) WRF-Chem simulation to provide initial and cross-boundary dust in 

our simulations. The QG WRF-Chem was run at 1° horizontal grid spacing with the identical options to the 

convective-permitting experiments except that convection was parameterized following Kain (2004). The 740 

QG experiment was ran on a 360´130 grid (180°W-180°E, 60°S-70°N) following the methodology of Zhao 

et al. (2013b) and Hu et al. (2016). The QG experiment was initialized on 2 December 2008 00:00 UTC 

and integrated until 1 August 2009 00:00 UTC. Horizontal winds and temperature were nudged in the QG 

experiment to meteorological fields from the Climate Forecast System Reanalysis (CFSR; Saha et al., 

2010) with a relaxation coefficient of 0.003. Sea surface temperatures in the QG experiment and 745 

atmospheric tendencies in the QG experiments are updated every 6 hours. A dust tuning factor of 0.6 was 

needed in the QG experiment to appropriately simulate spatially averaged dust optical depth values. Dust 

from the QG experiment was interpolated to grid cell locations at the lateral boundaries of the convective-
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permitting experiments via a third-order least squares regression method. More details about the QG WRF-

Chem simulation can be found in Zhao et al. (2013b) and Hu et al. (2016). 750 

 

A3. Evaluation of NOCHEM from 1 October onwards 

 Because all WRF-Chem experiments are initialized to NOCHEM’s 1 February meteorological 

state, we briefly examine NOCHEM’s overall performance alone. Time series of simulated and SNOTEL 

2-m temperature, precipitation, and SWE from 1 October 2008 and onward are shown in Fig. 2. NOCHEM 755 

exhibits a 𝑇$& cold bias of 2.41°C compared to the 418-site SNOTEL average of 1.60°C (Fig. 2a). 

Precipitation (Fig. 2b) and SWE (Fig. 2c) are overestimated by NOCHEM, which simulates a bias of +0.97 

mm d-1 and +9.61 mm, respectively. Despite these biases, NOCHEM-simulated 𝑇$&, precipitation, and 

SWE are highly correlated with SNOTEL, with Pearson 𝑟-values of +0.97, +0.83, and +0.97, respectively. 

For SWE, NOCHEM’s wet bias is skewed by slower than observed melt out (as much as 30 days across 760 

Greater Idaho; Fig. S1). However, from mid-March through mid-May, NOCHEM overpredicts SWE by 

tens of millimeters (Figs. 2c and S1). 

 

A4 Differences between CNT and NOCHEM 

The goal of this study is to quantify the impacts of LAP SDE and ARI on WUS weather and 765 

hydrology. This aim does not align with examining root causes of differences between CNT and 

NOCHEM, and its scope does not necessarily focus on WRF’s overall deficiencies in simulating seasonal 

snow dynamics. Nonetheless, we do note that significant technical differences exist between NOCHEM 

and CNT which lead to their different results. 

First, upon grid-cell saturation, NOCHEM’s number concentration of activated aerosols is 770 

prescribed in the microphysics scheme to be 250 cm-3, while CNT’s is calculated online accounting for the 

local aerosol characteristics. This difference is most certainly leading to differences in the simulated snow 

yields through changes in the precipitation efficiency of clouds (not examined), with CNT simulating a 

smaller wet precipitation bias than NOCHEM compared to SNOTEL observations. An additional notable 

difference between CNT and NOCHEM is the coupling of chemical species’ optical properties to the 775 
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radiation code in CNT; this process is entirely neglected in NOCHEM and is also most certainly 

contributing to differences in results between the two simulations. 

More generally, WRF without chemistry (NOCHEM) has traditionally been developed to emulate 

the observed planet as closely as possible even though the model itself is free of explicitly simulated and 

physically based chemical processes, both in its atmospheric component and its land surface model. This 780 

study is an example of an instance where the inclusion of chemistry into the model (CNT) does not 

necessarily improve model performance. In fact, it appears that the presence of chemistry in CNT actually 

worsens our results compared to NOCHEM, as NOCHEM simulates SWE values closer to SNOTEL (Fig. 

2c) than CNT. Additionally, WRF (and other models) has traditionally showcased difficulties in simulating 

the evolution and timing of seasonal snow dynamics (Caldwell et al., 2009; Wu et al., 2017), and our study 785 

does not attempt to explore why these deficiencies exist. Here, both simulations simulate a melt-out date 

~20 days later than is observed by SNOTEL. The differences between CNT and NOCHEM, as well as their 

deficiencies, should be kept in mind when interpreting the results of the study, and an evaluation of their 

differences is beyond the scope of this study. 

 790 

A5. Calculation of LAP Radiative Effects 

For computation of the atmospheric radiative effects at the TOA and the surface, the radiation 

scheme is run interactively with all aerosol species factored into the calculation of beam transmittance (e.g., 

upwelled shortwave flux at the TOA, downwelled longwave flux at the surface, etc.) The radiation scheme 

is then called iteratively in a methodology that sees, for example, BC excluded from the calculation of 795 

beam transmittance variables. By subtracting the transmittance variables in the case where BC is excluded 

from the case including all aerosol species, the radiative effect of BC can be quantified. 
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Tables 
 
Table 1. Listing of WRF-Chem specifications. NOCHEM is identical to CNT except 
without the chemistry options. 1075 

  Scheme/Option Reference 
Chemistry 
Aerosol model MOSAIC 4-bin with 

aqueous reactions 
Zaveri et al. (2008) 

Photochemical model CBM-Z Zaveri and Peters (1999) 
Dust emissions GOCART Ginoux et al. (2001) 
Biogenic emissions Guenther Guenther et al. (1993) 
Fire emission FINN 1.5 Wiedinmyer et al. (2011) 
Anthropogenic emissions EPA-NEI11 U.S. EPA 
Physics 
Forcing data CFSR Saha et al. (2010) 
Microphysics Morrison double-moment Morrison et al. (2009) 
Radiation RRTMG Iacono et al. (2008) 
Land surface model CLM4 Oleson et al. (2010) 
Boundary layer Yonsei University Hong et al. (2006) 
Surface layer Monin-Obukhov Zhang and Anthes (1982) 

 
 
Table 2. Listing of WRF-Chem experiments organized by the types of LAP effects 
included in each simulation. 

Experiment BC SDE BC ARI Dust SDE Dust ARI 
CNT yes yes yes yes 
noSDE no yes no yes 
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noARI yes no yes no 
noBCD no no no no 
noBCSDE no yes yes yes 
noBCARI yes no yes yes 

 1080 
 
 
 
 
 1085 
 
 
 
 
 1090 
 
 
 
 
 1095 
 
Table 3. Monthly averages of LAP in-snow radiative effect (W m-2) across the 
domain and subregions therein. Dust RE values are given in parentheses. 

BC (dust) surface in-snow radiative effect (W m-2) 
Month 
 

Greater Idaho Northern 
Rockies 

Utah 
Mountains 

Southern 
Rockies 

February 
 

0.15 (0.05) 0.24 (0.04) 0.25 (0.12) 0.29 (0.09) 

March 
 

0.21 (0.06) 0.34 (0.12) 0.54 (0.43) 0.54 (0.23) 

April 
 

0.47 (0.12) 0.58 (0.13) 0.73 (0.42) 0.75 (0.25) 

May 
 

0.73 (0.18) 1.09 (0.29) 0.52 (0.28) 0.75 (0.29) 

June 
 

0.56 (0.13) 0.93 (0.22) 0.20 (0.08) 0.41 (0.13) 

July 
 

0.17 (0.04) 0.57 (0.13) 0.08 (0.03) 0.16 (0.04) 

 
 1100 
Table 4. Same as in Table 3, but for the TOA RE. 

BC (dust) TOA clear-sky radiative effect (W m-2) 
Month Domain Greater 

Idaho 
Northern 
Rockies 

Utah 
Mountains 

Southern 
Rockies 
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February 
 

0.32 (-0.67) 0.30 (-0.50) 0.31 (-0.58) 0.44 (-0.70) 0.36 (-0.62) 

March 
 

0.59 (-0.99) 0.62 (-0.69) 0.65 (-0.83) 0.75 (-0.92) 0.68 (-0.81) 

April 
 

0.67 (-1.04) 0.74 (-0.92) 0.79 (-0.96) 0.81 (-1.02) 0.80 (-0.89) 

May 
 

0.60 (-1.08) 0.59 (-0.72) 0.65 (-0.92) 0.62 (-1.11) 0.65 (-1.05) 

June 
 

0.58 (-1.08) 0.47 (-0.92) 0.57 (-0.90) 0.51 (-1.01) 0.50 (-0.67) 

July 
 

0.52 (-0.99) 0.38 (-0.63) 0.40 (-0.90) 0.43 (-0.86) 0.36 (-0.80) 

 
 
 
 1105 
 
 
 
 
 1110 
Table 5. Shifts in meltout date due to explicitly simulated effects (days).	

Shift in meltout (days) 
Subregion SDE BC SDE ARI BC ARI BC+dust 

SDE+ARI 
Greater 
Idaho 

-4.25 -3 -0.5 0 -2 

Northern 
Rockies 

-4 -4 +3 +3 -4 

Utah 
Mountains 

-1.25 -1.25 +2 +3 -1 

Southern 
Rockies 

-4.5 -5 +1 0 -4.5 
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Figures 1125 

 
Figure 1. WRF-Chem domain with analysis subregions (white transparent boxes). 
The colorfill represents the surface elevation (m), and the thin black line denotes the 
low-pass filtered 2,200-m isopleth. The thick black line bounds our analysis region. 
Black circles represent the 424 analysis SNOTEL sites, while the yellow inverted 1130 
triangles represent the 29 analysis IMPROVE sites. 
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 1135 
Figure 2. Time series of CNT, NOCHEM, and SNOTEL daily (a) 𝑻𝒂𝒗, (b) 
precipitation rate, and (c) SWE. The gray colorfill in (a) spans the range of 
SNOTEL-observed 𝑻𝒎𝒊𝒏 and 𝑻𝒎𝒂𝒙. The yellow star denotes the launch point of all 
CHEM simulations (1 February 2009 at 00:00 UTC), and the soft yellow shading 
highlights our period of interest (1 February 2009 through 1 August 2009). 1140 

a.

b.

c.
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Figure 3. 𝑻𝒂𝒗 (top row), 𝑻𝒎𝒊𝒏 (middle row), and 𝑻𝒎𝒂𝒙 (bottom row) averaged from 
February through July. CNT results are shown in column 1, PRISM results in 
column 2, and CNT – PRISM (bias) results are shown in column 3. The black box 
denotes the region of the domain in which biases and other statistics are computed. 1145 
Mean bias, r-value, and 𝒓𝒁𝑩-value are given for each variable. 

 
 
 
 1150 
 
 
 

2-meter	temperature	[oC]	
Bias	=		+	0.69oC					r	=	+	0.94					rZB	=	-	0.75	

Bias	=	+	2.00oC						r	=	+	0.85					rZB	=	-	0.70	

Bias	=	-	0.12oC					r	=	+	0.96					rZB	=	-	0.68	
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Figure 4. As in Figure 3, but precipitation rate is compared to PRISM (top row), 1155 
SWE is compared to UA (middle row), and SCF is compared to MODIS (bottom 
row).  

 
 
 1160 
 
 

Precipitation	rate	[mm	d-1],	SWE	[mm],	and	SCF	[1-100]	
Bias	=		+	0.59	mm	d-1					r	=	+	0.78					rZB	=	+	0.37	

Bias	=		+	3.67	mm					r	=	+	0.90					rZB	=	+	0.20	

Bias	=			+0.03				r	=	+	0.82					rZB	=	+	0.38	
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Figure 5. Time series of BC (a) and dust (b) from CNT and IMPROVE. Red 
transparent circles denote individual IMPROVE measurements. The lower panel (c) 1165 
shows the same data as in the top and middle panels, except the data are temporally 
averaged from February through July instead of spatially averaged.	

BC	and	dust	surface	concentrations	

a.	

b.	

c.	
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Figure 6. Top layer in-snow burdens for (left) BC and (right) dust normalized by 
their respective means (unitless). Means are computed for gridcells that have SWE 1170 
values greater than 2 mm in the March through June average. 

 
 

Mass-normalized burden within the top snow layer from 
SNICAR

Mean: 17.8 ug m-2 Mean: 7.6 mg m-2
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Figure 7. Surface in-snow (top) and top-of-the-atmosphere (TOA) clear-sky 1175 
(bottom) radiative effect for (left) BC and (right) dust averaged from March 
through June (W m-2). The in-snow radiative effect panels (a and b) make use of the 
18 UTC output files only, while the TOA radiative effect panels (c and d) make use 
of the 00, 06, 12, and 18 UTC output files. 

 1180 
 
 
 
 
 1185 
 

BC (left) and dust (right) radiative effect [W m-2]

Clear-sky, TOA
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c. d.
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Figure 8. March through June averaged SDE-induced anomalies in (top row) 2-m 
temperature, (second row) SWE, (third row) albedo, and (bottom) snow grain 
effective radius in the top snow level for (first column) BC+dust, (second column) 1190 
BC, and (third column) dust. The thin black contours denote the 2,200 m elevation 
contour. 
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Figure 9. Presented by region are low-pass filtered time series of perturbations in (a) 
2-m temperature, (b) SWE, (c) precipitation, and (d) runoff incited by LAP SDE. 1195 
Solid lines show perturbations due to total (BC+dust) SDEs, while crosses (hollow 
circles) show perturbations due to BC (dust) only. 

SDE-induced perturbations by LAP
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Figure 10. Same as in Figure 8, but for (top row) 2-m temperature, (middle row) 1200 
SWE, and (bottom row) surface radiative effect (RE) due to (g) BC+dust, (h) BC 
only, and (i) dust only. RE values are computed diagnostically following Ghan et al. 
(2012). 

 
 1205 
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Figure 11. Same as in Figure 9, but for ARI-induced perturbations. Additionally, 
panels (c) and (d) show ARI-induced perturbations in runoff and the surface energy 1215 
budget. Crosses in panel (c) show BC-induced perturbations to the surface energy 
budget, while hollow circles show dust-induced perturbations. 
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Figure 12. Total (SDE+ARI) region-specific perturbations to (a) 2-m temperature, 
(b) SWE, and (c) runoff induced by LAP. 1220 
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Figure 13. DTF=2 – CNT March-through-June averaged (a) ISRE, (b) surface RE, 
(c) SWE, and (d) 2-m temperature. Panel (e) shows low-pass filtered time series of 
dust SDE from CNT (solid lines), dust ARI from CNT (crosses), and perturbations 1225 
to SWE brought forth by increasing the DTF to 2 (DTF=2 – CNT; hollow circles). 
Colors indicate the subregions, as in previous figures – Black (Greater Idaho), Red 
(Northern Rockies), (Blue) Utah Mountains, and (Gray) Southern Rockies. 
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