1	Supplementary Information for
2	Formation mechanisms of atmospheric nitrate and sulfate during the
3	winter haze pollution periods in Beijing: gas-phase, heterogeneous
4	and aqueous-phase chemistry
5	Pengfei Liu, Can Ye, Chaoyang Xue, Chenglong Zhang, Yujing Mu [*] , Xu Sun
6	
7	This PDF file includes:
8	• M1. Sample analysis for WSIs, OC and EC.
9	• M2. Measurements for atmospheric H ₂ O ₂ and HONO.
10	• M3. The Mass transport for multiphase reactions.
11	• Figure S1. The location of the sampling site.
12	• Figure S2. Time series of meteorological parameters (wind speed, wind direction, ambient
13	temperature and RH), O ₃ and PM _{2.5} during the sampling period.
14	• Figure S3. The correlations between the concentrations of $PM_{2.5}$ and CO in the three cases
15	during the sampling period.
16	• Figure S4. The average mass proportions of the species in $PM_{2.5}$ in the three cases during the
17	sampling period.
18	
19	
20	
21	
22	

23 Supplementary Information:

24 M1. Sample analysis for WSIs, OC and EC

25	As for the filter samples, half of each filter was extracted ultrasonically with 10 mL ultrapure
26	water for 30 minutes. The supernatants were filtered by a type of microporous membrane (diameter,
27	13mm; pore size, 0.45 μ m) and the WSIs in the filtrates were analyzed by an ion chromatography
28	(Wayeal IC6200, China). Five cations (Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ and NH ₄ ⁺) were separated through a
29	cation column (TSKgelSuperIC-CR, 4.6 mm ID \times 15 cm) with the solvent (2.2 mmol L ⁻¹ methane
30	sulfonic acid and 1 mmol L ⁻¹ 18-crown-6) flow rate of 0.7 mL min ⁻¹ and column temperature of 40
31	°C. Four anions (Cl ⁻ , NO ₃ ⁻ , SO ₄ ²⁻ and NO ₂ ⁻) were separated via an anion column (IC SI-52 4E, 4.0
32	mm ID \times 25 cm) with the solvent (3.6 mmol L ⁻¹ sodium carbonate) flow rate of 0.8 mL min ⁻¹ and
33	column temperature of 45 °C. The relative standard deviation (RSD) of each ion was not more than
34	0.5 % for the reproducibility test. The detection limits (S/N=3) were less than 1 μ g L ⁻¹ for the cations
35	and anions. At least three filter blanks were simultaneously analyzed for every 60 filter samples,
36	and the mean blank values were about 30 μg L^-1 for Na^+, Ca^{2+}, NO_2^-, NO_3^- and SO_4^{2-}, 20 μg L^-1 for
37	NH_4^+ and Cl^- , 10 µg L^{-1} for Mg^{2+} and K^+ . All ion concentrations were corrected for the blanks.
38	A quarter of each filter was heated with temperature programming to 140 °C, 280 °C, 480 °C
39	and 580 °C in the helium atmosphere for analyzing OC1, OC2, OC3 and OC4, respectively, and then
40	to 580 °C, 780 °C and 840 °C in the atmosphere of 98 % helium and 2 % oxygen for analyzing EC1,
41	EC2 and EC3, respectively, by using a thermal optical carbon analyzer (DRI-2001A). The pyrolyzed
42	OC (POC) is defined as the carbon fraction that has combusted after the initial introduction of
43	oxygen and before the laser reflectance signal returns its original value, and it is assigned to the OC
44	fraction (Ma et al., 2016;Zhang et al., 2013). Then, $OC = OC1 + OC2 + OC3 + OC4 + POC$ and EC

= EC1 + EC2 + EC3 - POC. The method calibration was performed with a concentration gradient 45 46 of KHP standards ($R^2 = 0.9997$, N=5). A replicate sample was detected for every 10 filter samples, 47 and the RSD of OC and EC was less than 5 %. The detection limits were 0.82 μ gC cm⁻² and 0.20 µgC cm⁻² for OC and EC, respectively. 48

49

M2. Measurements for atmospheric H₂O₂ and HONO

50 Atmospheric H₂O₂ was measured by a wet liquid chemistry fluorescence detector (AL 2021; 51 AERO laser, Germany). When atmospheric H_2O_2 is stripped by a faintly acid solution (pH = 5.8-52 6.0), organic peroxides are simultaneously detected by the catalysis of the horseradish peroxidase 53 and then the reaction with p-hydroxyphenyl-acetic acid. In order to divide between H₂O₂ and organic 54 peroxides, two channels are designed and H_2O_2 is selectively destroyed by catalase prior to the detection of fluorescence in one channel. Thus, the difference of the signal between the two channels 55 56 can represent the H₂O₂ concentration. The calibrations were performed with liquid H₂O₂ standards $(33.3 \,\mu\text{g L}^{-1})$ for both channels in every 1-3 days. There is an uncertainty of 10 %, a calibration RSD 57 58 of 0.25 %, a detection limit of less than 50 ppt and a noise of less than 2 % at full scale for the H_2O_2 59 monitor. Although some organic peroxides such as HOCH₂OOH and CH₃C(O)OOH have been 60 found to decompose into H_2O_2 in the collection solution at pH > 5 (O'Sullivan, 1996), their 61 decomposition to H₂O₂ during the short period of the sampling progress could be neglected due to 62 their relatively slow hydrolysis rate (1-2 days) (O'Sullivan, 1996) and extremely low atmospheric 63 concentrations (He et al., 2010).

64 Atmospheric HONO was measured by a wet chemical method that is named after stripping coil 65 (SC) equipped with ion chromatograph (IC) and was described in detail by our previous studies (Xue et al., 2019a;Xue et al., 2019b). Briefly, hourly HONO samples were absorbed by ultrapure 66

water in the SC with the gas flow rate of 2 L min⁻¹ and the absorption solution flow rate of 0.2 mL min⁻¹. After sampling, the liquid samples were stored in a refrigerator around 4 °C and then analyzed by IC in three or four days. The flow calibrations including the gas and liquid were performed once a day, and the collection efficiency was more than 90 % and the correlations between the SC-IC and other techniques were close to 0.9 (slope = $0.94 \sim 1.06$) (Xue et al., 2019a).

72 M3. The Mass transport for multiphase reactions

The formula of a standard resistance model was adopted for evaluating the effects of mass
transport (Seinfeld and Pandis, 2006):

75
$$\frac{1}{R_{S,aq}} = \frac{1}{R_{aq}} + \frac{1}{L_{aq,lim}}$$
(S-R1)

where $R_{S, aq}$ is the sulfate production rate, R_{aq} is the aqueous-phase reaction rate of oxidants which could be calculated by the equations of R1-R4, and $L_{aq, lim}$ is the limiting mass transfer rate

78 (M s⁻¹) which could be calculated by the formulas as follows (Seinfeld and Pandis, 2006):

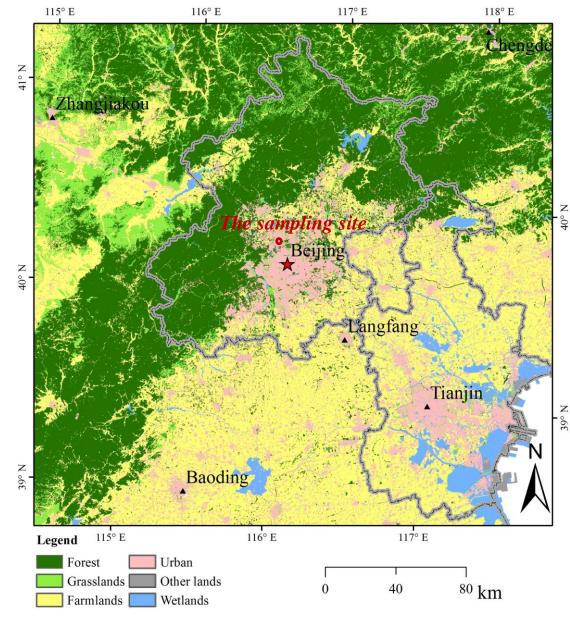
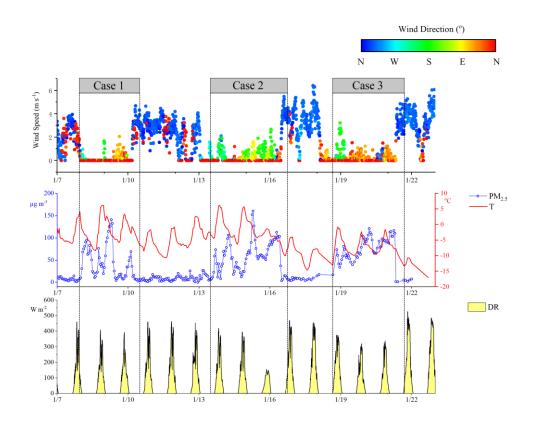
79
$$L_{aq,lim} = min\{L_{aq}(SO_2), L_{aq}(O_{xi})\}$$
 (S-R2)

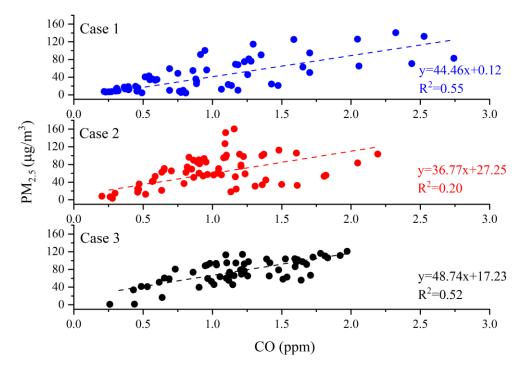
80
$$L_{aq}(X) = k_{MT}(X) \cdot [X]$$
(S-R3)

81 where [X] represents the aqueous-phase concentrations of SO₂ or the oxidants O_{xi} such as O₃,
82 H₂O₂ and NO₂, which could be calculated based on Henry's law (R5-R7). The mass transfer rate

83 coefficient $k_{MT}(X)$ (s⁻¹) is expressed by the equations as follows (Seinfeld and Pandis, 2006):

84
$$k_{MT}(X) = \left[\frac{R^2}{3D} + \frac{4R}{3\alpha v}\right]^{-1}$$
(S-R4)



85 where *R* is the aerosol radius (0.15 μ m), *D* is the gas-phase molecular diffusion coefficient (0.2 86 cm² s⁻¹ at 293 K), *v* is the average molecular speed (3 × 10⁴ cm s⁻¹), and α is the mass accommodation 87 coefficient (0.11, 0.23, 2 × 10⁻³ and 2× 10⁻⁴ for SO₂, H₂O₂, O₃ and NO₂, respectively) on the droplet 88 surface (Jacob, 2000;Seinfeld and Pandis, 2006).


Figure S1. The location of the sampling site.

94

Figure S2. Time series of meteorological parameters (wind speed, wind direction, ambient temperature and DR) and PM_{2.5} during the sampling period.

95

Figure S3. The correlations between the concentrations of PM_{2.5} and CO in the three cases during
 the sampling period.

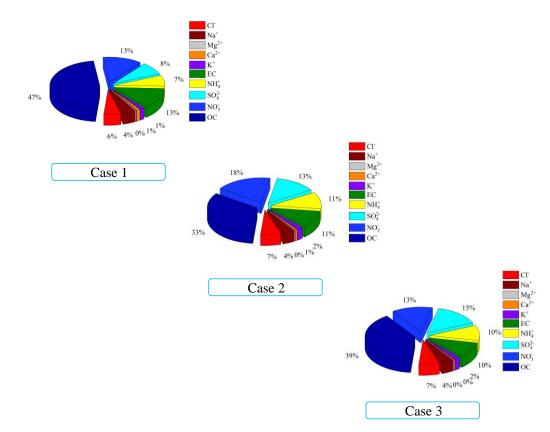


Figure S4. The average mass proportions of the species in PM_{2.5} in the three cases during the
 sampling period.

101

98

102 References

- 103 He, S. Z., Chen, Z. M., Zhang, X., Zhao, Y., Huang, D. M., Zhao, J. N., Zhu, T., Hu, M., and Zeng,
- 104 L. M.: Measurement of atmospheric hydrogen peroxide and organic peroxides in Beijing before and
- 105 during the 2008 Olympic Games: Chemical and physical factors influencing their concentrations,
- 106 Journal of Geophysical Research, 115, 10.1029/2009jd013544, 2010.
- Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmospheric Environment, 34,2131-2159, 2000.
- 109 Ma, X., Wu, J., Zhang, Y., Bi, X., Sun, Y., and Feng, Y.: Size-Classified Variations in Carbonaceous
- 110 Aerosols from Real Coal-Fired Boilers, Energy & Fuels, 30, 39-46,
 111 10.1021/acs.energyfuels.5b01770, 2016.
- 112 O'Sullivan, D. W. J. J. o. P. C.: Henry's Law Constant Determinations for Hydrogen Peroxide,
- 113 Methyl Hydroperoxide, Hydroxymethyl Hydroperoxide, Ethyl Hydroperoxide, and Peroxyacetic
- 114 Acid, 100, 3241-3247, 1996.
- 115 Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics, from Air Pollution to Climate
- 116 Change, Wiley, 429-443 pp., 2006.
- 117 Xue, C., Ye, C., Ma, Z., Liu, P., Zhang, Y., Zhang, C., Tang, K., Zhang, W., Zhao, X., Wang, Y.,
- 118 Song, M., Liu, J., Duan, J., Qin, M., Tong, S., Ge, M., and Mu, Y.: Development of stripping coil-
- 119 ion chromatograph method and intercomparison with CEAS and LOPAP to measure atmospheric
- 120 HONO, The Science of the total environment, 646, 187-195, 10.1016/j.scitotenv.2018.07.244,
- 121 2019a.

- 122 Xue, C., Ye, C., Zhang, Y., Ma, Z., Liu, P., Zhang, C., Zhao, X., Liu, J., and Mu, Y.: Development
- 123 and application of a twin open-top chambers method to measure soil HONO emission in the North
- 124 China Plain, Sci. Total Environ., 659, 621-631, 10.1016/j.scitotenv.2018.12.245, 2019b.
- 125 Zhang, R., Jing, J., Tao, J., Hsu, S. C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z., Zhao, Y.,
- 126 and Shen, Z.: Chemical characterization and source apportionment of PM_{2.5} in Beijing: seasonal
- 127 perspective, Atmospheric Chemistry and Physics, 13, 7053-7074, 10.5194/acp-13-7053-2013, 2013.