1	A point-by-point response to the reviews
2	We are very thankful to two reviewers for your valuable comments and thoughtful suggestions. The
3	followings are our responses to your comments. The comments of the reviewers are shown in black,
4	our responses to the comments are presented in blue, and the new or modified texts are provided in
5	blue in <i>italics</i> .
6	
7	Response to Reviewer #1
8	Comment 1: This study investigates the pollution characteristics and formation mechanisms of
9	sulfate and nitrate during the winter haze pollution periods in Beijing in 2016 based on the field
10	observations, which is helpful for us to understand the winter haze formation in China and better
11	control it. However, some discussions are confusing. This paper cannot be accepted before the
12	authors have addressed the following comments.
13	
14	Answer: Thank you for your pertinent evaluation of our work. The followings are our responses to
15	your comments.
16	
17	Comment 2: Line 257-258: The variation of NO ₂ should be given in Figure 1, because the
18	discussion in this study is based on NO2, not NOx. Are the concentrations of SO2 a factor of 5 lower
19	than the concentrations of NO ₂ ? Based on Table 1, it's not true.
20	
21	Answer: The time series of NO_x have been replaced with the variations of NO_2 in the revised Figure
22	1 (Figure R1). On the basis of Figure R1 and Table 1, the concentrations of SO_2 were about a factor
23	of 5-6 lower than those of NO _x , but were approximately a factor of 3 lower than those of NO ₂ . This

24 sentence has been changed in the revised manuscript as following:

- Figure R1. Time series of the species in PM_{2.5} and typical gaseous pollutants (NO₂, SO₂, O₃,
 HONO and H₂O₂) as well as atmospheric RH during the sampling period.
- 28

29 "Although the concentrations of SO₂ were obviously lower than the concentrations of NO₂ in both
30 Case 2 and Case 3 (Figure 1 and Table 1), ..."

31

Comment 3: Line 262: NOR is commonly defined as "NOR = NO_3^{-7} ($NO_3^{-}+NO_2$)" in the previous studies. Why is "NOR = NO_3^{-7} ($NO_3^{-}+NO_x$)" used in this study? We know that NO_x is usually much higher than NO_2 , especially at night. Are the discussion and results different if you use "NOR = NO_3^{-7} ($NO_3^{-}+NO_2$)" in this study? If you use "NOR = NO_3^{-7} ($NO_3^{-}+NO_2$)", why do you use " $NO_2 \times$ O_3 ", "Dust × NO_2 " and "HONO × DR × NO_2 " in the following discussion, rather than " $NO_x \times O_3$ ", "Dust × NO_x " and "HONO × DR × NO_x "?

38

39 Answer: We are very sorry for our incorrect writing of the NOR formula. In fact, "NOR = NO_3 -/ $(NO_3^{-}+NO_2)$ " rather than "NOR = $NO_3^{-}/(NO_3^{-}+NO_x)$ " was used in this study. As NO concentration 40 usually accounted for relatively high fraction to that of NO_x in winter of Beijing city, especially 41 42 during the morning and evening rushing hours, NOR calculated based on NO₂ was obviously higher 43 than that based on NO_x (Figure R2). Because atmospheric nitrate is formed through the oxidation 44 of NO₂ via gas-phase, heterogeneous and aqueous-phase reactions, "NOR = NO_3^{-7} ($NO_3^{-1}+NO_2$)" 45 might reflect nitrogen oxidation ratio more accurately than "NOR = NO_3^{-1} ($NO_3^{-1}+NO_x$)". The 46 mistake has been corrected in the revised manuscript as following:

47

48 Figure R2. The comparison of the time series of NOR calculated based on NO₂ and NO_x during
 49 the sampling period.

51 "To further investigate the pollution characteristics of nitrate and sulfate during the serious 52 pollution episodes, the relations between NOR (NOR = $NO_3^-/(NO_3^-+NO_2)$) as well as SOR (SOR 53 = $SO_4^{2-}/(SO_4^{2-}+SO_2)$) and RH are shown in Figure 2."

54

55 Comment 4: Line 270-271: Why is the reduction of NOR due to the deliquescence of nitrate? Based 56 on the reference you list, the deliquescence can change aerosol particle size distribution, but not 57 decrease the nitrate concentration.

58

Answer: According to the Comment 4 from the Reviewer #2, the reduction of NOR might be ascribed to the suppressed heterogeneous reactions of NO₂ to nitrate formation under high RH condition (Tang et al., 2017). The heterogeneous reactions of NO₂ on particle surface have been found to be dependent on atmospheric RH due to the competition of water for surface reactive sites of particles (Ponczek et al., 2019), and thus relatively fast nitrate formation usually occurs when RH is below a certain value. This sentence has been rephrased in the revised manuscript as following:

65

66 "the variation trend of NOR slowly decreased whereas the variation trend of SOR significantly 67 increased when atmospheric RH was above 60 %, which was very similar with the previous studies 68 (Sun et al., 2013; Zheng et al., 2015b). Considering that the heterogeneous reactions of NO_2 on 69 particle surface were dependent on atmospheric RH due to the competition of water for surface 70 reactive sites of particles (Ponczek et al., 2019), the slow reduction of NOR might be due to the 71 suppressed heterogeneous reaction of NO₂ to nitrate formation under high RH condition (Tang et 72 al., 2017), while the elevation of SOR revealed the dominant contribution of the aqueous-phase 73 reaction to sulfate formation."

74

Comment 5: Section 3.3.1: The discussion about the nitrate formation is not convincing and moreanalysis is needed.

(1) Line 295-299: Is the correlation analysis in Figure 3b proper to investigate the contribution of heterogeneous hydrolysis of N_2O_5 ? Why does a negative correlation exist between NOR and NO_2 $\times O_3$ under the RH<60 % condition? It means that the heterogeneous hydrolysis of N_2O_5 is not important under the RH<60 % condition? If the authors use a similar figure with Figure 3b to analyze the correlation between NOR with Dust $\times NO_2$ and HONO $\times DR \times NO_2$, what are the conclusion?

83

84 Answer: Considering that one molecule of N_2O_5 could be generated by two molecule of NO_2 85 reacting with one molecule of O₃, perhaps it's more proper to use the correlation between NOR and 86 $[NO_2]^2 \times [O_3]$ rather than $[NO_2] \times [O_3]$ for representing the contribution of the heterogeneous 87 hydrolysis of N_2O_5 to atmospheric nitrate at night (the Comment 5 from the Reviewer #2). The 88 correlations between NOR and $[NO_2]^2 \times [O_3]$ at the nighttime (redefined as 18:00-7:00) under 89 different RH conditions are shown in Figure R3. It's evident that the variations of $[NO_2]^2 \times [O_3]$ 90 were all positively correlated with NOR under the three different RH conditions, and their 91 correlation under the RH \ge 60% condition (R² = 0.552) was significantly stronger than those under the RH < 60% condition ($R^2 \le 0.181$). It has been acknowledged that the correlation between two 92 93 species means the impact of changes in one species on another. The stronger the correlation is, the 94 greater the impact is. Therefore, the positive correlations between NOR and $[NO_2]^2 \times [O_3]$ indicated

95 that the heterogeneous hydrolysis of N_2O_5 could contribute to the formation of atmospheric nitrate at the nighttime under different RH conditions. The significantly stronger correlations between NOR 96 97 and $[NO_2]^2 \times [O_3]$ under the RH $\ge 60\%$ condition than under the RH < 60% condition revealed that 98 the heterogeneous hydrolysis of N_2O_5 made a remarkable contribution to atmospheric nitrate at the 99 nighttime under high RH condition. Additionally, the obviously lower slope of the correlation 100 between NOR and $[NO_2]^2 \times [O_3]$ under the RH $\ge 60\%$ condition (slope = 11691) than under the RH < 60% condition (slope ≥ 17399) also suggested that the formation of atmospheric nitrate at the 101 102 nighttime under high RH condition was more sensitive to the pathway of N₂O₅. These sentences have been modified in the revised manuscript as stated above. 103

104 It should be noted that the correlations between NOR and $[NO_2]^2 \times [O_3]$ under the three different RH conditions were analyzed for verifying under which RH condition the heterogeneous 105 106 hydrolysis of N_2O_5 made a remarkable contribution to atmospheric nitrate at the nighttime, while 107 the daily variations of $[Dust] \times [NO_2]$ and $[HONO] \times [DR] \times [NO_2]$ under the 30% < RH < 60% condition were compared for exploring which reaction could play an important role in atmospheric 108 109 nitrate at the daytime under moderate RH condition. Therefore, it may be lack of the purpose to analyze the correlations between NOR and $[Dust] \times [NO_2]$ as well as $[HONO] \times [DR] \times [NO_2]$ by 110 111 using the similar method of Figure R3.

- nighttime (18:00~7:00) 15000 $-R^2 = 0.181$ $RH \le 30\%$ 0 $-R^2 = 0.049$ 30% < RH < 60% — 12000 $R^2 = 0.552$ $RH \ge 60\%$ θ 0 O₃×NO₂×NO₂ (ppb³) С 9000 o Slope:49205 00 Φ 6000 Slope:17399 Slope:11691 ⊖**€**0 3000 0 0 0.1 0.2 0.3 0.0 NOR
- 112

113Figure R3. The correlations between NOR and $[NO_2]^2 \times [O_3]$ at the nighttime under different RH114conditions.115

- (2) Figure 3a: Why does NOR decrease obviously during 0:00-4:00 under the RH>60 % condition?
- 118 Answer: As mentioned above, the heterogeneous hydrolysis of N_2O_5 was found to make a 119 remarkable contribution to atmospheric nitrate at the nighttime under the RH \ge 60% condition due

- 120 to the strong correlation between NOR and $[NO_2]^2 \times [O_3]$. Thus, the obvious reduction of the NOR
- values during 0:00-3:00 under the RH \ge 60% condition was mainly ascribed to the decrease in the concentration levels of $[NO_2]^2 \times [O_3]$ (Figure R4).

143 condition. Furthermore, because the NOR values under the $RH \le 30\%$ condition were almost less

144 than 0.1 (Figure 2 in the revised manuscript) which reflected no occurrence of secondary formation 145 of nitrate (Gao et al., 2011; Zhang et al., 2018), it might be not necessary to discuss the formation of nitrate under the $RH \leq 30\%$ condition. 146 147 148 Comment 6: Section 3.3.2: 149 (1) Line 325-328: Why is the heterogeneous reaction of SO_2 on the surface of mineral aerosols not 150 important before 14:00? 151 Answer: Atmospheric sulfate has been reported to come mainly from primary source emissions 152 when the SOR is less than 0.1 (Gao et al., 2011; Zhang et al., 2018). Considering that the mean 153 154 values of SOR before 14:00 both under the 30% < RH < 60% and $RH \le 30\%$ conditions were almost 155 close to 0.1, secondary formation of SO₂ including the gas-phase reaction and heterogeneous 156 reaction could be ignored before 14:00. To avoid possible confusing understanding for readers, this sentence has been rephrased in the revised manuscript as following: 157 158 159 "As shown in Figure 4, similar to the daily variations of NOR, the mean values of SOR were found 160 to elevated remarkably under the 30% < RH < 60% condition compared to the RH < 30% condition, 161 especially during 14:00-22:00, which might be mainly ascribed to the enhanced gas-phase reaction and the heterogeneous reaction of SO₂ involving aerosol liquid water under the relatively high RH 162 163 condition." 164 (2) Figure 4: Why does SOR decrease obviously during 0:00-4:00 under the RH>60 % condition? 165 166 167 Answer: Because the oxidation of SO_2 through the aqueous-phase reaction of H_2O_2 was found to contribute mainly to sulfate formation under the high RH condition, the depletion of the oxidant and 168 the precursor ([SO₂] × [H₂O₂]) during 0:00-3:00 was suspected to result in the obvious decrease of 169 170 SOR under the RH \geq 60% condition (Figure R4). 171 172 (3) Figure 4: Under 30 %<RH<60 %, why is the SOR during 13:00-23:00 much higher than that in 173 other hours? We know that RH is commonly high at night, for example during 0:00-5:00. 174 175 Answer: Yes. atmospheric RH is indeed a key factor for influencing sulfate formation and 176 commonly high at night. Except for atmospheric RH, the concentrations of the precursors such as 177 SO₂ could also play a vital role in the formation of sulfate, and then affected SOR value. Therefore, 178 the much higher mean values of SOR during 13:00-23:00 than those in other hours might be mainly 179 attributed to the relatively high concentrations of SO₂ during 13:00-23:00 under 30 %<RH<60 % 180 condition (Figure R5).

182 Figure R5. The daily variation of SO₂ under the 30% < RH <60% condition during the sampling period

183

184

185 **Response to Reviewer #2**

186 Comment 1: This study focused on the formation mechanisms of nitrate and sulfate in Beijing, 187 especially the different mechanisms under various RH conditions. The heterogeneous hydrolysis of 188 N_2O_5 was responsible for the nocturnal formation of nitrate at extremely high RH levels (RH>60 %), 189 while homogeneous reaction between NO2 and OH radical dominated the formation under moderate condition (30 %<RH<60 %). For SO₄²⁻, aqueous reaction between SO₂ and H₂O₂ attributed to its 190 191 formation under high RH condition. The target of this study is meaningful to understanding the 192 formation mechanism of nitrate and sulfate in real atmosphere. There are several questions not very 193 clear.

194

197

199

195 Answer: Thank you for your valuable evaluation of our work. The followings are our responses to 196 your comments.

- 198 Comment 2: Please give a brief description of NOR and SOR in abstract.
- Answer: the NOR and SOR formulas have been added in the revised abstract. 200
- 201

202 **Comment 3:** Did NOR and SOR represent the secondary formation of NO_3^- and SO_4^{2-} , respectively? Actually, when NO_x and SO₂ reached zero, the value of NOR and SOR were closed to the maximum. 203 If NOR and SOR represent the secondary formation of NO3⁻ and SO4²⁻, secondary formation of NO3⁻ 204

and SO_4^{2-} showed up with low concentration of NO_x and SO_2 . This result is confusing.

206

Answer: NOR (NOR = NO_3^{-7} (NO_3^{-1} + NO_2)) and SOR (SOR = SO_4^{2-7} (SO_4^{2-7} + SO_2)) didn't represent 207 208 the secondary formation of NO_3^- and SO_4^{2-} , but could reflect their formation potentials to a certain 209 degree due to the ratios counteracted the air diffusion effect on their concentrations, and thus NOR 210 and SOR have been widely used to estimate the secondary formation of NO_3^- and SO_4^{2-} , respectively 211 (Zheng et al., 2015). Yes, the NOR and SOR would be close to the maximal values if NO₂ and SO₂ 212 reached zero. Actually, NO_2 and SO_2 are ubiquitous trace gases in the atmosphere, it is impossible 213 that their concentrations reached zero. The values of NOR and SOR mainly depend on the 214 conversion efficiencies of NO₂ and SO₂ to nitrate and sulfate through various atmospheric chemical 215 reactions, rather than the concentrations of NO_2 and SO_2 , because the concentrations of NO_2 , SO_2 , 216 nitrate and sulfate usually have the similar variation trends which are mainly governed by 217 meteorological conditions and boundary layer heights as well.

218

219 **Comment 4:** The authors mentioned that "The reduction of NOR might be due to the deliquescence 220 of nitrate at atmospheric RH around 60 %" at line 270-271. However, the deliquescence of nitrate 221 would not reduce the nitrate in particle but change its phase state. RH has been validated to affect 222 the heterogeneous reaction of NO_x and HONO, which may result in the reduction of nitrate at high 223 RH condition. 224

Answer: Thank you for your valuable comment. According to your suggestion, this sentence hasbeen rephrased in the revised manuscript as following:

227

228 "the variation trend of NOR slowly decreased whereas the variation trend of SOR significantly 229 increased when atmospheric RH was above 60 %, which was very similar with the previous studies 230 (Sun et al., 2013; Zheng et al., 2015b). Considering that the heterogeneous reactions of NO_2 on 231 particle surface were dependent on atmospheric RH due to the competition of water for surface 232 reactive sites of particles (Ponczek et al., 2019), the slow reduction of NOR might be due to the 233 suppressed heterogeneous reaction of NO₂ to nitrate formation under high RH condition (Tang et 234 al., 2017), while the elevation of SOR revealed the dominant contribution of the aqueous-phase 235 reaction to sulfate formation."

- 237 **Comment 5:** One N₂O₅ could be generated by two NO₂ reacting with one O₃. Hence, is it more 238 suitable to use $[NO_2]^2 \times [O_3]$ rather than $[NO_2] \times [O_3]$ for representing the heterogeneous hydrolysis 239 of N₂O₅ to atmospheric nitrate at night?
- 240

236

Answer: Thank you for your valuable suggestion. Relevant figure (Figure R3) and sentences have
been modified accordingly in the revised manuscript as following:

243

244 "...Therefore, the correlation between $[NO_2]^2 \times [O_3]$ and NOR can represent roughly the 245 contribution of the heterogeneous hydrolysis of N_2O_5 to atmospheric nitrate at night..." 246

247 **Comment 6:** Though HONO is a main source OH, the diurnal variation of HONO may be different 248 from OH radical. Have the author ever analyzed the correlation between $DR \times NO_2$ and NOR? 249 Because the diurnal variation of OH radical should be highly correctly with radiation.

Answer: Because the photolysis of atmospheric HONO has been considered as the dominant OH 251 252 source in polluted areas (Wang et al., 2017), the nitrate formation rate through the gas-phase reaction 253 of NO₂ with OH radicals could be reflected by the product of $[HONO] \times [DR] \times [NO_2]$. The evident 254 difference for the diurnal variations between the products of [HONO] \times [DR] \times [NO₂] and [DR] \times 255 $[NO_2]$ implied that the relatively high HONO concentrations in the morning under the 30% < RH256 60% condition played a significant role in nitrate formation (Figure R6), which was in line with the variations of NOR (Figure 3 in the revised manuscript). Therefore, it may be more proper to use 257 258 $[HONO] \times [DR] \times [NO_2]$ rather than $[DR] \times [NO_2]$ for representing the gas-phase reaction of NO₂ 259 with OH.

260

264

250

Figure R6. The comparison of the daily variations of [HONO] × [DR] × [NO₂] and [DR] × [NO₂]
 under the RH ≤ 30% condition and under the 30% < RH < 60% condition during the sampling
 period.

265 **References**

Gao, X., Yang, L., Cheng, S., Gao, R., Zhou, Y., Xue, L., Shou, Y., Wang, J., Wang, X., Nie, W.,
Xu, P., and Wang, W.: Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan,
China: Temporal variations and source apportionments, Atmospheric Environment, 45, 6048-6056,
10.1016/j.atmosenv.2011.07.041, 2011.

Ponczek, M., Hayeck, N., Emmelin, C., and George, C.: Heterogeneous photochemistry of
dicarboxylic acids on mineral dust, Atmospheric Environment, 212, 262-271,
10.1016/j.atmosenv.2019.05.032, 2019.

273 Tang, M., Huang, X., Lu, K., Ge, M., Li, Y., Cheng, P., Zhu, T., Ding, A., Zhang, Y., Gligorovski,

274 S., Song, W., Ding, X., Bi, X., and Wang, X.: Heterogeneous reactions of mineral dust aerosol:

- 275 implications for tropospheric oxidation capacity, Atmospheric Chemistry and Physics, 17, 11727-
- 276 11777, 10.5194/acp-17-11727-2017, 2017.
- 277 Wang, J., Zhang, X., Guo, J., Wang, Z., and Zhang, M.: Observation of nitrous acid (HONO) in
- 278 Beijing, China: Seasonal variation, nocturnal formation and daytime budget, The Science of the
- total environment, 587-588, 350-359, 10.1016/j.scitotenv.2017.02.159, 2017.
- 280 Zhang, R., Sun, X., Shi, A., Huang, Y., Yan, J., Nie, T., Yan, X., and Li, X.: Secondary inorganic
- aerosols formation during haze episodes at an urban site in Beijing, China, Atmospheric
 Environment, 177, 275-282, 10.1016/j.atmosenv.2017.12.031, 2018.
- 283 Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto,
- 284 T., Chang, D., Pöschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing:
- the impact of synoptic weather, regional transport and heterogeneous reactions, Atmospheric
- 286 Chemistry and Physics, 15, 2969-2983, 10.5194/acp-15-2969-2015, 2015.

A list of all relevant changes made in the manuscript

Based on the valuable comments and suggestions of the two reviewers, the followings are a list ofall relevant changes made in the revised manuscript.

291

292 1. A brief description of NOR and SOR formulas has been added in abstract, and the NOR formula

293 (NOR = NO_3^{-1} ($NO_3^{-}+NO_2$)" rather than "NOR = NO_3^{-1} ($NO_3^{-}+NO_x$)) has been corrected in our 294 revised manuscript.

2. Solid evidences about the contribution of the heterogeneous hydrolysis of N_2O_5 to the nocturnal formation of nitrate under the relatively high RH condition (the correlations and slopes between NOR and $[NO_2]^2 \times [O_3]$) have been added in our revised manuscript.

- 3. The reason (the suppressed heterogeneous of NO₂ rather than the deliquescence of nitrate) about the slow decrease of NOR under the RH \geq 60% condition has been modified in our revised manuscript.
- 4. Figure 1 and Figure 3 have been amended for supporting the results and discussion in themanuscript.
- 5. the writing of the concentrations of species has been normalized by using square brackets in ourrevised manuscript.
- 305 6. Some logical and grammatical mistakes have been corrected in our revised manuscript.
- 306 7. Several references have been inserted to confirm our points in our revised manuscript.
- 307
- 308

310	Formation mechanisms of atmospheric nitrate and sulfate during the
311	winter haze pollution periods in Beijing: gas-phase, heterogeneous
312	and aqueous-phase chemistry
313	Pengfei Liu ^{1, 2, 3, 5} , Can Ye ^{1, 3} , Chaoyang Xue ^{1, 3} , Chenglong Zhang ^{1, 2, 3} , Yujing Mu ^{1, 2, 3, 4} , Xu
314	Sun ^{1, 6}
315316317318	 ¹ Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. ² Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China. ³ University of Chinese Academy of Sciences, Beijing, 100049, China.
 319 320 321 322 323 	 ⁴ National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 100049, China. ⁵ Key Laboratory of Atmospheric Chemistry, China Meteorological Administration, Beijing, 100081, China. ⁶ Beijing Urban Ecosystem Research Station, Beijing, 100085, China. Correspondence: Yujing Mu (vjmu@rcees.ac.cn)
324	Abstract
325	A vast area in China is currently going through severe haze episodes with drastically elevated
326	concentrations of $PM_{2.5}$ in winter. Nitrate and sulfate are main constituents of $PM_{2.5}$ but their
327	formations via NO ₂ and SO ₂ oxidation are still not comprehensively understood, especially under
328	different pollution or atmospheric relative humidity (RH) conditions. To elucidate formation
329	pathways of nitrate and sulfate in different polluted cases, hourly samples of PM _{2.5} were collected
330	continuously in Beijing during the wintertime of 2016. Three serious pollution cases were identified
331	reasonably during the sampling period and the secondary formations of nitrate and sulfate were
332	found to make a dominant contribution to atmospheric $PM_{2.5}$ under the relatively high RH condition.
333	The significant correlation between NOR (NOR = NO ₃ ^{-/} (NO ₃ ⁻ +NO ₂)) and [NO ₂] ² × [O ₃] during the
334	nighttime under the RH $\!\geq\!\!60\%$ condition indicated that the heterogeneous hydrolysis of N_2O_5
335	involving aerosol liquid water was responsible for the nocturnal formation of nitrate at the extremely
336	high RH levels. The more coincident trend of NOR and [HONO] \times [DR] (direct radiation) \times [NO ₂]

337 than $[Dust] \times [NO_2]$ Dust $\times NO_2$ during the daytime under the 30% < RH < 60% condition provided 338 convincing evidence that the gas-phase reaction of NO₂ with OH played a pivotal role in the diurnal 339 formation of nitrate at moderate RH levels. The extremely high mean values of SOR (SOR = SO_4^{2-} 340 $(SO_4^{2-+}SO_2))$ during the whole day under the RH \geq 60% condition could be ascribed to the evident 341 contribution of SO₂ aqueous-phase oxidation to the formation of sulfate during the severe pollution 342 episodes. Based on the parameters measured in this study and the known sulfate production rate 343 calculation method, the oxidation pathway of H_2O_2 rather than NO₂ was found to contribute greatly 344 to the aqueous-phase formation of sulfate.

345 **1. Introduction**

In recent years, severe haze has occurred frequently in Beijing as well as the North China Plain
(NCP) during the wintertime, which has aroused great attention from the public due to its adverse
impact on atmospheric visibility, air quality and human health (Chan and Yao, 2008;Zhang et al.,
2012;Zhang et al., 2015).

350 To mitigate the severe haze pollution situations, a series of regulatory measures for primary 351 pollution sources have been implemented by the Chinese government. For example, coal 352 combustion for heating in winter has gradually been replaced with electricity and natural gas in the 353 NCP, coal-fired power plants have been strictly required to install flue-gas denitration and 354 desulfurization systems (Chen et al., 2014), the stricter control measures such as terminating 355 production in industries and construction as well as the odd and even number rule for vehicles have been performed in megacities during the period of the red alert for haze and so on. These actions 356 357 have made tremendous effects to decline pollution levels of primary pollutants including PM2.5 (fine particulate matter with an aerodynamic diameter less than 2.5 µm) in recent years (Li et al., 2019). 358

359	However, the serious pollution events still occurred in many areas of Beijing-Tianjin-Hebei (BTH)
360	region in December 2016 and January 2017 (Li et al., 2019). It has been acknowledged that the
361	severe haze pollution is mainly ascribed to stagnant meteorological conditions with high
362	atmospheric relative humidity (RH) and low mixed boundary layer height, strong emissions of
363	primary gaseous pollutants and rapid formation of secondary inorganic aerosols (SIAs, the sum of
364	sulfate, nitrate and ammonium), especially sulfate and nitrate (Cheng et al., 2016;Guo et al.,
365	2014;Huang et al., 2014). Some studies suggested that the contribution of SIAs to PM _{2.5} was higher
366	than 50% during the most serious haze days (Quan et al., 2014;Xu et al., 2017;Zheng et al., 2015a).
367	Generally, atmospheric sulfate and nitrate are formed through the oxidations of the precursor
368	gases (SO ₂ and NO ₂) by oxidants (e.g. OH radical, O ₃) via gas-phase, heterogeneous and aqueous-
369	phase reactions (Ravishankara, 1997; Wang et al., 2013; Yang et al., 2015). It should be noted that
370	the recent study proposed the remarkable emissions of primary sulfate from residential coal
371	combustion with the sulfur contents of coal in range of 0.81-1.88% in Xi'an (Dai et al., 2019), but
372	the primary emissions of sulfate could be neglected due to the extremely low sulfur content of coal
373	(0.26-0.34%) used prevailingly in the NCP (Du et al., 2016;Li et al., 2016). Atmospheric RH is a
374	key factor that facilitates the SIAs formation and aggravates the haze pollution (Wu et al., 2019),
375	and hence the secondary formations of sulfate and nitrate are simply considered to be mainly via
376	gas-phase reaction at relatively low atmospheric RH levels (RH<30%) and heterogeneous reactions
377	and aqueous-phase reactions at relatively high atmospheric RH levels (RH>60%) (Li et al., 2017).
378	However, their formation mechanisms at different atmospheric RH levels still remain controversial
379	and unclear (Cheng et al., 2016;Ge et al., 2017;Guo et al., 2017;Li et al., 2018;Liu et al., 2017a;Wang
380	et al., 2016; Yang et al., 2017). For example, the recent studies proposed that atmospheric SO_2

381	oxidation by NO ₂ dissolved in aqueous aerosol phases under the extremely high atmospheric RH
382	conditions played a dominant role in sulfate formation under almost neutral aerosol solutions (a pH
383	range of 5.4-7.0) during the serious pollution periods (Cheng et al., 2016; Wang et al., 2018a; Wang
384	et al., 2016). However, Liu et al. (2017a) and Guo et al. (2017) found that the aerosol pH estimated
385	by ISORROPIA-II model was moderately acidic (a pH range of 3.0-4.9) and thus the pathway of
386	SO ₂ aqueous-phase oxidation by dissolved NO ₂ was unimportant during severe haze events in China.
387	Additionally, although the pathway of N_2O_5 heterogeneous hydrolysis has been recognized as being
388	responsible for the nocturnal formation of NO_3^- under relatively high atmospheric RH conditions
389	(Tham et al., 2018; Wang et al., 2018b; Wang et al., 2018c), the effects of NO ₂ gas-phase chemistry
390	and NO_2 heterogeneous chemistry on the diurnal formation of NO_3^- under moderate atmospheric
391	RH conditions (30% <rh<60%) been="" have="" measurements="" not="" of="" td="" the<="" therefore,="" understood.="" yet=""></rh<60%)>
392	species in PM _{2.5} in different polluted cases during the wintertime are urgently needed to elucidate
393	formation pathways of sulfate and nitrate.
394	In this study, hourly filter samples of PM _{2.5} were collected continuously in Beijing during the
395	wintertime of 2016, and the pollution characteristics and formation mechanisms of sulfate and

396 nitrate in the PM_{2.5} samples were investigated comprehensively under different atmospheric RH

- 397 conditions in relation to gas-phase, heterogeneous and aqueous-phase chemistry.
- 398 2. Materials and Methods
- 399 **2.1. Sampling and analysis**

400 The sampling site was chosen on the rooftop (around 25 m above the ground) of a six-story
401 building in Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
402 (RCEES, CAS), which was located in the northwest of Beijing and had been described in detail by

403	our previous studies (Liu et al., 2016a;Liu et al., 2017b). The location of the sampling site
404	(40°00'29.85" N, 116°20'29.71" E) is presented in Figure S1. Hourly PM _{2.5} samples were collected
405	on prebaked quartz fiber filters (90mm, Munktell) from January 7th to 23th of 2016 by median-
406	volume samplers (Laoying-2030) with a flow rate of 100 L min ⁻¹ . Water-soluble ions (WSI),
407	including Na ⁺ , NH ₄ ⁺ , Mg ²⁺ , Ca ²⁺ , K ⁺ , Cl ⁻ , NO ₂ ⁻ , NO ₃ ⁻ and SO ₄ ²⁻ , as well as carbon components
408	including organic carbon (OC) and element carbon (EC) in the filter samples were analyzed by ion
409	chromatography (Wayeal IC6200) and thermal optical carbon analyzer (DRI-2001A), respectively
410	(Liu et al., 2017b). Analysis relevant for quality assurance & quality control (QA/QC) was presented
411	in detail in section M1 of the Supplementary Information (SIs). Atmospheric H2O2 and HONO were
412	monitored by AL2021-H ₂ O ₂ monitor (AERO laser, Germany) and a set of double-wall glass
413	stripping coil sampler coupled with ion chromatography (SC-IC), respectively (Ye et al., 2018;Xue
414	et al., 2019a;Xue et al., 2019b). More details about the measurements of H_2O_2 and HONO were
415	ascribed in section M2 of the SIs. Meteorological data, including wind speed, wind direction,
416	ambient temperature and RH, as well as air quality index (AQI) derived by PM _{2.5} , SO ₂ , NO _x , CO
417	and O3 were obtained from Beijing urban ecosystem research station in RCEES, CAS
418	(http://www.bjurban.rcees.cas.cn/).

419 2.2. Aerosol liquid water contents and pH prediction by ISORROPIA-II model

420 The ISORROPIA-II model was employed to calculate the equilibrium composition for Na⁺-421 K⁺-Ca²⁺-Mg²⁺-NH₄⁺-Cl⁻-NO₃⁻-SO₄²⁻-H₂O aerosol system, which is widely used in regional and 422 global atmospheric models and has been successfully applied in numerous studies for predicting the 423 physical state and composition of atmospheric inorganic aerosols (Fountoukis and Nenes, 2007;Guo 424 et al., 2015;Shi et al., 2017). It can be used in two modes: forward mode and reverse mode. Forward

425	mode calculates the equilibrium partitioning given the total concentrations of gas and aerosol
426	species, whereas reverse mode involves predicting the thermodynamic compositions based only on
427	the concentrations of aerosol components. Forward mode was adopted in this study because reverse
428	mode calculations have been verified to be not suitable to characterize aerosol acidity (Guo et al.,
429	2015;Hennigan et al., 2015;Murphy et al., 2017;Pathak et al., 2004;Weber et al., 2016). The
430	ISORROPIA-II model is available in "metastable" or "solid + liquid" state solutions. Considering
431	the relatively high RH during the sampling period, the metastable state solution was selected in this
432	study due to its better performance than the latter (Bougiatioti et al., 2016;Guo et al., 2015;Liu et
433	al., 2017a; Weber et al., 2016). Additionally, although the gaseous HNO ₃ , H ₂ SO ₄ , HCl and NH ₃ were
434	not measured in this study, gas-phase input with the exception of NH ₃ has an insignificant impact
435	on the aerosol liquid water contents (ALWC) and pH calculation due to the lower concentrations of
436	HNO ₃ , H ₂ SO ₄ and HCl than NH ₃ in the atmosphere (Ding et al., 2019;Guo et al., 2017). Based on
437	the long-term measurement in the winter of Beijing, an empirical equation between NO_x and NH_3
438	concentrations was derived from the previous study (Meng et al., 2011), that is, NH_3 (ppb) = 0.34 ×
439	NO_x (ppb) + 0.63, which was employed for estimating the NH_3 concentration in this study. The
440	predicted daily average concentrations of NH3 varied from 3.3 μ g m ⁻³ to 36.9 μ g m ⁻³ , with a mean
441	value of 16.6 μ g m ⁻³ and a median value of 14.6 μ g m ⁻³ , which were in line with those (7.6-38.1 μ g
442	m ⁻³ , 18.2 μ g m ⁻³ and 16.2 μ g m ⁻³ for the daily average concentrations, the mean value and the median
443	value of NH ₃ , respectively) during the winter of 2013 in Beijing in the previous study (Zhao et al.,
444	2016).

445 Then, the aerosol pH could be calculated by the following equation:

$$pH = -log_{10} \frac{1000 \times H^+}{W}$$

448

where H^+ (µg m⁻³) and W (µg m⁻³) are the equilibrium particle hydrogen ion concentration and aerosol water contents, respectively, both of which could be output from ISORROPIA-II.

449 **2.3. Production of sulfate in aqueous-phase reactions**

450 The previous studies showed that there were six pathways of the aqueous-phase oxidation of 451 SO₂ to the production of sulfate, i.e. H₂O₂ oxidation, O₃ oxidation, NO₂ oxidation, transition metal 452 ions (TMI) + O₂ oxidation, methyl hydrogen peroxide (MHP) oxidation and peroxyacetic acid (PAA) 453 oxidation (Cheng et al., 2016;Zheng et al., 2015a). Because some TMIs, such as Ti(III), V(III), 454 Cr(III), Co(II), Ni(II), Cu(II) and Zn(II), displayed much less catalytic activities (Cheng et al., 2016), 455 only Fe(III) and Mn(II) were considered in this study. In addition, due to the extremely low 456 concentrations of MHP and PAA in the atmosphere, their contributions to the production of sulfate 457 could be ignored (Zheng et al., 2015a). To investigate the formation mechanism of sulfate during 458 the serious pollution episodes, the contributions of O₃, H₂O₂, NO₂ and Fe(III) + Mn(II) to the production of sulfate in aqueous-phase reactions were calculated by the formulas as follows (Cheng 459 460 et al., 2016; Ibusuki and Takeuchi, 1987; Seinfeld and Pandis, 2006):

461
$$-\left(\frac{d[S(IV)]}{dt}\right)_{O_3} = \left(k_0[SO_2 \cdot H_2O] + k_1[HSO_3^-] + k_2[SO_3^{2-}]\right)[O_{3(aq)}]$$
(R1)

462
$$-\left(\frac{d[S(IV)]}{dt}\right)_{H_2O_2} = \frac{k_3[H^+][HSO_3^-][H_2O_2(aq)]}{1+K[H^+]}$$
(R2)

463
$$-\left(\frac{d[S(IV)]}{dt}\right)_{Fe(III)+Mn(II)} = k_4[H^+]^a[Mn(II)][Fe(III)][S(IV)]$$
(R3)

464
$$-\left(\frac{d[S(IV)]}{dt}\right)_{NO_2} = k_5[NO_{2(aq)}][S(IV)]$$
(R4)

465 where
$$k_0 = 2.4 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$$
, $k_1 = 3.7 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$, $k_2 = 1.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, $k_3 = 7.45 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$, $K = 1.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$

466 13
$$M^{-1}$$
, $k_4 = 3.72 \times 10^7 M^{-1} s^{-1}$, $a = -0.74 (pH \le 4.2)$ or $k_4 = 2.51 \times 10^{13} M^{-1} s^{-1}$, $a = 0.67 (pH > 4.2)$, and

467 $k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated values were used for pH between } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated values were used for pH between } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated values were used for pH between } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated values } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated } k_5 = (1.24-1.67) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} (5.3 \le pH \le 8.7, \text{ the linear interpolated } k_5 = (1.24-1.67) \times 10^7 \text{ s}^{-1} \text{ s}^{-1} (1.24-1.67) \times 10^7 \text{ s}^$

468 5.3 and 8.7) at 298 K (Clifton et al., 1988); $[O_{3(aq)}]$, $[H_2O_{2(aq)}]$ and $[NO_{2(aq)}]$ could be calculated by

the Henry's constants which are 1.1×10^{-2} M atm⁻¹, 1.0×10^{5} M atm⁻¹ and 1.0×10^{-2} M atm⁻¹ at 298 K for O₃, H₂O₂ and NO₂ respectively (Seinfeld and Pandis, 2006). As for [Fe(III)] and [Mn(II)], their concentrations entirely depended on the values of pH due to the precipitation equilibriums of Fe(OH)₃ and Mn(OH)₂ (Graedel and Weschler, 1981). Considering the aqueous-phase ionization equilibrium of SO₂, the Henry's constants of HSO₃⁻, SO₃²⁻ and S(IV) could be expressed by the equations as follows (Seinfeld and Pandis, 2006):

475
$$H_{HSO_3^-}^* = H_{SO_2} \frac{K_{S_1}}{[H^+]}$$
(R5)

476
$$H_{SO_3^{2-}}^* = H_{SO_2} \frac{K_{S1}K_{S2}}{[H^+]^2}$$
(R6)

477
$$H_{S(IV)}^* = H_{SO_2} \left(1 + \frac{K_{S1}}{[H^+]} + \frac{K_{S1}K_{S2}}{[H^+]^2}\right)$$
(R7)

478 where
$$H_{SO2} = 1.23$$
 M atm⁻¹, $K_{S1} = 1.3 \times 10^{-2}$ M and $K_{S2} = 6.6 \times 10^{-8}$ M at 298 K. In addition, all

479 of rate constants (k), Henry's constants (H) and ionization constants (K) are evidently influenced on
480 the ambient temperature and are calibrated by the formulas as follows (Seinfeld and Pandis, 2006):

481
$$k(T) = k(T_0)e^{\left[-\frac{E}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]}$$
(R8)

482
$$H(T) = H(T_0)e^{\left[-\frac{\Delta H}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]}$$
(R9)

483
$$K(T) = K(T_0)e^{\left[-\frac{E}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]}$$
(R10)

484 where T is the ambient temperature, $T_0=298$ K, both E/R and Δ H/R varied in the different 485 equations and their values could be found in Cheng et al., (2016).

486 Furthermore, mass transport was also considered for multiphase reactions in different medium

- 487 and across the interface in section M3 of the SIs.
- 488 **3. Results and Discussion**

489 **3.1.** Variation characteristics of the species in PM_{2.5} and typical gaseous pollutants

491	SO ₂ , O ₃ , HONO and H ₂ O ₂ as well as atmospheric RH are shown in Figure 1. The meteorological
492	parameters (wind speed, wind direction, ambient temperature and direct radiation (DR)) as well as
493	the concentrations of $PM_{2.5}$ are displayed in Figure S2. During the sampling period, the
494	concentrations of the species in PM _{2.5} and typical gaseous pollutants varied similarly on a timescale
495	of hours with a distinct periodic cycle of 3-4 days, suggesting that meteorological conditions played
496	a vital role in accumulation and dispersion of atmospheric pollutants (Xu et al., 2011;Zheng et al.,
497	2015b). For example, the relatively high levels of $PM_{2.5}$ (>100 µg m ⁻³) usually occurred under the
498	relatively stable meteorological conditions with the low south wind speed ($\leq 2 \text{ m s}^{-1}$) and the high
499	RH (>60%) which favored the accumulation of pollutants. Besides meteorological conditions, the
500	extremely high concentrations of the species in PM _{2.5} might be mainly ascribed to strong emissions
501	of primary pollutants and rapid formation of secondary aerosols during the wintertime in Beijing.
502	The average concentrations of the species in PM _{2.5} and typical gaseous pollutants during clean
503	or slightly polluted (C&SP) episodes (PM _{2.5} $<75 \ \mu g \ m^{-3}$), during polluted or heavy polluted (P&HP)
504	episodes (PM _{2.5} \geq 75 µg m ⁻³) and during the whole sampling period are illustrated in Table 1. It is
505	evident that the average concentrations of NO_3^- , SO_4^{2-} , NH_4^+ , OC and EC during P&HP episodes
506	were about a factor of 5.0, 4.1, 6.1, 3.6 and 3.2 greater than those during C&SP episodes,
507	respectively, indicating that the formations of SIAs were more efficient compared to other species
508	in $PM_{2.5}$ during the serious pollution episodes. Given that the average concentrations of gaseous
509	precursors (NO ₂ and SO ₂) during P&HP episodes were approximately a factor of 2.0-2.2 greater
510	than those during C&SP episodes, the obviously higher elevation of NO_3^- and SO_4^{2-} implied that the
511	oxidations of NO ₂ and SO ₂ by the major atmospheric oxidizing agents (OH radicals, O_3 and H_2O_2
512	etc.) might be greatly accelerated due to the relatively high concentrations of oxidants and

513 atmospheric RH during the serious pollution episodes (Figure 1). The average concentration of H_2O_2 514 was found to be a factor of 1.7 greater during P&HP episodes than during C&SP episodes, indicating that atmospheric H₂O₂ might contribute to the formation of SIAs especially sulfate during the 515 serious pollution episodes with high atmospheric RH, which will be discussed in Sect. 3.3.2. 516 517 However, the obvious decrease in O₃ average concentration was observed during P&HP episodes 518 compared to C&SP episodes, which was mainly attributed to the relatively weak solar radiation and 519 the titration of NO during the serious pollution episodes (Ye et al., 2018). In addition, the evidently 520 higher average concentration of HONO during P&HP episodes than during C&SP episodes might 521 be also due to the relatively weak solar radiation as well as the heterogeneous reaction of NO_2 on 522 particle surfaces during the serious pollution episodes (Tong et al., 2016; Wang et al., 2017).

523 **3.2.** Three serious pollution cases during the sampling period

Based on the transition from the clean to polluted periods, three haze cases were identified during the sampling period (Figure 1 and Figure S2): from 13:00 on January 8th to 1:00 on January 11th (Case 1), from 14:00 on January 14th to 7:00 on January 17th (Case 2), and from 8:00 on January 19th to 2:00 on January 22nd (Case 3). The serious pollution duration in the three cases could last 1-3 days due to the differences of their formation mechanisms.

In Case 1, the variation trends of the concentrations of the species in $PM_{2.5}$, NO_xNO_2 , SO_2 , HONO and H_2O_2 were almost identical and exhibited three pollution peaks at night (Figure 1), which might be ascribed to the possibility that the decrease of nocturnal mixed boundary layer accelerated the pollutant accumulation (Bei et al., 2017;Zhong et al., 2019). Considering the relatively low RH (15-40%) and wind speeds (<2 m s⁻¹) in Case 1 (Figure S2), primary emissions around the sampling site were suspected to be a dominant source for the increase in the $PM_{2.5}$

535	concentrations. Further evidence is that the correlation between the concentrations of PM _{2.5} and CO
536	is better in Case 1 ($R^2=0.55$) than in Case 2 and Case 3 ($R^2=0.20\sim0.52$) (Figure S3). Identical to
537	Case 1, three obvious pollution peaks were also observed in Case 2 (Figure 1). The variation trends
538	of the concentrations of the species in PM _{2.5} and typical gaseous pollutants at the first peak in Case
539	2 were found to be similar with those in Case 1, which were mainly attributed to their similar
540	formation mechanism. However, the evident decreases in NO_x and SO_2 were observed when the
541	concentrations of the species in $PM_{2.5}$ were increasing and the atmospheric oxidation pollutant (e.g.
542	H_2O_2) concentration peaks were prior to others at the last two peaks in Case 2, suggesting that
543	secondary formation from gaseous precursors might be dominant for PM _{2.5} pollution. The relatively
544	high RH (50-80%) and the low south wind speeds (<2 m s ⁻¹) in Case 2 (Figure S2) provided further
545	evidence for the above speculation. In contrast to Case 1 and Case 2, the relatively high south wind
546	speeds (>3 m s ⁻¹) (Figure S2) with the concentrations of the species in $PM_{2.5}$ and typical gaseous
547	pollutants increasing slowly (Figure 1) at the beginning of Case 3 indicated that regional
548	transportation might be responsible for the atmospheric species. Subsequently, the concentrations
549	of the species in PM _{2.5} remained relatively high when the atmospheric RH lasted more than 60%,
550	implying that secondary formation from gaseous precursors dominated PM _{2.5} pollution during the
551	late period of Case 3.

The average mass proportions of the species in $PM_{2.5}$ in the three cases are illustrated in Figure S4, the proportions of the primary species such as EC (10-13%), Cl⁻ (6-7%) and Na⁺ (4%) in the three cases were almost identical, indicating that primary particle emissions were relatively stable during the sampling period. However, the proportions of SIA in Case 2 (42%) and Case 3 (38%) were conspicuously greater than that in Case 1 (28%), further confirming that secondary formation 557 of inorganic ions (e.g. nitrate, sulfate) made a significant contribution to atmospheric PM_{2.5} in Case

558 2 and Case 3.

3.3. Formation mechanism of nitrate and sulfate during serious pollution episodes

560	As for nitrate and sulfate in the three cases, the highest mass proportion (18%) of nitrate was
561	observed in Case 2, whereas the highest mass proportion (15%) of sulfate was found in Case 3
562	(Figure S4). Although the concentrations of SO_2 were about a factor of 5 obviously lower than the
563	concentrations of NO ₂ in both Case 2 and Case 3 (Figure 1 and Table 1), the extremely high
564	proportion of sulfate in Case 3 might be ascribed to the long-lasting plateau of RH (Figure S2)
565	because the aqueous-phase reaction could accelerate the conversion of SO_2 to SO_4^{2-} . To further
566	investigate the pollution characteristics of nitrate and sulfate during the serious pollution episodes,
567	the relations between NOR (NOR = NO ₃ ⁻ / (NO ₃ ⁻ +NO _{$\frac{1}{2}$})) as well as SOR (SOR = SO ₄ ²⁻ / (SO ₄ ²⁻)
568	+SO ₂)) and RH are shown in Figure 2. There were obvious differences in the variations of NOR and
569	SOR under different atmospheric RH conditions. The variation trends of NOR and SOR almost
570	stayed the same when atmospheric RH was below 30%, and then simultaneously increased with
571	atmospheric RH in the range of 30-60%. The enhanced gas-phase reaction and the heterogeneous
572	reaction involving aerosol liquid water might make a remarkable contribution to the elevation of
573	NOR and SOR, respectively, which were further discussed in the following section. Subsequently,
574	the variation trend of NOR slowly decreased whereas the variation trend of SOR significantly
575	increased when atmospheric RH was above 60%, which was very similar with the previous studies
576	(Sun et al., 2013;Zheng et al., 2015b). Considering that the heterogeneous reactions of NO_2 on
577	particle surface were dependent on atmospheric RH due to the competition of water for surface
578	reactive sites of particles (Ponczek et al., 2019), tThe slow reduction of NOR might be due to the
•	

579 <u>suppressed heterogeneous reaction of NO₂ to nitrate formation deliquescence of nitrate at</u>
580 <u>atmospheric under high RH condition around 60 % (Tang et al., 2017)(Kuang et al., 2016;Liu et al.,</u>
581 <u>2016b;Xue et al., 2014</u>), while the elevation of SOR revealed the dominant contribution of the
582 aqueous-phase reaction to <u>the sulfate</u> formation <u>of sulfate</u>.

583 **3.3.1. Formation mechanism of nitrate**

Atmospheric nitrate is considered to be mainly from NO₂ oxidation by OH radical in the gas 584 585 phase, heterogeneous uptake of NO₂ on the surface of particles and heterogeneous hydrolysis of 586 N₂O₅ on wet aerosols or chloride-containing aerosols (He et al., 2014;He et al., 2018;Nie et al., 587 2014;Ravishankara, 1997;Wang et al., 2018b). Since atmospheric N₂O₅ is usually produced by the 588 reaction of NO₃ radical with NO₂ as well as both NO₃ radical and N₂O₅ are easily photolytic during 589 the daytime, the heterogeneous hydrolysis of N_2O_5 is a nighttime pathway for the formation of 590 atmospheric nitrate (He et al., 2018; Wang et al., 2018b). As shown in Figure 3a, the mean values of NOR during the nighttime remarkably elevated with atmospheric RH increasing, the 591 592 disproportionation of NO_2 and the heterogeneous hydrolysis of N_2O_5 involving aerosol liquid water 593 were suspected to dominate the nocturnal formation of nitrate under high RH conditions during the 594 sampling period (Ma et al., 2017; Wang et al., 2018b; Li et al., 2018). However, the productions of 595 HONO and nitrate should be equal through the disproportionation of NO_2 (Ma et al., 2017), which 596 could not explain the wide gaps between the average concentrations of HONO (about $6.5 \ \mu g \ m^{-3}$) 597 and nitrate (about 20.1 µg m⁻³) observed at the nighttime under high RH conditions during the 598 sampling period. Thus, the disproportionation of NO₂ made insignificant contribution to the 599 nocturnal formation of nitrate under high RH conditions. Considering that the formation of 600 atmospheric NO₃ radical is mainly via the oxidation of NO₂ by O_3 , the heterogeneous hydrolysis of

Therefore, the correlation between $[NO_2]^2 \times [O_3]$ and NOR can represent roughly the contribut of the heterogeneous hydrolysis of N ₂ O ₃ to atmospheric nitrate at night. As shown in Figure 3b, yariations of $[NO_2]^2 \times [O_3]$ at the nighttime (18:00-7:00) were all positively correlated with Ne under the three different RH conditions, and their correlation under the RH \ge 60% condition (R 0.552) was significantly stronger than those under the RH $<$ 60% condition (R ² < 0.181). It has be acknowledged that the correlation between two species means the impact of changes in one spec on another. The stronger the correlation is, the greater the impact is. Therefore, the posit correlations between NOR and [NO ₂] ² × [O ₃] indicated that the heterogeneous hydrolysis of N ₂ could contribute to the formation of atmospheric nitrate at the nighttime under different J conditions. The significantly stronger correlations between NOR and [NO ₂] ² × [O ₃] under the J \ge 60% condition than under the RH < 60% condition revealed that the heterogeneous hydrolysis N ₂ O ₂ made a remarkable contribution to atmospheric nitrate at the nighttime under high J condition. Additionally, the obviously lower slope of the correlation between NOR and [NO ₂] ² (O ₃] under the RH \ge 60% condition (slope = 11691) than under the RH < 60% condition (slop 17399) (Figure 3b) also suggested that the formation of atmospheric nitrate at the nighttime under high J between NO ₂ × O ₃ and NOR under the RH ≥60% condition (R ² =0.534) than under the RH <60% that the heterogeneous hydrolysis of N ₂ O ₂ on wet aerosels made a great contribution to atmospheric that the heterogeneous hydrolysis of N ₂ O ₂ on wet aerosels made a great contribution to atmospheric nocturnal nitrate under high RH conditions.	601	N_2O_5 occurs only at high O_3 and NO_2 levels during the nighttime (He et al., 2018; Wang et al., 2018b)
of the heterogeneous hydrolysis of N ₂ O ₃ to atmospheric nitrate at night. As shown in Figure 3b, variations of $ NO_2 ^2 \times O_3 $ at the nighttime (18:00-7:00) were all positively correlated with Né under the three different RH conditions, and their correlation under the RH \ge 60% condition (R 0.552) was significantly stronger than those under the RH \le 60% condition (R ² \le 0.181). It has be acknowledged that the correlation between two species means the impact of changes in one spec on another. The stronger the correlation is, the greater the impact is. Therefore, the posit correlations between NOR and $ NO_2 ^2 \times O_3 $ indicated that the heterogeneous hydrolysis of N ² could contribute to the formation of atmospheric nitrate at the nighttime under different 1 conditions. The significantly stronger correlations between NOR and $ NO_3 ^2 \times O_3 $ under the 1 \ge 60% condition than under the RH \le 60% condition revealed that the heterogeneous hydrolysis N ₂ O ₃ made a remarkable contribution to atmospheric nitrate at the nighttime under high 1 \ge 60% condition ally, the obviously lower slope of the correlation between NOR and $ NO_3 $ $ N_2O_3 $ under the RH \ge 60% condition (slope = 11691) than under the RH \le 60% condition (slope = 17399) (Figure 3b) also suggested that the formation of atmospheric nitrate at the nighttime un- high RH condition was more sensitive to the pathway of N ₂ O ₃ , the more significant correlation $ N_2O_3 = 0, -0, -and -NOR - under -the -RH \ge 60\%$ condition (R ² =-0.534) than under the RH ≤ 60 that the heterogeneous hydrolysis of N ₂ O ₃ on wet aerosols made a great contribution to atmospher $ N_2O_3 = noeturnal nitrate under high RH conditions.$	602	Therefore, the correlation between $[NO_2]^2 \times [O_3]$ and NOR can represent roughly the contribution
604variations of $[NO_2]^2 \times [O_3]$ at the nighttime (18:00-7:00) were all positively correlated with N605under the three different RH conditions, and their correlation under the RH \ge 60% condition (R6060.552) was significantly stronger than those under the RH $<$ 60% condition (R ² \le 0.181). It has be607acknowledged that the correlation between two species means the impact of changes in one species608on another. The stronger the correlation is, the greater the impact is. Therefore, the position609correlations between NOR and $[NO_2]^2 \times [O_3]$ indicated that the heterogeneous hydrolysis of N610could contribute to the formation of atmospheric nitrate at the nighttime under different 1611conditions. The significantly stronger correlations between NOR and $[NO_2]^2 \times [O_3]$ under the 1612 \ge 60% condition than under the RH $<$ 60% condition revealed that the heterogeneous hydrolysis613 N_2O_3 made a remarkable contribution to atmospheric nitrate at the nighttime under high 1614condition. Additionally, the obviously lower slope of the correlation between NOR and $[NO_2]^2$ 615 $[O_3]$ under the RH \ge 60% condition (slope = 11691) than under the RH $<$ 60% condition (slope61617399) (Figure 3b) also suggested that the formation of atmospheric nitrate at the nighttime under the RH $<$ 618between $NO_2 \approx O_2$ and NOR under the RH \geq 60% condition (R ² -0.534) than under the RH $<$ 619condition (R ² -0.005) at the nighttime (19:00-6:00) during the sampling period further confirm620that the heterogeneous hydrolysis of N ₂ O ₂ on wet acrosols made a great contribution to atmosphecic <tr< td=""><td>603</td><td>of the heterogeneous hydrolysis of N_2O_5 to atmospheric nitrate at night. As shown in Figure 3b, <u>the</u></td></tr<>	603	of the heterogeneous hydrolysis of N_2O_5 to atmospheric nitrate at night. As shown in Figure 3b, <u>the</u>
605 under the three different RH conditions, and their correlation under the RH \ge 60% condition (R 606 0.552) was significantly stronger than those under the RH < 60% condition (R ² \le 0.181). It has be 607 acknowledged that the correlation between two species means the impact of changes in one spece 608 on another. The stronger the correlation is, the greater the impact is. Therefore, the posit 609 correlations between NOR and [NO ₂] ² × [O ₃] indicated that the heterogeneous hydrolysis of N ₂ 610 could contribute to the formation of atmospheric nitrate at the nighttime under different 1 611 conditions. The significantly stronger correlations between NOR and [NO ₂] ² × [O ₃] under the 1 612 \ge 60% condition than under the RH < 60% condition revealed that the heterogeneous hydrolysis 613 N ₂ O ₅ made a remarkable contribution to atmospheric nitrate at the nighttime under high 1 614 condition. Additionally, the obviously lower slope of the correlation between NOR and [NO ₂] 615 [O ₂] under the RH \ge 60% condition (slope = 11691) than under the RH < 60% condition (slope 616 17399) (Figure 3b) also suggested that the formation of atmospheric nitrate at the nighttime under 617 high RH condition was more sensitive to the pathway of N ₂ O ₃ , the more significant correlation 618 between NO ₂ × O ₃ -and NOR under the RH \ge 60% condition (R ² =0.534) than under the RH \le 60 619 condition (R ² <0.005) at the nighttime (19:00-6:00) during the sampling period further confirm 620 that the heterogeneous hydrolysis of N ₂ O ₃ on wet acrosols made a great contribution to atmospher 621 nocturnal nitrate under high RH conditions.	604	variations of $[NO_2]^2 \times [O_3]$ at the nighttime (18:00-7:00) were all positively correlated with NOR
606 0.552) was significantly stronger than those under the RH < 60% condition ($R^2 \le 0.181$). It has be 607 acknowledged that the correlation between two species means the impact of changes in one speci- 608 on another. The stronger the correlation is, the greater the impact is. Therefore, the positi- 609 correlations between NOR and [NO ₂] ² × [O ₃] indicated that the heterogeneous hydrolysis of N- 610 could contribute to the formation of atmospheric nitrate at the nighttime under different 1 611 conditions. The significantly stronger correlations between NOR and [NO ₂] ² × [O ₃] under the 1 612 $\ge 60\%$ condition than under the RH < 60% condition revealed that the heterogeneous hydrolysis 613 N ₂ O ₅ made a remarkable contribution to atmospheric nitrate at the nighttime under high 1 614 condition. Additionally, the obviously lower slope of the correlation between NOR and [NO ₂] 615 [O ₃] under the RH $\ge 60\%$ condition (slope = 11691) than under the RH < 60% condition (slope 616 17399) (Figure 3b) also suggested that the formation of atmospheric nitrate at the nighttime un- 617 high RH condition was more sensitive to the pathway of N ₂ O ₅ , the more significant correlation 618 between NO ₂ × O ₃ and NOR under the RH $\ge 60\%$ condition ($R^2=0.534$) than under the RH ≤ 60 619 condition ($R^2=0.005$) at the nighttime (19:00-6:00) during the sampling period further confirm 620 that the heterogeneous hydrolysis of N ₂ O ₅ on wet aerosols made a great contribution to atmospheric 621 noeturnal nitrate under high RH conditions.	605	under the three different RH conditions, and their correlation under the RH \ge 60% condition (R ² =
607 acknowledged that the correlation between two species means the impact of changes in one spec 608 on another. The stronger the correlation is, the greater the impact is. Therefore, the posit 609 correlations between NOR and $[NO_2]^2 \times [O_3]$ indicated that the heterogeneous hydrolysis of N ₂ 610 could contribute to the formation of atmospheric nitrate at the nighttime under different 1 611 conditions. The significantly stronger correlations between NOR and $[NO_2]^2 \times [O_3]$ under the 1 612 $\geq 60\%$ condition than under the RH < 60\% condition revealed that the heterogeneous hydrolysis 613 N ₂ O ₅ made a remarkable contribution to atmospheric nitrate at the nighttime under high 1 614 condition. Additionally, the obviously lower slope of the correlation between NOR and $[NO_2]^2$ 615 $[O_3]$ under the RH $\geq 60\%$ condition (slope = 11691) than under the RH < 60% condition (slope 616 17399) (Figure 3b) also suggested that the formation of atmospheric nitrate at the nighttime under 617 high RH condition was more sensitive to the pathway of N ₂ O ₅ , the more significant correlation 618 between NO ₂ , $\approx O_3$ and NOR under the RH $\geq 60\%$ condition (R ² =0.534) than under the RH ≤ 60 619 condition (R ² <0.005) at the nighttime (19:00-6:00) during the sampling period further confirm 620 that the heterogeneous hydrolysis of N ₂ O ₅ on wet aerosols made a great contribution to atmospheric 621 nocturnal nitrate under high RH conditions.	606	<u>0.552</u>) was significantly stronger than those under the RH < 60% condition ($R^2 \le 0.181$). It has been
608 on another. The stronger the correlation is, the greater the impact is. Therefore, the posit 609 correlations between NOR and $[NO_2]^2 \times [O_3]$ indicated that the heterogeneous hydrolysis of N ₂ 610 could contribute to the formation of atmospheric nitrate at the nighttime under different. 1 611 conditions. The significantly stronger correlations between NOR and $[NO_2]^2 \times [O_3]$ under the 1 612 $\geq 60\%$ condition than under the RH < 60\% condition revealed that the heterogeneous hydrolysis 613 N_2O_5 made a remarkable contribution to atmospheric nitrate at the nighttime under high 1 614 condition. Additionally, the obviously lower slope of the correlation between NOR and $[NO_2]$ 615 $[O_3]$ under the RH $\geq 60\%$ condition (slope = 11691) than under the RH < 60\% condition (slope 616 17399) (Figure 3b) also suggested that the formation of atmospheric nitrate at the nighttime un- 617 high RH condition was more sensitive to the pathway of N ₂ O ₅ , the more significant correlat 618 between NO ₂ × O ₃ and NOR under the RH $\geq 60\%$ condition (R ² =0.534) than under the RH $<60\%$ 619 condition (R ² <0.005) at the nighttime (19:00-6:00) during the sampling period further confirm 620 that the heterogeneous hydrolysis of N ₂ O ₅ on wet acrosels made a great contribution to atmospheric 621 nocturnal nitrate under high RH conditions.	607	acknowledged that the correlation between two species means the impact of changes in one species
609correlations between NOR and $[NO_2]^2 \times [O_3]$ indicated that the heterogeneous hydrolysis of N:610could contribute to the formation of atmospheric nitrate at the nighttime under different I611conditions. The significantly stronger correlations between NOR and $[NO_2]^2 \times [O_3]$ under the I612 $\geq 60\%$ condition than under the RH < 60% condition revealed that the heterogeneous hydrolysis	608	on another. The stronger the correlation is, the greater the impact is. Therefore, the positive
610 could contribute to the formation of atmospheric nitrate at the nighttime under different 1 611 conditions. The significantly stronger correlations between NOR and $[NO_2]^2 \times [O_3]$ under the 1 612 $\geq 60\%$ condition than under the RH < 60\% condition revealed that the heterogeneous hydrolysis 613 N_2O_5 made a remarkable contribution to atmospheric nitrate at the nighttime under high 1 614 condition. Additionally, the obviously lower slope of the correlation between NOR and $[NO_2]$ 615 $[O_3]$ under the RH $\geq 60\%$ condition (slope = 11691) than under the RH < 60\% condition (slope 616 17399) (Figure 3b) also suggested that the formation of atmospheric nitrate at the nighttime un- 617 high RH condition was more sensitive to the pathway of N_2O_5 the more significant correlat 618 between $NO_2 \times O_3$ and NOR under the RH $\geq 60\%$ condition ($R^2=0.534$) than under the RH 619 condition ($R^2<0.005$) at the nighttime (19:00-6:00) during the sampling period further confirm 620 that the heterogeneous hydrolysis of N_2O_5 on wet aerosols made a great contribution to atmospheric 621 nocturnal nitrate under high RH conditions.	609	correlations between NOR and $[NO_2]^2 \times [O_3]$ indicated that the heterogeneous hydrolysis of N_2O_5
611 conditions. The significantly stronger correlations between NOR and $[NO_2]^2 \times [O_3]$ under the 1 612 $\geq 60\%$ condition than under the RH < 60\% condition revealed that the heterogeneous hydrolysis 613 N ₂ O ₅ made a remarkable contribution to atmospheric nitrate at the nighttime under high 1 614 condition. Additionally, the obviously lower slope of the correlation between NOR and $[NO_2]$ 615 $[O_3]$ under the RH $\geq 60\%$ condition (slope = 11691) than under the RH < 60\% condition (slope 616 17399) (Figure 3b) also suggested that the formation of atmospheric nitrate at the nighttime un- 617 high RH condition was more sensitive to the pathway of N ₂ O ₅ , the more significant correlat 618 between NO ₂ \times O ₃ and NOR under the RH \geq 60% condition (R ² =0.534) than under the RH $<$ 60 619 condition (R ² <0.005) at the nighttime (19:00-6:00) during the sampling period further confirm 620 that the heterogeneous hydrolysis of N ₂ O ₅ on wet aerosols made a great contribution to atmospheric 621 noeturnal nitrate under high RH conditions.	610	could contribute to the formation of atmospheric nitrate at the nighttime under different RH
612 ≥ 60% condition than under the RH < 60% condition revealed that the heterogeneous hydrolysis 613 N ₂ O ₅ made a remarkable contribution to atmospheric nitrate at the nighttime under high 1 614 condition. Additionally, the obviously lower slope of the correlation between NOR and [NO ₂] 615 [O ₃] under the RH ≥ 60% condition (slope = 11691) than under the RH < 60% condition (slope 616 17399) (Figure 3b) also suggested that the formation of atmospheric nitrate at the nighttime un- 617 high RH condition was more sensitive to the pathway of N ₂ O ₅ the more significant correlat 618 between NO ₂ × O ₃ and NOR under the RH≥60% condition (R ² =0.534) than under the RH<60 619 condition (R ² <0.005) at the nighttime (19:00 6:00) during the sampling period further confirm 620 that the heterogeneous hydrolysis of N ₂ O ₅ on wet aerosols made a great contribution to atmospheric 621 noeturnal nitrate under high RH conditions.	611	conditions. The significantly stronger correlations between NOR and $[NO_2]^2 \times [O_3]$ under the RH
613 N ₂ O ₅ made a remarkable contribution to atmospheric nitrate at the nighttime under high 1 614 condition. Additionally, the obviously lower slope of the correlation between NOR and [NO ₂] 615 [O ₃] under the RH \geq 60% condition (slope = 11691) than under the RH < 60% condition (slope 616 17399) (Figure 3b) also suggested that the formation of atmospheric nitrate at the nighttime un- 617 high RH condition was more sensitive to the pathway of N ₂ O ₅ , the more significant correlat 618 between NO ₂ × O ₃ - and NOR under the RH \geq 60% condition (R ² =0.534) than under the RH<60 619 condition (R ³ <0.005) at the nighttime (19:00-6:00) during the sampling period further confirm 620 that the heterogeneous hydrolysis of N ₂ O ₅ on wet aerosols made a great contribution to atmosphe 621 nocturnal nitrate under high RH conditions.	612	\geq 60% condition than under the RH < 60% condition revealed that the heterogeneous hydrolysis of
614 condition. Additionally, the obviously lower slope of the correlation between NOR and [NO ₂] 615 [O ₃] under the RH \geq 60% condition (slope = 11691) than under the RH < 60% condition (slope 616 17399) (Figure 3b) also suggested that the formation of atmospheric nitrate at the nighttime un- 617 high RH condition was more sensitive to the pathway of N ₂ O ₅ , the more significant correlat 618 between NO ₂ × O ₃ and NOR under the RH \geq 60% condition (R ² =0.534) than under the RH<60 619 condition (R ² <0.005) at the nighttime (19:00-6:00) during the sampling period further confirm 620 that the heterogeneous hydrolysis of N ₂ O ₅ on wet aerosols made a great contribution to atmosphe 621 nocturnal nitrate under high RH conditions.	613	N ₂ O ₅ made a remarkable contribution to atmospheric nitrate at the nighttime under high RH
615 $[O_3]$ under the RH \ge 60% condition (slope = 11691) than under the RH < 60% condition (slope 616 17399) (Figure 3b) also suggested that the formation of atmospheric nitrate at the nighttime un- 617 high RH condition was more sensitive to the pathway of N ₂ O ₅ , the more significant correlat 618 between NO ₂ .× O ₃ and NOR under the RH≥60% condition (R ² =0.534) than under the RH<60 619 condition (R ² <0.005) at the nighttime (19:00-6:00) during the sampling period further confirm 620 that the heterogeneous hydrolysis of N ₂ O ₅ on wet aerosols made a great contribution to atmosphe 621 nocturnal nitrate under high RH conditions.	614	condition. Additionally, the obviously lower slope of the correlation between NOR and $[NO_2]^2 \times$
616 <u>17399</u>) (Figure 3b) also suggested that the formation of atmospheric nitrate at the nighttime un 617 <u>high RH condition was more sensitive to the pathway of N₂O₅.the more significant correlat 618 between NO₂ × O₃ and NOR under the RH≥60% condition (R²=0.534) than under the RH<60 619 condition (R²<0.005) at the nighttime (19:00-6:00) during the sampling period further confirm 620 that the heterogeneous hydrolysis of N₂O₅ on wet aerosols made a great contribution to atmosphe 621 nocturnal nitrate under high RH conditions.</u>	615	[O ₃] under the RH \ge 60% condition (slope = 11691) than under the RH < 60% condition (slope \ge
617 <u>high RH condition was more sensitive to the pathway of N₂O₅, the more significant correlat</u> 618 between NO ₂ .× O ₃ and NOR under the RH≥60% condition (R ² =0.534) than under the RH<60 619 condition (R ² <0.005) at the nighttime (19:00-6:00) during the sampling period further confirm 620 that the heterogeneous hydrolysis of N ₂ O ₅ on wet aerosols made a great contribution to atmosphene 621 nocturnal nitrate under high RH conditions.	616	17399) (Figure 3b) also suggested that the formation of atmospheric nitrate at the nighttime under
618 between $NO_2 \times O_3$ and NOR under the $RH \ge 60\%$ condition ($R^2 = 0.534$) than under the $RH < 60\%$ 619 condition ($R^2 < 0.005$) at the nighttime (19:00-6:00) during the sampling period further confirm 620 that the heterogeneous hydrolysis of N_2O_5 on wet aerosols made a great contribution to atmosphe 621 nocturnal nitrate under high RH conditions.	617	high RH condition was more sensitive to the pathway of N2O5. the more significant correlation
619 condition ($\mathbb{R}^2 < 0.005$) at the nighttime (19:00-6:00) during the sampling period further confirm 620 that the heterogeneous hydrolysis of N_2O_5 on wet aerosols made a great contribution to atmosphe 621 nocturnal nitrate under high RH conditions.	618	between NO ₂ × O ₃ and NOR under the RH≥60% condition (R^2 =0.534) than under the RH<60%
 620 that the heterogeneous hydrolysis of N₂O₅ on wet aerosols made a great contribution to atmosphe 621 nocturnal nitrate under high RH conditions. 	619	condition ($\mathbb{R}^2 \leq 0.005$) at the nighttime (19:00-6:00) during the sampling period further confirmed
621 nocturnal nitrate under high RH conditions.	620	that the heterogeneous hydrolysis of N_2O_5 on wet aerosols made a great contribution to atmospheric
	621	nocturnal nitrate under high RH conditions.

622 However, the obvious increase in the mean values of NOR during the daytime (especially for

623	10:00-17:00) under the 30% <rh<60% (figure="" 3a)="" additional="" condition="" indicated="" rather<="" sources="" th="" that=""></rh<60%>
624	than the heterogeneous hydrolysis of N_2O_5 were responsible for the formation of nitrate. To explore
625	the possible formation mechanisms of nitrate in this case, the daily variations of [Dust] (the sum of
626	Ca^{2+} and Mg^{2+} × [NO ₂] and [HONO] (the main source of OH) × [DR] × [NO ₂], which can represent
627	roughly the heterogeneous reaction of NO ₂ on the surface of mineral aerosols and the gas-phase
628	reaction of NO ₂ with OH, are shown in Figure 3c and Figure 3d, respectively. The mean values of
629	[HONO] × [DR] × [NO ₂]HONO × DR × NO ₂ during the daytime were found to be remarkably
630	greater under the 30% <rh<60% condition="" condition,="" mean<="" rh≤30%="" td="" than="" the="" under="" whereas=""></rh<60%>
631	values of $[Dust] \times [NO_2]$ Dust $\times NO_2$ almost stayed the same under the two different RH conditions.
632	Considering the coincident trend of NOR and [HONO] × [DR] × [NO ₂]HONO × DR × NO ₂ during
633	the daytime (10:00-17:00) under the 30% $<$ RH $<$ 60% condition, the gas-phase reaction of NO ₂ with
634	OH played a key role in the diurnal formation of nitrate at moderate RH levels with the haze
635	pollution accumulating. It should be noted that the mean values of [HONO] \times [DR] \times [NO ₂]HONO
636	\times DR \times NO ₂ decreased dramatically from 14:00 to 17:00 (Figure 3d), which was not responsible for
637	the high mean values of NOR at that time (Figure 3a). However, the slight increase in the mean
638	values of $[Dust] \times [NO_2] Dust \times NO_2$ after 14:00 was observed under the 30% <rh<60% condition<="" td=""></rh<60%>
639	(Figure 3c) and hence the heterogeneous reaction of NO ₂ on the surface of mineral aerosols was
640	suspected to contribute to the diurnal formation of nitrate at that time under moderate RH condition.
641	3.3.2. Formation mechanism of sulfate

Atmospheric sulfate is principally from SO₂ oxidation pathway, including gas-phase reactions
with OH radical or stabilized Criegee intermediates, heterogeneous-phase reactions on the surface
of particles and aqueous-phase reactions with dissolved O₃, NO₂, H₂O₂ and organic peroxides, as

645	well as autoxidation catalyzed by TMI (Cheng et al., 2016;Li et al., 2018;Ravishankara, 1997;Shao
646	et al., 2019; Wang et al., 2016; Xue et al., 2016; Zhang et al., 2018). As shown in Figure 4, similar to
647	the daily variations of NOR, the remarkable elevation of the mean values of SOR were found to
648	elevated remarkably after 14:00-under the 30% <rh<60% compared="" condition="" rh≤30%<="" td="" the="" to=""></rh<60%>
649	condition, especially during 14:00-22:00, which might be also mainly ascribed to the enhanced gas-
650	phase reaction and the heterogeneous reaction of SO ₂ involving aerosol liquid wateron the surface
651	of mineral aerosols under the relatively high RH condition. The extremely high mean values of SOR
652	during the whole day under the RH \geq 60% condition implied that aqueous oxidation of SO ₂
653	dominated the formation of sulfate during the severe pollution episodes, which was in line with
654	previous studies (Zhang et al., 2018; Cheng et al., 2016). A key factor that influenced the aqueous
655	oxidation pathways for sulfate formation has been considered to be the aerosol pH (Guo et al.,
656	2017;Liu et al., 2017a), varying from 4.5 to 8.5 at different atmospheric RH and sulfate levels during
657	the sampling period (Figure 5a) on the basis of the ISORROPIA-II model. Considering that the
658	aqueous-phase chemistry of sulfate formation usually occurs in severe haze events with relatively
659	high atmospheric RH, the aerosol pH (4.5-5.3) under the RH≥60% condition, which was lower than
660	those (5.4-7.0) in the studies of Wang et al., (2016) and Cheng et al., (2016) but was slightly higher
661	than those (3.0-4.9) in the studies of Liu et al., (2017a) and Guo et al., (2017), was adopted for
662	evaluating sulfate production in this study. In addition, in terms of oxidants, the obvious increase in
663	the average concentration of NO_2 (Figure 5b) and the evident decrease in the average concentration
664	of O_3 (Figure 5d) were observed with the deterioration of $PM_{2.5}$ pollution. Furthermore, the average
665	concentration of H_2O_2 was also found to be extremely high (0.25 ppb) under the HP condition
666	(Figure 5c) and was above 1 order of magnitude higher than that (0.01 ppb) assumed by Cheng et

al., (2016), which probably resulted in the underestimation of the contribution of H_2O_2 to sulfate formation in the study of Cheng et al., (2016).

669 To further explore the contribution of H₂O₂ to sulfate production rate under the HP condition, the parameters measured in this study (Table 2) and the same approach that was adopted by Cheng 670 671 et al., (2016) were used to calculate sulfate production. As shown in Figure 6, the relationships 672 between different aqueous oxidation pathways and aerosol pH in this study were found to be very 673 similar with those of Cheng et al., (2016). However, the contribution of H_2O_2 to sulfate production rate was about a factor of 17 faster in this study (about 1.16 µg m⁻³ h⁻¹) than in the study (about 674 675 $6.95 \times 10^{-2} \mu \text{g m}^{-3} \text{ h}^{-1}$) of Cheng et al., (2016), implying that the contribution of H₂O₂ to sulfate 676 formation was largely neglected. Furthermore, considering the aerosol pH calculated under the HP 677 condition during the sampling period, the oxidation pathway of NO₂ might play an insignificant role 678 in sulfate production rate $(8.96 \times 10^{-2} - 0.56 \ \mu g \ m^{-3} \ h^{-1})$ and its importance proposed by the previous 679 studies $(1.74-10.85 \ \mu g \ m^{-3} \ h^{-1})$ was not necessarily expected.

680 4. Conclusion

681 Based on the comprehensive analysis of the pollution levels, the variation characteristics and 682 the formation mechanisms of the key species in PM_{2.5} and the typical gaseous pollutants during the 683 winter haze pollution periods in Beijing, three serious haze pollution cases were obtained during the 684 sampling period and the SIAs formations especially nitrate and sulfate were found to make an 685 evident contribution to atmospheric PM2.5 under the relatively high RH condition. The significant correlation between $[NO_2]^2 \times [O_3]$ and NOR at night under the RH \geq 60% condition indicated that 686 687 the heterogeneous hydrolysis of N₂O₅ on wet aerosols was responsible for the nocturnal formation 688 of nitrate under extremely high RH conditions. The more coincident trend of NOR and [HONO] ×

1	
689	$[DR] \times [NO_2]$ HONO \times DR \times NO ₂ than $[Dust] \times [NO_2]$ Dust \times NO ₂ during the daytime under the
690	30% <rh<60% condition="" gas-phase="" no<sub="" of="" reaction="" suggested="" that="" the="">2 with OH played a key role</rh<60%>
691	in the diurnal formation of nitrate under moderate RH conditions. The extremely high mean values
692	of SOR during the whole day under the RH≥60% condition could be explained by the dominant
693	contribution of aqueous-phase reaction of SO2 to atmospheric sulfate formation during the severe
694	pollution episodes. According to the parameters measured in this study and the same approach that
695	was adopted by Cheng et al., (2016), the oxidation pathway of H ₂ O ₂ rather than NO ₂ was found to
696	contribute greatly to atmospheric sulfate formation.
697	Our results revealed that the heavy pollution events in winter usually occurred with high
698	concentration levels of pollutants and oxidants as well as high liquid water contents of moderately
699	acidic aerosols in the NCP. Thus, emission controls of NO_x , SO_2 and VOCs especially under the
700	extremely high RH conditions are expected to reduce largely the pollution levels of nitrate and
701	sulfate in northern China and even in other pollution regions of China.
702	
703	Data availability. Data are available from the corresponding author upon request
704	(vimu@rcees.ac.cn)

706 Author contributions. YJM designed the experiments. PFL carried out the experiments and prepared

the manuscript. CY and CYX carried out the experiments. CLZ was involved in part of the work.

708 XS provided the meteorological data and trace gases in Beijing.

709

710 *Competing interests.* The authors declare that they have no conflict of interest.

Acknowledgement. This work was supported by the National research program for Key issues in air
pollution control (No. DQGG0103, DQGG0209, DQGG0206), the National Natural Science
Foundation of China (No. 91544211, 4127805, 41575121, 21707151), the National Key Research
and Development Program of China (No. 2016YFC0202200, 2017YFC0209703, 2017YFF0108301)
and Key Laboratory of Atmospheric Chemistry, China Meteorological Administration (No.
2018B03).

HONO and H₂O₂) as well as atmospheric RH during the sampling period.

725 Figure 2. The relations between NOR as well as SOR and RH during the sampling period.

d) under different atmospheric RH conditions during the sampling period.

736

Figure 4. Daily variation of SOR under different atmospheric RH conditions during the sampling
 period.

Figure 5. The correlations among aerosol pH, atmospheric RH and atmospheric SO_4^{2-} (a), the average concentrations of NO₂, H₂O₂ and O₃ (b, c, d) under different pollution conditions (clean (C), PM_{2.5}<35 µg m⁻³; slightly polluted (SP), 35 µg m⁻³<PM_{2.5}<75 µg m⁻³; polluted (P), 75 µg m⁻

 3 <PM_{2.5}<150 µg m⁻³; heavy polluted (HP), PM_{2.5}>150 µg m⁻³) during the sampling period.

Figure 6. The comparison of aqueous-phase sulfate production by SO₂ oxidation under different
 aerosol pH conditions between in the study of Cheng et al., (2016) and in this study.

749

743

Table 1. The average concentrations of the species in $PM_{2.5}$ (µg m⁻³) and typical gaseous pollutants (ppb) during C&SP episodes ($PM_{2.5} < 75 \ \mu g \ m^{-3}$), during P&HP episodes ($PM_{2.5} \ge 75 \ \mu$

pollutants (ppb) during C&SP episodes (PM _{2.5} <75 µg m ⁻³), during P&HP episodes (PM _{2.5} ≥75 µg
m^{-3}) and during the whole sampling period.

species	during C&SP episodes	during P&HP episodes	total
	(n=210)	(n=108)	(n=318)
PM _{2.5}	30.00 ± 17.79	113.35 ± 28.10	58.31 ± 45.15
Na^+	2.88 ± 1.11	3.68 ± 1.19	3.15 ± 1.21
Mg^{2+}	0.05 ± 0.03	0.08 ± 0.06	0.06 ± 0.04
Ca^{2+}	0.52 ± 0.33	0.67 ± 0.48	0.58 ± 0.40
K^+	0.81 ± 0.42	1.84 ± 0.73	1.16 ± 0.73
$\mathrm{NH_{4}^{+}}$	1.90 ± 1.90	11.52 ± 4.93	5.17 ± 5.62
SO4 ²⁻	3.64 ± 1.87	14.96 ± 7.80	7.47 ± 7.18
NO ₃ -	3.44 ± 3.57	17.15 ± 7.36	8.10 ± 8.32
Cl-	1.89 ± 1.20	7.35 ± 2.97	3.73 ± 3.26
NO_2^-	0.06 ± 0.08	0.06 ± 0.05	0.06 ± 0.07
OC	12.10 ± 9.25	43.34 ± 13.88	22.73 ± 18.48
EC	3.98 ± 3.42	12.69 ± 6.43	7.58 ± 6.51
NO _x	39.38 ± 35.25	107.71 ± 58.44	62.59 ± 54.98
NO ₂	21.46 ± 13.04	42.81 ± 10.96	28.71 ± 15.98
SO_2	6.99 ± 3.64	15.70 ± 6.55	9.95 ± 6.35

O ₃	8.01 ± 6.35	2.13 ± 0.56	6.01 ± 5.87
HONO	0.60 ± 0.43	1.90 ± 0.97	1.01 ± 0.87
H_2O_2	0.17 ± 0.11	0.29 ± 0.14	0.20 ± 0.13

750

т. н. э. т 751

751	Table 2. The comparisons for parameters of sulfate production rate calculations between in the
752	study of Cheng et al., (2016) and in this work during the most polluted haze periods

Parameters	This study	Cheng et al., (2016)
NO ₂	57 ppb	66 ppb
H_2O_2	0.25 ppb	0.01 ppb
O3	2 ppb	1 ppb
SO_2	35 ppb	40 ppb
Fe(III) ^a	18 ng m ⁻³	18 ng m ⁻³
Mn(II) ^a	42 ng m ⁻³	42 ng m ⁻³
ALWC	146 μg m ⁻³	300 µg m ⁻³
Aerosol droplet radius (R) ^a	0.15 μm	0.15 μm
Temperature	270 K	271 K
pH	4.5-5.3	5.4-6.2

753 ^a: both the concentrations of Fe(III) and Mn(II) and aerosol droplet radius were not measured in this 754 study and were derived from Cheng et al., (2016).

755

756 References

757 Bei, N., Wu, J., Elser, M., Feng, T., Cao, J., El-Haddad, I., Li, X., Huang, R., Li, Z., Long, X., Xing, L.,

758 Zhao, S., Tie, X., Prévôt, A. S. H., and Li, G.: Impacts of meteorological uncertainties on the haze 759 formation in Beijing-Tianjin-Hebei (BTH) during wintertime: a case study, Atmospheric Chemistry and

760 Physics, 17, 14579-14591, 10.5194/acp-17-14579-2017, 2017.

761 Bougiatioti, A., Nikolaou, P., Stavroulas, I., Kouvarakis, G., Weber, R., Nenes, A., Kanakidou, M., and

762 Mihalopoulos, N.: Particle water and pH in the eastern Mediterranean: source variability and implications

763 for nutrient availability, Atmospheric Chemistry and Physics, 16, 4579-4591, 10.5194/acp-16-4579-2016, 764 2016.

765 Chan, C. K., and Yao, X.: Air pollution in mega cities in China, Atmospheric Environment, 42, 1-42, 766 10.1016/j.atmosenv.2007.09.003, 2008.

767 Chen, L. H., Sun, Y. Y., Wu, X. C., Zhang, Y. X., Zheng, C. H., Gao, X., and Cen, K.: Unit-based emission

768 inventory and uncertainty assessment of coal-fired power plants, Atmospheric Environment, 99, 527-535,

769 10.1016/j.atmosenv.2014.10.023, 2014.

770 Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael,

771 G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during 772 haze events in China, Science Advances, 2, 1-11, 10.1126/sciadv.1601530, 2016.

- 773 Clifton, C. L., Altstein, N., and Huie, R. E.: Rate-constant for the reaction of NO₂ with sulfur(IV) over
- the pH range 5.3-13, Environ. Sci. Technol., 22, 586-589, 10.1021/es00170a018, 1988. 774
- 775 Dai, Q., Bi, X., Song, W., Li, T., Liu, B., Ding, J., Xu, J., Song, C., Yang, N., Schulze, B. C., Zhang, Y.,
- 776 Feng, Y., and Hopke, P. K.: Residential coal combustion as a source of primary sulfate in Xi'an, China,
- 777 Atmospheric Environment, 196, 66-76, 10.1016/j.atmosenv.2018.10.002, 2019.
- 778 Ding, J., Zhao, P., Su, J., Dong, Q., Du, X., and Zhang, Y.: Aerosol pH and its driving factors in Beijing,

- 779 Atmospheric Chemistry and Physics, 19, 7939-7954, 10.5194/acp-19-7939-2019, 2019.
- 780 Du, Q., Zhang, C., Mu, Y., Cheng, Y., Zhang, Y., Liu, C., Song, M., Tian, D., Liu, P., Liu, J., Xue, C., and
- 781 Ye, C.: An important missing source of atmospheric carbonyl sulfide: Domestic coal combustion,

782 Geophysical Research Letters, 43, 8720-8727, 10.1002/2016gl070075, 2016.

- 783 Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium
- model for K⁺-Ca²⁺-Mg²⁺-NH₄⁺-Na⁺-SO₄²⁻-NO₃⁻-Cl⁻-H₂O aerosols, Atmospheric Chemistry and Physics,
- 785 7, 4639-4659, 2007.
- Ge, X., He, Y., Sun, Y., Xu, J., Wang, J., Shen, Y., and Chen, M.: Characteristics and Formation
 Mechanisms of Fine Particulate Nitrate in Typical Urban Areas in China, Atmosphere, 8, 62,
 10.3390/atmos8030062, 2017.
- Graedel, T. E., and Weschler, C. J.: Chemistry within aqueous atmospheric aerosols and raindrops,
 Reviews of Geophysics, 19, 505-539, 10.1029/RG019i004p00505, 1981.
- Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite, J. R., Carlton, A. G., Lee, S. H.,
- Bergin, M. H., Ng, N. L., Nenes, A., and Weber, R. J.: Fine-particle water and pH in the southeastern
 United States, Atmospheric Chemistry and Physics, 15, 5211-5228, 10.5194/acp-15-5211-2015, 2015.
- Guo, H., Weber, R. J., and Nenes, A.: High levels of ammonia do not raise fine particle pH sufficiently
- 795 to yield nitrogen oxide-dominated sulfate production, Scientific reports, 7, 12109, 10.1038/s41598-017-
- 796 11704-0, 2017.
- Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L.,
 Molina, M. J., and Zhang, R.: Elucidating severe urban haze formation in China, Proceedings of the
 National Academy of Sciences of the United States of America, 111, 17373-17378,
- 800 10.1073/pnas.1419604111, 2014.
- 801 He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D., Tang, G., Liu, C., Zhang, H., and Hao, J.: Mineral dust
- 802 and NO_x promote the conversion of SO₂ to sulfate in heavy pollution days, Scientific reports, 4, 1-5, 10.1038/srep04172, 2014.
- 804 He, P., Xie, Z., Chi, X., Yu, X., Fan, S., Kang, H., Liu, C., and Zhan, H.: Atmospheric $\Delta 170(NO_3^{-})$ 805 reveals nocturnal chemistry dominates nitrate production in Beijing haze, Atmospheric Chemistry and 806 Physics, 18, 14465-14476, 10.5194/acp-18-14465-2018, 2018.
- 807 Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, R. J., and Nenes, A.: A critical evaluation of proxy 808 methods used to estimate the acidity of atmospheric particles, Atmospheric Chemistry and Physics, 15,
- 809 2775-2790, 10.5194/acp-15-2775-2015, 2015.
- 810 Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Daellenbach, K. R., Slowik, J. G.,
- 811 Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
- 812 Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat,
- 813 S., Baltensperger, U., El Haddad, I., and Prevot, A. S.: High secondary aerosol contribution to particulate
- pollution during haze events in China, Nature, 514, 218-222, 10.1038/nature13774, 2014.
- 815 Ibusuki, T., and Takeuchi, K.: Sulfur-dioxide oxidation by oxygen catalyzed by mixtures of manganese(II)
- 816 and iron(III) in aqueous-solutions at environmental reaction conditions, Atmospheric Environment, 21,
- 817 1555-1560, 10.1016/0004-6981(87)90317-9, 1987.
- 818 Kuang, Y., Zhao, C. S., Ma, N., Liu, H. J., Bian, Y. X., Tao, J. C., and Hu, M.: Deliquescent phenomena
- 819 of ambient aerosols on the North China Plain, Geophysical Research Letters, 43, 8744-8750,
- 820 10.1002/2016g1070273, 2016.
- Li, G., Bei, N., Cao, J., Huang, R., Wu, J., Feng, T., Wang, Y., Liu, S., Zhang, Q., Tie, X., and Molina, L.
- 822 T.: A possible pathway for rapid growth of sulfate during haze days in China, Atmospheric Chemistry

- and Physics, 17, 3301-3316, 10.5194/acp-17-3301-2017, 2017.
- Li, J., Liao, H., Hu, J., and Li, N.: Severe particulate pollution days in China during 2013-2018 and the
- associated typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions,
 Environ Pollut, 248, 74-81, 10.1016/j.envpol.2019.01.124, 2019.
- Li, L., Hoffmann, M. R., and Colussi, A. J.: Role of nitrogen dioxide in the production of sulfate during
 Chinese haze-aerosol episodes, Environ Sci Technol, 52, 2686-2693, 10.1021/acs.est.7b05222, 2018.
- 829 Li, Q., Li, X., Jiang, J., Duan, L., Ge, S., Zhang, Q., Deng, J., Wang, S., and Hao, J.: Semi-coke briquettes:
- 830 towards reducing emissions of primary PM_{2.5}, particulate carbon, and carbon monoxide from household
- coal combustion in China, Scientific reports, 6, 1-10, 10.1038/srep19306, 2016.
- Liu, M., Song, Y., Zhou, T., Xu, Z., Yan, C., Zheng, M., Wu, Z., Hu, M., Wu, Y., and Zhu, T.: Fine particle
- pH during severe haze episodes in northern China, Geophysical Research Letters, 44, 1-9,
 10.1002/2017GL073210, 2017a.
- Liu, P., Zhang, C., Mu, Y., Liu, C., Xue, C., Ye, C., Liu, J., Zhang, Y., and Zhang, H.: The possible
 contribution of the periodic emissions from farmers' activities in the North China Plain to atmospheric
- water-soluble ions in Beijing, Atmospheric Chemistry and Physics, 16, 10097-10109, 10.5194/acp-1610097-2016, 2016a.
- Liu, P., Zhang, C., Xue, C., Mu, Y., Liu, J., Zhang, Y., Tian, D., Ye, C., Zhang, H., and Guan, J.: The
 contribution of residential coal combustion to atmospheric PM_{2.5} in northern China during winter,
 Atmospheric Chemistry and Physics, 17, 11503-11520, 10.5194/acp-17-11503-2017, 2017b.
- 842 Liu, Q., Jing, B., Peng, C., Tong, S., Wang, W., and Ge, M.: Hygroscopicity of internally mixed multi-
- 843 component aerosol particles of atmospheric relevance, Atmospheric Environment, 125, 69-77,
 844 10.1016/j.atmosenv.2015.11.003, 2016b.
- Ma, Q., Wang, T., Liu, C., He, H., Wang, Z., Wang, W., and Liang, Y.: SO₂ Initiates the efficient
 conversion of NO₂ to HONO on MgO Surface, Environ Sci Technol, 51, 3767-3775,
 10.1021/acs.est.6b05724, 2017.
- 848 Meng, Z. Y., Lin, W. L., Jiang, X. M., Yan, P., Wang, Y., Zhang, Y. M., Jia, X. F., and Yu, X. L.:
- Characteristics of atmospheric ammonia over Beijing, China, Atmospheric Chemistry and Physics, 11,
 6139-6151, 10.5194/acp-11-6139-2011, 2011.
- Murphy, J. G., Gregoire, P. K., Tevlin, A. G., Wentworth, G. R., Ellis, R. A., Markovic, M. Z., and
 VandenBoer, T. C.: Observational constraints on particle acidity using measurements and modelling of
 particles and gases, Faraday Discussions, 200, 379-395, 10.1039/c7fd00086c, 2017.
- Nie, W., Ding, A., Wang, T., Kerminen, V. M., George, C., Xue, L., Wang, W., Zhang, Q., Petaja, T., Qi,
- X., Gao, X., Wang, X., Yang, X., Fu, C., and Kulmala, M.: Polluted dust promotes new particle formation
 and growth, Scientific reports, 4, 1-6, 10.1038/srep06634, 2014.
- Pathak, R. K., Louie, P. K. K., and Chan, C. K.: Characteristics of aerosol acidity in Hong kong,
 Atmospheric Environment, 38, 2965-2974, 10.1016/j.atmosenv.2004.02.044, 2004.
- Ponczek, M., Hayeck, N., Emmelin, C., and George, C.: Heterogeneous photochemistry of dicarboxylic
 acids on mineral dust, Atmospheric Environment, 212, 262-271, 10.1016/j.atmosenv.2019.05.032, 2019.
- 861 Quan, J., Tie, X., Zhang, Q., Liu, Q., Li, X., Gao, Y., and Zhao, D.: Characteristics of heavy aerosol
- pollution during the 2012–2013 winter in Beijing, China, Atmospheric Environment, 88, 83-89,
- 863 10.1016/j.atmosenv.2014.01.058, 2014.
- Ravishankara, A.: Heterogeneous and multiphase chemistry in the troposphere, Science, 276, 1058-1065,
 1997.
- 866 Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics, from Air Pollution to Climate

- 867 Change, Wiley, 429-443 pp., 2006.
- 868 Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R. V., Philip, S., Song, S., Zhao,
- 869 Y., Xie, Z., Zhang, L., and Alexander, B.: Heterogeneous sulfate aerosol formation mechanisms during
- 870 wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen
- 871 isotopes in Beijing, Atmospheric Chemistry and Physics, 19, 6107-6123, 10.5194/acp-19-6107-2019, 872 2019.
- 873 Shi, G., Xu, J., Peng, X., Xiao, Z., Chen, K., Tian, Y., Guan, X., Feng, Y., Yu, H., Nenes, A., and Russell,
- 874 A. G.: pH of aerosols in a polluted atmosphere: source contributions to highly acidic aerosol, Environ
- 875 Sci Technol, 51, 4289-4296, 10.1021/acs.est.6b05736, 2017.
- 876 Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., and Ge, X.: The impact of relative humidity on 877 aerosol composition and evolution processes during wintertime in Beijing, China, Atmospheric 878 Environment, 77, 927-934, 10.1016/j.atmosenv.2013.06.019, 2013.
- Tang, M., Huang, X., Lu, K., Ge, M., Li, Y., Cheng, P., Zhu, T., Ding, A., Zhang, Y., Gligorovski, S., 879
- 880 Song, W., Ding, X., Bi, X., and Wang, X.: Heterogeneous reactions of mineral dust aerosol: implications 881 for tropospheric oxidation capacity, Atmospheric Chemistry and Physics, 17, 11727-11777, 10.5194/acp-882 17-11727-2017, 2017.
- 883 Tham, Y. J., Wang, Z., Li, Q., Wang, W., Wang, X., Lu, K., Ma, N., Yan, C., Kecorius, S., Wiedensohler,
- 884 A., Zhang, Y., and Wang, T.: Heterogeneous N₂O₅ uptake coefficient and production yield of ClNO₂ in 885 polluted northern China: roles of aerosol water content and chemical composition, Atmospheric 886 Chemistry and Physics, 18, 13155-13171, 10.5194/acp-18-13155-2018, 2018.
- 887 Tong, S. R., Hou, S. Q., Zhang, Y., Chu, B. W., Liu, Y. C., He, H., Zhao, P. S., and Ge, M. F.: Exploring
- 888 the nitrous acid (HONO) formation mechanism in winter Beijing: direct emissions and heterogeneous 889 production in urban and suburban areas, Faraday Discussions, 189, 213-230, 10.1039/c5fd00163c, 2016.
- 890
- Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng, J., Guo, S., 891 Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J.,
- 892 Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M., Wang, W.,
- 893 Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D.,
- 894 Liss, P. S., Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from London Fog to 895 Chinese haze, Proceedings of the National Academy of Sciences of the United States of America, 113,
- 896 13630-13635, 2016.
- 897 Wang, G., Zhang, F., Peng, J., Duan, L., Ji, Y., Marrero-Ortiz, W., Wang, J., Li, J., Wu, C., Cao, C., Wang,
- 898 Y., Zheng, J., Secrest, J., Li, Y., Wang, Y., Li, H., Li, N., and Zhang, R.: Particle acidity and sulfate 899 production during severe haze events in China cannot be reliably inferred by assuming a mixture of 900 inorganic salts, Atmospheric Chemistry and Physics, 18, 10123-10132, 10.5194/acp-18-10123-2018, 901 2018a.
- 902 Wang, H., Lu, K., Chen, X., Zhu, Q., Wu, Z., Wu, Y., and Sun, K.: Fast particulate nitrate formation via
- 903 N₂O₅ uptake aloft in winter in Beijing, Atmospheric Chemistry and Physics, 18, 10483-10495, 904 10.5194/acp-18-10483-2018, 2018b.
- 905 Wang, H., Lu, K., Guo, S., Wu, Z., Shang, D., Tan, Z., Wang, Y., Le Breton, M., Lou, S., Tang, M., Wu,
- 906 Y., Zhu, W., Zheng, J., Zeng, L., Hallquist, M., Hu, M., and Zhang, Y.: Efficient N₂O₅ uptake and NO₃
- 907 oxidation in the outflow of urban Beijing, Atmospheric Chemistry and Physics, 18, 9705-9721,
- 908 10.5194/acp-18-9705-2018, 2018c.
- 909 Wang, J., Zhang, X., Guo, J., Wang, Z., and Zhang, M.: Observation of nitrous acid (HONO) in Beijing,
- 910 China: Seasonal variation, nocturnal formation and daytime budget, The Science of the total environment,

- 911 587-588, 350-359, 10.1016/j.scitotenv.2017.02.159, 2017.
- 912 Wang, Y., Yao, L., Wang, L., Liu, Z., Ji, D., Tang, G., Zhang, J., Sun, Y., Hu, B., and Xin, J.: Mechanism
- 913 for the formation of the January 2013 heavy haze pollution episode over central and eastern China,
- 914 Science China Earth Sciences, 57, 14-25, 10.1007/s11430-013-4773-4, 2013.
- 915 Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity despite declining atmospheric
- sulfate concentrations over the past 15 years, Nature Geoscience, 9, 282-285, 10.1038/ngeo2665, 2016.
- 917 Wu, J., Bei, N., Hu, B., Liu, S., Zhou, M., Wang, Q., Li, X., Liu, L., Feng, T., Liu, Z., Wang, Y., Cao, J.,
- 918 Tie, X., Wang, J., Molina, L. T., and Li, G.: Is water vapor a key player of the wintertime haze in North
- 919 China Plain?, Atmospheric Chemistry and Physics, 19, 8721-8739, 10.5194/acp-19-8721-2019, 2019.
- 920 Xu, L., Duan, F., He, K., Ma, Y., Zhu, L., Zheng, Y., Huang, T., Kimoto, T., Ma, T., Li, H., Ye, S., Yang,
- 921 S., Sun, Z., and Xu, B.: Characteristics of the secondary water-soluble ions in a typical autumn haze in
- 922 Beijing, Environ Pollut, 227, 296-305, 10.1016/j.envpol.2017.04.076, 2017.
- 923 Xu, W. Y., Zhao, C. S., Ran, L., Deng, Z. Z., Liu, P. F., Ma, N., Lin, W. L., Xu, X. B., Yan, P., He, X., Yu,
- J., Liang, W. D., and Chen, L. L.: Characteristics of pollutants and their correlation to meteorological
 conditions at a suburban site in the North China Plain, Atmospheric Chemistry and Physics, 11, 4353-
- 926 4369, 10.5194/acp-11-4353-2011, 2011.
- 927 Xue, C., Ye, C., Ma, Z., Liu, P., Zhang, Y., Zhang, C., Tang, K., Zhang, W., Zhao, X., Wang, Y., Song,
- 928 M., Liu, J., Duan, J., Qin, M., Tong, S., Ge, M., and Mu, Y.: Development of stripping coil-ion
- chromatograph method and intercomparison with CEAS and LOPAP to measure atmospheric HONO,
 The Science of the total environment, 646, 187-195, 10.1016/j.scitotenv.2018.07.244, 2019a.
- Xue, C., Ye, C., Zhang, Y., Ma, Z., Liu, P., Zhang, C., Zhao, X., Liu, J., and Mu, Y.: Development and
 application of a twin open-top chambers method to measure soil HONO emission in the North China
 Plain, Sci. Total Environ., 659, 621-631, 10.1016/j.scitotenv.2018.12.245, 2019b.
- 934 Xue, J., Griffith, S. M., Yu, X., Lau, A. K. H., and Yu, J. Z.: Effect of nitrate and sulfate relative abundance
- 935 in PM_{2.5} on liquid water content explored through half hourly observations of inorganic soluble aerosols
- 936 at a polluted receptor site, Atmospheric Environment, 99, 24-31, 10.1016/j.atmosenv.2014.09.049, 2014.
- 937 Xue, J., Yuan, Z., Griffith, S. M., Yu, X., Lau, A. K., and Yu, J. Z.: Sulfate Formation Enhanced by a
- 938 Cocktail of High NO_x, SO₂, Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities
- 939 in China: An Observation-Based Modeling Investigation, Environ Sci Technol, 50, 7325-7334,
 940 10.1021/acs.est.6b00768, 2016.
- 940 10.1021/acs.cst.0000708, 2010.
- Yang, T., Sun, Y., Zhang, W., Wang, Z., Liu, X., Fu, P., and Wang, X.: Evolutionary processes and sources
 of high-nitrate haze episodes over Beijing, Spring, J Environ Sci (China), 54, 142-151,
 10.1016/j.jes.2016.04.024, 2017.
- 944 Yang, Y. R., Liu, X. G., Qu, Y., An, J. L., Jiang, R., Zhang, Y. H., Sun, Y. L., Wu, Z. J., Zhang, F., Xu, W.
- 945 Q., and Ma, Q. X.: Characteristics and formation mechanism of continuous hazes in China: a case study
- 946 during the autumn of 2014 in the North China Plain, Atmospheric Chemistry and Physics, 15, 8165-8178,
- 947 10.5194/acp-15-8165-2015, 2015.
- 948 Ye, C., Liu, P., Ma, Z., Xue, C., Zhang, C., Zhang, Y., Liu, J., Liu, C., Sun, X., and Mu, Y.: High H₂O₂
- 949Concentrations Observed during Haze Periods during the Winter in Beijing: Importance of H_2O_2 950Oxidation in Sulfate Formation, Environmental Science & Technology Letters, 5, 757-763,
- 951 10.1021/acs.estlett.8b00579, 2018.
- 252 Zhang, H., Chen, S., Zhong, J., Zhang, S., Zhang, Y., Zhang, X., Li, Z., and Zeng, X. C.: Formation of
- 953 aqueous-phase sulfate during the haze period in China: Kinetics and atmospheric implications,
- 454 Atmospheric Environment, 177, 93-99, 10.1016/j.atmosenv.2018.01.017, 2018.

- 955 Zhang, Q., He, K. B., and Huo, H.: Cleaning China's air, Nature, 484, 161-162, 2012.
- Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W., Hu, M., and Wang, Y.:
 Formation of urban fine particulate matter, Chem Rev, 115, 3803-3855, 10.1021/acs.chemrev.5b00067,
- 958 2015.
- 259 Zhao, M., Wang, S., Tan, J., Hua, Y., Wu, D., and Hao, J.: Variation of Urban Atmospheric Ammonia
- 960 Pollution and its Relation with PM2.5 Chemical Property in Winter of Beijing, China, Aerosol and Air
- 961 Quality Research, 16, 1390-1402, 10.4209/aaqr.2015.12.0699, 2016.
- 262 Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and Kimoto,
- 963 T.: Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic
- aerosol formation during the January 2013 haze episode in North China, Atmospheric Chemistry and
 Physics, 15, 2031-2049, 10.5194/acp-15-2031-2015, 2015a.
- 966 Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T.,
- 967 Chang, D., Pöschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing: the
- 968 impact of synoptic weather, regional transport and heterogeneous reactions, Atmospheric Chemistry and
- 969 Physics, 15, 2969-2983, 10.5194/acp-15-2969-2015, 2015b.
- 970 Zhong, J., Zhang, X., Wang, Y., Wang, J., Shen, X., Zhang, H., Wang, T., Xie, Z., Liu, C., Zhang, H.,
- 971 Zhao, T., Sun, J., Fan, S., Gao, Z., Li, Y., and Wang, L.: The two-way feedback mechanism between
- 972 unfavorable meteorological conditions and cumulative aerosol pollution in various haze regions of China,
- 973 Atmospheric Chemistry and Physics, 19, 3287-3306, 10.5194/acp-19-3287-2019, 2019.