Supplementary Information

Figure S1. NO_X emission trends over China as estimated in the CMIP6 inventory (blue) and in MEIC (Multi-resolution Emission Inventory for China, yellow). The red line shows adjusted NO_X emissions used in this study.

Figure S2. Spring (MAM) and summertime (JJA) mean MDA8 O_3 over the continental U.S. during 2010-2016 from AQS observations (top panels), GFDL-AM4 simulations with original CMIP6 emissions (middle panels) and adjusted emissions over the U.S. and China as described in the text (bottom panels) Observations at AQS sites are gridded into $0.5^{\circ} \times 0.625^{\circ}$.

Figure S3. Spatial distributions of mean MDA8 O_3 during FAST-LVOS (May-June, 2017) as observed (OBS) and simulated with GFDL-AM4 (AM4) and GEOS-Chem (GC). Squares denote the AQS sites over $0.5^{\circ} \times 0.625^{\circ}$ grids and circles the CASTNet sites.

Figure S4. Scatter plots of 1-min O₃ against CO measured at Angel Peak, color-coded by specific humidity, for air masses influenced by regional pollution on June 02, June 29, and June 30.

Figure S5. Potential Vorticity at 250 hPa on April 23 and May 13 (STT days), calculated from the NCEP-FNL reanalysis data.

Figure S6. Maps of total MDA8 O₃ as observed and simulated with GFDL-AM4 and GEOS-Chem, along with AM4 stratospheric O₃ tracer and USB O₃ from the two models, during the STT events on April 23 and May 13, 2017.

Figure S7. Statistics of MDA8 O₃ at 12 low-elevation (<1000 m altitude) air quality monitoring sites in the Las Vegas Valley as observed (OBS) and simulated with GFDL-AM4 (AM4) and GEOS-Chem (GC), along with USB O₃ from the two models, and contributions from stratospheric O₃ (O₃Strat), Asian pollution (ASIA), and wildfires (FIRE) estimated with GFDL-AM4 on (a) June 11, (b) June 14, (c) June 22, (d) June 16, (e) May 24, and (f) June 28, 2017. The star markers denote the mean values during the entire FAST-LVOS period (May-June, 2017).

Figure S8. Differences in MDA8 O_3 between GFDL-AM4 FIRESFC (with all wildfire emissions placed at the surface) and BASE (a) on June 22, 2017 (wildfire event) and (b) during May-June, 2017 (FAST-LVOS). Simulations are at C192 (~50 km × 50 km) horizontal resolution.

Figure S9. Monthly MDA8 O_3 differences during August, 2012 (an active wildfire season) between (a) GFDL-AM4 FIRESFC (with all wildfire emissions placed at the surface) and BASE and (b) difference between FIRE_NOx_to_PAN (with 40% and 20% of wildfire NOx partitioned into PAN and HNO₃, respectively) and BASE case. Simulations are at C96 (~100 km × 100 km) horizontal resolution. FIRE_NOx_to_PAN simulations are only available during 2010-2016.

Figure S10. Time-height curtain plots of O_3 above NLVA as observed with TOPAZ lidar and simulated with GFDL-AM4 (~50×50 km²; interpolated from 3-hourly data) and GEOS-Chem (0.25°×0.3125°; interpolated from hourly data) during the regional pollution events on (a) June 2 and (b) June 29, 2017 (UTC). The right panels compare USB O_3 from the two models.

Figure S11. Same as Figure S6, but for June 2, June 29, and June 30.

Figure S12. Rate of ozone exceedances (blue: MDA8 $O_3 \ge 70$ ppbv; red: MDA8 $O_3 \ge 65$ ppbv) at air quality monitoring sites in Clark County (% of site-days) during April-June of 2010-2017.

Figure S13. Comparison of NAB O_3 estimates in the GFDL-AM4 model (this study) with its predecessor GFDL-AM3 (Lin et al., 2012a; Lin et al., 2017). The results are shown separately for March to June during the 2010-2014 periods for which the NAB simulations are available from both models.

Figure S14. Scatter plots of observed versus simulated daily MDA8 O₃, color-coded by AM4 stratospheric O₃ tracer (O₃Strat) at 12 WUS high-elevation sites during April-June, 2017.

Site ID	Site Name	Latitude (°)	Longitude (°)	Elevation (m)	City/State			
Clark County sites								
32-003-0601	Boulder City	35.98	-114.85	750	Boulder City, NV			
32-003-0298	Green Valley	36.05	-115.05	562	Henderson, NV			
32-003-1019	Jean	35.79	-115.36	924	Jean, NV			
32-003-0043	Paul Meyer	36.11	-115.25	736	Las Vegas, NV			
32-003-0071	Walter Johnson	36.17	-115.26	780	Las Vegas, NV			
32-003-0073	Palo Verde	36.17	-115.33	939	Las Vegas, NV			
32-003-0075	Joe Neal	36.27	-115.24	732	Las Vegas, NV			
32-003-0540	Jerome Mack	36.14	-115.08	549	Las Vegas, NV			
32-003-0022	Apex	36.39	-114.91	661	Apex, NV			
32-003-0023	Mesquite	36.81	-114.06	488	Mesquite, NV			
					North Las Vegas,			
32-003-2002	JD Smith	36.19	-115.12	569	NV			
					Indian Springs,			
32-003-7772	Indian Springs	36.57	-115.68	977	NV			
32-003-0078	Arden Peak	35.95	-115.04	1311	Henderson, NV			
32-003-7771	SM Youth Camp	36.32	-115.59	2569	Las Vegas, NV			
	High-e	levation sites (>1500 m above	sea level)				
AP	Angel Peak [*]	36.32	-115.57	2682	Las Vegas, NV			
CHA467	Chiricahua NM	32.01	-109.39	1570	AZ			
PET427	Petrified Forest	34.82	-109.89	1723	AZ			
	Grand Canyon							
GRC474	NP	36.06	-112.18	2073	AZ			
	Rocky Mountain				~ ~			
ROM406	NP	40.28	-105.55	2743	CO			
GTH161	Gothic	38.96	-106.99	2926	CO			
MEV405	Mesa Verde NP	37.20	-108.49	2165	CO			
GRB411	Great Basin NP	39.01	-114.22	2060	NV			
CAN407	Canyonlands NP	38.46	-109.82	1809	UT			
PND165	Pinedale	42.93	-109.79	2388	WY			
CNT169	Centennial	41.36	-106.24	3178	WY			
YEL408	Yellowstone NP	44.56	-110.40	2400	WY			

Table S1. Air quality monitoring sites in Clark County, NV and CASTNet sites in the western

 U.S. used in this study.

*NOAA mobile laboratory measurements

Mode	Horizontal	Vertic	Meteorological	U.S.	Biomass	Biogenic	Troposp	Stratospheri
1	resolution	al	fields	Anthropog	burning	emission	heric	c chemistry
		resolut		enic	emission	S	chemistr	
		ion		emissions	S		У	
GFD	C96 (~100	49	Chemistry-	Adjusted	FINN	MEGAN	Based on	Based on AMTRAC
L- AM4	km ×100 km) and C192		Climate model; horizontal	CMIP6 (NOx			MOZAR T-2	(Austin and Wilson, 2006: Austin
	(~50 km×50		winds (u, v) are	reduced in			(Horowitz	et al., 2013)
	km) (Global)		nudged to	the EUS;			et al.,	
			NCEP	see section			2003;	
				2.4)			Horowitz	
							et al.,	
							2007)	
GEO S- Chem	2°×2.5° (Global) and 0.25°×0.3125 ° (North America)	47	GEOS-FP	Adjusted NEI2011 (NOx reduced in the EUS; see section 2.4)	FINN	MEGAN	Tropchem	Linoz

Table S2. Model configurations of GFDL-AM4 and GEOS-Chem base simulations.

Case	Simulation period	Emissions			
GFDL-AM4					
C96_BASE	Jan 2010- Jun 2017	CMIP6 emissions but with adjusted anthropogenic NO _x emissions in China and the eastern U.S.; daily fire emissions from FINN			
C96_USB Jan 2010- Jun 2017		Same as BASE with U.S. anthropogenic emissions turned off			
C96_zeroAsia Jan 2010- Jun 2017		Same as BASE with Asian anthropogenic emissions turned off			
C96_zeroFire	Jan 2010- Jun 2017	Fire emissions turned off			
C192_BASE	Jan- Jun 2017	Same as C96_BASE			
C192_USB	Jan- Jun 2017	Same as C96_USB			
C192_zeroAsia	Jan- Jun 2017	Same as C96_zeroAsia			
C192_zeroFire	Jan- Jun 2017	Same as C96_zeroFire			
GEOS-Chem					
GC_Global 2017		NEI11 over U.S. and MIX in China but with adjusted anthropogenic NO _X emissions in China and the eastern U.S.; daily fire emissions from FINN			
GC_NA	Apr-Jun 2017	Same as GC_Global, but only for North America			
GC_USB Apr-Jun 2017 Sam turne		ame as GC_NA with U.S. anthropogenic emissions urned off			

Table S3. List of GFDL-AM4 and GEOS-Chem model simulations

Table S4. May-June mean MDA8 O_3 from observations and GFDL-AM4 simulations (C96_BASE) at 14 Clark County air quality monitoring sites from 2010 to 2017, along with modelestimated contributions from U.S. background (USB), North American Background (NAB), stratosphere-to-troposphere transport (O₃Strat), long-range transport of Asian pollution (ASIA), and wildfires (FIRE).

May-Jun	OBS	BASE	USB	NAB	O ₃ Strat	ASIA	FIRE
2010	58.2	63.2	52.6	48.9	20.5	4.7	2.3
2011	60.6	65.3	54.1	50.9	22.0	5.7	3.4
2012	64.3	65.7	55.3	51.6	20.4	4.2	2.7
2013	61.2	63.7	53.7	50.7	20.4	4.6	2.5
2014	59.2	61.8	51.5	47.4	18.4	4.3	1.4
2015	59.3	63.9	51.8	46.6	16.5	3.3	1.5
2016	56.4	60.7	48.9	44.3	14.9	3.8	1.8
2017	57.0	61.7	50.9	46.8	17.9	4.2	2.2
Mean±s.d.	59.5±2.5	63.2±1.8	52.3±2.0	48.4±2.6	18.9±2.4	4.4±0.7	2.2±0.7

References

- Austin, J., and Wilson, R. J.: Ensemble simulations of the decline and recovery of stratospheric ozone, J. Geophys. Res.-Atmos., 111, <u>https://doi.org/10.1029/2005JD006907</u>, 2006.
- Austin, J., Horowitz, L. W., Schwarzkopf, M. D., Wilson, R. J., and Levy II, H.: Stratospheric Ozone and Temperature Simulated from the Preindustrial Era to the Present Day, J. Climate, 26, 3528-3543, <u>https://doi.org/10.1175/jcli-d-12-00162.1</u>, 2013.
- Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., Tie, X., Lamarque, J.-F., Schultz, M. G., Tyndall, G. S., Orlando, J. J., and Brasseur, G. P.: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res.-Atmos., 108, <u>https://doi.org/10.1029/2002JD002853</u>, 2003.
- Horowitz, L. W., Fiore, A. M., Milly, G. P., Cohen, R. C., Perring, A., Wooldridge, P. J., Hess, P. G., Emmons, L. K., and Lamarque, J.-F.: Observational constraints on the chemistry of isoprene nitrates over the eastern United States, J. Geophys. Res.-Atmos., 112, https://doi.org/10.1029/2006JD007747, 2007.