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Abstract. We describe simulations using an updated version of the Community Multiscale Air Quality model version 5.3 15 

(CMAQ v5.3) to investigate the contribution of intermediate volatile organic compounds (IVOCs) to secondary organic 

aerosol formation (SOA) in Southern California during the CalNex study. We first derive a model-ready parameterization for 

SOA formation from IVOC emissions from mobile sources. To account for SOA formation from both diesel and gasoline 

sources, the parameterization has six lumped precursor species that account for differences in both volatility and molecular 

structure (aromatic versus aliphatic) of unspeciated IVOC emissions. We also implement new mobile source emission 20 

profiles that quantify all IVOCs based on direct measurements. The profiles have been released in SPECIATE 5.0. In the Los 

Angeles region, gasoline sources emit 4 times more non-methane organic gases (NMOG) than diesel sources, but diesel 

emits roughly 3 times more IVOCs on an absolute basis. When accounting for IVOCs, the model predicts all mobile sources 

(including on- and off-road gasoline, aircraft and on- and off-road diesel) contribute ~1 μg m-3 of SOA in Pasadena, CA, 

which corresponds to 12% of the measured SOA concentrations during CalNex. Adding mobile-source IVOCs increases the 25 

predicted SOA concentration by ~70%. Therefore, IVOCs in mobile source emissions contribute almost as much SOA as 

traditional precursors such as single-ring aromatics. However, addition of these emissions still does not close either the 

ambient SOA or IVOC mass balance. To explore the potential contribution of other IVOC sources, we perform two 

exploratory simulations with varying amounts of IVOC emissions from non-mobile sources. To close the mass balance of 

primary hydrocarbon IVOCs, IVOCs would need to account for 12% of NMOG emissions from non-mobile sources (or 30 

equivalently 30.7 Ton day-1 in Los Angeles-Pasadena region), a value that is well within the reported range of IVOC content 

from volatile chemical products. To close the SOA mass balance and explain mildly oxygenated IVOCs in Pasadena, an 

additional 14.8% of non-mobile source NMOG emissions would need to be IVOCs, but assigning an IVOC-to-NMOG ratio 
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of 26.8% (or equivalently 68.5 Ton day-1 in Los Angeles-Pasadena region) for non-mobile sources seems unrealistically 

high. By incorporating the most comprehensive mobile emissions profiles for SVOCs and IVOCs along with experimentally 35 

constrained SOA yields from mobile IVOCs, this CMAQ configuration represents the most accurate photochemical model 

prediction of the contribution of mobile sources to urban and regional ambient OA to date. Our results highlight the 

important contribution of IVOCs to SOA production in Los Angeles region, but also underscore that other uncertainties must 

be addressed (multigenerational aging, aqueous chemistry, and vapor wall losses) to close the SOA mass balance. This 

research also highlights the effectiveness of regulations to reduce mobile source emissions, which have, in turn, increased the 40 

relative importance of other sources, such as volatile chemical products. 
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1 Introduction 

Exposure to fine particulate matter (PM2.5 and PM1) has been associated with increased mortality, lung cancer and 

cardiovascular diseases (Apte et al., 2018; Di et al., 2017). Organic aerosol (OA) is a major component of ambient fine 45 

particulate matter (Jimenez et al., 2009; Zhang et al., 2015). The majority of OA, even in most urban areas, is secondary 

organic aerosol (SOA), formed from the atmospheric oxidation of gas-phase species. Over the past several decades, primary 

emissions have been greatly reduced in the United States, which has led to significant improvement in air quality, especially 

in the Los Angeles basin in California (Warneke et al., 2012; Zhang et al., 2018). However, SOA remains an important 

component of fine particulate matter, but its sources are uncertain (Ensberg et al., 2014; McDonald et al., 2018). 50 

Intermediate volatility organic compounds (IVOCs) are an important class of SOA precursors (Chan et al., 2009; Liggio et 

al., 2016; Presto et al., 2009; Zhao et al., 2014). IVOCs, for example, C12 to C17 n-alkanes and polycyclic aromatic 

hydrocarbons, are efficient SOA precursors (Chan et al., 2009; Presto et al., 2010a). In addition, chamber experiments using 

unburnt fuel and diluted exhaust have demonstrated the importance of IVOCs to SOA production from mobile source 

emissions (Gordon et al., 2014; Jathar et al., 2013; Miracolo et al., 2011; Platt et al., 2017). 55 

Despite this evidence, IVOCs are not routinely or consistently accounted for in chemical transport models. A major 

challenge has been the lack of emissions data due to a combination of sampling challenges and the fact that the vast majority 

of IVOC emissions have not been speciated on a molecular basis. In addition, chemical mechanisms (e.g. SAPRC, Carbon 

Bond, etc.) often do not explicitly account for IVOCs, instead lumping them with VOCs or non-reactive gases. Several 

recent studies report total (speciated and unspeciated) IVOC emissions from a variety of mobile sources, including on- and 60 

off-road gasoline, diesel, aircraft and vessel engines (Cross et al., 2013; Huang et al., 2018; Kroll et al., 2014; Pereira et al., 

2018; Presto et al., 2011; Wang et al., 2012; Zhao et al., 2015, 2016). In addition to measuring total emissions, recent studies 

also provide insight into the molecular structure of the IVOCs (Drozd et al., 2019; Hatch et al., 2017; Hunter et al., 2017; 

Worton et al., 2014). For example, IVOCs in diesel exhaust are primarily comprised of aliphatic compounds while IVOCs in 

gasoline exhaust are primarily aromatics with higher OH reaction rates and SOA yields. Zhao et al. (2015, 2016, 2017) used 65 

these new emissions data to explain the SOA formation in smog chamber experiments with diluted vehicle emissions. 

However, the SOA mechanism proposed by Zhao et al. (2015, 2017) includes 79 different classes of IVOCs, which is too 

computationally expensive for implementation in current operational CTM. 

Because of the high levels of both ozone and PM exposure in the Los Angeles basin over the last several decades, 

extensive ambient measurement campaigns have explored the sources of poor air quality in the region, including the CalNex 70 

campaign in 2010 (Ryerson et al., 2013). During the CalNex campaign, average OA at the Pasadena supersite was 7 μg m-3, 

of which SOA, defined as the sum of semi-volatile and low-volatile oxygenated OA (SV-OOA and LV-OOA) factors from 

AMS analysis, contributed 66% to total OA mass (Hayes et al., 2013). Zhao et al. (2014) measured the ambient IVOC 

concentration at the Pasadena site, and estimated that photo-oxidation of IVOCs contributed up to 57% of SV-OOA during 

CalNex. 75 
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A number of chemical transport model (CTM) studies have examined SOA formation in the LA basin during the 

CalNex campaign (Baker et al., 2015; Fast et al., 2014; Jathar et al., 2017; Murphy et al., 2017; Woody et al., 2016). 

However, these studies used very different assumption for IVOC emissions and their SOA yields. IVOC emissions are 

commonly estimated by applying a scaling factor to some other species (most commonly POA). These scaling factors have 

been based on little experimental data and the typically the same factor is applied to all sources. For example, Fast et al. 80 

(2014) assumed additional SOA precursor (IVOC and/or SVOC; semivolatile organic compounds) mass of 6.5 × POA and 

Woody et al. (2016) assumed 7.5 × POA based on previous estimations (Hodzic et al., 2010; Koo et al., 2014), applied to all 

emission source categories. Jathar et al. (2017) assumed mobile IVOC emission as 25% of diesel NMOG emissions and 20% 

of gasoline NMOG emissions. Finally, Baker et al. (2015) did not explicitly account for IVOCs, but increased the SOA 

yields from VOCs by a factor of four compared to the base CMAQ version. Despite these efforts, these studies still 85 

underpredicted the measured OA by a factor of 2 to 6 (Hayes et al., 2013). Murphy et al. (2017) largely closed the OA mass 

balance by defining a new lumped SOA precursor called potential combustion volatile organic compounds (pcVOC) with 

emissions equal to 9.6 × POA and an SOA yield of 1. However, all the above-mentioned models used scaling factors that are 

not based on actual emission data. They also only use a single IVOC surrogate, which does not account for differences in 

IVOC chemical composition. Lu et al. (2018) showed that a single scaling factor does not represent the magnitude of actual 90 

IVOC emissions across all mobile sources. Finally, none of these models account for the effects of differences in molecular 

structure in IVOC emissions on SOA yield. 

Mobile sources are major sources of NMOG emissions, and therefore important sources of SOA precursors in urban 

environments (Gentner et al., 2017). Historically, mobile sources have been the dominant source of NMOG in many urban 

areas, but their contribution has been reduced due to increasingly stringent emission regulations. They currently contribute 95 

32% of the anthropogenic VOC emissions nationally (and 43% in Los Angeles county) as reported in the 2014 EPA National 

Emission Inventory (NEI). In Los Angeles county, on- and off-road gasoline and diesel sources account for more than 96% 

of mobile-source emission. 

Lu et al. (2018) recently compiled mobile-source emission data, including on- and off-road gasoline, aircraft and 

diesel engines, to create updated model-ready emission profiles that include IVOCs. They found that mobile source NMOG 100 

emissions can be explained by trimodal distributions of by-product, fuel and oil modes. IVOC emissions originate from fuel 

components with ‘enrichment’ effects found in all gasoline, aircraft and diesel-source exhausts (Cross et al., 2013, 2015; 

Presto et al., 2011; Zhao et al., 2018). This applies to both low emitting heavily controlled sources (e.g. LEV-II certified 

gasoline vehicle) and uncontrolled high sources (e.g. two stroke gasoline off-road sources) (Lu et al., 2018). Therefore, in 

this work, mobile IVOC emissions are modelled and grouped based on fuel type usage. 105 

In this paper, we use an updated version of CMAQv5.3 to investigate the sources and contribution of SVOCs and 

IVOCs to SOA formation in the Los Angeles region during the CalNex campaign. We updated CMAQv5.3 with a new set of 

mobile-source NMOG and SVOC emission profiles that include 6 classes of IVOCs and a new parameterization of SOA 

formation from IVOC precursors that is suitable for implementation into a chemical transport model. The new emission 
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profiles are based on the direct measurement of IVOCs from on- and off-road mobile sources (Gordon et al., 2013; Lu et al., 110 

2018; May et al., 2014; Presto et al., 2011; Zhao et al., 2015, 2016). These profiles (100VBS to 103VBS) are now available 

in SPECATE 5.0 (US EPA, 2019). The new SOA parameterization is derived from a comprehensive parameterization that 

explains the SOA formation from dilute mobile source exhaust in smog chamber studies (Zhao et al., 2015, 2017). We 

evaluate the resulting model, now the most up-to-date representation of mobile source organic compound emissions using 

data collected during the CalNex campaign, including direct measurements of ambient IVOCs. Finally, we explore potential 115 

contribution of non-mobile sources to IVOC and OA concentrations. 

2 Parameterizing SOA formation from mobile-source IVOCs 

Mobile sources are comprised of a complex mixture of on- and off-road sources, including gasoline, aircraft and diesel 

engines. However, they are predominantly gasoline- and diesel-powered, with a small fraction of aircraft emissions. In the 

NEI 2014, gasoline sources contribute 90% mobile sources of national NMOG emissions, diesel sources contribute 8% 120 

followed by 1% from aircraft. In this work we apply the source profiles of Lu et al. (2018) to estimate the IVOC emissions 

for different mobile sources. Note that the IVOCs are normalized to NMOG emissions, which only includes the organics in 

volatility range from C* = 103 to 1011 µg m-3. Table 1 summarizes the IVOC-to-NMOG ratios for different mobile sources. 

The ratios (and associated emission profiles) vary widely depending on the underlying fuel. For gasoline, aircraft to diesel 

sources, NMOG emissions are 4.6%, 28.5% and 55.5% IVOCs, respectively. Weighting NMOG emissions by the IVOC 125 

fractions, mobile-source IVOC emissions in the Los Angeles basin are 44% from gasoline, 51% diesel and 5% aircraft. 

IVOC emissions from gasoline source include high fractions of aromatics (Drozd et al., 2019; Zhao et al., 2016). 

We developed a simplified parameterization to simulate SOA formation from IVOCs. It is derived from the model 

of Zhao et al. (2015, 2016), which explicitly accounts for 79 different classes of IVOCs. The chemistry and transport 

associated with 79 additional species in the gas and particle phase would be too computationally expensive in a CTM which 130 

normally has about 50 or less organic aerosol species. The Zhao et al. (2015, 2016) model accounts for 57 individual IVOCs 

and 22 lumped IVOCs. The 22 lumped IVOCs are comprised of unspeciated IVOCs grouped based on gas chromatography 

(GC) retention time and an assigned chemical class based on its mass spectra. This model explains the SOA formation from 

dilute exhaust of gasoline and diesel vehicles measured in chamber experiments (Zhao et al., 2015, 2017). Our simplified 

SOA parameterization accounts for the key differences in chemical composition of the IVOC emissions from different 135 

mobile sources. This is important because the composition of the IVOC emissions varies by source class (e.g. gasoline 

versus diesel) and SOA yield depends on both molecular weight (volatility) and chemical structure (aromatics versus 

alkanes) (Chan et al., 2009; Jathar et al., 2013; Lim and Ziemann, 2005, 2009; Presto et al., 2010a). For example, diesels 

emit more lower volatility IVOCs than gasoline engines, but diesel IVOC emissions are mainly comprised of aliphatic 

compounds versus aromatics for gasoline. These differences matter because, for a given chemical class, SOA yields 140 

generally increase with increasing molecular weight, which increases the effective SOA yield of diesel exhaust relative to 
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gasoline exhaust. However, for a given carbon number, the SOA yield for hydrocarbon IVOCs generally follows aromatics > 

cyclic > linear > branched alkanes (Lim and Ziemann, 2009; Tkacik et al., 2012), thus gasoline IVOC yields increase when 

their structure is considered. Finally, aromatic IVOCs have higher OH reaction rates than alkanes (Chan et al., 2009; Zhao et 

al., 2017). 145 

To illustrate the challenge, Figure 1 plots the SOA yield (expressed as SOA mass divided by mass of precursor) as a 

function of volatility for the 79 different IVOCs in the model of Zhao et al. (2015, 2016) at a typical atmospheric OA 

concentration of 10 μg m-3. This model likely provides a conservative estimate for SOA yields of lower volatility IVOCs, as 

C18-22 n-alkanes are assumed to have the same SOA yields as C17 n-alkanes. The scatter in the data highlights the complex 

relationship between molecular structure and SOA yield. 150 

Our goal is to derive a semi-empirical SOA parameterization with the minimum number of surrogate species that 

reproduces the mechanism of Zhao et al. (2015, 2016). The simplified parameterization must account for the differences in 

SOA formation from IVOC emissions from different mobile source categories (gasoline, diesel and aircraft). We developed 

the simplified parameterization using the volatility basis set (VBS) framework of Donahue et al. (2006) following the 

approach of Presto et al. (2010b). Briefly, to simulate SOA formation, each lumped IVOC group reacts with OH to form a 155 

set of semi-volatile products in Eq. (1): 

𝐼𝑉𝑂𝐶𝑖 + 𝑂𝐻 →  𝛼𝑖,1𝑃𝐶∗ =0.1 + 𝛼𝑖,2𝑃𝐶∗ =1 + 𝛼𝑖,3𝑃𝐶∗ =10 + 𝛼𝑖,4𝑃𝐶∗ =100  for group i = 1 to 6    (1) 

where 𝛼𝑖,1 to 𝛼𝑖,4 are mass-based stoichiometric coefficients distributing the reaction products across a second volatility basis 

set from 0.1 to 100 ug/m3 (Presto 2010b). For each lumped IVOC species there are 5 unknowns: four stoichiometric 

coefficients (𝛼𝑖,1 to 𝛼𝑖,4) and the OH reaction rate kOH, i. These coefficients and reaction rates are derived by fitting the 160 

mechanism of Zhao et al. (2015, 2016). All SOA parameters are set at fixed temperature of 298 K. Details of the fitting 

procedure are in the SI. 

We initially tried using four lumped-IVOC-species distributed across the volatility basis set (C* = 103 to 106 ug/m3) 

to account for the influence of precursor volatility (molecular size) on SOA yield. However, that model poorly reproduced 

the SOA formation from gasoline vehicle emissions, especially at shorter time scales (Figure S1). The problem is that IVOCs 165 

in diesel exhaust are dominated by aliphatic compounds while IVOCs in gasoline exhaust are dominated by aromatics 

(Drozd et al., 2019; Zhao et al., 2016); as previously discussed, aromatics compounds have different OH reaction rates and 

SOA yields (Figure 1) (Lim and Ziemann, 2009; Tkacik et al., 2012). 

We therefore defined two additional lumped IVOC species with C* = 105 and 106 µg m-3 to account for the aromatic 

IVOCs in engine exhaust (Table 1). Mobile-source IVOC emissions in the lower volatility bins of C* = 103 and 104 µg m-3 170 

are primarily alkanes from unburnt fuel or lubricant oil (Lu et al., 2018; Worton et al., 2014); we therefore only include one 

lumped aliphatic IVOC species in each of those bins.  

To illustrate the performance of the new parameterization, Figure 2 (a) compares the predicted SOA using our six-

IVOC-group parameterization to the original mechanism of Zhao et al. (2015, 2016). It shows that the two models agree with 

an absolute error less than 0.01 for all mobile sources at OA = 5 µg m-3. Across a wide range of atmospherically relevant 175 
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concentrations (OA = 1 to 50 µg m-3), Figure 2(b) shows that the relative error is less than 6% between our new 

parameterization and the original mechanisms of Zhao et al. (2015, 2016). The new parameterization captures the fact that 

gasoline IVOC emissions are mostly aromatics (Drozd et al., 2019; Zhao et al., 2016) and therefore have higher SOA 

production in the first 10 hours compared to aircraft and diesel IVOC emissions. It also predicts that diesel IVOC emissions 

have the overall highest SOA yield due to their lower volatility compounds (Lu et al., 2018; Zhao et al., 2015). 180 

Table 2 lists the set of kOH and αi for the simplified six-IVOC-group parameterization for mobile source emissions. 

Molecular weights (MW) are determined as the average MW of n-alkanes or speciated aromatics in each volatility bin. 

Enthalpy of vaporization (Hvap) are determined using the fitted parameterization in Ranjan et al. (2012). In this work, we 

implement this six-lumped-IVOC-group parameterization to model IVOC SOA formation in CMAQ v5.3. 

3 CMAQ model configuration 185 

To evaluate contribution of mobile source IVOC emissions to ambient SOA, we implement our new six-IVOC-group SOA 

parameterization and emissions profiles into CMAQ v5.3. We used the model to simulate the air quality in California from 1 

May to 30 June 2010, which includes the entire CalNex campaign (May and July 2010). Except as noted below, the 

simulations described here have essentially the same modelling domain and input parameters as the previous modelling 

studies on CalNex (Baker et al., 2015; Murphy et al., 2017; Woody et al., 2016). 190 

3.1 Model configuration 

The model domain covered California and Nevada with a 4 km (325×225) grid resolution, with 35 vertical layers. The input 

meteorology and NEI emission inventory are similar to those used by Baker et al. (2015), Woody et al. (2016) and Murphy 

et al. (2017) and are remade in this work and Qin et al. (2019). Meteorological inputs were generated using the Weather 

Research and Forecasting Model (WRF) Advanced Research WRF core version 3.8.1 (Skamarock et al., 2008) with one 195 

additional model layer at the surface compared to previous studies (i.e. the lowest layer of approximately 40 m depth has 

been split into two 20 m deep layers to better resolve surface gradients). The emissions inputs are based on the 2011 NEI 

version 2 with mobile, wildfire, and electric generating point source emissions calculated for 2010. Mobile on-road and non-

road emissions are calculated by MOVES 2014a. Biogenic emissions are calculated online with BEISv3.61 and improved 

land use cover from BELD4 (Bash et al., 2016). Sea-spray aerosols are calculated online and incorporate dynamic prediction 200 

of particle population size and standard deviation. Wind-blown dust emissions are neglected and should not impact 

comparisons with the data collected by the AMS, which detects non-refractory particulate compounds. Gas-phase chemistry 

is simulated with the SAPRC07T chemical mechanism (Carter, 2010; Hutzell et al., 2012; Xie et al., 2013). Aerosols are 

simulated using the Aero-7 module (CMAQ-AE7) with monoterpene photo-oxidation updates (Xu et al., 2018) and organic 

water uptake (Pye et al., 2017). Boundary conditions were generated from a 12 km continental U.S. simulation of April-June 205 

2010. We use the first 14 days of the simulation as a spin-up to minimize the influence of initial conditions. 
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3.2 POA emissions 

Semi-volatile POA includes both SVOC and lower volatility organics in the comprehensive organic emission profiles (Lu et 

al., 2018). In CMAQ v5.3, the volatility profile of Robinson et al. (2007) is used to represent all combustion sources. Here, 

we update the volatility distribution for mobile POA using the new mobile emission profiles in Lu et al. (2018). The profiles 210 

(8873VBS, 8992VBS to 8996VBS) are also available in SPECIATE 5.0 (US EPA, 2019). For non-mobile combustion 

sources, we use the biomass burning POA volatility distribution from May et al. (2013b) for wood-burning sources, cooking 

OA volatility distribution as in Woody et al. (2016) for cooking sources, and diesel POA volatility distribution from May et 

al. (2013a) as a surrogate for other combustion sources. Table 3 summarizes the volatility distributions and scaling factors 

used in this work. The POA emissions were the same in all model runs. 215 

A challenge is that most existing POA emission factors used to inform inventories such as NEI are based on filter 

measurements, which do not quantitatively collect all SVOCs. For example, filters collect only a portion of SVOC vapors. 

Estimating this error is complex because there are competing biases. First, source testing is often performed at low levels of 

dilution which creates high concentrations (relative to the more dilute atmosphere) that shifts gas-particle partitioning of 

SVOCs to the particle phase. In these situations, filters collect a larger fraction of SVOCs than more dilute conditions (of 220 

course, at high enough concentrations, filters will also collect some IVOC vapors). Second, during mobile source testing, 

filters are commonly collected at elevated temperatures (e.g. 47 ºC) to avoid water condensation, which shifts gas-particle 

partitioning towards the gas phase, reducing the fraction of SVOCs collected by a filter. Finally, filters collect some vapors 

as sampling artifacts, which depends on many factors, including filter material, filter face velocity, and filter pre-treatment 

(Subramanian et al., 2004). Therefore, the fraction of SVOCs collected by filters depends on these competing effects, which 225 

are difficult to quantify. As expected, data from Zhao et al. (2015, 2016) and Lu et al. (2018) indicate that the fraction of 

SVOC collected depends on the OA concentration inside the sampling system. 

To estimate the potential SVOC vapors in the filter-based POA emission factor measurements, we compared the 

mass of lower volatility organics (SVOC + LVOC + NV) collected on filters and Tenax tubes versus the mass collected on 

filters (regular POA measurement) (Lu et al., 2018). Although results for all fuel types indicated an SVOC filter artifact 230 

correction factor greater than 1 should be applied, the diesel and gas-turbine tests were within 10% of unity, which is within 

experimental uncertainty. Therefore, we did not add any SVOC mass to these emissions. For gasoline sources with generally 

lower emissions (and therefore gas-particle partitioning shifted more to the vapor phase), the data indicate an average bias of 

40%, which means that lower volatility organics were only partially collected by the filter. We therefore applied a filter 

artifact correction factor of 1.4 to gasoline POA emissions, as shown in Table 3. 235 

The POA model, similar to the 1.5-VBS of Koo et al. (2014) contains five pairs of SVOC vapor/particle species, 

with O:C increasing slightly with decreasing volatility. POA emissions are then distributed into these species and are 

susceptible to multigenerational aging, as described in Murphy et al. (2017). Briefly, the approach predicts the reaction of 

SVOCs with hydroxyl radical and distributes the product mass to a second set of five vapor-particle pairs at moderate O:C 
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values. The stoichiometric ratios applied to the product mass were derived to match the SOA enhancement predicted by a 240 

full 2D-VBS simulation of the simultaneous functionalization and fragmentation of SVOCs. No changes were made to the 

chemical properties (e.g. carbon number, O:C, etc.) or reaction stoichiometry from Murphy et al. (2017). 

3.3 IVOC emissions 

The main difference from previous implementations of CMAQ to simulate the CalNex campaign (Baker et al., 2015; 

Murphy et al., 2017; Woody et al., 2016) is the new mobile IVOC emission data and the application of the six-IVOC-species 245 

SOA parameterization. Mobile sources contribute more than 40% of anthropogenic NMOG emissions in the South Coast Air 

Basin in the CalNex emission inventory (Baker et al., 2015). Given the consistency of the speciation and IVOC-to-NMOG 

ratio for sources using same type of fuel (Lu et al., 2018), we assign base mobile emission source profiles based on fuel type 

(gasoline, diesel, or jet fuel). NMOG emissions from all on- and off-road gasoline sources are represented using the same 

average gasoline exhaust profile. NMOG emissions from all on-road, off-road diesel sources and rail are represented using 250 

the same average diesel exhaust profile. NMOG emissions for all jet-fuelled sources are represented using the same gas-

turbine exhaust profile (Lu et al., 2018). The IVOC components of these profiles are summarized in Table 1 and complete 

profiles are given in SPECIATE 5.0 (US EPA, 2019). Total IVOC emissions are determined using the IVOC-to-NMOG 

ratios, which are more consistent across source types than IVOC-to-POA ratios (Lu et al., 2018). 

For this work IVOC emissions are added to existing NMOG emissions. This was done to keep the VOC emissions 255 

constant in order to isolate the contribution of IVOCs to SOA. However, Lu et al. (2018) argues that existing NMOG 

inventories largely include IVOCs, just that they are misattributed to VOCs. Therefore, we should have proportionally 

reduced the VOC emissions to keep the overall NMOG emissions (VOC + IVOC) constant. Not changing the VOCs 

emissions minimally effects the OA model evaluation, because total traditional anthropogenic VOCs only contribute 0.2 µg 

m-3 SOA at Pasadena during the CalNex campaign (Baker et al., 2015). The SVOC products of IVOC oxidation that can then 260 

form SOA are also susceptible to aging and are treated here with the same mechanism as the oxygenated SVOCs from POA 

aging. In this way, fragmentation and functionalization are accounted for, albeit with uncertainty. Because IVOC products 

are expected to have lower carbon numbers than products of primary SVOC oxidation, our approach here may represent an 

upper bound on the potential for IVOC SOA aging to further enhance particle mass. 

3.4 Simulation cases 265 

To systematically explore the effect of adding IVOC emissions from mobile and non-mobile sectors, we performed four 

simulation cases, summarized in Table 4. All cases use the same emission inputs described earlier, and POA emissions are 

modelled with the new volatility distributions and filter artifact correction factors as described in Section 3.3. Table 4 shows 

the difference in total anthropogenic POA emission before and after assigning the filter artifact correction factor of 1.4 on 

gasoline POA emissions. The base case (Case 1) assumes mobile SOA are only formed through the oxidation of traditional 270 

VOC emissions and SVOCs from combustion POA evaporation. 
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Figure 3(a) compares the anthropogenic NMOG emissions in the Los Angeles Basin region (geographical boundaries are 

defined by simulation grid cells shown in Figure S2). In the base case (Case 1), mobile sources contribute 43% of 

anthropogenic NMOG emissions, of which gasoline sources contribute 35%, diesel sources contribute 8% and aircraft less 

than 1%. Non-mobile sources contribute the rest of 57% anthropogenic NMOG emissions, of which VCP usage contributes 275 

39%, followed by 17% from other sources. There are negligible cooking and biomass burning NMOG emissions during 

CalNex (1.5%). 

We then incrementally add mobile IVOC emissions to the model. Table 4 shows that Case 2 adds on average 27.6 Ton/day 

mobile source IVOC emissions. The difference between (2) and (1) is the SOA contribution from mobile emitted IVOCs. 

In Case 3 and 4, we then incrementally add IVOC emissions from non-mobile to explore the contribution of non-mobile 280 

sources of IVOCs as discussed in Section 4.2. 

4 CMAQ simulation results 

To evaluate the updated model performance, we compared model predictions to measured data from the CalNex campaign at 

Pasadena, CA, as well as the organic carbon (OC) measured at the Chemical Speciation Network (CSN) sites in California. 

The CalNex campaign characterized atmospheric composition at two sites in southern California, Pasadena, and Bakersfield, 285 

from 15 May to 29 June 2010 (Ryerson et al., 2013). We focus on the Pasadena site, which is located 18 km northeast and 

generally downwind of downtown Los Angeles, in particular because there were direct measurements of IVOCs (Zhao et al., 

2014). We also evaluate model predictions at the Pasadena site for OA, BC, CO, speciated VOCs and Planetary Boundary 

Layer (PBL) height. 

4.1 Base case and mobile IVOC case 290 

4.1.1 IVOC mass concentrations 

Figure 3(b) compares the model-predicted and measured campaign-average IVOC mass concentration at the Pasadena site. 

Zhao et al. (2014) reported data for two classes of IVOCs differentiated based on mass spectral signature: hydrocarbon 

IVOCs and mildly oxygenated IVOCs. Zhao et al. (2014) attributes hydrocarbon IVOCs to primary emissions; the mildly 

oxygenated IVOC could either be primary emissions or formed via atmospheric oxidation. The CalNex campaign-averaged 295 

measured hydrocarbon IVOCs at the Pasadena site was 6.3 µg m-3; the measured mildly oxygenated IVOC concentration 

was 4.2 µg m-3. 

The base case predicts essentially no IVOC concentration as they are not explicitly included in the model (though 

could be implicitly included in the mass of some VOC species). Case 2 (mobile IVOC case) only predicts 2.4 µg m-3 of 

IVOCs at the Pasadena site, which corresponds to 38% of measured hydrocarbon IVOCs. This indicates that mobile 300 

emissions are an important source of IVOCs in the LA region, but more than half of the hydrocarbon IVOCs measured in 
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Pasadena are likely from non-mobile sources. In addition to hydrocarbon IVOCs, Zhao et al. (2014) measured 4.2 ug m-3 of 

mildly oxygenated IVOCs, which are also not explained by mobile-source emissions. 

While the comparison in Figure 3b suggests that there are other (non-mobile) important sources of IVOC, there are 

a number of uncertainties present in this estimate, including (1) uncertainty in mobile source activity, (2) uncertainty in 305 

mobile source NMOG emission factors, and (3) uncertainty in IVOC-to-NMOG emission ratios. 

The first potential uncertainty is mobile-source activities: BC and CO are commonly used as indicators of gasoline 

and diesel sources activity. The mobile-source CO emission inventory in LA basin during CalNex is correctly modelled 

(Kim et al., 2016). The model performs well for CO, but BC concentrations are overestimated by a factor of 2 (Figure S3). 

These comparisons suggest that gasoline activity (the major of source of CO) is modelled correctly, with over-estimation in 310 

diesel activity or the diesel BC emission factor (the major source of BC). The second type of potential uncertainty is from 

mobile-source NMOG emission factors. May et al. (2014) suggest that EMFAC emission factors (which are used to create 

the mobile source emission inventory for these simulations) are robust, except for LEV-2 vehicles. During the 2010 CalNex 

period, MOVES 2014 (USEPA, 2014) estimates LEV-2 vehicles (considering model year after 2004) only emit 9% of total 

gasoline NMOG emissions in California and therefore are not major contributors in mobile emissions. The final potential 315 

explanation for uncertainty is the IVOC-to-NMOG ratios. Zhao et al. (2016) and Lu et al. (2018) show that IVOC-to-NMOG 

ratios of cold-start UC (unified cycle) emissions from gasoline sources are consistent across a large number of vehicles 

spanning a range of emission certification standards. Although gasoline vehicle hot-running IVOC emissions are enriched by 

as much as a factor of 4 compared to the cold-start UC cycle (Lu et al., 2018; Zhao et al., 2016), EMFAC2017 estimates that 

running exhaust only contributes 34% of total gasoline summertime NMOG emissions in CA state-wide in 2010. A simple 320 

weighted average of 66% emission using cold-start UC emission profile and 34% of emission using hot-running emission 

profile increases the IVOC-to-NMOG fraction by a factor of 2, from 4.5% to 9.1%. The IVOC-to-NMOG ratio for diesel 

sources is already high (55%) and thus it cannot be increased as much as the gasoline emissions (less than a factor of 2). 

Therefore, the largest uncertainty in modelled mobile IVOCs is the modelled gasoline source IVOC-to-NMOG ratio, which 

could be underestimated by as much as a factor of two. This means that the overall uncertainty in modelled mobile IVOC 325 

emissions is less than a factor of 2. This would improve the hydrocarbon IVOCs prediction, but it seems likely that 

uncertainties are not large enough to close the ambient IVOC mass balance. 

Jathar et al. (2017) also updated CMAQ with mobile-source IVOC emissions estimates. They assumed that IVOCs 

contribute 25% and 20% of the NMOG emissions from gasoline and diesel source, respectively. However, these ratios are 

not based on direct measurements, but instead inferred from SOA closure studies for chamber experiments. The model of 330 

Jathar et al. (2017) predicted mobile sources contribute 3.9 μg m-3 of IVOCs, which is about factor of 1.5 higher than the 

IVOC concentrations predicted here and explained 65% of measured ambient hydrocarbon IVOC concentrations. The better 

closure is due the very high IVOC-to-NMOG ratio assumed for gasoline vehicles, which is not supported by direct 

measurements (Drozd et al., 2019; Zhao et al., 2016). 
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4.1.2 Primary VOC/IVOC diurnal patterns 335 

Figure 4 compares the measured and modelled campaign-average diurnal patterns of important anthropogenic VOCs 

(benzene, toluene, m-/p-/o- xylenes) and hydrocarbon IVOCs. Measured concentrations of benzene, toluene and 

hydrocarbon IVOCs are highest in the early afternoon (12pm - 2pm, in Figure 4 a, b and d). This has been attributed to the 

transport of morning emissions from downtown Los Angeles to Pasadena (Borbon et al., 2013). Measured xylene 

concentrations show a slight decrease in daytime, which is attributed to their relatively high OH reaction rate and thus faster 340 

oxidation during the daytime (de Gouw et al., 2018). 

Figure 4 indicates that the model is able to reproduce the measured benzene diurnal pattern while failing to 

reproduce the toluene, xylene and hydrocarbon IVOC diurnal patterns. Figure 4 (b and c) shows that during night-time the 

model overpredicts toluene and xylene concentrations by a factor of 2 and 1.4, respectively. Modelled hydrocarbon IVOCs 

mass concentration (Case 2) are underestimated throughout the day (Figure 4d and Figure 3b). 345 

Figure 4 also indicates that concentrations of all modelled species peak at around 6 AM and steadily decrease from 

6 AM to 4 PM, in contrast to the early-afternoon peaks (12 PM to 2 PM) in measured data. A potential explanation is that the 

model is incorrectly simulating the PBL height. On average, the measured PBL height ranges from ~200 m at night to ~900 

m at noon, while modelled PBL height ranges from ~60 m at night and up to 1500 m at noon (Figure S4). Therefore, the 

model likely overestimates the PBL dilution in Pasadena, which impacts concentrations of all species, and contributes to the 350 

poor diurnal pattern model performance shown in Figure 4. 

4.1.3 OA mass concentration and SOA/POA diurnal patterns 

Figure 5(a) plots the AMS-measured (black line) and CMAQ-modelled (color lines) hourly-averaged PM1-OA time series in 

Pasadena site during CalNex. We consider the Pearson’s correlation coefficient (r) and root-mean-square error (RMSE) as 

the evaluation metrics between measured and model OA time series. The definitions of r and RMSE are shown in Eq. (2) 355 

and (3): 

r =
Cov (𝑂𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 , 𝑂𝐴𝑚𝑜𝑑𝑒𝑙)

Var(𝑂𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) Var(𝑂𝐴𝑚𝑜𝑑𝑒𝑙)
           (2) 

RMSE =  √
∑ (𝑂𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑂𝐴𝑚𝑜𝑑𝑒𝑙)2𝑁

𝑖=1

𝑁
         (3) 

Our base model (Case 1) significantly underpredicts the OA concentration, often by more than a factor of 3, over the entire 

time period. Case 1 prediction has a large RMSE = 5.3 μg m-3, which is comparable to the average measured OA (6.9 μg m-360 

3), and moderate positive correlation (r = 0.69). 

Figures 5(b) and (c) compare the modelled average diurnal patterns for SOA and POA (lines) to AMS-measured 

(boxplots) OOA (SV-OOA + LV-OOA) and (HOA + COA) factors (Hayes et al., 2013). The measured OOA factor in Figure 

6(b) has a strong peak in the early afternoon, similar to the OH radical concentration (de Gouw et al., 2018) and photo-

chemical age (Hayes et al., 2015). 365 
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Figure 5(b) shows that Case 1 produces very little SOA from VOCs, similar to previous simulations with the base 

version of CMAQ (Baker et al., 2015; Woody et al., 2016). In Case 1, the modelled peak SOA concentration is 1.65 µg m-3 

at the Pasadena site, which is 5 times lower than the AMS-measured value (8.63 µg m-3). Both modelled LV-OOA and SV-

OOA are much lower than AMS-measured factors. 

Figure 2 indicates that IVOC emissions contribute greatly to SOA formation, especially the day-time SOA peak 370 

concentration due to their high SOA yield and OH reaction rates. In Case 2, the addition of mobile IVOC emissions 

increases peak SOA concentration by 60%, from 1.65 to 2.75 µg m-3 and daytime SOA enhancement (SOA peak – SOA night) 

by 110% from 0.82 to 1.73 µg m-3. The increase in SOA at night from IVOC oxidation was about a factor of 4 smaller than 

the daytime enhancement, therefore, IVOC emissions contribute more daytime SOA enhancement than night-time SOA 

(background). Adding mobile-source IVOC improves model performance, but Case 2 still only explained 32% of AMS-375 

measured daytime peak SOA. 

Figure 5(c) shows that the model predicts POA average concentrations (modelled: 1.73 µg m-3 vs measured: 2.01 

µg m-3) and diurnal patterns well, with the filter artifact corrected POA emissions (1.4 × POA) from gasoline sources and 

updated POA volatility distributions for other mobile and non-mobile sources (Table 3). This indicates that the POA 

volatility distributions and primary emissions are representative. 380 

To summarize, Case 2 (mobile IVOC) moderately improves the model predictions of hydrocarbon IVOC and SOA 

concentrations, but does not close the mass balance for hydrocarbon IVOCs or SOA. In the next section, we explore the 

potential contribution of IVOC emissions from non-mobile sources (McDonald et al., 2018). 

4.2 Non-mobile IVOC cases 

4.2.1 IVOC mass concentrations and diurnal pattern 385 

Motivated by recent work on volatile chemical products (VCPs) (Khare and Gentner, 2018; McDonald et al., 2018), we also 

investigated potential IVOC emission from non-mobile source. For example, McDonald et al. (2018) estimated that 19.6% of 

total gas-phase VCP emissions are IVOCs. Khare and Gentner (2018) reported IVOC content range from 0 to 95% in 12 

commercially available VCPs. However, many of these IVOCs are heavily oxygenated. 

Figure 3(b) shows that the total campaign-average measured IVOC concentrations were 10.5 μg m-3 (6.3 μg m-3 of 390 

hydrocarbon IVOCs and 4.2 μg m-3 mildly oxygenated IVOCs) (Zhao et al., 2014). This is a lower bound estimate of 

ambient oxygenated IVOCs, because oxygenated species only partially eluted from the GC column used for the analysis 

(Zhao et al., 2014). The source of these oxygenated IVOCs is unknown; they could be from primary emissions (e.g. VCPs) 

and/or secondary production of VOC/IVOC oxidation. 

Cases 3 and 4 explore different levels of IVOC emission for non-mobile sources. The IVOC-to-NMOG ratios are 395 

not based on independent laboratory data, but are set to close the gap between modelled and measured hydrocarbon IVOC 

concentration and SOA concentration at Pasadena, CA (Hayes et al., 2013; Zhao et al., 2014). Since there are limited data on 
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non-mobile IVOC emissions, they are assumed to have the same properties as alkane-like IVOCs (IVOCP6-ALK to 

IVOCP3-ALK) with a uniform volatility distribution. Table 4 shows that Case 3 and 4 adds an average 30.7 and 68.5 Ton 

per day non-mobile IVOC emissions scaled from NMOG emissions as described in Section 3.4. 400 

For Case 3 (Low nonmobile-IVOC) we added non-mobile IVOC emissions equivalent to 12% non-mobile NMOG emission. 

The scaling coefficient is determined to roughly match the campaign-average hydrocarbon IVOC mass concentrations 

measured in Pasadena, CA (Zhao et al., 2014). The only difference between Cases 2 and 3 are additional non-mobile 

hydrocarbon IVOC emissions. 

The high nonmobile-IVOC case (Case 4) adds non-mobile IVOC emissions equivalent to 26.8% of non-mobile NMOG 405 

emissions. This value was chosen to roughly close the mildly-oxygenated IVOC and SOA mass balance. It is obviously a 

very high estimate, but only somewhat higher than the 20% estimates of total VCP emissions in McDonald et al. (2018). The 

difference between cases (4) and (3) is more additional non-mobile IVOC emissions equivalent to 14.8% of NMOG. 

Figure 3(b) shows in Case 3, the model predicts 4.9 µg m-3 of nonmobile hydrocarbon IVOC and 7.3 µg m-3 of total 

hydrocarbon IVOC, which is only somewhat higher than the measured value (6.3 µg m-3). Case 4 predicts additional 6.3 µg 410 

m-3 of oxygenated IVOC from non-mobile sources and 13.6 µg m-3 total IVOC (hydrocarbon + oxygenated), which exceeds 

the measured total IVOC (10.5 µg m-3) by 30%. Given this overprediction and the fact that mildly-oxygenated IVOCs can 

also be formed through secondary chemistry, the IVOC-to-NMOG ratio for non-mobile sources needs to be between Case 3 

(12%) and Case 4 (26.8%). In addition, recent research suggests that a factor of 3 scale-up is needed for VCP NMOG 

emissions, which would drive down the IVOC-to-NMOG ratios to 4 - 9% (McDonald et al., 2018). 415 

4.2.2 OA time series and SOA/POA diurnal patterns 

Adding non-mobile IVOC emissions, Cases 3 and 4 increased the afternoon peak SOA concentration to 4.98 and 8.56 µg 

m-3, respectively. This highlights the potential important contribution of non-mobile emissions to SOA formation. Figure 

5(a) also shows that in Case 4, modelled OA time series explains the measured SOA (RMSE = 2.5 μg m-3, r = 0.85), 

including the peak values in the middle of the days. Since higher IVOC emissions also shifts the gas-particle partition 420 

equilibrium to the particle phase (Donahue et al., 2006), there are also minor differences in POA partitioning from Case 1 to 

Case 4, but these changes are relatively small and the measured and modelled POA agree (Figure 5c). 

Non-mobile IVOC emissions also improve the modelled predictions of SOA contribution to OA in Pasadena. Hayes 

et al. (2013) reported 66% of OA as OOA (SV-OOA + LV-OOA) in Pasadena during CalNex campaign. Hersey et al. (2011) 

reported an even higher fraction of 77% OA as OOA in Pasadena in 2009. As a comparison, if no IVOCs are modelled, Case 425 

1 only predicted 47%. With additional mobile and non-mobile IVOC emissions, our model predicts 67% OA as SOA in Case 

3, and 74% in Case 4. 

Although Case 4 reproduces the measured OA, increasing the IVOC emissions are likely not the only explanation. 

The assumption of Case 4 that non-mobile IVOC emission rate as 26.8% NMOG is likely too high, and it overpredicts the 

total IVOC concentrations. Other explanations that could improve SOA prediction includes (1) effect of vapor wall loss on 430 
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SOA yield, (2) PBL modelling and (3) SOA aging. First, SOA yields for VOCs and IVOCs need to be corrected (typically 

increased) for vapor wall-losses (Akherati et al., 2018; Zhang et al., 2014). Second, CMAQ likely overpredicts the afternoon 

PBL height in Pasadena, as discussed in section 4.1. Correcting this issue will reduce the amount of IVOC emissions needed 

to reach SOA mass closure. Finally, the effects of aging on secondary products of SOA precursor oxidation is uncertain. We 

have represented this phenomenon with model parameters designed for aging of SVOC emissions (Murphy et al., 2017), but 435 

the ratio of functionalization versus fragmentation could be different for products of IVOC oxidation due to differences in 

carbon number and functionality. 

Despite all of the uncertainties, the exploratory simulations (Cases 3 and 4) indicate non-mobile IVOC emissions 

are likely an important source of SOA precursors, but its contributions should be between Case 3 and 4 (12% and 26.8% of 

non-mobile NMOG). The lower value will close the hydrocarbon IVOC but not the SOA mass balance, which are influenced 440 

by other factors such as biased yields due to wall losses. Again, the likely underrepresentation of VCP emissions (McDonald 

et al., 2018) in current inventories will drive down the needed non-mobile IVOC emissions to be 4% to 9% of NMOG 

emissions. 

4.3 IVOCs and regional SOA formation 

IVOCs also contribute to regional SOA formation. This is shown in Figure 6 (a, b), which presents maps of campaign-445 

average NMOG emission and modelled SOA concentration in California. Primary emissions are concentrated in heavily 

populated urban areas such as Los Angeles. However, due to the regional transport of SOA precursors, especially IVOCs, 

Figure 6(b) shows the predicted SOA is spread over a much large spatial domain. This is expected given the SOA production 

depends on atmospheric oxidation. 

To examine the spatial performance of the model, we also compared our model-predictions of regional OA using 450 

the CSN data at seven sites in California. Figure 6(c) shows the location of the CSN sites. Three of the sites are in southern 

California (LA, Riverside and El Cajon) while the others are central or northern California. Figure 6(d) shows the 

comparison between modelled OA and CSN data (OC*1.8) for all seven sites from Case 1 to Case 4. Table 5 summarizes the 

evaluation metrics for all cases in site-aggregated comparisons. 

Case 1 grossly underestimated OA at all sites except for Sacramento, with an fractional bias (FB,
1

𝑁
∑

𝑃−𝑀
𝑃+𝑀

2

𝑁
𝑖=1 , P is 455 

the predicted value, M is the measured value, and N is the sample size) of -0.59 and fractional error (FE, 
1

𝑁
∑

|𝑃−𝑀|
𝑃+𝑀

2

𝑁
𝑖=1 ) of 

0.67, of which much of the measured OA are SOA (Docherty et al., 2008; Hayes et al., 2013). Case 2 and Case 3 reduce the 

fractional bias to -0.52 and -0.33, respectively, and the Fractional Error to 0.62 to 0.49. Figure 6(d) shows that Case 3 best 

predicts OA concentrations across the southern California sites, but underpredicts other sites such as Fresno, San Jose and 

Bakersfield. Case 4 overpredicts the OA concentrations at the southern California CSN sites like LA, Riverside and El 460 
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Cajon, but still underpredicts OA in Bakersfield, San Jose and Fresno. however, this case has the best overall metrics (FB = -

0.10 and FE = 0.42). 

Figure 6(b) shows that from Case 1 to Case 4, the amount of SOA formed from additional IVOC emissions is much less in 

northern and central California compared to southern California. This could be due to the different meteorological conditions 

or sources variations. Case 3 and Case 4 were estimated to roughly explain the measured hydrocarbon IVOC and SOA 465 

concentration in Pasadena, but source-specific IVOC-to-NMOG fractions are needed to correctly model the non-mobile 

emissions spatially. 

5 Conclusions 

This paper presents both the use of new mobile-source emission volatility profiles and a new SOA parameterization for 

mobile source IVOCs implementation in CTMs. The study then quantifies the effect of IVOC emissions from mobile and 470 

non-mobile anthropogenic sources to the IVOC ambient concentration and SOA formation in California during the CalNex 

campaign. Our approach may be applied to other sectors of organic combustion in the future, such as wildfires, agricultural 

fires, and meat cooking. The main findings are: 

(1) We developed a new parameterization to model SOA formation from mobile source IVOC emissions. This required 

six lumped SOA precursor species to account for the differences in both volatility and chemical composition across 475 

mobile sources IVOC emissions. The lumped species were distributed in both volatility and chemical space. Two of 

the species are modelled using aromatic surrogates and the other four with aliphatic surrogates. New IVOC species 

and related profiles are available in SPECIATE 5.0 to facilitate their use in other CTM studies. 

(2) We implemented comprehensive mobile IVOC emission profiles based on direct measurements. Mobile sources are 

predicted to contribute 2.4 µg m-3 of hydrocarbon IVOCs at Pasadena site during CalNex, which is 38% of 480 

measured concentrations. 

(3) Mobile IVOC emissions are predicted to contribute ~1 µg m-3 daily-average SOA concentration, a 67% increase 

compared to the base case without IVOC emissions. Therefore, these emissions need to be routinely included in 

CTM simulations. But mobile source emissions alone don’t explain measured IVOC or SOA concentration. This 

underscores effectiveness of decades of increasingly effective mobile source emission standard. Other sources are 485 

becoming relatively more important in the NMOG and IVOC emission inventory in the South Coast. 

(4) Our analysis suggests that 12% to 26.8% (or 30.7 to 68.5 Ton day-1 in Los Angeles – Pasadena region) of non-

mobile NMOG emissions need to be IVOC to explain the measured hydrocarbon IVOCs and SOA formation. 

Modelled OA in high-non-mobile IVOC case (Case 4) explains AMS-measured OA values (RMSE = 2.5 µg m-3, r 

= 0.85). 490 

Future research and inventory needs include: 
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(1) IVOC emissions from non-mobile sources are important. VCPs are likely a major contributor here and further 

research should seek to constrain emissions from these sources using ambient observations, bottom-up emission 

inventory methods and computational models (McDonald et al., 2018; Qin et al., 2019). Measurements of both 

volatility distribution as well as chemical composition are valuable. New chemical mechanism species for 495 

oxygenated IVOCs may also be needed. 

(2) More measurements of ambient IVOC concentrations at different sites are needed to evaluate models. Our analysis 

suggests fitting IVOC-to-NMOG ratios at one site for non-mobile source is not enough to correctly model OA 

formation in California. Regional evaluations of ambient IVOC and OA predictions still have large uncertainty. 

(3) Improved understanding of the effects of multi-day aging on SOA formed from IVOC emissions. The impacts of 500 

polluted plumes on downwind receptors depends on the nature of aging processes and whether they result in the 

addition or reduction of particulate mass (e.g. fragmentation processes may enhance volatilization of OA downwind 

of sources). 

 

Disclaimer. Although portions of this work were contributed by research staff in the Environmental Protection Agency and 505 

this work has been reviewed and approved for publication, it does not reflect official policy of the EPA. 
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Tables 

Table 1 Mass fractions (g per g NMOG) of IVOCs in mobile NMOG emission profiles used in CMAQ simulations 770 

Group 
Volatility 

(C*, µg m-3) 

Source 

Gasoline Aircraft Diesel 

Non-aromatics 

IVOCP6-ALK 106 0.006 0.207 0.159 

IVOCP5-ALK 105 0.002 0.048 0.187 

IVOCP4-ALK 104 0.003 0.020 0.149 

IVOCP3-ALK 103 0.003 0.009 0.054 

Aromatics 
IVOCP6-ARO 106 0.025 n/a 0.002 

IVOCP5-ARO 105 0.006 n/a 0.004 

Total  0.046 0.285 0.555 
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Table 2 Properties and SOA yields used for 6-group parameterization in CMAQ simulation 

Group 
C* 

(µg m-3) 

MW 

(g/mol) 

kOH × 1011  

(cm-1 molec-1 s-1) 

αi (C* = 0.1 – 100 µg m-3) 
Yield at 10 µg m-3 

Hvap  

(kJ mol-1) 0.1 1 10 100 

IVOCP6-ALK 106 184.4 1.55 0.009 0.045 0.118 0.470 0.15 19 

IVOCP5-ALK 105 219.4 1.89 0.051 0.061 0.394 0.494 0.35 30 

IVOCP4-ALK 104 254.9 2.25 0.068 0.083 0.523 0.239 0.43 41 

IVOCP3-ALK 103 296.6 2.65 0.067 0.086 0.544 0.198 0.43 52 

IVOCP6-ARO 106 162.3 3.05 0.022 0.109 0.251 0.005 0.25 19 

IVOCP5-ARO 105 197.3 7.56 0.143 0.021 0.329 0.358 0.36 30 
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Table 3 POA volatility distribution and filter artifact scaling factor used in CMAQ simulation 

Source 
Volatility, C* (µg m-3) Filter artifact 

correction factor ≤ 10-1 1 10 102 

Gasoline 0.16 0.08 0.37 0.39 1.4 

Diesel 0.21 0.11 0.33 0.36 1 

Gas-turbine 0.15 0.26 0.38 0.21 1 
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Table 4 Total anthropogenic organic emissions (Ton per day) in Los Angeles Basin region in four cases in this study 

Case Name 
Traditional 

POA 

POA after 

scaling 

Traditional 

NMOG 

Mobile 

IVOCs 

Non-mobile 

IVOCs 

1 Base 26.4 28.9 450.2 0 0 

2 Mobile IVOC 26.4 28.9 450.2 27.6 0 

3 
Non-mobile low-

IVOC 
26.4 28.9 450.2 27.6 30.7 

4 
Non-mobile high-

IVOC 
26.4 28.9 450.2 27.6 68.5 
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Table 5 Model OA performance metrics at all CSN sites (1.8*OC) for this study 

Case Fractional Bias Fractional Error 

1 Baseline -0.59 0.67 

2 Mobile-IVOC -0.52 0.62 

3 Low Non-mobile-IVOC -0.33 0.49 

4 High Non-mobile-IVOC -0.10 0.42 
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Figures 785 

 

Figure 1: Scatter plot of first-generation SOA yields versus volatility in the detailed parameterization (dots are colored by OH 

reaction rates) 
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 790 

 

Figure 2: (a) Comparison of predicted SOA formation per unit mass mobile IVOC emission using original and reduced 

parameterizations at OA = 5 µg m-3, average [OH] = 3 × 106 cm-3. (b) Relative error in SOA formed between original and reduced 

parameterizations (Solid line is the relative error at OA = 5 µg m-3, shaded area corresponds to OA = 1 to 50 µg m-3). 
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Figure 3: (a) Modelled NMOG and IVOC emissions by source for the four simulation cases. (b) Measured and modelled IVOC 

mass concentrations at Pasadena, CA during CalNex for the four simulation cases. 800 
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Figure 4: Comparison of measured (boxplot, solid box denotes 25th to 75th percentiles and whiskers denote 10th to 90th percentiles) 

and modelled (line, shaded area denotes 25th to 75th percentiles) diurnal patterns in Pasadena, CA during CalNex for species: (a) 805 
benzene, kOH = 1.22 × 10 -12 cm3 molec-1 s-1 (b) toluene, kOH = 5.63 × 10 -12 cm3 molec-1 s-1 (c) xylene, kOH = 1.36 - 1.87 × 10 -11 cm3 

molec-1 s-1 and (d) hydrocarbon IVOCs (blue: Case 2, red: Case 3), kOH = 1.55 – 7.56 × 10 -11 cm3 molec-1 s-1. 

 

https://doi.org/10.5194/acp-2019-986
Preprint. Discussion started: 30 October 2019
c© Author(s) 2019. CC BY 4.0 License.



35 

 

 810 

Figure 5: (a) PM1-OA component hourly-averaged time series of measured data and model output in Pasadena, CA during CalNex 

campaign. (b, c) Diurnal pattern of measured and modelled POA and SOA mass concentration in Pasadena, CA during CalNex. 
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Figure 6: (a) Campaign-average NMOG emissions (ton per day) in emission inventory. (b) Modelled campaign-averaged SOA 815 
concentration in Case 4. (c) CSN sites in CA. (d) Comparison of modelled OA to measured OA (OC*1.8) at CSN sites in 

California. 
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