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Abstract. We describe simulations using an updated version of the Community Multiscale Air Quality model version 5.3 

(CMAQ v5.3) to investigate the contribution of intermediate volatile organic compounds (IVOCs) to secondary organic aerosol 

formation (SOA) in Southern California during the CalNex study. We first derive a model-ready parameterization for SOA 

formation from IVOC emissions from mobile sources. To account for SOA formation from both diesel and gasoline sources, 

the parameterization has six lumped precursor species that resolve both volatility and molecular structure (aromatic versus 20 

aliphatic). We also implement new mobile-source emission profiles that quantify all IVOCs based on direct measurements. 

The profiles have been released in SPECIATE 5.0. By incorporating both comprehensive mobile-source emissions profiles for 

SVOCs and IVOCs and experimentally constrained SOA yields, this CMAQ configuration best represents the contribution of 

mobile sources to urban and regional ambient OA. In the Los Angeles region, gasoline sources emit 4 times more non-methane 

organic gases (NMOG) than diesel sources, but diesel emits roughly 3 times more IVOCs on an absolute basis. The revised 25 

model predicts all mobile sources (including on- and off-road gasoline, aircraft and on- and off-road diesel) contribute ~1 μg 

m-3 to the daily peak SOA concentration in Pasadena. This represents a ~70% increase in predicted daily peak SOA formation 

compared to the base version of CMAQ. Therefore, IVOCs in mobile-source emissions contribute almost as much SOA as 

traditional precursors such as single-ring aromatics. However, accounting for these emissions in CMAQ does not reproduce 

measurements of either ambient SOA or IVOCs. To investigate the potential contribution of other IVOC sources, we performed 30 

two exploratory simulations with varying amounts of IVOC emissions from non-mobile sources. To close the mass balance of 

primary hydrocarbon IVOCs, IVOCs would need to account for 12% of NMOG emissions from non-mobile sources (or 

equivalently 30.7 Ton day-1 in the Los Angeles-Pasadena region), a value that is well within the reported range of IVOC 

content from volatile chemical products. To close the SOA mass balance and also explain the mildly oxygenated IVOCs in 

Pasadena, an additional 14.8% of non-mobile source NMOG emissions would need to be IVOCs (assuming SOA yields from 35 

the mobile IVOCs applies to non-mobile IVOCs). However, an IVOC-to-NMOG ratio of 26.8% (or equivalently 68.5 Ton 

day-1 in Los Angeles-Pasadena region) for non-mobile sources is likely unrealistically high. Our results highlight the important 

contribution of IVOCs to SOA production in Los Angeles region, but underscore that other uncertainties must be addressed 

(multigenerational aging, aqueous chemistry, and vapor wall losses) to close the SOA mass balance. This research also 

highlights the effectiveness of regulations to reduce mobile-source emissions, which have in turn increased the relative 40 

importance of other sources, such as volatile chemical products. 
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1 Introduction 

Exposure to fine particulate matter (PM2.5 and PM1) has been associated with increased mortality, lung cancer and 

cardiovascular diseases (Apte et al., 2018; Di et al., 2017). Organic aerosol (OA) is a major component of ambient fine 45 

particulate matter (Jimenez et al., 2009; Zhang et al., 2015). The majority of OA, even in most urban areas, is secondary 

organic aerosol (SOA), formed from the atmospheric oxidation of gas-phase species. Over the past several decades, primary 

emissions have been greatly reduced in the United States, which has led to significant improvement in air quality, especially 

in the Los Angeles basin in California (Warneke et al., 2012; Zhang et al., 2018). However, SOA remains an important 

component of fine particulate matter, but its sources are uncertain (Ensberg et al., 2014; McDonald et al., 2018). 50 

Intermediate volatility organic compounds (IVOCs) are an important class of SOA precursors (Chan et al., 2009; 

Liggio et al., 2016; Presto et al., 2009; Zhao et al., 2014). IVOCs, for example, C12 to C17 n-alkanes and polycyclic aromatic 

hydrocarbons, are efficient SOA precursors (Chan et al., 2009; Presto et al., 2010a). In addition, chamber experiments using 

unburnt fuel and diluted exhaust have demonstrated the importance of IVOCs to SOA production from mobile-source 

emissions (Gordon et al., 2014; Jathar et al., 2013; Miracolo et al., 2011; Platt et al., 2017). 55 

Despite this evidence, IVOCs are not routinely or consistently accounted for in chemical transport models. A major 

challenge has been the lack of emissions data due to a combination of sampling challenges and the fact that the vast majority 

of IVOC emissions have not been speciated on a molecular basis. In addition, chemical mechanisms (e.g. SAPRC, Carbon 

Bond, etc.) often do not explicitly account for IVOCs, instead lumping them with VOCs or non-reactive gases (Lu et al. 2018). 

Several recent studies report total (speciated and unspeciated) IVOC emissions from a variety of mobile sources, including on- 60 

and off-road gasoline, diesel, aircraft and vessel engines (Cross et al., 2013; Huang et al., 2018; Kroll et al., 2014; Pereira et 

al., 2018; Presto et al., 2011; Qi et al., 2019; Wang et al., 2012; Zhao et al., 2015, 2016). While these studies have not been 

able speciate all of the IVOCs emissions at the molecular level, some provide insight into the molecular structure of the 

unspeciated IVOCs (Drozd et al., 2019; Hatch et al., 2017; Hunter et al., 2017; Worton et al., 2014; Zhao et al., 2015, 2016). 

For example, IVOCs in diesel exhaust are primarily comprised of aliphatic compounds while IVOCs in gasoline exhaust are 65 

primarily aromatics with higher OH reaction rates and SOA yields. Zhao et al. (2015, 2017) used these new emissions data to 

explain the SOA formation in smog chamber experiments with diluted vehicle emissions. The SOA mechanism proposed by 

Zhao et al. (2015, 2017) accounts for all of the IVOC emissions. It represents them using 79 different “compounds”, some of 

which are individual species and others are lumped groups assigned based on gas-chromatography and mass spectrometry 

data. However, this model is too computationally expensive for implementation in current operational CTM. 70 

Because of the high levels of both ozone and PM exposure in the Los Angeles basin over the last several decades, 

extensive ambient measurement campaigns have explored the sources of poor air quality in the region, including the CalNex 

campaign in 2010 (Ryerson et al., 2013). During the CalNex campaign, average OA at the Pasadena supersite was 7 μg m-3, 

of which SOA, defined as the sum of semi-volatile and low-volatile oxygenated OA (SV-OOA and LV-OOA) factors from 

AMS analysis, contributed 66% to total OA mass (Hayes et al., 2013). Zhao et al. (2014) measured the ambient IVOC 75 
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concentration at the Pasadena site, and estimated that photo-oxidation of IVOCs contributed up to 57% of SV-OOA during 

CalNex. 

A number of chemical transport model (CTM) studies have examined SOA formation in the LA basin during the 

CalNex campaign (Baker et al., 2015; Fast et al., 2014; Jathar et al., 2017; Murphy et al., 2017; Woody et al., 2016). However, 

these studies used very different assumption for IVOC emissions and their SOA yields. IVOC emissions are commonly 80 

estimated by applying a scaling factor to some other species (generally POA). These scaling factors have been based on little 

experimental data and the typically the same factor is applied to all sources. For example, Fast et al. (2014) assumed additional 

SOA precursor (IVOC and/or SVOC; semivolatile organic compounds) mass of 6.5 × POA and Woody et al. (2016) assumed 

7.5 × POA based on previous estimations (Hodzic et al., 2010; Koo et al., 2014), applied to all emission source categories. 

Jathar et al. (2017) assumed mobile IVOC emission as 25% of diesel NMOG emissions and 20% of gasoline NMOG emissions. 85 

Finally, Baker et al. (2015) did not explicitly account for IVOCs, but increased the SOA yields from VOCs by a factor of four 

compared to the base version of the Community Multiscale Air Quality (CMAQ) model. Despite these efforts, these studies 

still underpredicted the measured OA by a factor of 2 to 6 (Hayes et al., 2013). Murphy et al. (2017) largely closed the OA 

mass balance by defining a new lumped SOA precursor called potential combustion volatile organic compounds (pcVOC) 

with emissions equal to 9.6 × POA and an SOA yield of 1. However, all the above-mentioned models used scaling factors that 90 

are not based on actual emission data. They also only use a single IVOC surrogate, which does not account for differences in 

IVOC chemical composition. Lu et al. (2018) showed that a single scaling factor does not represent the magnitude of actual 

IVOC emissions across all mobile sources. Finally, none of these models account for the effects of differences in molecular 

structure in IVOC emissions on SOA yield. 

Mobile sources are major sources of NMOG emissions, and therefore important sources of SOA precursors in urban 95 

environments (Gentner et al., 2017). Historically, mobile sources have been the dominant source of NMOG in many urban 

areas, but their contribution has been reduced due to increasingly stringent emission regulations. The 2014 EPA National 

Emission Inventory (NEI) estimates that mobile sources contribute 32% of the anthropogenic VOC emissions nationally (and 

43% in Los Angeles county). In Los Angeles county, on- and off-road gasoline and diesel sources account for more than 96% 

of mobile-source emissions. 100 

Lu et al. (2018) recently compiled mobile-source emission data, including on- and off-road gasoline, aircraft and 

diesel engines, to create updated model-ready emission profiles that include explicit treatment of IVOCs. They found that 

mobile source NMOG emissions can be explained by trimodal distributions of by-product, fuel and oil modes. IVOC emissions 

originate from fuel components and similar distributions are observed across sources that use the same fuel (Cross et al., 2015; 

Lu et al., 2018; Presto et al., 2011). This applies to both low emitting heavily controlled sources (e.g. LEV-II certified gasoline 105 

vehicle) and uncontrolled high emitting sources (e.g. two stroke gasoline off-road sources) (Lu et al., 2018). Therefore, in this 

work, mobile IVOC emissions are modelled and grouped based on fuel type. 

In this paper, we use an updated version of CMAQ v5.3 (US EPA Office of Research and Development, 2019) to 

investigate the sources and contribution of SVOCs and IVOCs to SOA formation in the Los Angeles region during the CalNex 
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campaign. We updated CMAQ v5.3 with a new set of mobile-source NMOG and SVOC emission profiles that include 6 110 

classes of IVOCs and a new parameterization of SOA formation from IVOC precursors designed for implementation into 

chemical transport models. The new emission profiles are based on direct measurement of IVOCs from on- and off-road mobile 

sources (Gordon et al., 2013; Lu et al., 2018; May et al., 2014; Presto et al., 2011; Zhao et al., 2015, 2016). These profiles 

(100VBS to 103VBS) are now available in SPECATE 5.0 (US EPA, 2019). The new SOA parameterization is derived from a 

comprehensive parameterization that explains the SOA formation from dilute mobile-source exhaust in smog chamber studies 115 

(Zhao et al., 2015, 2017). We evaluate the resulting model, now the most up-to-date representation of mobile-source organic 

compound emissions, using data collected during the CalNex campaign, including direct measurements of ambient IVOCs. 

Finally, we explore the potential contribution of non-mobile sources to IVOC and OA concentrations. 

2 Parameterizing SOA formation from mobile-source IVOCs 

Mobile sources are comprised of a complex mixture of on- and off-road sources, including gasoline, aircraft and diesel engines. 120 

However, they are predominantly gasoline- and diesel-powered, with a small fraction of aircraft emissions. In this work we 

apply the source profiles of Lu et al. (2018) to estimate the amount and composition of the IVOC emissions for different mobile 

sources. The IVOCs are normalized to total NMOG emissions, which only includes the organics in volatility range from C* = 

103 to 1011 µg m-3. Table 1 summarizes the IVOC-to-NMOG ratios for different mobile sources. The ratios (and associated 

emission profiles) vary widely depending on the underlying fuel. For gasoline, aircraft to diesel sources, IVOCs comprise 125 

4.6%, 28.5% and 55.5% of the NMOG emissions, respectively. IVOC emissions from gasoline source include high fractions 

of aromatics (Drozd et al., 2019; Zhao et al., 2016). 

We developed a simplified parameterization to simulate first-generation SOA formation from IVOCs under high-

NOx conditions. By first-generation we mean the amount of SOA that forms within a couple of hours in a smog chamber 

experiment with dilute exhaust at typical atmospheric oxidant levels. The parameterization is derived from the model of Zhao 130 

et al. (2015, 2016), which explicitly accounts for 79 different classes of IVOCs. The chemistry and transport associated with 

79 additional species in the gas and particle phases would be too computationally expensive in a CTM which normally has 

about 50 or less organic aerosol species. Our aim is to develop a model for IVOC SOA production that can be used in off-the-

shelf regulatory and routine chemical transport modelling applications. For other applications, a more-explicit approach with 

multiple thousands of species may be more powerful for modelling reaction pathways (Ying and Li, 2011). From the IVOC 135 

measurement perspective, lumping similar IVOCs together based on their volatility and functionality is also more interpretable 

and compatible to data provide by most instruments. 

The Zhao et al. (2015, 2016) model accounts for 57 individual IVOCs and 22 lumped IVOCs. The 22 lumped IVOCs 

are comprised of unspeciated IVOCs grouped based on gas chromatography (GC) retention time and an assigned chemical 

class based on its mass spectra. This model explains the SOA formation from dilute exhaust of gasoline and diesel vehicles 140 

measured in chamber experiments (Zhao et al., 2015, 2017). Our simplified SOA parameterization accounts for the key 
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differences in chemical composition of the IVOC emissions from different mobile sources. This is important because the 

composition of the IVOC emissions varies by source class (e.g. gasoline versus diesel) and SOA yield depends on both 

molecular weight (volatility) and chemical structure (aromatics versus alkanes) (Chan et al., 2009; Jathar et al., 2013; Lim and 

Ziemann, 2005, 2009; Presto et al., 2010a). For example, diesels emit more lower volatility IVOCs than gasoline engines, but 145 

diesel IVOC emissions are mainly comprised of aliphatic compounds versus aromatics for gasoline. These differences matter 

because, for a given chemical class, SOA yields generally increase with increasing molecular weight, which increases the 

effective SOA yield of diesel exhaust relative to gasoline exhaust. However, for a given carbon number, the SOA yield for 

hydrocarbon IVOCs generally follows aromatics > cyclic > linear > branched alkanes (Lim and Ziemann, 2009; Tkacik et al., 

2012), thus gasoline IVOC yields increase when their structure is considered. Finally, aromatic IVOCs have higher OH reaction 150 

rates than alkanes (Chan et al., 2009; Zhao et al., 2017). In this study, we only account for IVOC-OH reactions because mobile-

source IVOCs are mostly alkanes or aromatics, which will react slower with O3. NO3 oxidation can be important in night-time 

SOA formation (Fry et al., 2014; Hoyle et al., 2011), and these will be important to consider in the future, but experimental 

studies on SOA formation from anthropogenic IVOC reactions with NO3 radical are limited at this time.  

To illustrate the complexity of the IVOC mechanisms of Zhao et al. (2015, 2016), Figure 1 plots the SOA yield 155 

(expressed as SOA mass divided by mass of precursor) as a function of volatility for the 79 different IVOCs in the model at a 

typical atmospheric OA concentration of 10 μg m-3. This model likely provides a conservative estimate for SOA yields of 

lower volatility IVOCs, as C18-22 n-alkanes are assumed to have the same SOA yields as C17 n-alkanes. The scatter in the data 

highlights the complex relationship between molecular structure and SOA yield. 

Our goal is to derive a semi-empirical SOA parameterization with the minimum number of surrogate species that 160 

reproduces the mechanism of Zhao et al. (2015, 2016). The simplified parameterization must account for the differences in 

SOA formation from IVOC emissions from different mobile source categories (gasoline, diesel and aircraft). We developed 

the simplified parameterization using the volatility basis set (VBS) framework of Donahue et al. (2006) following the approach 

of Presto et al. (2010b). The parameterization accounts for all IVOC emissions, which are lumped into surrogates based on 

gas-chromatography-retention-time (related to volatility) and mass spectral (composition information) data (Lu et al. 2018). 165 

Like the work of Zhao et al. (2015, 2016), the parameterization accounts for all IVOC mass, not just the mass that can be 

speciated at the molecular level (Lu et al. 2018). Briefly, to simulate SOA formation, each lumped IVOC group reacts with 

OH to form a set of semi-volatile products in Eq. (1): 

𝐼𝑉𝑂𝐶𝑖 + 𝑂𝐻 →  𝛼𝑖,1𝑃𝐶∗ =0.1 + 𝛼𝑖,2𝑃𝐶∗ =1 + 𝛼𝑖,3𝑃𝐶∗ =10 + 𝛼𝑖,4𝑃𝐶∗ =100  for group i = 1 to 6   (1) 

where 𝛼𝑖,1 to 𝛼𝑖,4 are mass-based stoichiometric coefficients for IVOCi distributing the reaction products across a second 170 

volatility basis set from 0.1 to 100 ug/m3 (Presto et al., 2010b). For each lumped IVOC species there are 5 unknowns: four 

stoichiometric coefficients (𝛼𝑖,1 to 𝛼𝑖,4) and the OH reaction rate kOH, i. These coefficients and reaction rates are derived by 

fitting the mechanism of Zhao et al. (2015, 2016). All SOA parameters are set at fixed temperature of 298 K. Details of the 

fitting procedure are in the SI. 
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We initially tried using four lumped-IVOC-species distributed across the volatility basis set (C* = 103 to 106 ug/m3) 175 

to account for the influence of precursor volatility based on gas-chromatography retention time but not molecular structure on 

SOA yield. However, that model poorly reproduced the SOA formation from gasoline vehicle emissions, especially at shorter 

time scales (Figure S1). The problem is that IVOCs in diesel exhaust are dominated by aliphatic compounds while IVOCs in 

gasoline exhaust are dominated by aromatics (Drozd et al., 2019; Zhao et al., 2016); as previously discussed, aromatics 

compounds have different OH reaction rates and SOA yields (Figure 1) (Lim and Ziemann, 2009; Tkacik et al., 2012). 180 

We therefore defined two additional lumped IVOC species with C* = 105 and 106 µg m-3 to account for the aromatic 

IVOCs in gasoline engine exhaust (Table 1). The IVOCs in these two bins were split based on mass spectral data (Zhao et al., 

2015, 2016). Mobile-source IVOC emissions in the lower volatility bins of C* = 103 and 104 µg m-3 are primarily alkanes from 

unburnt fuel or lubricant oil (Lu et al., 2018; Worton et al., 2014); therefore, the simplified mechanism only includes one 

lumped aliphatic IVOC species in each of those bins. IVOC emissions are assigned to these surrogate species using the source 185 

profiles listed in Table 1. 

To illustrate the performance of the new parameterization, Figure 2(a) compares the predicted SOA using our six-

IVOC-group parameterization to the original mechanism of Zhao et al. (2015, 2016). It shows that the two models agree with 

an absolute error for the mass-based SOA yield of less than 0.01 for all mobile sources at an OA concentration of 5 µg m-3. 

Across a wide range of atmospherically relevant concentrations (OA of 1 to 50 µg m-3), Figure 2(b) shows that the relative 190 

error is less than 6% between our new parameterization and the original mechanisms of Zhao et al. (2015, 2016).  

The yields derived by the fitting make physical sense. The yields increase with decreasing volatility (Table 2). The 

fitting procedure assigns higher yields and faster reaction to the lumped aromatics compared to aliphatics in the same volatility 

bin (Drozd et al., 2019; Zhao et al., 2016). This explains the higher SOA production in the first 10 hours from gasoline exhaust 

compared to aircraft and diesel IVOC emissions. It also predicts that diesel IVOC emissions have the overall highest SOA 195 

yield due to their high fraction of lower volatility compounds compared to emission from gasoline engines and aircraft (Lu et 

al., 2018; Zhao et al., 2015). 

Table 2 lists the set of kOH and αi for the simplified six-IVOC-group parameterization for mobile-source emissions. 

Molecular weights (MW) are determined as the average MW of n-alkanes or speciated aromatics in each volatility bin. The 

IVOC MWs are used to convert mass-based SOA yields to molar units and calculate parameters needed to simulate dry 200 

deposition processes. Enthalpies of vaporization (Hvap) are determined using the fitted parameterization in Ranjan et al. (2012). 

In this work, we implement this six-lumped-IVOC-group parameterization to model the IVOC SOA formation in CMAQ v5.3. 

The first-generation products represented in equation (1) undergo multigenerational aging following the mechanism of Murphy 

et al. (2017) described in section 3.4. 
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3 CMAQ model  205 

To evaluate the contribution of mobile source IVOC emissions to ambient SOA, we implemented our new six-lumped-IVOC-

group SOA parameterization and emissions profiles into CMAQ v5.3. We used the model to simulate the air quality in 

California from 1 May to 30 June 2010, which includes the entire CalNex campaign (May and July 2010). Except as noted 

below, the simulations described here have essentially the same modelling domain and input parameters as previous modelling 

studies on CalNex (Baker et al., 2015; Murphy et al., 2017; Woody et al., 2016). We have extended this previous work by 210 

updating the emissions and SOA formation from IVOCs. 

 

3.1 Model configuration 

The model domain covered California and Nevada with a 4 km (325×225) grid resolution and 35 vertical layers. The input 

meteorology and NEI emission inventory are very similar to those used by Baker et al. (2015), Woody et al. (2016) and Murphy 215 

et al. (2017) and are identical to Qin et al. (2019). Meteorological inputs were generated using the Weather Research and 

Forecasting Model (WRF) Advanced Research WRF core version 3.8.1 (Skamarock et al., 2008) with one additional model 

layer at the surface compared to previous studies (i.e. the lowest layer of approximately 40 m depth has been split into two 20 

m deep layers to better resolve surface gradients). The emissions inputs are based on the 2011 NEI version 2 with mobile, 

wildfire, and electric generating point source emissions calculated for 2010. Mobile on-road and non-road emissions are 220 

calculated by MOVES 2014a, except that on-road emissions for California are estimated by EMFAC and allocated using 

MOVES 2014a. Biogenic emissions are calculated online with BEIS v3.61 and improved land use cover from BELD4 (Bash 

et al., 2016). Sea-spray aerosols are calculated online and incorporate dynamic prediction of particle population size and 

standard deviation. Wind-blown dust emissions are neglected and should not impact comparisons with the data collected by 

the AMS, which detects non-refractory particulate compounds. Moreover, previous studies (Cazorla et al., 2013) found little 225 

evidence of dust impacts during CalNex using both in-situ aircraft measurements and inference from AERONET retrievals. 

Gas-phase chemistry is simulated with the SAPRC07T chemical mechanism (Carter, 2010; Hutzell et al., 2012; Xie et al., 

2013). Aerosols are simulated using the Aero-7 module (CMAQ-AE7) with monoterpene photo-oxidation updates (Xu et al., 

2018) and organic water uptake (Pye et al., 2017). Boundary conditions were generated from a 12 km continental U.S. 

simulation of April to June 2010. We use the first 14 days of the simulation as a spin-up to minimize the influence of initial 230 

conditions. 

Previous studies (Baker et al., 2015; Woody et al., 2016) have extensively evaluated different versions of CMAQ 

using CalNex data. These evaluations show good to excellent performance for many pollutants, with a notable exception of 

organic aerosols and SOA – the focus of this paper. We evaluated our model predictions with measurements of gas-phase 

pollutants such as CO, O3 and NOx, as they are typical indicators for model performance. Consistent with the previous 235 

applications of CMAQ to CalNex (Baker et al., 2015; Murphy et al., 2017; Woody et al., 2016), Figure S2(a) shows very good 
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agreement between modelled and measured CO diurnal patterns in Pasadena, and the normalized mean bias (NMB) is 4.2%. 

Figure S3 compares the O3, NO and NO2 diurnal patterns with measurements in Pasadena, where the NMB is 10.7%, -6.7% 

and 5.4%, respectively. Figure S4 compares the CO, O3 and NO diurnal patterns for three other sites: Bakersfield, Sacramento 

and Cool. The model NMB is within ±25% for all comparisons, except for O3 and NO in Bakersfield. Thus, we can conclude 240 

that the CMAQ model perform reasonably well at all four sites for traditional gas-phase pollutants.  

 

3.2 POA emissions 

CMAQ v5.3 treats POA emissions as semi-volatile with variable gas-particle partitioning and multigenerational aging (Figure 

S5). The POA model, similar to the 1.5-VBS of Koo et al. (2014), contains five pairs of hydrocarbon-like vapor/particle species 245 

(1 LVOC, 3 SVOCs, and 1 IVOC) distributed across a volatility basis set with C* from 10-1 to 103 µg m-3, with O:C increasing 

slightly with decreasing volatility. POA emissions are then assigned to each of these species using the source-specific volatility 

profiles in Table 3 and CMAQ calculates gas-particle partitioning assuming equilibrium partitioning and treating the entire 

organic phase as a single, pseudo-ideal solution. For non-mobile sources, POA emissions are distributed into all five bins with 

C* from 10-1 to 103 µg m-3 while the mobile source POA profiles only map to the 10-1 to 102 µg m-3bins.  250 

Comprehensive emissions profiles for semi-volatile POA include both SVOCs and lower volatility organics (Lu et 

al., 2018). In the base version of CMAQ v5.3, the volatility profile of Robinson et al. (2007) is used to represent all combustion 

sources. Here, we update the volatility distributions for mobile POA using the new mobile-source emission profiles in Lu et 

al. (2018). The profiles (8873VBS, 8992VBS to 8996VBS) are available in SPECIATE 5.0 (US EPA, 2019). For non-mobile 

combustion sources, we use the biomass burning POA volatility distribution from May et al. (2013b) for wood-burning sources, 255 

the cooking POA volatility distribution from Woody et al. (2016) for cooking sources, and the diesel POA volatility distribution 

from May et al. (2013a) as a surrogate for all other combustion sources. According to our emission inventory, mobile, wood-

burning and cooking sources combined emit more than 80% of total POA in LA region during the modelled period, where 

other combustion sources only emit 16.4% of the POA. We acknowledge that the diesel POA surrogate is modestly more 

volatile than biomass burning POA profiles. Thus, using diesel POA volatility as the surrogate for other combustion sources 260 

will possibly increase the regional SOA formation compared to if a different profile was used, but the potential bias is small. 

Table 3 summarizes the volatility distributions and scaling factors used in this work. The same POA emissions were used for 

all model runs.  

A challenge is that most existing POA emission factors used to inform inventories such as NEI are based on filter 

measurements, which do not quantitatively collect all SVOCs. For example, filters collect only a portion of SVOC vapors. 265 

Estimating this error is complex because there are competing biases. First, source testing is often performed at low levels of 

dilution which creates high concentrations (relative to the more dilute atmosphere) that shifts gas-particle partitioning of 

SVOCs to the particle phase. In these situations, filters collect a larger fraction of SVOCs than more dilute conditions (of 

course, at high enough concentrations, filters will also collect some IVOC vapors). Second, during mobile source testing, filters 
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are commonly collected at elevated temperatures (e.g. 47 ºC) to avoid water condensation, which shifts gas-particle partitioning 270 

towards the gas phase, reducing the fraction of SVOCs collected by a filter. Finally, filters collect some vapors as sampling 

artifacts, which depends on many factors, including filter material, filter face velocity, and filter pre-treatment (Subramanian 

et al., 2004). Therefore, the fraction of SVOCs collected by filters depends on these competing effects, which are difficult to 

quantify. As expected, data from Zhao et al. (2015, 2016) and Lu et al. (2018) indicate that the fraction of SVOC collected 

depends on the OA concentration inside the sampling system. 275 

To estimate potential biases in the amount of SVOC vapors in the filter-based POA emission factor measurements, 

we compared the mass of lower volatility organics (SVOC + LVOC + NV) collected on filters and Tenax tubes versus the 

mass collected on filters (regular POA measurement) (Lu et al., 2018). The two estimates for diesel and gas-turbine tests were 

within 10%, which is within experimental uncertainty. Therefore, we did not add any SVOC mass to these emissions. For 

gasoline sources, the data indicate an average bias of 40%, which means that lower volatility organics were only partially 280 

collected by the filter. This is consistent with the relatively low particle emissions of gasoline sources, which create lower 

concentration conditions inside of the dilution sampler and therefore gas-particle partitioning shifted more to the vapor phase. 

We therefore applied a filter artifact correction factor of 1.4 to gasoline POA emissions, as shown in Table 3. We add these 

SVOC vapors to address the bias in emissions measurements and to best estimate the potential local / regional SOA formation 

from mobile source SVOCs. 285 

 

3.3 IVOC emissions 

An important difference from previous implementations of CMAQ to simulate the CalNex campaign (Baker et al., 2015; 

Murphy et al., 2017; Woody et al., 2016) is the new mobile IVOC emission data and the application of the new six-lumped-

IVOC-species SOA parameterization. Mobile sources contribute more than 40% of anthropogenic NMOG emissions in the 290 

South Coast Air Basin in the CalNex emission inventory (Baker et al., 2015). Given the consistency of the speciation and 

IVOC-to-NMOG ratio for sources using same type of fuel (Lu et al., 2018), we assign mobile-source emissions profiles based 

on fuel type (gasoline, diesel, or jet fuel). NMOG emissions from all on- and off-road gasoline sources are represented using 

the same average gasoline exhaust profile (SPECIATE Profile #100VBS). NMOG emissions from all on-road, off-road diesel 

sources (including rail) are represented using the same average non-DPF diesel exhaust profile (SPECIATE Profile #103VBS). 295 

Studies have noted there can be significant differences in IVOC emissions between DPF-equipped and non-DPF vehicles 

(Dunmore et al., 2015; Lu et al., 2018; Platt et al., 2017). However, the total NMOG emission from diesel sources in southern 

California in 2010 were dominated (> 99%) by non-DPF vehicles (due to a combination of the fleet composition and the fact 

that non-DPF vehicles have much lower emission factors). Therefore, we use the IVOC emission profile for non-DPF vehicle 

for all diesel sources. Although only limited data are available for off-road diesel engine emissions (Qi et al., 2019), it suggests 300 

the emissions are similar to on-road diesel vehicles. NMOG emissions for all jet-fuelled sources are represented using the same 

gas-turbine exhaust profile (SPECIATE Profile #102VBS). The IVOC components of these profiles are summarized in Table 
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1 and complete profiles are given in SPECIATE 5.0 (US EPA, 2019). Total IVOC emissions are determined using the IVOC-

to-NMOG ratios, which are more consistent across source types than IVOC-to-POA ratios (Lu et al., 2018). 

For this work IVOC emissions are added to existing NMOG emissions. This was done to keep the VOC emissions 305 

across the different models runs constant in order to better isolate the contribution of IVOCs to SOA. In addition, OH oxidation 

of IVOCs is assumed to regenerate OH radicals and thus have minimal impact on the oxidant budget and the production of O3. 

However, Lu et al. (2018) argued that existing NMOG inventories largely include IVOCs, just that they are misattributed to 

VOCs. Therefore, future work should proportionally reduce the VOC emissions to keep the overall NMOG emissions (VOC 

+ IVOC) constant. This assumption minimally effects the OA model evaluation, because the base version of CMAQ predicts 310 

that traditional VOCs only contribute 7% of measured OA at Pasadena during the CalNex campaign (Baker et al., 2015).  

SOA is produced from IVOC oxidation using the parameterization described in section 2. The SOA mass is 

determined by CMAQ based on the gas-particle partitioning of the SVOC products created from IVOC oxidation. CMAQ v5.3 

calculates partitioning assuming thermodynamic equilibrium and that all organics form a single pseudo-ideal solution. The 

SVOC products also undergo multigenerational aging following the approach of Murphy et al. (2017) (see section 3.4).  315 

 

3.4 Multi-generational aging and gas-particle partitioning 

The semivolatile POA emissions and semivolatile products formed from oxidation of SOA precursors undergo 

multigenerational aging as described in Murphy et al. (2017). Figure S5 shows the schematic diagram for modelling OH 

oxidation first-generation and multigenerational aging. Briefly, the approach simulates the reaction of L/S/IVOC vapors with 320 

hydroxyl radical and distributes the product mass to a second set of five vapor-particle pairs of species at moderate O:C values. 

The stoichiometric ratios used to distribute the product mass were derived to match the SOA enhancement predicted by a full 

2D-VBS simulation of the functionalization and fragmentation of SVOCs during three days of atmospheric oxidation. This 

model, unlike that of Koo et al. (2014), does transfer some of the aged products to higher volatility bins, and thus reduces SOA 

over multiple generations of OH reaction. The probability for fragmentation increases as a function of O:C in agreement with 325 

theory (Donahue et al., 2011). Although the competing effects of fragmentation and functionalization at long timescales are 

represented in this model, the simplified framework is likely limited when trying to capture the full complexity of 

multigenerational aging. For this work, no changes were made to the chemical properties (e.g. carbon number, O:C, etc.) or 

reaction stoichiometry of the multigenerational aging mechanism of Murphy et al. (2017). Because IVOC products likely have 

lower carbon numbers than products of primary SVOC oxidation, our approach may represent an upper bound on the potential 330 

for IVOC SOA aging to further enhance particle mass downwind of sources. 
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3.5 Simulation cases 

To systematically explore the effects of adding IVOC emissions from mobile and non-mobile sectors, we performed four 

simulation cases, summarized in Table 4. All cases use the same emission inputs as described earlier with differences in IVOC 335 

emissions. In the base case (Case 1), mobile SOA is only formed through the oxidation of traditional VOC emissions and 

SVOCs from evaporated semivolatile POA. 

Figure 3(a) compares the anthropogenic NMOG emissions in the Los Angeles Basin region for the four simulation 

cases (geographical boundaries are defined by simulation grid cells shown in Figure S6). In the base case (Case 1), mobile 

sources contribute 43% of anthropogenic NMOG emissions, of which gasoline sources contribute 35%, diesel sources 8% and 340 

aircraft less than 1%. Non-mobile sources contribute the remainder of the anthropogenic NMOG emissions (57%), of which 

VCP usage contributes 39%, followed by 17% from other sources. The emission inventory contains minimal cooking and 

biomass burning NMOG emissions during CalNex (1.5%). 

Cases 2 to 4 incrementally add mobile IVOC emissions to the model. Table 4 shows that Case 2 adds on average 27.6 

Ton day-1 mobile source IVOC emissions, which is our best estimate of the mobile source IVOC emission based on the 345 

compilation of measurement data and source profiles in Lu et al. (2018) as described in section 3.3. The difference in SOA 

concentrations between Case 2 and Case 1 is the SOA contribution from mobile emitted IVOCs. In Case 3 and 4, we 

incrementally add IVOC emissions from non-mobile sources to the inventory to explore the contribution of non-mobile sources 

of IVOCs as discussed in section 4.2. 

4 CMAQ simulation results 350 

To evaluate model performance, we compared predictions to measured data from the CalNex campaign at Pasadena, CA, as 

well as the organic carbon (OC) measured at Chemical Speciation Network (CSN) sites in California. The CalNex campaign 

characterized atmospheric composition at two sites in southern California, Pasadena, and Bakersfield, from 15 May to 29 June 

2010 (Ryerson et al., 2013). We focus on the Pasadena site, which is located 18 km northeast and generally downwind of 

downtown Los Angeles, because there were direct measurements of IVOCs (Zhao et al., 2014). We also evaluate model 355 

predictions at the Pasadena site for OA, BC, CO, select speciated VOCs and Planetary Boundary Layer (PBL) height.  

 

4.1 Base case and mobile IVOC case 

4.1.1 IVOC mass concentrations 

Figure 3(b) compares the model-predicted and measured campaign-average IVOC mass concentration at the Pasadena site. 360 

Zhao et al. (2014) reported data for two classes of IVOCs differentiated based on mass spectral signature: hydrocarbon IVOCs 

and mildly oxygenated IVOCs. Zhao et al. (2014) attributes hydrocarbon IVOCs to primary emissions; the mildly oxygenated 
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IVOC could either be primary emissions or formed via atmospheric oxidation. The CalNex campaign-averaged measured 

hydrocarbon IVOCs at the Pasadena site was 6.3 µg m-3; the measured mildly oxygenated IVOC concentration was 4.2 µg m-

3. The analytical techniques of Zhao et al. (2014) are not optimized for measuring oxygenated organics; therefore, their data 365 

provide a lower bound estimate of the total and oxygenated IVOCs.  

The base case (Case 1) predicts essentially no IVOC concentrations as they are not explicitly included in the base 

inventory or model (though could be implicitly included as misclassified VOC species). Case 2 (mobile IVOC case) predicts 

2.4 µg m-3 of IVOCs at the Pasadena site, which corresponds to 38% of measured hydrocarbon IVOCs. This indicates that 

mobile sources are an important source of IVOCs in the LA region, but that more than half of the hydrocarbon IVOCs measured 370 

in Pasadena are likely emitted by non-mobile sources. In addition to hydrocarbon IVOCs, Zhao et al. (2014) measured 4.2 µg 

m-3 of mildly oxygenated IVOCs, which are also not explained by mobile-source emissions. 

While the comparison in Figure 3(b) suggests that non-mobile sources may be important contributors to ambient 

IVOC concentrations, there are a number of potential uncertainties, including (1) uncertainty in mobile source activity, (2) 

uncertainty in mobile source NMOG emission factors, and (3) uncertainty in mobile source IVOC-to-NMOG emission ratios. 375 

The first potential uncertainty is mobile-source activities. BC and CO are commonly used as indicators of gasoline and diesel 

sources activity. The mobile-source CO emission inventory used here (EMFAC) agrees with another fuel-based CO inventory 

(Kim et al., 2016), both of which reproduce the observed weekly patterns. This suggests the mobile-source CO emission 

inventory in LA basin during CalNex is correctly modelled. While the model performs well for CO (Figure S2), it overestimates 

BC concentrations by a factor of 2. These comparisons suggest that gasoline activity (the major of source of CO) is modelled 380 

correctly, but there may be a potential over-estimation of either diesel activity and/or the diesel BC emission factor (the major 

source of BC). If the diesel activity is overestimated, then diesel IVOC are likely overestimated, which only strengthens our 

conclusion that there are important non-mobile sources of IVOCs. 

The second potential uncertainty is mobile-source NMOG emission factors. Comparisons in May et al. (2014) suggest 

that the EMFAC emission factors (which are used to create the mobile-source emission inventory for these simulations) are 385 

robust, except for LEV-2 vehicles. During the 2010 CalNex period, EMFAC estimates LEV-2 vehicles (considering model 

year after 2004) only emit 8.5% of total gasoline NMOG emissions in California and therefore are not major contributors in 

mobile emissions. Therefore this uncertainty also does not appear to alter our conclusion that there are important non-mobile 

sources of IVOCs. 

The final potential uncertainty is the IVOC-to-NMOG ratios. Zhao et al. (2016) and Lu et al. (2018) show that IVOC-390 

to-NMOG ratios of cold-start UC (unified cycle) emissions from gasoline sources are consistent across a large number of 

vehicles spanning a range of emission certification standards. Although IVOC emissions from hot-running gasoline vehicle 

exhaust are enriched by as much as a factor of 4 compared to the cold-start UC cycle (Lu et al., 2018; Zhao et al., 2016), 

EMFAC2017 estimates that running exhaust only contributes 34% of total gasoline summertime NMOG emissions in CA in 

2010. A simple weighted average of 66% emission using cold-start UC emission profile and 34% of emission using hot-395 

running emission profile increases the IVOC-to-NMOG fraction for gasoline vehicles by a factor of 2, from 4.5% to 9.1%. 
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The IVOC-to-NMOG ratio for diesel sources is already high (55%) and thus it cannot be increased as much as the gasoline 

emissions (less than a factor of 2). Therefore, the largest uncertainty in modelled mobile IVOCs is the gasoline source IVOC-

to-NMOG ratio, which could be underestimated by as much as a factor of two. This means that the overall uncertainty in 

modelled mobile IVOC emissions is less than a factor of 2. Increasing the gasoline IVOC emissions to better account for hot-400 

running operations would explain a larger fraction of the measured hydrocarbon IVOCs concentrations, but it seems unlikely 

that it would close the mass balance given that gasoline vehicles contribute less than half of the mobile IVOCs. Therefore, 

even acknowledging the existing uncertainty we still conclude that non-mobile sources are likely important contributors to 

ambient IVOC concentrations in Pasadena.  

Jathar et al. (2017) also updated CMAQ with mobile-source IVOC emissions estimates. They assumed that IVOCs 405 

contribute 25% and 20% of the NMOG emissions from gasoline and diesel source, respectively. However, these ratios are not 

based on direct measurements, but instead inferred from SOA closure studies for chamber experiments. The model of Jathar 

et al. (2017) predicted mobile sources contribute 3.9 μg m-3 of IVOCs, which is about factor of 1.5 higher than the IVOC 

concentrations predicted here (and about 65% of measured ambient hydrocarbon IVOC concentrations). The better closure is 

due the very high IVOC-to-NMOG ratio assumed for gasoline vehicles, which is not supported by direct measurements (Drozd 410 

et al., 2019; Zhao et al., 2016). 

 

4.1.2 Primary VOC/IVOC diurnal patterns 

Figure 4 compares the measured and modelled campaign-average diurnal patterns of important anthropogenic VOCs (benzene, 

toluene, m-/p-/o- xylenes) and hydrocarbon IVOCs. Measured concentrations of benzene, toluene and hydrocarbon IVOCs are 415 

highest in the early afternoon (12pm - 2pm, in Figure 4 a, b and d). This has been attributed to the transport of morning 

emissions from downtown Los Angeles to Pasadena (Borbon et al., 2013). Measured xylene concentrations show a slight 

decrease in daytime, which is attributed to their relatively high OH reaction rate and thus faster oxidation during the daytime 

(de Gouw et al., 2018). 

Figure 4 indicates that the model reproduces the measured benzene diurnal pattern but not the toluene, xylene and 420 

hydrocarbon IVOC diurnal patterns. Figure 4 (b and c) shows that during night-time the model overpredicts toluene and xylene 

concentrations by a factor of 2 and 1.4, respectively. Modelled hydrocarbon IVOCs mass concentration (Case 2) are 

underestimated throughout the day (Figure 4d and Figure 3b). 

Figure 4 also shows modelled species concentrations peak around 6 AM and then steadily decrease from 6 AM to 4 

PM, in contrast to the early-afternoon peaks (12 PM to 2 PM) in the measured data. A potential explanation for this difference 425 

is that the model is incorrectly simulating the PBL height. On average, the measured PBL height ranges from ~200 m at night 

to ~900 m at noon (Figure S7), while modelled PBL height ranges from ~60 m at night and up to 1500 m at noon. However, 

changing the predicted PBL height would degrade model performance for some species which are already predicted well  

(Figure S3 and S4). Another possible explanation is that additional unknown sources of IVOCs have large NMOG emissions 
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that peaks at noon, for example some type of evaporative emissions. Additional research is needed to resolve the discrepancy 430 

between model and measured diurnal profiles shown in Figure 4. 

 

4.1.3 OA mass concentrations and diurnal patterns 

Figure 5(a) plots the AMS-observed and CMAQ-modelled hourly-averaged PM1-OA time series at the Pasadena site during 

CalNex. We consider the Pearson’s correlation coefficient (r) and root-mean-square error (RMSE) as the evaluation metrics 435 

between measured and model OA time series. The definitions of r and RMSE are shown in Eq. (S1) and (S2): 

Our base model (Case 1) significantly underpredicts the OA concentration, often by more than a factor of 3, over the 

entire time period. Case 1 has a large RMSE = 5.3 μg m-3, which is comparable to the average measured OA (6.9 μg m3), and 

moderate positive correlation (r = 0.69). To understand the source of this discrepancy, Figures 5(b) and 5(c) compare the 

modelled average diurnal patterns for SOA and POA to PMF factors derived from Aerosol Mass Spectrometer data for OOA 440 

(SV-OOA plus LV-OOA) and POA (HOA plus COA) (Hayes et al., 2013). The observed OOA factor in Figure 6(b) has a 

strong peak in the early afternoon, similar to the OH radical concentration (de Gouw et al., 2018) and photo-chemical age 

(Hayes et al., 2015). 

Figure 5(c) shows that the model correctly predicts average POA concentrations (modelled: 1.73 µg m-3 vs measured: 

2.01 µg m-3). It also reasonably reproduces the observed POA diurnal pattern. This applies to all four cases and suggests that 445 

our inventory (Table 3) has a reasonable representation for the POA emissions, volatility distributions, and correction for filter 

artifacts for gasoline sources. The mobile volatility profile predicts that a bit more than half of the semivolatile POA evaporates; 

therefore, if it treated POA as non-volatile then the model would have overpredicted the observed POA concentrations by 

about a factor of two. 

Figure 5(b) shows that Case 1 produces very little SOA, similar to previous CMAQ simulations (Baker et al., 2015; 450 

Woody et al., 2016). In this study, we emphasize the peak in the diurnal SOA concentration because this enhancement is 

reflective of the strength of prompt SOA formation in both the observations and the model. In Case 1, the predicted peak SOA 

concentration is 1.65 µg m-3 at the Pasadena site, which is 5 times lower than the AMS-observed value (8.63 µg m-3). Both 

modelled LV-OOA and SV-OOA are much lower than AMS-observed factors. 

Figure 2 indicates that mobile-source IVOC emissions contribute significantly to SOA formation, especially to the 455 

day-time SOA formation due to their high SOA yield and OH reaction rates. In Case 2, the addition of mobile IVOC emissions 

increases the peak SOA concentration by 60%, from 1.65 to 2.75 µg m-3 and daytime SOA increase (peak SOA – night-time 

SOA) by 110% from 0.82 to 1.73 µg m-3. The increase in night-time SOA from IVOC oxidation was about a factor of 4 smaller 

than the daytime increase. Adding mobile-source IVOC improves model performance, but Case 2 still only explained 32% of 

AMS-observed daytime peak SOA.  460 
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Our comparison demonstrates that mobile-source IVOC emissions need to be explicitly included in models and 

inventories. However, they do not close the mass balance for hydrocarbon IVOCs or SOA in Pasadena. In the next section, we 

explore the potential contribution of IVOC emissions from non-mobile sources (McDonald et al., 2018). 

 

4.2 Non-mobile IVOC emissions 465 

4.2.1 IVOC mass concentrations and diurnal pattern 

Motivated by recent research on volatile chemical products (VCPs) (Khare and Gentner, 2018; McDonald et al., 2018), we 

also investigated potential IVOC emission from non-mobile source. For example, McDonald et al. (2018) estimated that 19.6% 

of total gas-phase VCP emissions are IVOCs. Khare and Gentner (2018) reported that the IVOC content in 12 commercially 

available VCPs range from 0 to 95%. However, many of these IVOCs in VCPs are heavily oxygenated. 470 

Cases 3 and 4 explore different levels of IVOC emission for non-mobile sources. The IVOC-to-NMOG ratios are not 

based on independent laboratory data, but are set to close the gap between modelled and measured hydrocarbon IVOC 

concentration (Case 3) and SOA concentration (Case 4) at Pasadena, CA (Hayes et al., 2013; Zhao et al., 2014). Since there 

are limited data on non-mobile IVOC emissions, they are assumed to have the same properties as alkane-like IVOCs (IVOCP6-

ALK to IVOCP3-ALK) with a uniform volatility distribution. Table 4 shows that Case 3 and 4 add an average 30.7 and 68.5 475 

Ton day-1 non-mobile IVOC emissions scaled from NMOG emissions as described in section 3.4. 

For the low non-mobile-IVOC case (Case 3), we added IVOC emissions to the inventory equivalent to 12% non-

mobile NMOG emission. The scaling coefficient was determined to roughly match the campaign-average hydrocarbon IVOC 

mass concentrations measured in Pasadena, CA (Zhao et al., 2014). The only difference between Cases 2 and 3 are the 

additional non-mobile hydrocarbon IVOC emissions. 480 

For the high non-mobile-IVOC case (Case 4), we added non-mobile IVOC emissions equivalent to 26.8% of non-

mobile NMOG emissions. This value was chosen to roughly close the mildly-oxygenated IVOC and SOA mass balance. It is 

obviously a very high estimate, but only somewhat higher than the 20% estimates of total VCP emissions in McDonald et al. 

(2018). The only difference between cases (4) and (3) is the additional non-mobile IVOC emissions equivalent to 14.8% of 

non-mobile NMOG. 485 

Figure 3(b) shows in Case 3, the model predicts 4.9 µg m-3 of non-mobile hydrocarbon IVOC and 7.3 µg m-3 of total 

hydrocarbon IVOC, which is only somewhat higher than the measured value (6.3 µg m-3). Case 4 predicts additional 6.3 µg 

m-3 of oxygenated IVOC from non-mobile sources and 13.6 µg m-3 total IVOC (hydrocarbon + oxygenated), which exceeds 

the measured total IVOC (10.5 µg m-3) by 30%. Given this overprediction and the fact that mildly-oxygenated IVOCs can also 

be formed through secondary chemistry, these results suggest that the IVOC-to-NMOG ratio for non-mobile sources is between 490 

Case 3 (12%) and Case 4 (26.8%). In addition, recent research suggests that up to a factor of 3 scale-up may be needed for 

VCP NMOG emissions (McDonald et al., 2018), which would drive down the IVOC-to-NMOG ratios to 4 - 9%. 
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4.2.2 OA time series and diurnal patterns 

Adding non-mobile IVOC emissions increased the predicted afternoon peak SOA concentration to 5.0 and 8.6 µg m-3 for Cases 495 

3 and 4, respectively. This highlights the potentially large contribution of non-mobile IVOC emissions to SOA formation. 

Figure 5(a) also shows that in Case 4, the modelled OA time series largely explains the observed SOA (RMSE = 2.5 μg m-3, r 

= 0.85), including explaining the observed peak values in the middle of the day. Since increasing OA concentrations also shifts 

the gas-particle partitioning of SVOCs to the particle phase (Donahue et al., 2006), there are also minor shifts in POA 

partitioning from Case 1 to Case 4, but these changes are small and do not substantively alter the model-measurement POA 500 

comparison shown in Figure 5(c). 

Adding non-mobile IVOC emissions also improves the model predictions of SOA contribution to OA in Pasadena. 

Hayes et al. (2013) apportioned 66% of the OA to OOA (SV-OOA plus LV-OOA) in Pasadena during CalNex campaign. 

Hersey et al. (2011) apportioned an even higher fraction of 77% OA to OOA in Pasadena in 2009. As a comparison, if no 

IVOCs are included in the model, Case 1 only predicts SOA only contributes 47% of the total OA. With additional mobile and 505 

non-mobile IVOC emissions, our model predicts 67% OA as SOA in Case 3, and 74% in Case 4. 

Although Case 4 largely reproduces the measured OA, we do not think that missing IVOC emissions is the only 

contributor to the poor performance of the base model. The assumption of Case 4 that IVOC contribute 26.8% of non-mobile 

NMOG is likely too high, and it overpredicts the total measured IVOC concentrations. Other important uncertainties include 

(1) effect of vapor wall loss on SOA yield (Zhang et al., 2014), (2) PBL modelling, and (3) multigenerational SOA aging and 510 

(4) SVOC emission uncertainties. First, SOA yields for VOCs and IVOCs need to be corrected (typically increased) for vapor 

wall-losses (Akherati et al., 2018). Second, CMAQ likely overpredicts the afternoon PBL height in Pasadena, as discussed in 

section 4.1. Correcting this will likely increase SOA formation and concentrations, reducing the amount of IVOC emissions 

needed to reach SOA mass closure. Finally, the effects of multigenerational aging on secondary products of SOA precursor 

oxidation is uncertain. We have represented this phenomenon with model parameters designed for aging of SVOC emissions 515 

(Murphy et al., 2017), but the ratio of functionalization versus fragmentation could be different for products of IVOC oxidation 

due to differences in carbon number and functionality. Figure 5(c) shows that simulated POA reproduces the measured 

concentrations, so we believe that the uncertainty in SVOC emissions are relatively small. We also acknowledge the model 

uncertainty in the oxidation and aging of SVOCs, and this can lead to the substantial changes in OA prediction. 

Despite all of these potential uncertainties, the exploratory simulations (Cases 3 and 4) indicate non-mobile IVOC 520 

emissions are likely an important source of SOA precursors, but its contributions should be between Case 3 and 4 (12% and 

26.8% of non-mobile NMOG). The lower value will close the hydrocarbon IVOC but not the SOA mass balance. Correcting 

the likely underestimate of VCP emissions (McDonald et al., 2018) in current inventories will drive down the needed non-

mobile IVOC emissions to 4% to 9% of NMOG emissions. 

 525 
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4.3 Regional SOA formation 

IVOCs also contribute to regional SOA formation. This is shown in Figure 6(a, b), which presents maps of campaign-average 

NMOG emissions and modelled SOA concentrations. Primary NMOG emissions are concentrated in the densely populated 

urban areas such as Los Angeles, but due to the transport of SOA precursors, especially IVOCs, Figure 6(b) shows that SOA 

concentrations are spread over a much large spatial domain than the emissions. This is expected given the SOA production 530 

requires time for atmospheric oxidation. 

To evaluate the spatial performance of the model, we compared model predictions of regional OA to CSN data at 

seven sites in California shown in Figure 6(c). Three of the sites are in southern California (LA, Riverside and El Cajon) while 

the others are central or northern California. Figure 6(d) shows the comparison between modelled OA and CSN data (OC*1.8 

to account for non-carbonaceous components of the organic aerosol collected on the filters) for all seven sites from Case 1 to 535 

Case 4. Table 5 summarizes the evaluation metrics for all cases in site-aggregated comparisons. 

Case 1 grossly underestimated the OA at all sites except for Sacramento, with an fractional bias (FB, definition in SI) 

of -0.59 and fractional error (FE, definition in SI) of 0.67, of which much of the measured OA are SOA (Docherty et al., 2008; 

Hayes et al., 2013). Case 2 and Case 3 reduce the fractional bias to -0.52 and -0.33, respectively, and the fractional error to 

0.62 to 0.49. Of the four cases considered here, Figure 6(d) shows that Case 3 predicted the OA concentrations at three of the 540 

southern California CSN sites, but underpredicts at other sites such as Fresno, San Jose and Bakersfield. Case 4 overpredicts 

the OA concentrations at the southern California CSN sites (coincident with the highest average SOA concentrations), but still 

underpredicts in Bakersfield, San Jose and Fresno. However, this case has the best overall metrics (FB = -0.10 and FE = 0.42). 

Figure 6(b) shows that the amount of SOA formed from additional IVOC emissions is much less in northern and 

central California compared to southern California. This could be due to the different meteorological conditions, or source 545 

variations, and/or inaccuracies in the multigenerational aging model. More research is needed to better understand the 

competition between functionalization and fragmentation of organic gases at long atmospheric timescales. Case 3 and Case 4 

were estimated to roughly explain the measured hydrocarbon IVOC and SOA concentration in Pasadena, but measured data 

of source-specific IVOC-to-NMOG fractions are needed to correctly model the non-mobile emissions.  

 550 

5 Conclusions 

This paper presents new mobile-source emission profiles that explicitly account for IVOC emissions and a new SOA 

parameterization for mobile source IVOCs designed for implementation in chemical transport models. We implemented these 

new profiles and parameterization to investigate the contribution of mobile sources and IVOC emissions to SOA formation in 

California during the CalNex campaign. We have focused on mobile-source emissions because of the availability of data, but 555 

the same basic approach can applied to other sectors of organic combustion in the future, such as wildfires, agricultural fires, 

and meat cooking, as additional data become available. The main findings are: 
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We developed a new parameterization to model SOA formation from mobile source IVOC emissions designed for 

implementation into CTMs. Explaining the SOA formation from both gasoline and diesel vehicles requires accounting for both 

the volatility and the chemical composition of the IVOC emissions. Our parameterization has six lumped IVOC species: two 560 

aromatic and four aliphatic.  

We developed new source profiles for IVOC emissions from mobile sources that are available in SPECIATE 5.0 to 

facilitate their use in emissions inventory preparation and future CTM simulations. Applying these profiles to the existing EPA 

inventories predicts that mobile sources contribute 2.4 µg m-3 of IVOCs at Pasadena site during CalNex, which is 38% of 

measured concentrations of hydrocarbon IVOCs. 565 

Mobile source IVOC emissions are predicted to contribute ~1 µg m-3 daily-peak SOA concentration, a 67% increase 

compared to the base case without IVOC emissions. Therefore, mobile-source IVOC emissions need to be included in CTM 

simulations. However, mobile-source emissions alone don’t explain the measured IVOC or SOA concentrations. The growing 

importance of non-mobile sources underscores the effectiveness of the decades-long regulatory effort to reduce mobile-source 

emissions. Results from exploratory model runs suggests that between 12% of 26.8% (or 30.7 to 68.5 Ton day-1 in Los Angeles 570 

– Pasadena region) of non-mobile NMOG emissions are likely IVOCs.  

 

Future research needs: 

VCPs are likely a major source of IVOC and future research is needed to constrain their emissions using ambient 

observations, bottom-up emission inventory methods and computational models (McDonald et al., 2018; Qin et al., 2019). 575 

Measurements of both the volatility distribution and chemical composition of VCP emissions are needed. Modelling the SOA 

formation from these new IVOCs will likely require extension of existing chemical mechanisms to better represent more 

oxygenated IVOCs. 

More measurements of ambient IVOC concentrations across a range of field sites are needed to better evaluate model 

performance. Given the lack of data, regional evaluations of ambient IVOC and OA predictions still have large uncertainty. 580 

Improved understanding is needed on the effects of multigenerational aging on SOA formed from IVOC emissions 

(and other precursors). The impacts of polluted plumes on downwind receptors depends on the nature of aging processes and 

whether they result in the addition or reduction of particulate mass (e.g. fragmentation processes may enhance volatilization 

of OA downwind of sources). 

 585 

Disclaimer. Although portions of this work were contributed by research staff in the Environmental Protection Agency and 

this work has been reviewed and approved for publication, it does not reflect official policy of the EPA. 
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Tables 

Table 1 Mass fractions (g per g-NMOG) of IVOCs in mobile NMOG emission profiles used in CMAQ simulations. 

Group 
Volatility 

(C* at 298K, µg m-3) 

Source 

Gasoline Aircraft Diesel 

Non-aromatics 

IVOCP6-ALK 106 0.006 0.207 0.159 

IVOCP5-ALK 105 0.002 0.048 0.187 

IVOCP4-ALK 104 0.003 0.020 0.149 

IVOCP3-ALK 103 0.003 0.009 0.054 

Aromatics 
IVOCP6-ARO 106 0.025 n/a 0.002 

IVOCP5-ARO 105 0.006 n/a 0.004 

Total  0.046 0.285 0.555 
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Table 2 Properties and stoichiometric mass-based product yields for 6-group IVOC-SOA parameterization  

Group 

C* (µg 

m-3, at 

298K) 

MW 

(g/mol) 

kOH × 1011  

(cm-1 

molec-1 s-1) 

αi (C* = 0.1 to 100 µg m-3 at 298K) 
Yield at 10 

µg m-3 

Hvap  

(kJ mol-1) 0.1 1 10 100 

IVOCP6-ALK 106 184.4 1.55 0.009 0.045 0.118 0.470 0.15 19 

IVOCP5-ALK 105 219.4 1.89 0.051 0.061 0.394 0.494 0.35 30 

IVOCP4-ALK 104 254.9 2.25 0.068 0.083 0.523 0.239 0.43 41 

IVOCP3-ALK 103 296.6 2.65 0.067 0.086 0.544 0.198 0.43 52 

IVOCP6-ARO 106 162.3 3.05 0.022 0.109 0.251 0.005 0.25 19 

IVOCP5-ARO 105 197.3 7.56 0.143 0.021 0.329 0.358 0.36 30 
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Table 3 POA volatility distributions and filter artifact scaling factors 

Source 
Volatility, C* (µg m-3, at 298K) Filter artifact 

scaling factor ≤ 10-1 1 10 102 

Gasoline 0.16 0.08 0.37 0.39 1.4 

Diesel 0.21 0.11 0.33 0.36 1 

Gas-turbine 0.15 0.26 0.38 0.21 1 

  870 



32 

 

Table 4 Total anthropogenic organic emissions (Ton day-1) in Los Angeles Basin region in four CMAQ simulation cases 

Case Name 
Inventory 

POA 

POA after 

scaling 

Inventory 

NMOG 

Mobile 

IVOCs 

Non-mobile 

IVOCs 

1 Base 26.4 28.9 450.2 0 0 

2 Mobile IVOC 26.4 28.9 450.2 27.6 0 

3 Low non-mobile IVOC 26.4 28.9 450.2 27.6 30.7 

4 High non-mobile IVOC 26.4 28.9 450.2 27.6 68.5 
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Table 5 Model OA performance metrics at all CSN sites (1.8*OC) for this study 875 

Case Fractional Bias Fractional Error 

1 Baseline -0.59 0.67 

2 Mobile IVOC -0.52 0.62 

3 Low Non-mobile IVOC -0.33 0.49 

4 High Non-mobile IVOC -0.10 0.42 
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Figures 

  

Figure 1: Scatter plot of first-generation mass-based SOA yields versus volatility (log C*, μg / m3) in the detailed parameterization 880 
(dots are colored by OH reaction rates) 
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Figure 2: (a) Comparison of predicted SOA formation per unit mass mobile IVOC emission of new parameterizations and model of 

Zhao et al. (2015, 2016) at OA = 5 µg m-3, average [OH] = 3 × 106 cm-3. (b) Relative error in SOA formed between new and Zhao et 

al. (2015, 2016) parameterization (Solid line is the relative error at OA = 5 µg m-3, shaded area corresponds to OA from 1 to 50 µg 

m-3). 890 
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Figure 3: (a) Modelled NMOG and IVOC emissions by source for the four simulation cases. (b) Measured and modelled IVOC mass 895 
concentrations at Pasadena, CA during CalNex for the four simulation cases. Measured data in (b) from Zhao et al. (2014). 
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  900 

Figure 4: Comparison of measured (boxplot, solid box denotes 25th to 75th percentiles and whiskers denote 10th to 90th percentiles) 

and modelled (line, shaded area denotes 25th to 75th percentiles) diurnal patterns in Pasadena, CA during CalNex for species: (a) 

benzene, kOH = 1.22 × 10 -12 cm3 molec-1 s-1 (b) toluene, kOH = 5.63 × 10 -12 cm3 molec-1 s-1 (c) xylene, kOH = 1.36 - 1.87 × 10 -11 cm3 molec-

1 s-1 and (d) hydrocarbon IVOCs (blue: Case 2, red: Case 3), kOH = 1.55 – 7.56 × 10 -11 cm3 molec-1 s-1. Measured data from Borbon et 

al. (2013). 905 

  



38 

 

 

 

  

Figure 5: (a) PM1-OA component hourly-averaged time series of measured data and model output in Pasadena, CA during CalNex 910 
campaign. (b, c) Diurnal pattern of measured and modelled SOA and POA mass concentration in Pasadena, CA during CalNex. 

Measured data from Hayes et al. (2013). 
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Figure 6: (a) Campaign-average NMOG emissions (Ton day-1) in emission inventory. (b) Modelled campaign-averaged SOA 915 
concentration in Case 4. (c) Location of CSN sites use for model evaluation. (d) Comparison of modelled OA to measured OA 

(OC*1.8) at CSN sites in California. 


