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Abstract. TS1We describe simulations using an updated ver-
sion of the Community Multiscale Air Quality model ver-
sion 5.3 (CMAQ v5.3) to investigate the contribution of
intermediate-volatility organic compounds (IVOCs) to sec-
ondary organic aerosol (SOA) formation in southern Califor-5

nia during the CalNex study. We first derive a model-ready
parameterization for SOA formation from IVOC emissions
from mobile sources. To account for SOA formation from
both diesel and gasoline sources, the parameterization has
six lumped precursor species that resolve both volatility and10

molecular structure (aromatic versus aliphatic). We also im-
plement new mobile-source emission profiles that quantify
all IVOCs based on direct measurements. The profiles have
been released in SPECIATE 5.0. By incorporating both com-
prehensive mobile-source emission profiles for semivolatile15

organic compounds (SVOCs) and IVOCs and experimentally
constrained SOA yields, this CMAQ configuration best rep-
resents the contribution of mobile sources to urban and re-
gional ambient organic aerosol (OA). In the Los Angeles re-
gion, gasoline sources emit 4 times more non-methane or-20

ganic gases (NMOGs) than diesel sources, but diesel emits
roughly 3 times more IVOCs on an absolute basis. The re-

vised model predicts all mobile sources (including on- and
off-road gasoline, aircraft, and on- and off-road diesel) con-
tribute ∼ 1 µgm−3 to the daily peak SOA concentration in 25

Pasadena. This represents a ∼ 70 % increase in predicted
daily peak SOA formation compared to the base version of
CMAQ. Therefore, IVOCs in mobile-source emissions con-
tribute almost as much SOA as traditional precursors such as
single-ring aromatics. However, accounting for these emis- 30

sions in CMAQ does not reproduce measurements of ei-
ther ambient SOA or IVOCs. To investigate the potential
contribution of other IVOC sources, we performed two ex-
ploratory simulations with varying amounts of IVOC emis-
sions from nonmobile sources. To close the mass balance of 35

primary hydrocarbon IVOCs, IVOCs would need to account
for 12 % of NMOG emissions from nonmobile sources (or
equivalently 30.7 t d−1 in the Los Angeles–Pasadena region),
a value that is well within the reported range of IVOC con-
tent from volatile chemical products. To close the SOA mass 40

balance and also explain the mildly oxygenated IVOCs in
Pasadena, an additional 14.8 % of nonmobile-source NMOG
emissions would need to be IVOCs (assuming SOA yields
from the mobile IVOCs apply to nonmobile IVOCs). How-
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2 Q. Lu et al.: Simulation of organic aerosol formation during the CalNex study

ever, an IVOC-to-NMOG ratio of 26.8 % (or equivalently
68.5 t d−1 in the Los Angeles–Pasadena region) for nonmo-
bile sources is likely unrealistically high. Our results high-
light the important contribution of IVOCs to SOA production
in the Los Angeles region but underscore that other uncer-5

tainties must be addressed (multigenerational aging, aqueous
chemistry and vapor wall losses) to close the SOA mass bal-
ance. This research also highlights the effectiveness of reg-
ulations to reduce mobile-source emissions, which have in
turn increased the relative importance of other sources, such10

as volatile chemical products.

1 Introduction

Exposure to fine particulate matter (PM2.5 and PM1) has
been associated with increased mortality, lung cancer and
cardiovascular diseases (Apte et al., 2018; Di et al., 2017).15

Organic aerosol (OA) is a major component of ambient
fine particulate matter (Jimenez et al., 2009; Zhang et al.,
2015). The majority of OA, even in most urban areas, is
secondary organic aerosol (SOA), formed from the atmo-
spheric oxidation of gas-phase species. Over the past several20

decades, primary emissions have been greatly reduced in the
United States, which has led to significant improvement in
air quality, especially in the Los Angeles Basin in California
(Warneke et al., 2012; Zhang et al., 2018). However, SOA re-
mains an important component of fine particulate matter, but25

its sources are uncertain (Ensberg et al., 2014; McDonald et
al., 2018).

Intermediate-volatility organic compounds (IVOCs) are an
important class of SOA precursors (Chan et al., 2009; Liggio
et al., 2016; Presto et al., 2009; Zhao et al., 2014). IVOCs, for30

example, C12 to C17 n-alkanes and polycyclic aromatic hy-
drocarbons, are efficient SOA precursors (Chan et al., 2009;
Presto et al., 2010a). In addition, chamber experiments using
unburned fuel and diluted exhaust have demonstrated the im-
portance of IVOCs to SOA production from mobile-source35

emissions (Gordon et al., 2014; Jathar et al., 2013; Miracolo
et al., 2011; Platt et al., 2017).

Despite this evidence, IVOCs are not routinely or consis-
tently accounted for in chemical transport models (CTMs).
A major challenge has been the lack of emissions data due40

to a combination of sampling challenges and the fact that
the vast majority of IVOC emissions have not been speci-
ated on a molecular basis. In addition, chemical mechanisms
(e.g., SAPRC and carbon bond) often do not explicitly ac-
count for IVOCs, instead lumping them with VOCs or non-45

reactive gases (Lu et al., 2018). Several recent studies report
total (speciated and unspeciated) IVOC emissions from a va-
riety of mobile sources, including on- and off-road gasoline,
diesel, aircraft, and vessel engines (Cross et al., 2013; Huang
et al., 2018; Kroll et al., 2014; Pereira et al., 2018; Presto et50

al., 2011; Qi et al., 2019; Wang et al., 2012; Zhao et al., 2015,

2016). While these studies have not been able to speciate all
of the IVOCs emissions at the molecular level, some provide
insight into the molecular structure of the unspeciated IVOCs
(Drozd et al., 2019; Hatch et al., 2017; Hunter et al., 2017; 55

Worton et al., 2014; Zhao et al., 2015, 2016). For example,
IVOCs in diesel exhaust are primarily comprised of aliphatic
compounds, while IVOCs in gasoline exhaust are primarily
aromatics with higher OH reaction rates and SOA yields.
Zhao et al. (2015, 2017) used these new emissions data to ex- 60

plain the SOA formation in smog chamber experiments with
diluted vehicle emissions. The SOA mechanism proposed by
Zhao et al. (2015, 2017) accounts for all of the IVOC emis-
sions. It represents them using 79 different compounds, some
of which are individual species and others lumped groups as- 65

signed based on gas chromatography and mass spectrometry
data. However, this model is too computationally expensive
for implementation in current operational CTMs.

Because of the high levels of both ozone and PM exposure
in the Los Angeles Basin over the last several decades, ex- 70

tensive ambient measurement campaigns have explored the
sources of poor air quality in the region, including the Cal-
Nex campaign in 2010 (Ryerson et al., 2013). During the
CalNex campaign, average OA at the Pasadena supersite was
7 µgm−3, of which SOA, defined as the sum of semivolatile 75

and low-volatility oxygenated OA (SV-OOA and LV-OOA)
factors from AMS analysis, contributed 66 % to total OA
mass (Hayes et al., 2013). Zhao et al. (2014) measured the
ambient IVOC concentration at the Pasadena site and esti-
mated that photooxidation of IVOCs contributed up to 57 % 80

of SV-OOA during CalNex.
A number of chemical transport model (CTM) studies

have examined SOA formation in the Los Angeles Basin
during the CalNex campaign (Baker et al., 2015; Fast et al.,
2014; Jathar et al., 2017; Murphy et al., 2017; Woody et al., 85

2016). However, these studies used very different assump-
tions for IVOC emissions and their SOA yields. IVOC emis-
sions are commonly estimated by applying a scaling factor
to some other species (generally primary organic aerosol,
POA). These scaling factors have been based on little ex- 90

perimental data, and typically the same factor is applied to
all sources. For example, Fast et al. (2014) assumed addi-
tional SOA precursor (IVOC and/or SVOC, semivolatile or-
ganic compound) mass of 6.5×POA and Woody et al. (2016)
assumed 7.5×POA based on previous estimations (Hodzic 95

et al., 2010; Koo et al., 2014), applied to all emission source
categories. Jathar et al. (2017) assumed mobile IVOC emis-
sion as 25 % of diesel non-methane organic gas (NMOG)
emissions and 20 % of gasoline NMOG emissions. Finally,
Baker et al. (2015) did not explicitly account for IVOCs but 100

increased the SOA yields from VOCs by a factor of 4 com-
pared to the base version of the Community Multiscale Air
Quality (CMAQ) model. Despite these efforts, these studies
still underpredicted the measured OA by a factor of 2 to 6
(Hayes et al., 2013). Murphy et al. (2017) largely closed the 105

OA mass balance by defining a new lumped SOA precur-
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sor called potential combustion volatile organic compounds
(pcVOCs) with emissions equal to 9.6×POA and an SOA
yield of 1. However, all the abovementioned models used
scaling factors that are not based on actual emission data.
They also only use a single IVOC surrogate, which does not5

account for differences in IVOC chemical composition. Lu et
al. (2018) showed that a single scaling factor does not repre-
sent the magnitude of actual IVOC emissions across all mo-
bile sources. Finally, none of these models account for the
effects of differences in molecular structure in IVOC emis-10

sions on SOA yield.
Mobile sources are major sources of NMOG emissions

and therefore important sources of SOA precursors in ur-
ban environments (Gentner et al., 2017). Historically, mo-
bile sources have been the dominant source of NMOGs in15

many urban areas, but their contribution has been reduced
due to increasingly stringent emission regulations. The 2014
EPA National Emission Inventory (NEI) estimates that mo-
bile sources contribute 32 % of the anthropogenic VOC emis-
sions nationally (and 43 % in Los Angeles County). In Los20

Angeles County, on- and off-road gasoline and diesel sources
account for more than 96 % of mobile-source emissions.

Lu et al. (2018) recently compiled mobile-source emission
data, including on- and off-road gasoline, aircraft and diesel
engines, to create updated model-ready emission profiles that25

include explicit treatment of IVOCs. They found that mobile-
source NMOG emissions can be explained by trimodal dis-
tributions of by-product, fuel and oil modes. IVOC emissions
originate from fuel components, and similar distributions are
observed across sources that use the same fuel (Cross et30

al., 2015; Lu et al., 2018; Presto et al., 2011). This applies
to both low-emitting heavily controlled sources (e.g., LEV-
II-certified gasoline vehicle) and uncontrolled high-emitting
sources (e.g., two-stroke gasoline off-road sources) (Lu et al.,
2018). Therefore, in this work, mobile IVOC emissions are35

modeled and grouped based on fuel type.
In this paper, we use an updated version of CMAQ v5.3

(US EPA Office of Research and Development, 2019) to in-
vestigate the sources and contribution of SVOCs and IVOCs
to SOA formation in the Los Angeles region during the Cal-40

Nex campaign. We updated CMAQ v5.3 with a new set of
mobile-source NMOG and SVOC emission profiles that in-
clude six classes of IVOCs and a new parameterization of
SOA formation from IVOC precursors designed for imple-
mentation into chemical transport models. The new emission45

profiles are based on direct measurement of IVOCs from on-
and off-road mobile sources (Gordon et al., 2013; Lu et al.,
2018; May et al., 2014; Presto et al., 2011; Zhao et al., 2015,
2016). These profiles (100VBS to 103VBS) are now avail-
able in SPECATE 5.0 (US EPA, 2019). The new SOA pa-50

rameterization is derived from a comprehensive parameteri-
zation that explains the SOA formation from dilute mobile-
source exhaust in smog chamber studies (Zhao et al., 2015,
2017). We evaluate the resulting model, now the most-up-
to-date representation of mobile-source organic compound55

emissions, using data collected during the CalNex campaign,
including direct measurements of ambient IVOCs. Finally,
we explore the potential contribution of nonmobile sources
to IVOC and OA concentrations.

2 Parameterizing SOA formation from mobile-source 60

IVOCs

Mobile sources are comprised of a complex mixture of on-
and off-road sources, including gasoline, aircraft and diesel
engines. However, they are predominantly gasoline- and
diesel-powered, with a small fraction of aircraft emissions. In 65

this work we apply the source profiles of Lu et al. (2018) to
estimate the amount and composition of the IVOC emissions
for different mobile sources. The IVOCs are normalized to
total NMOG emissions, which only include the organics in
the volatility range from C∗ = 103 to 1011 µgm−3. Table 1 70

summarizes the IVOC-to-NMOG ratios for different mobile
sources. The ratios (and associated emission profiles) vary
widely depending on the underlying fuel. For gasoline, air-
craft and diesel sources, IVOCs comprise 4.6 %, 28.5 % and
55.5 % of the NMOG emissions, respectively. IVOC emis- 75

sions from gasoline sources include high fractions of aromat-
ics (Drozd et al., 2019; Zhao et al., 2016).

We developed a simplified parameterization to simulate
first-generation SOA formation from IVOCs under high-
NOx conditions. By first generation we mean the amount of 80

SOA that forms within a couple of hours in a smog chamber
experiment with dilute exhaust at typical atmospheric oxi-
dant levels. The parameterization is derived from the model
of Zhao et al. (2015, 2016), which explicitly accounts for
79 different classes of IVOCs. The chemistry and transport 85

associated with 79 additional species in the gas and par-
ticle phases would be too computationally expensive in a
CTM which normally has about 50 or fewer organic aerosol
species. Our aim is to develop a model for IVOC SOA pro-
duction that can be used in off-the-shelf regulatory and rou- 90

tine chemical transport modeling applications. For other ap-
plications, a more-explicit approach with multiple thousands
of species may be more powerful for modeling reaction path-
ways (Ying and Li, 2011). From the IVOC measurement
perspective, lumping similar IVOCs together based on their 95

volatility and functionality is also more interpretable and
compatible with data provided by most instruments.

The Zhao et al. (2015, 2016) model accounts for 57 indi-
vidual IVOCs and 22 lumped IVOCs. The 22 lumped IVOCs
are comprised of unspeciated IVOCs grouped based on gas 100

chromatography (GC) retention time and an assigned chem-
ical class based on its mass spectra. This model explains the
SOA formation from dilute exhaust of gasoline and diesel ve-
hicles measured in chamber experiments (Zhao et al., 2015,
2017). Our simplified SOA parameterization accounts for 105

the key differences in chemical composition of the IVOC
emissions from different mobile sources. This is important
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4 Q. Lu et al.: Simulation of organic aerosol formation during the CalNex study

Table 1. Mass fractions (grams per gram of NMOG) of IVOCs in mobile NMOG emission profiles used in CMAQ simulations.

Group Volatility Source

(C∗ at 298 K, µgm−3) Gasoline Aircraft Diesel

Non-aromatics IVOCP6-ALK 106 0.006 0.207 0.159
IVOCP5-ALK 105 0.002 0.048 0.187
IVOCP4-ALK 104 0.003 0.020 0.149
IVOCP3-ALK 103 0.003 0.009 0.054

Aromatics IVOCP6-ARO 106 0.025 NA 0.002
IVOCP5-ARO 105 0.006 NA 0.004

Total 0.046 0.285 0.555

NA – not available

because the composition of the IVOC emissions varies by
source class (e.g., gasoline versus diesel), and SOA yield
depends on both molecular weight (volatility) and chemi-
cal structure (aromatics versus alkanes) (Chan et al., 2009;
Jathar et al., 2013; Lim and Ziemann, 2005, 2009; Presto et5

al., 2010a). For example, diesels emit more lower-volatility
IVOCs than gasoline engines, but diesel IVOC emissions are
mainly comprised of aliphatic compounds versus aromatics
for gasoline. These differences matter because, for a given
chemical class, SOA yields generally increase with increas-10

ing molecular weight, which increases the effective SOA
yield of diesel exhaust relative to gasoline exhaust. How-
ever, for a given carbon number, the SOA yield for hydro-
carbon IVOCs generally follows aromatics > cyclic > linear
> branched alkanes (Lim and Ziemann, 2009; Tkacik et al.,15

2012); thus gasoline IVOC yields increase when their struc-
ture is considered. Finally, aromatic IVOCs have higher OH
reaction rates than alkanes (Chan et al., 2009; Zhao et al.,
2017). In this study, we only account for IVOC–OH reac-
tions because mobile-source IVOCs are mostly alkanes or20

aromatics, which will react slower with O3. NO3 oxidation
can be important in nighttime SOA formation (Fry et al.,
2014; Hoyle et al., 2011), and this will be important to con-
sider in the future, but experimental studies on SOA forma-
tion from anthropogenic IVOC reactions with NO3 radical25

are limited at this time.
To illustrate the complexity of the IVOC mechanisms of

Zhao et al. (2015, 2016), Fig. 1 plots the SOA yield (ex-
pressed as SOA mass divided by mass of precursor) as a
function of volatility for the 79 different IVOCs in the model30

at a typical atmospheric OA concentration of 10 µgm−3. This
model likely provides a conservative estimate for SOA yields
of lower-volatility IVOCs, as C18−22 n-alkanes are assumed
to have the same SOA yields as C17 n-alkanes. The scatter in
the data highlights the complex relationship between molec-35

ular structure and SOA yield.
Our goal is to derive a semi-empirical SOA parameteri-

zation with the minimum number of surrogate species that

Figure 1. CE1Scatter plot of first-generation mass-based SOA
yields versus volatility (log C∗, µgm−3) in the detailed parame-
terization (dots are colored by OH reaction rates).

reproduces the mechanism of Zhao et al. (2015, 2016).
The simplified parameterization must account for the differ- 40

ences in SOA formation from IVOC emissions from different
mobile-source categories (gasoline, diesel and aircraft). We
developed the simplified parameterization using the volatil-
ity basis set (VBS) framework of Donahue et al. (2006) fol-
lowing the approach of Presto et al. (2010b). The parameter- 45

ization accounts for all IVOC emissions, which are lumped
into surrogates based on gas chromatography retention time
(related to volatility) and mass spectral (composition infor-
mation) data (Lu et al., 2018). Like the work of Zhao et
al. (2015, 2016), the parameterization accounts for all IVOC 50

mass, not just the mass that can be speciated at the molecular
level (Lu et al., 2018). Briefly, to simulate SOA formation,
each lumped IVOC group reacts with OH to form a set of
semivolatile products in Eq. (1):

IVOCi +OH→ αi,1PC∗=0.1+αi,2PC∗=1+αi,3PC∗=10

+αi,4PC∗=100 for group i = 1 to 6, (1) 55
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where αi,1 to αi,4 are mass-based stoichiometric coefficients
for IVOCi distributing the reaction products across a sec-
ond volatility basis set from 0.1 to 100 µgm−3 (Presto et al.,
2010b). For each lumped IVOC species there are five un-
knowns: four stoichiometric coefficients (αi,1 to αi,4) and the5

OH reaction rate kOH,i . These coefficients and reaction rates
are derived by fitting the mechanism of Zhao et al. (2015,
2016). All SOA parameters are set at a fixed temperature of
298 K. Details of the fitting procedure are in the Supplement.

We initially tried using four lumped-IVOC-species dis-10

tributed across the volatility basis set (C∗ = 103 to
106 µgm−3) to account for the influence of precursor volatil-
ity based on gas chromatography retention time but not
molecular structure on SOA yield. However, that model
poorly reproduced the SOA formation from gasoline vehi-15

cle emissions, especially at shorter timescales (Fig. S1 in
the Supplement). The problem is that IVOCs in diesel ex-
haust are dominated by aliphatic compounds, while IVOCs
in gasoline exhaust are dominated by aromatics (Drozd et
al., 2019; Zhao et al., 2016); as previously discussed, aro-20

matic compounds have different OH reaction rates and SOA
yields (Fig. 1) (Lim and Ziemann, 2009; Tkacik et al., 2012).

We therefore defined two additional lumped IVOC species
with C∗ = 105 and 106 µgm−3 to account for the aromatic
IVOCs in gasoline engine exhaust (Table 1). The IVOCs in25

these two bins were split based on mass spectral data (Zhao
et al., 2015, 2016). Mobile-source IVOC emissions in the
lower-volatility bins of C∗ = 103 and 104 µgm−3 are primar-
ily alkanes from unburned fuel or lubricant oil (Lu et al.,
2018; Worton et al., 2014); therefore, the simplified mech-30

anism only includes one lumped aliphatic IVOC species in
each of those bins. IVOC emissions are assigned to these sur-
rogate species using the source profiles listed in Table 1.

To illustrate the performance of the new parameterization,
Fig. 2a compares the predicted SOA using our six-IVOC-35

group parameterization to the original mechanism of Zhao et
al. (2015, 2016). It shows that the two models agree with an
absolute error for the mass-based SOA yield of less than 0.01
for all mobile sources at an OA concentration of 5 µgm−3.
Across a wide range of atmospherically relevant concentra-40

tions (OA of 1 to 50 µgm−3), Figure 2(b) shows that the rela-
tive error is less than 6 % between our new parameterization
and the original mechanisms of Zhao et al. (2015, 2016).

The yields derived by the fitting make physical sense. The
yields increase with decreasing volatility (Table 2). The fit-45

ting procedure assigns higher yields and faster reaction to the
lumped aromatics compared to aliphatics in the same volatil-
ity bin (Drozd et al., 2019; Zhao et al., 2016). This explains
the higher SOA production in the first 10 h from gasoline ex-
haust compared to aircraft and diesel IVOC emissions. It also50

predicts that diesel IVOC emissions have the overall highest
SOA yield due to their high fraction of lower-volatility com-
pounds compared to emission from gasoline engines and air-
craft (Lu et al., 2018; Zhao et al., 2015).

Figure 2. (a) Comparison of predicted SOA formation per unit of
mass mobile IVOC emissions of new parameterizations and model
of Zhao et al. (2015, 2016) at OA = 5 µgm−3 (average [OH] =
3× 106 cm−3). (b) Relative error in SOA formed between new and
Zhao et al. (2015, 2016) parameterizations (solid line is the relative
error at OA = 5 µgm−3; shaded area corresponds to OA from 1 to
50 µgm−3).

Table 2 lists the set of kOH and αi for the simplified six- 55

IVOC-group parameterization for mobile-source emissions.
Molecular weights (MWs) are determined as the average
MWs of n-alkanes or speciated aromatics in each volatility
bin. The IVOC MWs are used to convert mass-based SOA
yields to molar units and calculate parameters needed to sim- 60

ulate dry deposition processes. Enthalpies of vaporization
(Hvap) are determined using the fitted parameterization in
Ranjan et al. (2012). In this work, we implement this six-
lumped-IVOC-group parameterization to model the IVOC
SOA formation in CMAQ v5.3. The first-generation prod- 65

ucts represented in Eq. (1) undergo multigenerational aging
following the mechanism of Murphy et al. (2017) described
in Sect. 3.4.

3 CMAQ model

To evaluate the contribution of mobile-source IVOC emis- 70

sions to ambient SOA, we implemented our new six-lumped-

www.atmos-chem-phys.net/20/1/2020/ Atmos. Chem. Phys., 20, 1–19, 2020
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Table 2. Properties and stoichiometric mass-based product yields for six-group IVOC–SOA parameterization.

Group C∗ MW kOH× 1011 αi Yield at Hvap
(µgm−3, at 298 K) (g mol−1) (cm−1 molec−1 s−1) (C∗ = 0.1 to 100 µgm−3 at 298 K) 10 µgm−3 (kJ mol−1)

0.1 1 10 100

IVOCP6-ALK 106 184.4 1.55 0.009 0.045 0.118 0.470 0.15 19
IVOCP5-ALK 105 219.4 1.89 0.051 0.061 0.394 0.494 0.35 30
IVOCP4-ALK 104 254.9 2.25 0.068 0.083 0.523 0.239 0.43 41
IVOCP3-ALK 103 296.6 2.65 0.067 0.086 0.544 0.198 0.43 52
IVOCP6-ARO 106 162.3 3.05 0.022 0.109 0.251 0.005 0.25 19
IVOCP5-ARO 105 197.3 7.56 0.143 0.021 0.329 0.358 0.36 30

IVOC-group SOA parameterization and emission profiles
into CMAQ v5.3. We used the model to simulate the air qual-
ity in California from 1 May to 30 June 2010, which includes
the entire CalNex campaign (May and July 2010). Except as
noted below, the simulations described here have essentially5

the same modeling domain and input parameters as previous
modeling studies on CalNex (Baker et al., 2015; Murphy et
al., 2017; Woody et al., 2016). We have extended this pre-
vious work by updating the emissions and SOA formation
from IVOCs.10

3.1 Model configuration

The model domain covered California and Nevada with a
4 km (325× 225) grid resolution and 35 vertical layers. The
input meteorology and NEI emission inventory are very
similar to those used by Baker et al. (2015), Woody et15

al. (2016), and Murphy et al. (2017) and are identical to
Qin et al. (2020). Meteorological inputs were generated us-
ing the Weather Research and Forecasting Model (WRF) Ad-
vanced Research WRF core version 3.8.1 (Skamarock et al.,
2008) with one additional model layer at the surface com-20

pared to previous studies (i.e., the lowest layer of approx-
imately 40 m depth has been split into two 20 m deep lay-
ers to better resolve surface gradients). The emission inputs
are based on the 2011 NEI version 2 with mobile, wild-
fire and electric-generating point source emissions calculated25

for 2010. Mobile on-road and off-road emissions are cal-
culated by MOVES 2014a, except that on-road emissions
for California are estimated by EMFAC and allocated us-
ing MOVES 2014a. Biogenic emissions are calculated online
with BEIS v3.61 and improved land use cover from BELD430

(Bash et al., 2016). Sea-spray aerosols are calculated online
and incorporate dynamic prediction of particle population
size and standard deviation. Windblown dust emissions are
neglected and should not impact comparisons with the data
collected by the AMS, which detects non-refractory particu-35

late compounds. Moreover, previous studies (Cazorla et al.,
2013) found little evidence of dust impacts during CalNex
using both in situ aircraft measurements and inference from
AERONET retrievals. Gas-phase chemistry is simulated with
the SAPRC07T chemical mechanism (Carter, 2010; Hutzell40

et al., 2012; Xie et al., 2013). Aerosols are simulated using
the Aero7CE2 module (CMAQ-AE7) with monoterpene pho-
tooxidation updates (Xu et al., 2018) and organic water up-
take (Pye et al., 2017). Boundary conditions were generated
from a 12 km continental United States simulation of April 45

to June 2010. We use the first 14 dCE3 of the simulation as a
spin-up to minimize the influence of initial conditions.

Previous studies (Baker et al., 2015; Woody et al., 2016)
have extensively evaluated different versions of CMAQ us-
ing CalNex data. These evaluations show good to excellent 50

performance for many pollutants, with a notable exception
of organic aerosols and SOA – the focus of this paper. We
evaluated our model predictions with measurements of gas-
phase pollutants such as CO, O3 and NOx as they are typical
indicators for model performance. Consistent with the pre- 55

vious applications of CMAQ to CalNex (Baker et al., 2015;
Murphy et al., 2017; Woody et al., 2016), Fig. S2a shows
very good agreement between modeled and measured CO
diurnal patterns in Pasadena, and the normalized mean bias
(NMB) is 4.2 %. Figure S3 compares the O3, NO and NO2 60

diurnal patterns with measurements in Pasadena, where the
NMB is 10.7 %, −6.7 % and 5.4 %, respectively. Figure S4
compares the CO, O3 and NO diurnal patterns for three other
sites: Bakersfield, Sacramento and Cool. The model NMB is
within ±25 % for all comparisons, except for O3 and NO in 65

Bakersfield. Thus, we can conclude that the CMAQ model
performs reasonably well at all four sites for traditional gas-
phase pollutants.

3.2 POA emissions

CMAQ v5.3 treats POA emissions as semivolatile with vari- 70

able gas–particle partitioning and multigenerational aging
(Fig. S5). The POA model, similar to the 1.5-dimensional
VBS of Koo et al. (2014), contains five pairs of hydrocarbon-
like vapor/particle species (one LVOC, three SVOCs and one
IVOC) distributed across a volatility basis set with C∗ from 75

10−1 to 103 µgm−3, with O : C increasing slightly with de-
creasing volatility. POA emissions are then assigned to each
of these species using the source-specific volatility profiles
in Table 3, and CMAQ calculates gas–particle partitioning
assuming equilibrium partitioning and treating the entire or- 80
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Table 3. POA volatility distributions and filter artifact scaling fac-
tors.

Source Volatility, C∗ (µgm−3, at 298 K) Filter artifact

≤ 10−1 1 10 102 scaling factor

Gasoline 0.16 0.08 0.37 0.39 1.4
Diesel 0.21 0.11 0.33 0.36 1
Gas turbine 0.15 0.26 0.38 0.21 1

ganic phase as a single, pseudo-ideal solution. For nonmobile
sources, POA emissions are distributed into all five bins with
C∗ from 10−1 to 103 µgm−3, while the mobile-source POA
profiles only map to the 10−1 to 102 µgm−3 bins.

Comprehensive emission profiles for semivolatile POA in-5

clude both SVOCs and lower-volatility organics (Lu et al.,
2018). In the base version of CMAQ v5.3, the volatility
profile of Robinson et al. (2007) is used to represent all
combustion sources. Here, we update the volatility distribu-
tions for mobile POA using the new mobile-source emis-10

sion profiles in Lu et al. (2018). The profiles (8873VBS
and 8992VBS to 8996VBS) are available in SPECIATE 5.0
(US EPA, 2019). For nonmobile combustion sources, we use
the biomass-burning POA volatility distribution from May
et al. (2013b) for wood-burning sources, the cooking POA15

volatility distribution from Woody et al. (2016) for cooking
sources and the diesel POA volatility distribution from May
et al. (2013a) as a surrogate for all other combustion sources.
According to our emission inventory, mobile, wood-burning
and cooking sources combined emit more than 80 % of to-20

tal POA in the Los Angeles region during the modeled pe-
riod, where other combustion sources only emit 16.4 % of
the POA. We acknowledge that the diesel POA surrogate is
modestly more volatile than biomass-burning POA profiles.
Thus, using diesel POA volatility as the surrogate for other25

combustion sources will possibly increase the regional SOA
formation compared to if a different profile was used, but the
potential bias is small. Table 3 summarizes the volatility dis-
tributions and scaling factors used in this work. The same
POA emissions were used for all model runs.30

A challenge is that most existing POA emission factors
used to inform inventories such as NEI are based on fil-
ter measurements, which do not quantitatively collect all
SVOCs. For example, filters collect only a portion of SVOC
vapors. Estimating this error is complex because there are35

competing biases. First, source testing is often performed at
low levels of dilution, which creates high concentrations (rel-
ative to the more dilute atmosphere) that shift gas–particle
partitioning of SVOCs to the particle phase. In these situ-
ations, filters collect a larger fraction of SVOCs than more40

dilute conditions (of course, at high enough concentrations,
filters will also collect some IVOC vapors). Second, during
mobile-source testing, filters are commonly collected at ele-
vated temperatures (e.g., 47 ◦C) to avoid water condensation,

which shifts gas–particle partitioning towards the gas phase, 45

reducing the fraction of SVOCs collected by a filter. Finally,
filters collect some vapors as sampling artifacts, which de-
pends on many factors, including filter material, filter face
velocity and filter pretreatment (Subramanian et al., 2004).
Therefore, the fraction of SVOCs collected by filters depends 50

on these competing effects, which are difficult to quantify.
As expected, data from Zhao et al. (2015, 2016) and Lu et
al. (2018) indicate that the fraction of SVOCs collected de-
pends on the OA concentration inside the sampling system.

To estimate potential biases in the amount of SVOC va- 55

pors in the filter-based POA emission factor measurements,
we compared the mass of lower-volatility organics (SVOC
+ LVOC + NV) collected on filters and Tenax tubes versus
the mass collected on filters (regular POA measurement) (Lu
et al., 2018). The two estimates for diesel and gas-turbine 60

tests were within 10 %, which is within experimental uncer-
tainty. Therefore, we did not add any SVOC mass to these
emissions. For gasoline sources, the data indicate an aver-
age bias of 40 %, which means that lower-volatility organics
were only partially collected by the filter. This is consistent 65

with the relatively low particle emissions of gasoline sources,
which create lower concentration conditions inside of the di-
lution sampler, and therefore gas–particle partitioning shifted
more to the vapor phase. We therefore applied a filter artifact
correction factor of 1.4 to gasoline POA emissions, as shown 70

in Table 3. We add these SVOC vapors to address the bias
in emission measurements and to best estimate the potential
local/regional SOA formation from mobile-source SVOCs.

3.3 IVOC emissions

An important difference from previous implementations of 75

CMAQ to simulate the CalNex campaign (Baker et al.,
2015; Murphy et al., 2017; Woody et al., 2016) is the
new mobile IVOC emission data and the application of the
new six-lumped-IVOC-species SOA parameterization. Mo-
bile sources contribute more than 40 % of anthropogenic 80

NMOG emissions in the South Coast Air Basin in the CalNex
emission inventory (Baker et al., 2015). Given the consis-
tency of the speciation and IVOC-to-NMOG ratio for sources
using same type of fuel (Lu et al., 2018), we assign mobile-
source emission profiles based on fuel type (gasoline, diesel 85

or jet fuel). NMOG emissions from all on- and off-road gaso-
line sources are represented using the same average gasoline
exhaust profile (SPECIATE profile no. 100VBS). NMOG
emissions from all on-road and off-road diesel sources (in-
cluding rail) are represented using the same average non- 90

DPF (diesel particulate filter) diesel exhaust profile (SPE-
CIATE profile no. 103VBS). Studies have noted there can
be significant differences in IVOC emissions between DPF-
equipped and non-DPF vehicles (Dunmore et al., 2015; Lu
et al., 2018; Platt et al., 2017). However, the total NMOG 95

emissions from diesel sources in southern California in 2010
were dominated (> 99 %) by non-DPF vehicles (due to a
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combination of the fleet composition and the fact that non-
DPF vehicles have much lower emission factors). Therefore,
we use the IVOC emission profile for non-DPF vehicles for
all diesel sources. Although only limited data are available
for off-road diesel engine emissions (Qi et al., 2019), it sug-5

gests the emissions are similar to on-road diesel vehicles.
NMOG emissions for all jet-fueled sources are represented
using the same gas-turbine exhaust profile (SPECIATE pro-
file no. 102VBS). The IVOC components of these profiles
are summarized in Table 1, and complete profiles are given10

in SPECIATE 5.0 (US EPA, 2019). Total IVOC emissions
are determined using the IVOC-to-NMOG ratios, which are
more consistent across source types than IVOC-to-POA ra-
tios (Lu et al., 2018).

For this work IVOC emissions are added to existing15

NMOG emissions. This was done to keep the VOC emissions
across the different model runs constant in order to better iso-
late the contribution of IVOCs to SOA. In addition, OH ox-
idation of IVOCs is assumed to regenerate OH radicals and
thus have minimal impact on the oxidant budget and the pro-20

duction of O3. However, Lu et al. (2018) argued that existing
NMOG inventories largely include IVOCs, just that they are
misattributed to VOCs. Therefore, future work should pro-
portionally reduce the VOC emissions to keep the overall
NMOG emissions (VOC + IVOC) constant. This assump-25

tion minimally effects the OA model evaluation, because the
base version of CMAQ predicts that traditional VOCs only
contribute 7 % of measured OA in Pasadena during the Cal-
Nex campaign (Baker et al., 2015).

SOA is produced from IVOC oxidation using the param-30

eterization described in Sect. 2. The SOA mass is deter-
mined by CMAQ based on the gas–particle partitioning of
the SVOC products created from IVOC oxidation. CMAQ
v5.3 calculates partitioning assuming thermodynamic equi-
librium and that all organics form a single pseudo-ideal so-35

lution. The SVOC products also undergo multigenerational
aging following the approach of Murphy et al. (2017) (see
Sect. 3.4).

3.4 Multigenerational aging and gas–particle
partitioning40

The semivolatile POA emissions and semivolatile products
formed from oxidation of SOA precursors undergo multigen-
erational aging as described in Murphy et al. (2017). Fig-
ure S5 shows the schematic diagram for modeling OH ox-
idation first-generation and multigenerational aging. Briefly,45

the approach simulates the reaction of L/S/IVOC vapors with
hydroxyl radical and distributes the product mass to a sec-
ond set of five vapor–particle pairs of species at moderate
O : C values. The stoichiometric ratios used to distribute the
product mass were derived to match the SOA enhancement50

predicted by a full 2D-VBS simulation of the functional-
ization and fragmentation of SVOCs during three days of
atmospheric oxidation. This model, unlike that of Koo et

al. (2014), does transfer some of the aged products to higher-
volatility bins and thus reduces SOA over multiple gener- 55

ations of OH reaction. The probability for fragmentation in-
creases as a function of O : C in agreement with theory (Don-
ahue et al., 2011). Although the competing effects of frag-
mentation and functionalization at long timescales are repre-
sented in this model, the simplified framework is likely lim- 60

ited when trying to capture the full complexity of multigen-
erational aging. For this work, no changes were made to the
chemical properties (e.g., carbon number and O : C) or reac-
tion stoichiometry of the multigenerational aging mechanism
of Murphy et al. (2017). Because IVOC products likely have 65

lower carbon numbers than products of primary SVOC ox-
idation, our approach may represent an upper bound on the
potential for IVOC SOA aging to further enhance particle
mass downwind of sources.

3.5 Simulation cases 70

To systematically explore the effects of adding IVOC emis-
sions from mobile and nonmobile sectors, we performed four
simulation cases, summarized in Table 4. All cases use the
same emission inputs as described earlier with differences in
IVOC emissions. In the base case (Case 1), mobile SOA is 75

only formed through the oxidation of traditional VOC emis-
sions and SVOCs from evaporated semivolatile POA.

Figure 3a compares the anthropogenic NMOG emissions
in the Los Angeles Basin region for the four simulation
cases (geographical boundaries are defined by simulation 80

grid cells shown in Fig. S6). In the base case (Case 1), mobile
sources contribute 43 % of anthropogenic NMOG emissions,
of which gasoline sources contribute 35 %, diesel sources
8 % and aircraft less than 1 %. Nonmobile sources con-
tribute the remainder of the anthropogenic NMOG emissions 85

(57 %), of which volatile chemical product (VCP) usage con-
tributes 39 %, followed by 17 % from other sources. The
emission inventory contains minimal cooking and biomass-
burning NMOG emissions during CalNex (1.5 %).

Cases 2 to 4 incrementally add mobile IVOC emissions 90

to the model. Table 4 shows that Case 2 adds on average
27.6 t d−1 mobile-source IVOC emissions, which is our best
estimate of the mobile-source IVOC emission based on the
compilation of measurement data and source profiles in Lu
et al. (2018) as described in Sect. 3.3. The difference in SOA 95

concentrations between Case 2 and Case 1 is the SOA con-
tribution from mobile emitted IVOCs. In Case 3 and 4, we
incrementally add IVOC emissions from nonmobile sources
to the inventory to explore the contribution of nonmobile
sources of IVOCs as discussed in Sect. 4.2. 100

4 CMAQ simulation results

To evaluate model performance, we compared predictions
to measured data from the CalNex campaign in Pasadena,
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Table 4. Total anthropogenic organic emissions (Ton day−1) in the Los Angeles Basin region in four CMAQ simulation cases.

Case Name Inventory POA after Inventory Mobile Nonmobile
POA scaling NMOG IVOCs IVOCs

1 Base 26.4 28.9 450.2 0 0
2 Mobile IVOC 26.4 28.9 450.2 27.6 0
3 Low nonmobile IVOC 26.4 28.9 450.2 27.6 30.7
4 High nonmobile IVOC 26.4 28.9 450.2 27.6 68.5

Figure 3. (a) Modeled NMOG and IVOC emissions by source for
the four simulation cases. (b) Measured and modeled IVOC mass
concentrations in Pasadena, CA, during CalNex for the four simu-
lation cases. Measured data in (b) from Zhao et al. (2014). TS2

CA, as well as the organic carbon (OC) measured at Chem-
ical Speciation Network (CSN) sites in California. The Cal-
Nex campaign characterized atmospheric composition at two
sites in southern California, Pasadena and Bakersfield, from
15 May to 29 June 2010 (Ryerson et al., 2013). We focus on5

the Pasadena site, which is located 18 km northeast and gen-
erally downwind of downtown Los Angeles, because there
were direct measurements of IVOCs (Zhao et al., 2014). We
also evaluate model predictions at the Pasadena site for OA,
BC, CO, select speciated VOCs and planetary boundary layer10

(PBL) height.
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4.1 Base case and mobile IVOC case

4.1.1 IVOC mass concentrations

Figure 3b compares the model-predicted and measured 
campaign-average IVOC mass concentration at the Pasadena 
site. Zhao et al. (2014) reported data for two classes of 
IVOCs differentiated based on mass spectral signature: hy-
drocarbon IVOCs and mildly oxygenated IVOCs. Zhao et 
al. (2014) attributes hydrocarbon IVOCs to primary emis-
sions; the mildly oxygenated IVOC could either be primary 
emissions or formed via atmospheric oxidation. The Cal-
Nex campaign-averaged measured hydrocarbon IVOCs at 
the Pasadena site were 6.3 µgm−3; the measured mildly oxy-
genated IVOC concentration was 4.2 µgm−3. The analytical 
techniques of Zhao et al. (2014) are not optimized for mea-
suring oxygenated organics; therefore, their data provide a 
lower-bound estimate of the total and oxygenated IVOCs.

The base case (Case 1) predicts essentially no IVOC con-
centrations as they are not explicitly included in the base 
inventory or model (though could be implicitly included as 
misclassified VOC species). Case 2 (mobile IVOC case) pre-
dicts 2.4 µgm−3

 of IVOCs at the Pasadena site, which corresponds to 38 %
TS3 of measured hydrocarbon IVOCs. This indicates that 
mobile sources are an important source of IVOCs in the Los 
Angeles region but that more than half of the hydrocarbon 
IVOCs measured in Pasadena are likely emitted by 
nonmobile sources. In ad-dition to hydrocarbon IVOCs, 
Zhao et al. (2014) measured 4.2 µgm−3 of mildly 
oxygenated IVOCs, which are also not explained by mobile-
source emissions.

While the comparison in Fig. 3b suggests that nonmobile 
sources may be important contributors to ambient IVOC con-
centrations, there are a number of potential uncertainties, in-
cluding (1) uncertainty in mobile-source activity, (2) uncer-
tainty in mobile-source NMOG emission factors, and (3) un-
certainty in mobile-source IVOC-to-NMOG emission ratios. 
The first potential uncertainty is mobile-source activities. BC 
and CO are commonly used as indicators of gasoline and 
diesel source activity. The mobile-source CO emission inven-
tory used here (EMFAC) agrees with another fuel-based CO
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10 Q. Lu et al.: Simulation of organic aerosol formation during the CalNex study

inventory (Kim et al., 2016), both of which reproduce the ob-
served weekly patterns. This suggests the mobile-source CO
emission inventory in the Los Angeles Basin during CalNex
is correctly modeled. While the model performs well for CO
(Fig. S2), it overestimates BC concentrations by a factor of5

2. These comparisons suggest that gasoline activity (the ma-
jor of source of CO) is modeled correctly, but there may be
a potential overestimation of either diesel activity and/or the
diesel BC emission factor (the major source of BC). If the
diesel activity is overestimated, then diesel IVOC are likely10

overestimated, which only strengthens our conclusion that
there are important nonmobile sources of IVOCs.

The second potential uncertainty is mobile-source NMOG
emission factors. Comparisons in May et al. (2014) suggest
that the EMFAC emission factors (which are used to create15

the mobile-source emission inventory for these simulations)
are robust, except for LEV-II vehicles. During the 2010 Cal-
Nex period, EMFAC estimates LEV-II vehicles (consider-
ing model year after 2004) only emit 8.5 % of total gasoline
NMOG emissions in California and therefore are not major20

contributors in mobile emissions. Therefore this uncertainty
also does not appear to alter our conclusion that there are
important nonmobile sources of IVOCs.

The final potential uncertainty is the IVOC-to-NMOG ra-
tios. Zhao et al. (2016) and Lu et al. (2018) show that IVOC-25

to-NMOG ratios of cold-start UC (unified cycle) emissions
from gasoline sources are consistent across a large number of
vehicles spanning a range of emission certification standards.
Although IVOC emissions from hot-running gasoline vehicle
exhaust are enriched by as much as a factor of 4 compared to30

the cold-start UC cycle (Lu et al., 2018; Zhao et al., 2016),
EMFAC2017 estimates that running exhaust only contributes
34 % of total gasoline summertime NMOG emissions in Cal-
ifornia in 2010. A simple weighted average of 66 % of emis-
sions using the cold-start UC emission profile and 34 % of35

emissions using the hot-running emission profile increases
the IVOC-to-NMOG fraction for gasoline vehicles by a fac-
tor of 2, from 4.5 % to 9.1 %. The IVOC-to-NMOG ratio for
diesel sources is already high (55 %), and thus it cannot be in-
creased as much as the gasoline emissions (less than a factor40

of 2). Therefore, the largest uncertainty in modeled mobile
IVOCs is the gasoline source IVOC-to-NMOG ratio, which
could be underestimated by as much as a factor of 2. This
means that the overall uncertainty in modeled mobile IVOC
emissions is less than a factor of 2. Increasing the gasoline45

IVOC emissions to better account for hot-running operations
would explain a larger fraction of the measured hydrocar-
bon IVOC concentrations, but it seems unlikely that it would
close the mass balance given that gasoline vehicles contribute
less than half of the mobile IVOCs. Therefore, even acknowl-50

edging the existing uncertainty we still conclude that non-
mobile sources are likely important contributors to ambient
IVOC concentrations in Pasadena.

Jathar et al. (2017) also updated CMAQ with mobile-
source IVOC emission estimates. They assumed that IVOCs55

contribute 25 % and 20 % of the NMOG emissions from
gasoline and diesel sources, respectively. However, these ra-
tios are not based on direct measurements but instead in-
ferred from SOA closure studies for chamber experiments.
The model of Jathar et al. (2017) predicted mobile sources 60

contribute 3.9 µgm−3 of IVOCs, which is about factor of
1.5 higher than the IVOC concentrations predicted here (and
about 65 % of measured ambient hydrocarbon IVOC concen-
trations). The better closure is due to the very high IVOC-
to-NMOG ratio assumed for gasoline vehicles, which is not 65

supported by direct measurements (Drozd et al., 2019; Zhao
et al., 2016).

4.1.2 Primary VOC/IVOC diurnal patterns

Figure 4 compares the measured and modeled campaign-
average diurnal patterns of important anthropogenic VOCs 70

(benzene, toluene, m-/p-/o-xylenes) and hydrocarbon
IVOCs. Measured concentrations of benzene, toluene and
hydrocarbon IVOCs are highest in the early afternoon
(12:00–14:00, in Fig. 4a, b and d). This has been attributed
to the transport of morning emissions from downtown Los 75

Angeles to Pasadena (Borbon et al., 2013). Measured xylene
concentrations show a slight decrease in daytime, which is
attributed to their relatively high OH reaction rate and thus
faster oxidation during the daytime (de Gouw et al., 2018).

Figure 4 indicates that the model reproduces the measured 80

benzene diurnal pattern but not the toluene, xylene and hy-
drocarbon IVOC diurnal patterns. Figure 4b and c show that
during nighttime the model overpredicts toluene and xylene
concentrations by a factor of 2 and 1.4, respectively. Modeled
hydrocarbon IVOC mass concentrations (Case 2) are under- 85

estimated throughout the day (Figs. 4d and 3b).
Figure 4 also shows modeled species concentrations peak

around 06:00 and then steadily decrease from 06:00 to 14:00,
in contrast to the early-afternoon peaks (12:00 to 14:00) in
the measured data. A potential explanation for this difference 90

is that the model is incorrectly simulating the PBL height.
On average, the measured PBL height ranges from ∼ 200 m
at night to ∼ 900 m at noon (Fig. S7), while modeled PBL
height ranges from ∼ 60 m at night up to 1500 m at noon.
However, changing the predicted PBL height would degrade 95

model performance for some species which are already pre-
dicted well (Figs. S3 and S4). Another possible explana-
tion is that additional unknown sources of IVOCs have large
NMOG emissions that peak at noon, for example some type
of evaporative emissions. Additional research is needed to re- 100

solve the discrepancy between model and measured diurnal
profiles shown in Fig. 4.

4.1.3 OA mass concentrations and diurnal patterns

Figure 5a plots the AMS-observed and CMAQ-modeled
hourly-averaged PM1-OA time series at the Pasadena site 105

during CalNex. We consider the Pearson correlation coeffi-
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Figure 4. Comparison of measured (boxplot: solid box denotes 25th to 75th percentiles and whiskers denote 10th to 90th percentiles) and
modeled (line: shaded area denotes 25th to 75th percentiles) diurnal patterns in Pasadena, CA, during CalNex for the following species:
(a) benzene, kOH = 1.22× 10−12 cm3 molec−1 s−1; (b) toluene, kOH = 5.63× 10−12 cm3 molec−1 s−1; (c) xylene, kOH = 1.36− 1.87×
10−11 cm3 molec−1 s−1; and (d) hydrocarbon IVOCs (blue: Case 2, red: Case 3), kOH = 1.55− 7.56× 10−11 cm3 molec−1 s−1. Measured
data from Borbon et al. (2013).

cient (r) and root-mean-square error (RMSE) as the evalu-
ation metrics between measured and model OA time series.
The definitions of r and RMSE are shown in Eqs. (S1) and
(S2) in the Supplement.

Our base model (Case 1) significantly underpredicts the5

OA concentration, often by more than a factor of 3, over
the entire time period. Case 1 has a large RMSE =
5.3 µgm−3, which is comparable to the average measured
OA (6.9 µgm−3), and moderate positive correlation (r =
0.69). To understand the source of this discrepancy, Fig. 5b10

and c compare the modeled average diurnal patterns for SOA
and POA to positive matrix factorization (PMF) factors de-
rived from aerosol mass spectrometer data for OOA (SV-
OOA plus LV-OOA) and POA (hydrocarbon organic aerosol
(HOA) plus cooking organic aerosol (COA)) (Hayes et al.,15

2013). The observed OOA factor in Fig. 6b has a strong peak
in the early afternoon, similar to the OH radical concentra-
tion (de Gouw et al., 2018) and photochemical age (Hayes et
al., 2015).

Figure 5c shows that the model correctly predicts av-20

erage POA concentrations (modeled: 1.73 µgm−3 vs. mea-
sured: 2.01 µgm−3). It also reasonably reproduces the ob-
served POA diurnal pattern. This applies to all four cases
and suggests that our inventory (Table 3) has a reasonable
representation for the POA emissions, volatility distributions25

and correction for filter artifacts for gasoline sources. The
mobile volatility profile predicts that a bit more than half of
the semivolatile POA evaporates; therefore, if it treated POA

as nonvolatile then the model would have overpredicted the
observed POA concentrations by about a factor of 2. 30

Figure 5b shows that Case 1 produces very little SOA,
similar to previous CMAQ simulations (Baker et al., 2015;
Woody et al., 2016). In this study, we emphasize the peak
in the diurnal SOA concentration because this enhancement
is reflective of the strength of prompt SOA formation in both 35

the observations and the model. In Case 1, the predicted peak
SOA concentration is 1.65 µgm−3 at the Pasadena site, which
is 5 times lower than the AMS-observed value (8.63 µgm−3).
Both modeled LV-OOA and SV-OOA are much lower than
AMS-observed factors. 40

Figure 2 indicates that mobile-source IVOC emissions
contribute significantly to SOA formation, especially to the
daytime SOA formation due to their high SOA yield and OH
reaction rates. In Case 2, the addition of mobile IVOC emis-
sions increases the peak SOA concentration by 60 %, from 45

1.65 to 2.75 µgm−3, and daytime SOA increases (peak SOA
minus nighttime SOA) by 110 % from 0.82 to 1.73 µgm−3.
The increase in nighttime SOA from IVOC oxidation was
about a factor of 4 smaller than the daytime increase. Adding
mobile-source IVOC improves model performance, but Case 50

2 still only explained 32 % of AMS-observed daytime peak
SOA.

Our comparison demonstrates that mobile-source IVOC
emissions need to be explicitly included in models and in-
ventories. However, they do not close the mass balance for 55

hydrocarbon IVOCs or SOA in Pasadena. In the next sec-
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Figure 5. (a) PM1-OA component hourly-averaged time series of measured data and model output in Pasadena, CA, during the CalNex
campaign. (b, c) Diurnal pattern of measured and modeled SOA and POA mass concentration in Pasadena, CA, during CalNex. Measured
data from Hayes et al. (2013).

Figure 6. (a) Campaign-average NMOG emissions (t d−1) in the emission inventory. (b) Modeled campaign-averaged SOA concentration
in Case 4. (c) Location of CSN sites used for model evaluation. (d) Comparison of modeled OA to measured OA (OC ·1.8) at CSN sites in
California.
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tion, we explore the potential contribution of IVOC emis-
sions from nonmobile sources (McDonald et al., 2018).

4.2 Nonmobile IVOC emissions

4.2.1 IVOC mass concentrations and diurnal pattern

Motivated by recent research on volatile chemical products5

(VCPs) (Khare and Gentner, 2018; McDonald et al., 2018),
we also investigated potential IVOC emission from nonmo-
bile sources. For example, McDonald et al. (2018) estimated
that 19.6 % of total gas-phase VCP emissions are IVOCs.
Khare and Gentner (2018) reported that the IVOC content in10

12 commercially available VCPs ranges from 0 % to 95 %.
However, many of these IVOCs in VCPs are heavily oxy-
genated.

Cases 3 and 4 explore different levels of IVOC emis-
sion for nonmobile sources. The IVOC-to-NMOG ratios are15

not based on independent laboratory data but are set to
close the gap between modeled and measured hydrocarbon
IVOC concentration (Case 3) and SOA concentration (Case
4) in Pasadena, CA (Hayes et al., 2013; Zhao et al., 2014).
Since there are limited data on nonmobile IVOC emissions,20

they are assumed to have the same properties as alkane-like
IVOCs (IVOCP6-ALK to IVOCP3-ALK) with a uniform
volatility distribution. Table 4 shows that Case 3 and 4 add an
average of 30.7 and 68.5 t d−1 of nonmobile IVOC emissions
scaled from NMOG emissions as described in Sect. 3.4.25

For the low nonmobile IVOC case (Case 3), we added
IVOC emissions to the inventory equivalent to 12 % of non-
mobile NMOG emissions. The scaling coefficient was deter-
mined to roughly match the campaign-average hydrocarbon
IVOC mass concentrations measured in Pasadena, CA (Zhao30

et al., 2014). The only difference between Case 2 and 3 is the
additional nonmobile hydrocarbon IVOC emissions.

For the high nonmobile IVOC case (Case 4), we added
nonmobile IVOC emissions equivalent to 26.8 % of nonmo-
bile NMOG emissions. This value was chosen to roughly35

close the mildly oxygenated IVOC and SOA mass balance. It
is obviously a very high estimate but only somewhat higher
than the 20 % estimates of total VCP emissions in McDonald
et al. (2018). The only difference between cases 4 and 3 is the
additional nonmobile IVOC emissions equivalent to 14.8 %40

of nonmobile NMOG emissions.
Figure 3b shows that in Case 3 the model pre-

dicts 4.9 µgm−3 of nonmobile hydrocarbon IVOCs and
7.3 µgm−3 TS4 of total hydrocarbon IVOCs, which is only
somewhat higher than the measured value (6.3 µgm−3). Case45

4 predicts an additional 6.3 µgm−3 of oxygenated IVOCs
from nonmobile sources and 13.6 µgm−3 TS5 of total IVOCs
(hydrocarbon + oxygenated), which exceeds the measured
total IVOC (10.5 µgm−3) by 30 %. Given this overpredic-
tion and the fact that mildly oxygenated IVOCs can also be50

formed through secondary chemistry, these results suggest
that the IVOC-to-NMOG ratio for nonmobile sources is be-

Table 5. Model OA performance metrics at all CSN sites (1.8·OC)
for this study.

Case Fractional Fractional
bias error

1 (baseline) −0.59 0.67
2 (mobile IVOC) −0.52 0.62
3 (low nonmobile IVOC) −0.33 0.49
4 (high nonmobile IVOC) −0.10 0.42

tween Case 3 (12 %) and Case 4 (26.8 %). In addition, recent
research suggests that up to a factor of 3 scale-up may be
needed for VCP NMOG emissions (McDonald et al., 2018), 55

which would drive down the IVOC-to-NMOG ratios to 4 %–
9 %.

4.2.2 OA time series and diurnal patterns

Adding nonmobile IVOC emissions increased the predicted
afternoon peak SOA concentration to 5.0 and 8.6 µgm−3

60

for Case 3 and 4, respectively. This highlights the poten-
tially large contribution of nonmobile IVOC emissions to
SOA formation. Figure 5a also shows that in Case 4 the
modeled OA time series largely explains the observed SOA
(RMSE = 2.5 µgm−3, r = 0.85), including explaining the 65

observed peak values in the middle of the day. Since increas-
ing OA concentrations also shifts the gas–particle partition-
ing of SVOCs to the particle phase (Donahue et al., 2006),
there are also minor shifts in POA partitioning from Case 1
to Case 4, but these changes are small and do not substan- 70

tively alter the model–measurement POA comparison shown
in Fig. 5c.

Adding nonmobile IVOC emissions also improves the
model predictions of SOA contribution to OA in Pasadena.
Hayes et al. (2013) apportioned 66 % of the OA to OOA (SV- 75

OOA plus LV-OOA) in Pasadena during the CalNex cam-
paign. Hersey et al. (2011) apportioned an even higher frac-
tion of 77 % OA to OOA in Pasadena in 2009. As a compar-
ison, if no IVOCs are included in the model, Case 1 only
predicts that SOA only contributes 47 % of the total OA. 80

With additional mobile and nonmobile IVOC emissions, our
model predicts 67 % of OA as SOA in Case 3 and 74 % in
Case 4.

Although Case 4 largely reproduces the measured OA, we
do not think that missing IVOC emissions are the only con- 85

tributor to the poor performance of the base model. The as-
sumption of Case 4 that IVOCs contribute 26.8 % of nonmo-
bile NMOG emissions is likely too high, and it overpredicts
the total measured IVOC concentrations. Other important un-
certainties include (1) the effect of vapor wall loss on SOA 90

yield (Zhang et al., 2014), (2) PBL modeling, (3) multigen-
erational SOA aging and (4) SVOC emission uncertainties.
First, SOA yields for VOCs and IVOCs need to be corrected
(typically increased) for vapor wall losses (Akherati et al.,
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2019). Second, CMAQ likely overpredicts the afternoon PBL
height in Pasadena, as discussed in Sect. 4.1. Correcting this
will likely increase SOA formation and concentrations, re-
ducing the amount of IVOC emissions needed to reach SOA
mass closure. Finally, the effects of multigenerational aging5

on secondary products of SOA precursor oxidation are un-
certain. We have represented this phenomenon with model
parameters designed for aging of SVOC emissions (Murphy
et al., 2017), but the ratio of functionalization versus frag-
mentation could be different for products of IVOC oxidation10

due to differences in carbon number and functionality. Fig-
ure 5c shows that simulated POA reproduces the measured
concentrations, so we believe that the uncertainty in SVOC
emissions is relatively small. We also acknowledge the model
uncertainty in the oxidation and aging of SVOCs, and this15

can lead to the substantial changes in OA prediction.
Despite all of these potential uncertainties, the exploratory

simulations (Case 3 and 4) indicate nonmobile IVOC emis-
sions are likely an important source of SOA precursors, but
their contributions should be between Case 3 and 4 (12 % and20

26.8 % of nonmobile NMOG emissions). The lower value
will close the hydrocarbon IVOC but not the SOA mass bal-
ance. Correcting the likely underestimate of VCP emissions
(McDonald et al., 2018) in current inventories will drive
down the needed nonmobile IVOC emissions from 4 % to25

9 % of NMOG emissions.

4.3 Regional SOA formation

IVOCs also contribute to regional SOA formation. This is
shown in Fig. 6a and b, which present maps of campaign-
average NMOG emissions and modeled SOA concentrations.30

Primary NMOG emissions are concentrated in densely pop-
ulated urban areas such as Los Angeles, but due to the trans-
port of SOA precursors, especially IVOCs, Fig. 6b shows that
SOA concentrations are spread over a much larger spatial do-
main than the emissions. This is expected given the SOA pro-35

duction requires time for atmospheric oxidation.
To evaluate the spatial performance of the model, we com-

pared model predictions of regional OA to CSN data at seven
sites in California shown in Fig. 6c. Three of the sites are in
southern California (Los Angeles, Riverside and El Cajon),40

while the others are in central or northern California. Fig-
ure 6d shows the comparison between modeled OA and CSN
data (OC·1.8 to account for non-carbonaceous components
of the organic aerosol collected on the filters) for all seven
sites from Case 1 to Case 4. Table 5 summarizes the evalua-45

tion metrics for all cases in site-aggregated comparisons.
Case 1 grossly underestimated the OA at all sites except

for Sacramento, with a fractional bias (FB, definition in the
Supplement) of −0.59 and fractional error (FE, definition in
the Supplement) of 0.67, of which much of the measured OA50

is SOA (Docherty et al., 2008; Hayes et al., 2013). Case 2
and Case 3 reduce the fractional bias to −0.52 and −0.33,
respectively, and the fractional error to 0.62 to 0.49. Of the

four cases considered here, Fig. 6d shows that Case 3 pre-
dicted the OA concentrations at three of the southern Califor- 55

nia CSN sites but underpredicts at other sites such as Fresno,
San Jose and Bakersfield. Case 4 overpredicts the OA con-
centrations at the southern California CSN sites (coincident
with the highest average SOA concentrations) but still un-
derpredicts in Bakersfield, San Jose and Fresno. However, 60

this case has the best overall metrics (FB =−0.10 and FE
= 0.42).

Figure 6b shows that the amount of SOA formed from ad-
ditional IVOC emissions is much less in northern and cen-
tral California compared to southern California. This could 65

be due to the different meteorological conditions, or source
variations, and/or inaccuracies in the multigenerational aging
model. More research is needed to better understand the com-
petition between functionalization and fragmentation of or-
ganic gases at long atmospheric timescales. Case 3 and Case 70

4 were estimated to roughly explain the measured hydrocar-
bon IVOC and SOA concentration in Pasadena, but measured
data of source-specific IVOC-to-NMOG fractions are needed
to correctly model the nonmobile emissions.

5 Conclusions 75

This paper presents new mobile-source emission profiles that
explicitly account for IVOC emissions and a new SOA pa-
rameterization for mobile-source IVOCs designed for imple-
mentation in chemical transport models. We implemented
these new profiles and parameterizations to investigate the 80

contribution of mobile sources and IVOC emissions to SOA
formation in California during the CalNex campaign. We
have focused on mobile-source emissions because of the
availability of data, but the same basic approach can applied
to other sectors of organic combustion in the future, such as 85

wildfires, agricultural fires and meat cooking, as additional
data become available. The main findings are as follows.

We developed a new parameterization to model SOA for-
mation from mobile-source IVOC emissions designed for
implementation into CTMs. Explaining the SOA formation 90

from both gasoline and diesel vehicles requires accounting
for both the volatility and the chemical composition of the
IVOC emissions. Our parameterization has six lumped IVOC
species: two aromatic and four aliphatic.

We developed new source profiles for IVOC emissions 95

from mobile sources that are available in SPECIATE 5.0 to
facilitate their use in emission inventory preparation and fu-
ture CTM simulations. Applying these profiles to the exist-
ing EPA inventories predicts that mobile sources contribute
2.4 µgm−3 TS6 of IVOCs at the Pasadena site during CalNex, 100

which is 38 %TS7 of measured concentrations of hydrocar-
bon IVOCs.

Mobile-source IVOC emissions are predicted to contribute
∼ 1 µgm−3 daily peak SOA concentration, a 67 % increase
compared to the base case without IVOC emissions. There- 105
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fore, mobile-source IVOC emissions need to be included in
CTM simulations. However, mobile-source emissions alone
do not explain the measured IVOC or SOA concentrations.
The growing importance of nonmobile sources underscores
the effectiveness of the decades-long regulatory effort to5

reduce mobile-source emissions. Results from exploratory
model runs suggest that between 12 % and 26.8 % (or 30.7
to 68.5 t d−1 in the Los Angeles–Pasadena region) of non-
mobile NMOG emissions are likely IVOCs.

Future research needs the following.10

– VCPs are likely a major source of IVOCs and future re-
search is needed to constrain their emissions using am-
bient observations, bottom-up emission inventory meth-
ods and computational models (McDonald et al., 2018;
Qin et al., 2020). Measurements of both the volatility15

distribution and chemical composition of VCP emis-
sions are needed. Modeling the SOA formation from
these new IVOCs will likely require extension of exist-
ing chemical mechanisms to better represent more oxy-
genated IVOCs.20

– More measurements of ambient IVOC concentrations
across a range of field sites are needed to better evalu-
ate model performance. Given the lack of data, regional
evaluations of ambient IVOC and OA predictions still
have large uncertainty.25

– Improved understanding is needed on the effects of
multigenerational aging on SOA formed from IVOC
emissions (and other precursors). The impacts of pol-
luted plumes on downwind receptors depend on the na-
ture of aging processes and whether they result in the30

addition or reduction of particulate mass (e.g., frag-
mentation processes may enhance volatilization of OA
downwind of sources).
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