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Abstract 13 

We developed a two-stage model named random forest-generalized additive model (RF-GAM) 14 

based on satellite data, meteorological factors, and other geographical covariates to predict the 15 

surface 8-h O3 concentrations across the remote Tibetan Plateau. The 10-fold cross-validation result 16 

suggested that RF-GAM showed the excellent performance with the highest R2 value (0.76) and 17 

lowest root mean square error (RMSE) (14.41 μg/m3) compared with other seven machine learning 18 

models. The predictive performance of RF-GAM model showed significantly seasonal discrepency 19 

with the highest R2 value observed in summer (0.74), followed by winter (0.69) and autumn (0.67), 20 

and the lowest one in spring (0.64). Additionally, the unlearning ground-observed O3 data collected 21 

from open websites were applied to test the transferring ability of the novel model, and confirmed 22 
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that the model was robust to predict the surface 8-h O3 concentration during other periods (R2 = 0.67, 23 

RMSE = 25.68 μg/m3). RF-GAM was then used to predict the daily 8-h O3 level over Tibetan 24 

Plateau during 2005-2018 for the first time. It was found that the estimated O3 concentration 25 

displayed a slow increase from 64.74 ± 8.30 μg/m3 to 66.45 ± 8.67 μg/m3 from 2005 to 2015, 26 

whereas it decreased from the peak to 65.87 ± 8.52 μg/m3 during 2015-2018. Besides, the estimated 27 

8-h O3 concentrations exhibited notably spatial variation with the highest values in some cities of 28 

North Tibetan Plateau such as Huangnan (73.48 ± 4.53 μg/m3) and Hainan (72.24 ± 5.34 μg/m3), 29 

followed by the cities in the central region including Lhasa (65.99 ± 7.24 μg/m3) and Shigatse (65.15 30 

± 6.14 μg/m3), and the lowest O3 concentration occurred in a city of Southeast Tibetan Plateau 31 

named Aba (55.17 ± 12.77 μg/m3). Based on the 8-h O3 critical value (100 μg/m3) scheduled by 32 

World Health Organization (WHO), we further estimated the annually mean nonattainment days 33 

over Tibetan Plateau. It should be noted that most of the cities in Tibetan Plateau shared the excellent 34 

air quality, while several cities (e.g., Huangnan, Haidong, and Guoluo) still suffered from more than 35 

40 nonattainment days each year, which should be paid more attention to alleviate local O3 pollution. 36 

The result shown herein confirms the novel hybrid model improves the prediction accuracy and can 37 

be applied to assess the potential health risk, particularly in the remote regions with sparse 38 

monitoring sites. 39 

Keywords: Surface O3 level; satellite data; random forest; generalized additive model; Tibetan 40 

Plateau 41 

1. Introduction 42 

Along with the rapid economic development and urbanization, the anthropogenic emissions of 43 

nitrogen oxides (NOx) and volatile organic compounds (VOCs) displayed high-speed growth. The 44 
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chemical reactions between NOx and VOCs in the presence of sunlight triggered the ambient ozone 45 

(O3) formation (Wang et al., 2019; Wang et al., 2017). As a strong oxidant, ambient O3 could play a 46 

negative role on human health through aggravating the cardiovascular and respiratory function 47 

(Ghude et al., 2016; Marco, 2017; Yin et al., 2017a). Apart from the effect on human health, O3 also 48 

posed a great threaten on vegetation growth (Emberson, 2017; Feng et al., 2015; Qian et al., 2018; 49 

Feng et al., 2019). Moreover, the tropospheric O3 can perturb the radiative energy budget of the 50 

earth-atmosphere system as the third most important greenhouse gas next to carbon dioxide (CO2) 51 

and methane (CH4), thereby changing the global climate (Bornman et al., 2019; Fu et al., 2019; 52 

Wang et al., 2019). Recently, the particulate matter less than 2.5 μm (PM2.5) concentration showed 53 

the persistent decrease, while the O3 issue has been increasingly prominent in China (Li et al., 2017b; 54 

Li et al., 2019b). Therefore, it was critical to accurately reveal the spatiotemporal variation of O3 55 

pollution and assess its heath risk in China. 56 

A growing body of studies began to investigate the spatiotemporal variation of O3 level 57 

worldwide. Wang et al. (2014b) demonstrated that the 8-h O3 concentrations in nearly all of the 58 

provincial cities experienced the remarkable increases during 2013-2014. Following the work, Li et 59 

al. (2017) reported that the annually mean O3 concentration over China increased by 9.18% during 60 

2014-2016. In other Asian countries except China, Vellingiri et al. (2015) performed long-term 61 

obervation and found that the O3 concentration in Seoul, South Korea displayed gradual increase in 62 

the past decades. In the Southeast United States, Li et al. (2018) observed that the surface O3 63 

concentration displayed the gradual decrease in the recent ten years. Although the number of 64 

ground-level monitoring sites have been increasing globally, the limited monitoring sites still cannot 65 

accurately reflect the fine-scale O3 pollution status because each site shows small spatial 66 
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representativeness (0.25-16.25 km2) (Shi et al., 2018). Furthermore, the number of monitoring 67 

sites in many countries (e.g., China and the United States) displays uneven distribution 68 

characteristic at the spatial scale. In China, most of these sites focus on North China Plain (NCP) 69 

and Yangtze River Delta (YRD), while West China extremely lacks the ground-level O3 data, 70 

which often increases the uncertainty of health assessment. Therefore, many studies used 71 

various models to estimate the O3 concentrations without monitoring sites. Chemical transport 72 

models (CTMs) were often considered as the typical methods to predict the surface O3 level. 73 

Zhang et al. (2011) employed the Geos-Chem model to simulate the surface O3 concentration 74 

over the United States, suggesting that the model could capture the spatiotemporal variation of 75 

surface O3 concentration at a large spatial scale. Later on, Wang et al. (2016) developed a hybrid 76 

model named land use regression (LUR) coupled with CTMs to predict the surface O3 77 

concentration in the Los Angeles Basin, California. In recent years, these methods were also 78 

applied to estimate the surface O3 level over China. Liu et al. (2018) used Community 79 

Multiscale Air Quality (CMAQ) model to simulate the nationwide O3 concentration over China 80 

in 2015. Nonetheless, the high-resolution O3 prediction using CTMs might be widely deviated 81 

from the measured value owing to the imperfect knowledge about the chemical mechanism and 82 

the higher uncertainty of emission inventory. Moreover, the continuous emission data of NOx 83 

and VOCs were not always open access, which restricted the long-term estimation of surface 84 

O3 concentration using CTMs.  85 

Fortunately, the daily satellite data enable the fine-scale estimations of O3 level at a regional 86 

scale due to broad spatial coverage and high temporal resolution (McPeters et al., 2015). Shen 87 

et al. (2019) confirmed that satellite retrieved O3 column amount could accurately reflect the 88 
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spatiotemporal distribution of surface O3 level. Therefore, some studies tried to use traditional 89 

statistical models coupled with high-resolution satellite data to estimate the ambient O3 level. 90 

Fioletov et al. (2002) used the satellite measurement to investigate the global distribution of O3 91 

concentrations based on simple linear model. Recently, Kim et al. (2018) employed the 92 

integrated empirical geographic regression method to predict the long-term (1979-2015) 93 

variation of ambient O3 concentration over United States based on O3 column amount data. 94 

Although the statistical modelling of ambient O3 concentration is widespread all around the 95 

world, most of these traditional statistical modelling only utilized the linear model to predict 96 

the ambient O3 concentration, which generally decreased the prediction performance because 97 

the nonlinearity and high-order interactions between O3 and predictors cannot be managed by 98 

a simple linear model. 99 

As an extension of traditional statistical model, machine learning methods have been widely 100 

applied to estimate the pollutant levels in recent years because of their excellent predictive 101 

performances. Among these machine learning algorithms, decision tree models such as random 102 

forest (RF) and extreme gradient boosting (XGBoost) generally showed fast training speed and 103 

excellent prediction accuracy (Li et al., 2020; Zhan et al., 2018). Furthermore, decision tree 104 

models can obtain the contribution of each predictor to air pollutants, which was beneficial to 105 

the parameter adaption and model optimization. Chen et al. (2018b) firstly employed RF model 106 

to simulate the PM2.5 level in China since 2005. Following this work, we recently used the 107 

XGBoost model to estimate the 8-h O3 concentration in Hainan Island for the first time and 108 

captured the moderate predictive performance (R2 = 0.59) (Li et al., 2020). While decision tree 109 

model showed many advantages in predicting pollutant level, the spatiotemporal 110 
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autocorrelation of pollutant concentration was not concerned by these studies. Li et al. (2019a) 111 

confirmed that the prediction error by decision tree model varied greatly with space and time. 112 

Thus, it is imperative to incorporate the spatiotemporal variables into the original model to 113 

further improve the performance. To resolve the defects of decision tree models, Zhan et al. 114 

(2018) developed a hybrid model named RF-spatiotemporal Kriging (STK) to predict the O3 115 

concentration over China and achieved the better performance (Overall R2 = 0.69, Southwest 116 

China R2 = 0.66). Unfortunately, RF-STK model still showed some weaknesses in predicting 117 

O3 concentration. First of all, the predictive performance of the STK model was strongly 118 

dependent on the number of monitoring sites and their spatial densities. The model often 119 

showed worse predictive performance in the region with sparse monitoring sites (Gao et al., 120 

2016). Moreover, the ensemble model cannot simulate the O3 level during the periods without 121 

ground-measured data. In contrast, generalized additive model (GAM) not only considers the 122 

time autocorrelation of O3 concentration, but also shows the better extrapolation ability (Chen 123 

et al., 2018a; Ma et al., 2015). Thus, the ensemble model of RF and GAM was proposed to 124 

predict the spatiotemporal variation of surface 8-h O3 concentration. 125 

Tibetan Plateau, the highest plateau around the world, shows the higher surface solar 126 

radiation compared with the region outside the plateau. It was well documented that high solar 127 

radiation tended to generate large amount of OH radical, resulting in the O3 formation via the 128 

reaction of VOC and OH radical (Ou et al., 2015). While the total O3 column amount in Tibetan 129 

Plateau displayed the slight decrease since 1990s, the convergent airflow formed by subtropical 130 

anticyclones could bring ozone-rich air surrounding the plateau to the low atmosphere (Lin et 131 

al., 2008), thereby leading to the higher surface O3 concentration over the plateau. Most studies 132 
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focused on the stratosphere-troposphere transport of O3 in Tibetan Plateau, whereas limited 133 

effort was spared to investigate ground-level O3 level over this region. To date, only several 134 

studies concerned about the spatiotemporal variation of surface O3 concentration in this region 135 

based on field-observation data (Chen et al., 2019; Shen et al., 2014; Yin et al., 2017b). 136 

Unfortunately, these scarce monitoring sites in Tibetan Plateau cannot capture real O3 pollution 137 

status especially in the remote areas (e.g., Northern part of Tibetan Plateau) because each site 138 

only possessed limited spatial representativeness. Apart from these field measurements, Liu et 139 

al. (2018) (R = 0.60) and Zhan et al. (2018) (R2 = 0.66) used CTMs and machine learning model 140 

to simulate the surface O3 concentration over China in 2015, respectively. Both of these studies 141 

included the predicted O3 level in Tibetan Plateau. Although they have finished the pioneering 142 

work, the predictive performances of both studies were not very excellent. Therefore, it was 143 

imperative to develop a higher quality model to enhance the modelling accuracy. 144 

Here, we developed a new hybrid method (RF-GAM) model integrating satellite data, 145 

meteorological factors, and geographical variables to simulate the gridded 8-h O3 146 

concentrations over Tibetan Plateau for the first time. Based on the estimated surface O3 147 

concentration, we clarified the long-term variation (2005-2018) of surface O3 concentration and 148 

quantified the key factors for the annual trend. Filling the gap of statistical estimation 8-h O3 149 

level in a remote region, this study provides useful datasets for epidemiological studies and air 150 

quality management. 151 

2. Materials and methods 152 

2.1 Study area 153 

   Tibetan Plateau is located in Southwest China, which ranges from 26.00 to 39.58°N and 154 
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from 73.33 to 104.78°E, respectively. Tibetan Plateau is surrounded by Taklamakan Desert to 155 

north, Sichuan Basin to southeast. The land area of Tibetan Plateau reaches 2.50 million km2 156 

(Chan et al., 2006). Based on the air circulation pattern, Tibetan Plateau can be roughly 157 

classified into the monsoon-influenced region and the westerly-wind influenced region (Wang 158 

et al., 2014a). The annually mean air temperature in most regions are below 0°C. The annually 159 

mean rainfall amount in Tibetan Plateau ranges from 50 to 2000 mm. The terrain conditions are 160 

complex and the higher altitude focus on the central region. Tibetan Plateau is generally treated 161 

as the remote region lack of anthropogenic activity and most of the residents focus on southeast 162 

and south parts of Tibetan Plateau. Tibetan Plateau consists of 19 prefecture-level cities and 163 

their names and corresponding geographical locations are shown in Fig. 1 and Fig. S1. 164 

2.2 Data preparation 165 

2.2.1 Ground-level 8-h O3 concentration 166 

The daily 8-h O3 data in 37 monitoring sites over Tibetan Plateau from May 13th , 2014 to 167 

December 31th, 2018 were collected from the national air quality monitoring network. The O3 levels 168 

in all of these sites were determined using an ultraviolet-spectrophotometry method. The highest 8-169 

h moving average O3 concentration each day was calculated as the daily 8-h O3 level after data 170 

quality assurance. The data quality of all the monitoring sites was assured on the basis of the HJ 171 

630-2011 specifications. The data with no more than two consecutive hourly measurement missing 172 

in all the days were treated as the valid data. 173 

2.2.2 Satellite-retrieved O3 column amount 174 

The O3 column amounts (DU) during 2005-2018 were downloaded from the Ozone Monitoring 175 

Instrument-O3 (OMI-O3) level-3 data with a 0.25° spatial resolution from the website of National 176 
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Aeronautics and Space Administration (NASA) (https://www.nasa.gov/). The OMI-O3 product 177 

shows global coverage and traverses the earth once a day. The O3 column amount with cloud 178 

radiance fraction > 0.5, terrain reflectivity > 30%, and solar zenith angles > 85° should be removed. 179 

In addition, the cross-track pixels significantly influenced by row anomaly should be deleted.  180 

2.2.3 Meteorological data and geographical covariates 181 

The daily meteorological data were obtained from ERA-Interim datasets with 0.125° resolution. 182 

These meteorological data were consisted of 2 meter dewpoint temperature (d2m), 2 meter 183 

temperature (t2m), 10 meter U wind component (u10), 10 meter V wind component (v10), boundary 184 

layer height (blh), sunshine duration (sund), surface pressure (sp), and total precipitation (tp). The 185 

30 m-resolution elevation data (DEM) was downloaded from China Resource and Environmental 186 

Science Data Center (CRESDC). The data of gross domestic production (GDP) and population 187 

density with 1 km resolution were also extracted from CRESDC. Population density and GDP in 188 

2005, 2010, and 2015 were integrated into the model to predict the surface 8-h O3 concentration 189 

over Tibetan Plateau because these data were available each five years. Additionally, the land use 190 

data of 30 m resolution (e.g., waters, grassland, urban, forest) were also extracted from CRESDC. 191 

At last, the latitude, longitude, and time were also incorporated into the model. 192 

All of the explanatory variables collected were resampled to 0.25° × 0.25° grids to predict the 193 

O3 level. The original meteorological data with 0.125° resolution were resampled to 0.25° grid. The 194 

land use area, elevation, GDP and population density in each grid were calculated using spatial 195 

clipping. Lastly, all of the predictors were integrated into an intact table to train the model. 196 

2.3 Model development and assessment 197 

The RF-GAM model was regarded as the hybrid model of RF and GAM. The RF-GAM model 198 
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was a two-stage model that the prediction error estimated by the RF model was then simulated by 199 

GAM. The prediction results of RF and GAM were summed as the final result of RF-GAM model 200 

(Fig. 2). The detailed equation is as follows: 201 

( , ) ( , ) ( , )Z s t P s t E s t     (1) 202 

where Z(s,t) is the estimated 8-h O3 level at the location s and time t; P(s,t) represents the 8-h O3 203 

concentration predicted by the RF model; E(s,t) denotes the prediction error by GAM. 204 

In the RF model, a large number of decision trees were planted based on the bootstrap sampling 205 

method. At each node of the decision tree, the random samples of all predictors were applied to 206 

determine the best split among them. Following the procedure, a simple majority vote was employed 207 

to predict the 8-h O3 level. The RF model avoided priori linear assumption of O3 concentration and 208 

predictors, which was often not in good agreement with actual state. The RF model has two key 209 

parameters including ntree (the number of trees grown) and mtry (the number of explanatory variables 210 

sampled for splitting at each node). The prediction performance of the RF model was strongly 211 

dependent on the two parameters. The optimal ntree and mtry were determined based on the least out-212 

of-bag (OOB) errors. Based on the iteration result, the optimal ntree and mtry reached 500 and 5, 213 

respectively. Besides, the backward variable selection method was performed on the RF submodel 214 

to achieve the better performance. At each step of the predictor selection, the variable with the least 215 

important value was excluded from the next step. This one-variable-at-a-time exclusion method was 216 

repeated until only two explanatory variables remained in the submodel. Finally, all of the selected 217 

variables except the area of waters were integrated into the model to achieve the best prediction 218 

performance. The detailed RF model is as follows: 219 

3 3  

Pr

O O column Elevation Agr Urban Forest GDP Grassland Population

ec T WS P tsun RH

        

    

    (2)220 
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where O3 denotes the observed 8-h O3 level in the monitoring site; the O3 column represents the O3 221 

column amount in the corresponding grid; Elevation denotes the corresponding elevation of the site; 222 

Agr, Urban, Forest, Grassland are the agricultural land, urban land, forest land, and the grassland, 223 

respectively. Population represents the population density in the corresponding site. Prec, T, WS, P, 224 

tsun, and RH are precipitation, air temperature, wind speed, air pressure, sunshine duration, and 225 

relative humidity, respectively. Additionally, other five models including RF, generalized regression 226 

neutral network (GRNN), backward propagation neural network (BPNN), Elman neural network 227 

(ElmanNN), and extreme learning machine (ELM) also used the backward variable selection 228 

method. The R2 value was treated as an important parameter to add or reduce the variable. The 229 

variable should be removed when the R2 value of the submodel showed the remarkable decrease 230 

with the integration of this variable. Lastly, the optimal variable group was applied to establish the 231 

submodel.  232 

   Following the RF submodel, the prediction error estimated by the RF submodel was further 233 

modelled by the GAM. GAM could reflect the time autocorrelation of predictive error of RF model, 234 

and thus the ensemble model of RF and GAM might decrease the modelling error of one-stage 235 

model. All of the variables were incorporated into the models to establish the second-stage model, 236 

and the backward variable selection was also used to determine the optimal variable group. 237 

The 10-fold cross-validation (CV) technique was employed to evaluate the predictive 238 

performances for all of the machine learning models. All of the training data set were randomly 239 

classified into 10 subsets uniformly. In each round of validation, nine subsets were used to train and 240 

the remaining subset was applied to test the model performance. The process was repeated 10 times 241 

until every subset has been tested. Some statistical indicators including R2, Root Mean Square Error 242 
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(RMSE), Mean Prediction Error (MPE), Relative percentage Error (RPE), and the slope were 243 

calculated to assess the model performance. The optimal model with the best performance was used 244 

to estimate the 8-h O3 concentration in the past decades. 245 

3. Results and discussion 246 

3.1 The validation of model performance 247 

Figure 3 and figure S2 show the density scatterplots of the fitting and 10-fold cross-validation 248 

results for eight machine learning models for China. The 10-fold cross-validation R2 values 249 

followed the order of RF-GAM (R2 = 0.76) > RF-STK (R2 = 0.63) > RF (R2 = 0.55) > GRNN (R2 = 250 

0.53) > BPNN (R2 = 0.50) > XGBoost (R2 = 0.48) > ElmanNN (R2 = 0.47) > ELM (R2 = 0.32). The 251 

RMSE values of RF-GAM, RF-STK, RF, GRNN, XGBoost, BPNN, ElmanNN, and ELM were 252 

14.41, 17.79, 19.13, 19.41, 20.73, 20.06, 20.61, and 23.36 μg/m3, respectively. Both of MPE and 253 

RPE showed the similar characteristic with RMSE in the order of RF-GAM (10.97 μg/m3 and 254 

26.50%) < RF-STK (13.48 μg/m3 and 35.15%) < RF (14.71 μg/m3 and 35.51%) < GRNN (14.89 255 

μg/m3 and 35.82%) < BPNN (15.43 μg/m3 and 36.19%) < ElmanNN (15.75 μg/m3 and 37.05%) < 256 

XGBoost (15.80 μg/m3 and 38.13%) < ELM (18.23 μg/m3 and 44.05%) (Fig. 3 and Fig. S2). Besides, 257 

the slope of the RF-GAM model was closer to 1 compared with other models. It was well 258 

documented that the RF model generally showed the better performance than other models because 259 

this method did not need to define complex relationships between the explanatory variables and the 260 

O3 concentration (e.g., linear or nonlinear). Furthermore, the variable importance indicators 261 

calculated by the RF model can help user to distinguish the key variables from noise ones and make 262 

full use of the strength of each predictor to assure the model robustness. Although BPNN, GRNN, 263 

XGBoost, ElmanNN, and ELM have been widely applied to estimate the air pollutant concentrations 264 
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(Chen et al., 2018c; Zang et al., 2018; Zhu et al., 2019), these methods suffered from some 265 

weaknesses in predicting the pollutant level. For instance, both of BPNN and ElmanNN models 266 

could capture the locally optimal solution when the training subsets were integrated into the final 267 

model, which decreased the predictive performance of the model (Wang et al., 2015). Moreover, 268 

BPNN generally showed slow training speed, especially with the huge training subsets (Li and Park, 269 

2009; Wang et al., 2015). ELM often consumed more computing resource and experienced the over-270 

fitting issue due to the increase of sampling size (Huang et al., 2015; Shao et al., 2015). GRNN 271 

method advanced the training speed compared with BPNN model and avoided the locally optimal 272 

solution during the modelling process (Zang et al., 2019), whereas the predictive performance is 273 

still worse than that of RF model. XGBoost was often considered to be robust in predicting air 274 

pollutant level (Li et al., 2020), while the model did not display the excellent performance in the 275 

present study. It might be attributable to that the sampling size in the present study was not enough 276 

because the model generally showed the better performance with big samples. Moreover, we found 277 

that the two-stage model was superior to the one-way model in the predictive performance. The 278 

encouraging result suggested that the relationship between the predictors and the 8-h O3 279 

concentration varied with space and time. The two-stage model used the GAM method to further 280 

adjust the prediction error of the RF model, and considered the spatiotemporal correlation of 281 

predictor error in Tibetan Plateau. Although the STK model incorporated space and time into the 282 

model simultaneously, the RF-GAM model outperformed the RF-STK model. It was assumed that 283 

the STK model showed the higher uncertainty in predicting the O3 concentration in the region with 284 

scarce sampling sites (Gao et al., 2016; Li et al., 2017a). Overall, the ensemble RF-GAM model 285 

showed the significant improvement in predictive performance. 286 
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The performances of RF-GAM displayed slight difference in each year during 2014-2018. As 287 

shown in Table 1, the R2 value showed the highest value (0.76) in 2016, followed by that in 2018 288 

(0.75), 2017 (0.73), 2015 (0.72), and the lowest one in 2014 (0.69). Both of RMSE and MPE 289 

exhibited the lowest values in 2014, while these parameters did not show significant variation during 290 

2015-2018. The lowest R2 value and the highest RPE focused on 2014 due to the least sample size, 291 

while the highest R2 value and lowest RPE in 2016 was contributed by the maximum sample size. 292 

Geng et al. (2018) found that the predictive performance of machine learning model was strongly 293 

dependent on the number of training samples and sampling frequency. The lower RMSE and MPE 294 

in 2014 might be attributable to the lack of measured O3 data in spring, which decreased the higher 295 

value of O3 concentration. The performances of the RF-GAM model in four seasons were also 296 

assessed by 10-fold cross-validation (Table 2). The predictive performance of the RF-GAM model 297 

showed significantly seasonal difference with the highest R2 value observed in summer (0.74), 298 

followed by winter (0.69) and autumn (0.67), and the lowest one in spring (0.64). However, both of 299 

RMSE and MPE displayed different seasonal characteristics with the R2 value. Both of RMSE and 300 

MPE for RF-GAM followed the order of spring (15.32 and 11.94 μg/m3) > summer (15.13 and 11.75 301 

μg/m3) > winter (14.58 and 11.44 μg/m3) > autumn (13.23 and 10.52 μg/m3). The lowest R2 value 302 

in spring might be caused by multiple O3 sources and complicate O3 formation mechanisms. On the 303 

one hand, the O3 in spring might be generated from the local anthropogenic emission or long-range  304 

transport (Li et al., 2017; Li et al., 2019b). On the other hand, a strong stratosphere-troposphere 305 

exchange process due to lower height of troposphere in Tibetan Plateau might lead to the higher O3 306 

concentration in spring (Skerlak et al., 2014). Unfortunately, both of long-range transport and 307 

stratosphere-troposphere exchange process were missing in the RF-GAM model, which restricted 308 
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the accuracy of O3 estimation in spring. The large estimation errors (e.g., RMSE, MPE, and RPE) 309 

in spring and summer were attributable to the high 8-h O3 concentration in these seasons, while the 310 

low prediction error observed in autumn was contributed by the low O3 level. 311 

Apart from the seasonal variation, we also investigated the spatial variabilities of the predictive 312 

accuracy for RF-GAM model. Tibetan Plateau was classified into five provinces and then the 313 

predictive performance of RF-GAM model in each province was calculated. Among the five 314 

provinces, Gansu province displayed the highest R2 value (0.74), followed by Sichuan province 315 

(0.71), Qinghai province (0.70), Tibet autonomous region (0.69), and Yunnan province (0.54) (Table 316 

3). The result shown herein was not in agreement with the previous studies by Geng et al. (2018), 317 

who confirmed that the predictive performance of machine learning model was positively associated 318 

with the sampling size. It was assumed that the spatial distribution of the sampling sites in Tibet was 319 

uneven and the sampling density was low, though Tibet possessed the maximum monitoring sites 320 

compared with other provinces. The prediction errors (RMSE and MPE) did not exhibit the same 321 

characteristics with the R2 value. The higher RMSE and MPE focused on Tibet autonomous region 322 

(14.81 and 11.24 μg/m3) and Qinghai province (14.83 and 11.33 μg/m3) due to the higher values of 323 

blh and sund. The lowest values of RMSE and MPE could be observed in Yunnan province, which 324 

was contributed by the higher rainfall amount. The highest RPE was concentrated on Yunnan 325 

province (25.85%), followed by Tibet (22.90%), Qinghai (22.65%), Sichuan (22.62%), and the 326 

lowest one in Gansu province (22.51%), which might be linked with the sample size.  327 

Although 10-fold cross-validation verified that the RF-GAM model showed the better predictive 328 

performance in estimating the surface 8-h O3 concentration, the test method cannot validate the 329 

transferring ability of the final model. The monitoring site in Tibetan Plateau before May, 2014 is 330 
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very limited, and only the daily 8-h O3 data in Lhasa from the open website 331 

(https://www.aqistudy.cn/historydata/) was available to compare with the simulated data. As 332 

depicted in Fig. 4, the R2 value of unlearning 8-h O3 level against predicted 8-h O3 concentration 333 

reached 0.67, which was slightly lower than that of the 10-fold cross-validation R2 value. Overall, 334 

the extrapolation ability of the RF-GAM model is satisfactory, and thus it was supposed that the 335 

model could be applied to estimate the O3 concentration in other years. Both of RMSE and MPE 336 

for the unlearning 8-h O3 level against the predicted 8-h O3 concentration were significantly higher 337 

than those of the 10-fold cross-validation. It was supposed that Lhasa showed the higher surface 8-338 

h O3 concentration over Tibetan Plateau. 339 

To date, some previous studies also simulated the surface O3 concentration in Tibetan Plateau 340 

using statistical models (Zhan et al., 2018). For instance, Zhan et al. (2018) employed the RF-STK 341 

model to estimate the surface O3 concentration over China, and explained the 66% spatial variability 342 

of O3 level in Tibetan Plateau. Apart from these statistical models, some classical CTMs were also 343 

applied to estimate the O3 concentration in the remote area. Both of Liu et al. (2018) and Lin et al. 344 

(2018) used CMAQ to estimate the O3 level across China, while the R2 values in most of cities were 345 

lower than 0.50. In terms of the predictive performance, the RF-GAM model in our study showed 346 

the significant advantages compared with previous studies. It should be noted that our RF-GAM 347 

model could outperform most of current models, chiefly because of (1) accounting for the temporal 348 

autocorrelation of surface O3 concentration; and (2) the use of high-quality satellite data. 349 

3.2 Variable importance 350 

   The results of variable importance for key variables are depicted in Fig. 5. In the final RF-GAM 351 

model, it was found that time was the dominant factor for the 8-h O3 concentration in Tibetan Plateau, 352 

https://www.aqistudy.cn/historydata/
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indicating that the ambient O3 concentration displayed significantly temporal correlation. Following 353 

the time, meteorological factors served as the main factors for the O3 pollution in the remote region. 354 

The sum of sund, sp, d2m, t2m, and tp occupied 34.43% of the overall variable importance. Among 355 

others, sund was considered to be the most important meteorological factors for the O3 pollution. It 356 

was assumed that strong solar radiation and long duration of sunshine favored the photochemical 357 

generation of ambient O3 (Malik and Tauler, 2015; Stähle et al., 2018). Tan et al. (2018) 358 

demonstrated that the chemical reaction between NOx and VOCs was strongly dependent on the 359 

sunlight. Besides, the atmospheric pressure (sp) was also treated as a major driver for the O3 360 

pollution over Tibetan Plateau. Santurtún et al. (2015) have demonstrated that sp was closely linked 361 

to the atmospheric circulation and synoptic scale meteorological pattern, which could influence the 362 

long-range transport of ambient O3. Apart from sund and sp, d2m and t2m played significant role 363 

on the O3 pollution, which was in consistent with many previous studies (Zhan et al., 2018). Zhan 364 

et al. (2018) observed that cold temperature was not favorable to the O3 formation. d2m can affect 365 

the surface O3 pollution through two aspects. On the one hand, RH affected heterogeneous reactions 366 

of O3 and particles (e.g., soot, mineral) (He et al., 2017; He and Zhang, 2019; Yu, 2019). On the 367 

other hand, high RH could increase the soil moisture and evaporation, and thus the water-stressed 368 

plants tended to emit more biogenic isoprene, thereby promoting the elevation of O3 concentration 369 

(Zhang and Wang, 2016). It should be noted that the effect of precipitation on O3 pollution was 370 

relatively weaker than those of other meteorological factors. Zhan et al. (2018) also found the similar 371 

result and believed that rain scavenging served as the key pathway for the O3 removal only when 372 

O3 pollution was very serious. The power of O3 column amount on surface O3 concentration seemed 373 

to be lower than those of most meteorological factors, suggesting that vertical transport of ambient 374 
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O3 was complex. Although socioeconomic factors and land use types were not dominant factors for 375 

the O3 pollution in Tibetan Plateau, they still cannot be ignored in the present study because the 376 

predictive performance would worsen if these variables were excluded from the model. It was 377 

widely acknowledged that the anthropogenic emissions focused on the developed urban areas with 378 

high population density especially in the remote plateau (Zhang et al., 2007; Zheng et al., 2017). 379 

Compared with the urban land, the grassland played more important role on the O3 pollution in 380 

Tibetan Plateau. It was thus supposed that the grassland was widely distributed on Tibetan Plateau, 381 

which could release a large amount of biogenic volatile organic compounds (BVOCs) (Fang et al., 382 

2015). It was well known that photochemical reactions of BVOCs and NOx in the presence of 383 

sunlight caused the O3 formation (Calfapietra et al., 2013; Yu et al., 2006). Furthermore, Fang et al. 384 

(2015) confirmed that the BVOC emission in Tibetan Plateau displayed a remarkable increase in 385 

the wet seasons. 386 

3.3 The spatial distribution of estimated 8-h O3 concentration over Tibetan Plateau 387 

   Figure 6 depicts the spatial distribution of the 8-h O3 level estimated by the novel RF-GAM 388 

model. The spatial distribution pattern modelled by the RF-GAM model showed the similar 389 

characteristic with the result simulated by previous studies except North Tibetan Plateau (Liu et al., 390 

2018). The estimated 8-h O3 concentration displayed the highest value in some cities of North 391 

Tibetan Plateau such as Huangnan (73.48±4.53 μg/m3) and Hainan (72.24±5.34 μg/m3), followed 392 

by the cities in the central region including Lhasa (65.99±7.24 μg/m3) and Shigatse (65.15±6.14 393 

μg/m3), and the lowest one in a city of Southeast Tibetan Plateau (Aba) (55.17±12.77 μg/m3). The 394 

spatial pattern of 8-h O3 concentration is highly consistent with the result predicted by Liu et al. 395 

(2018) using CMAQ model, while it is not in agreement with the result estimated by Zhan et al. 396 
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(2018) using RF-STK model. The difference of the present study and Zhan et al. (2018) focuses on 397 

the North Tibetan Plateau, which lacks of monitoring site and remains the higher uncertainty. Firstly, 398 

it might be contributed by the weakness of RF-STK mentioned above. Moreover, Zhan et al. (2018) 399 

only used the ground-level measured data in 2015 to establish the model and the data in new sites 400 

since 2015 were not incorporated into the model, which could increase the model uncertainty (Zhan 401 

et al., 2018). As shown in Fig. 6, most of the cities in Qinghai province (e.g., Huangnan, Hainan, 402 

and Guoluo) generally showed the higher 8-h O3 concentration over Tibetan Plateau, which was in 403 

a good agreement with the spatial distribution of O3 column amount (Fig. S3). Besides, some cities 404 

in Tibet such as Shigatse and Lhasa also showed the higher 8-h O3 levels. It was supposed that the 405 

precursor emissions in these regions were significantly higher than those in other cities of Tibetan 406 

Plateau (Fig. S4). Zhang et al. (2007) used the satellite data to observe that the higher VOCs and 407 

NOx emission focused on the residential area with high population density in the remote Tibetan 408 

Plateau. Apart from the effect of anthropogenic emission, the meteorological conditions could be 409 

also the important factors for the 8-h O3 concentration. As shown in Fig. S5-S10, the higher blh and 410 

sp in the Northeast Tibetan Plateau might promote the O3 formation through the reaction of VOC 411 

and OH radical, leading to the higher 8-h O3 concentration in these cities (Ou et al., 2015). In 412 

addition, the lower tp occurred in North Tibetan Plateau and Northeast Tibetan Plateau, both of 413 

which were unfavorable to the ambient O3 removal (Yoo et al., 2014). In contrast, the higher tp 414 

observed in the Southeast Tibetan Plateau resulted in the slight O3 pollution. 415 

3.4 The temporal variation of the simulated 8-h O3 concentration over Tibetan Plateau 416 

   The annually mean estimated 8-h O3 concentration in Tibetan Plateau displayed the slow 417 

increase from 64.74 ± 8.30 μg/m3 to 66.45 ± 8.67 μg/m3 2005 through 2015 (Table S1), whereas it 418 
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decreased from the peak to 65.87 ± 8.52 μg/m3 during 2015-2018 (Fig. 7). Based on the Mann-419 

Kendall method (Fig. 8a), it was found that the surface O3 concentration exhibited the slight increase 420 

as the whole, while the increase degree was not significant (p > 0.05). Besides, it should be noted 421 

that the O3 concentrations in various regions showed different increase speed. As depicted in Fig. 422 

8b, we found that the 8-h O3 concentrations in North, West, and East Tibetan Plateau displayed 423 

significant increase trend by the speed of 1-3 μg/m3 during 2005-2018. The middle region of Tibetan 424 

Plateau showed the moderate increase trend by the speed of 0-1 μg/m3. However, the 8-h O3 425 

concentration in Shigatse and Sannan even displayed the decrease trend 2005 through 2018. 426 

   Besides, the 8-h O3 concentrations in Tibetan Plateau displayed significantly seasonal 427 

discrepancy. The estimated 8-h O3 level in Tibetan Plateau followed the order of spring (75.00±8.56 428 

μg/m3) > summer (71.05±11.13 μg/m3) > winter (56.39±7.42 μg/m3) > autumn (56.13±8.27 μg/m3) 429 

(Fig. 9 and Table 4). The 8-h O3 concentrations in most of prefecture-level cities showed the 430 

similarly seasonal characteristics with the overall seasonal variation in Tibetan Plateau. Based on 431 

the result summarized in Table S2, it was found that the key precursors of ambient O3 generally 432 

displayed the higher emissions in winter compared with other seasons. However, the seasonal 433 

distribution of ambient O3 concentration was not in accordance with the precursor emissions, 434 

suggesting that the meteorological factors might play more important roles on ambient O3 435 

concentration. It was well known that the higher air temperature in spring and summer were closely 436 

related to the low sp and high sund, both of which promoted O3 formation (Sitnov et al., 2017). 437 

Although summer showed the highest air temperature and the longest sunshine duration, the higher 438 

rainfall amount in summer decreased the ambient O3 concentration via wet deposition (Li et al., 439 

2017b; Li et al., 2019b). Moreover, the highest blh occurred in spring, which was favorable to the 440 
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strong stratosphere-troposphere exchange process in Tibetan Plateau (Skerlak et al., 2014). 441 

Therefore, the 8-h O3 concentrations in summer and winter were relatively lower than that in spring. 442 

Nonetheless, the 8-h O3 levels in Diqing, Sannan, and Nyingchi displayed the highest values in 443 

spring (56.38±7.87, 73.90±5.97, and 73.22±2.77 μg/m3), followed by winter (45.88±7.05, 444 

61.71±4.32, and 62.24±3.63 μg/m3) and summer (44.35±5.90, 61.00±5.86, and 59.60±2.33 μg/m3), 445 

and the lowest ones in autumn (37.45±5.76, 54.70±3.13, and 53.84±2.06 μg/m3). The lower O3 level 446 

in summer than winter was mainly attributable to the higher precipitation observed in the summer 447 

of these cities (Fig. S11). In addition, it should be noted that the NOx and VOCs emissions of South 448 

Tibetan Plateau (e.g., Sannan) exhibited the higher values in winter compared with other seasons.   449 

3.5 The nonattainment days over Tibetan Plateau during 2005-2018 450 

   The annually mean nonattainment days in the 19 prefecture-level cities over Tibetan Plateau are 451 

summarized in Table 2. 100 μg/m3 was regarded as the critical value for the 8-h O3 level by World 452 

Health Organization (WHO). The nonattainment days denoted total days with the 8-h O3 453 

concentration higher than 100 μg/m3. Although the annually mean 8-h O3 concentrations in all of 454 

the cities over Tibetan Plateau did not exceed the critical value, not all of the regions experienced 455 

excellent air quality in the long period (2005-2018). Some cities of Qinghai province including 456 

Huangnan, Haidong, and Guoluo suffered from 45, 40, and 40 nonattainment days each year (Fig. 457 

10 and Table 5). Besides, some cities in the South Tibetan Plateau such as Shigatse and Sannan also 458 

experienced more than 40 nonattainment days each year, suggesting that Tibetan Plateau was still 459 

faced of the risk for O3 pollution. Fortunately, some remote cities such as Ali, Ngari, and Qamdo 460 

did not experience the excessive O3 pollution all the time, which was ascribed to the low precursor 461 

emissions and appropriate meteorological conditions. It should be noted that the nonattainment days 462 
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in the region with high O3 concentration showed the significantly seasonal difference, whereas the 463 

seasonal difference was not remarkable in the city with low O3 pollution. As shown in Table 2, it 464 

should be noted that nearly all of the nonattainment days could be detected in spring and summer, 465 

which was in good agreement with the O3 levels in different seasons, indicating that the O3 pollution 466 

issue should be paid more attention in spring and summer. 467 

The determination of nonattainment days showed some uncertainties owing to the predictive 468 

error of modelled O3 concentration. First of all, meteorological data used in RF-GAM model were 469 

collected from reanalysis data and these gridded data often showed some uncertainties, which could 470 

increase the uncertainty of O3 estimation. Second, the O3 column amount used in the present study 471 

reflected vertical O3 column amount rather than surface O3 concentration. Thus, it could decrease 472 

the predictive performance of surface O3 level. 473 

4. Summary and implication 474 

In the present study, we developed a novel hybrid model (RF-GAM) based on multiple 475 

explanatory variables to estimate the surface 8-h O3 concentration across the remote Tibetan Plateau. 476 

The 10-fold cross-validation method demonstrated that RF-GAM achieved excellent performance 477 

with the highest R2 value (0.76) and lowest root mean square error (RMSE) (14.41 μg/m3) compared 478 

with other model including RF-STK, RF, BPNN, XGBoost, GRNN, ElmanNN, and ELM models. 479 

Moreover, the unlearning ground-measured O3 data validated that the RF-GAM model showed the 480 

better extrapolation performance (R2=0.67, RMSE=25.68 μg/m3). The result of variable importance 481 

suggested that time, sund, and sp were key factors for the surface 8-h O3 concentration over Tibetan 482 

Plateau. Based on the RF-GAM model, we found that the estimated 8-h O3 concentration exhibited 483 

notably spatial variation with the higher values in some cities of North Tibetan Plateau such as 484 
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Huangnan (73.48±4.53 μg/m3) and Hainan (72.24±5.34 μg/m3) and the lower one in some cities of 485 

Southeast Tibetan Plateau such as Aba (55.17±12.77 μg/m3). Besides, we also found that the O3 486 

level displayed a slow increase from 64.74±8.30 μg/m3 to 66.45±8.67 μg/m3 from 2005 to 2015, 487 

while the O3 concentration decreased to 65.87±8.52 μg/m3 in 2018. The estimated 8-h O3 level in 488 

Tibetan Plateau showed the significantly seasonal discrepancy with the order of spring (75.00±8.56 489 

μg/m3) > summer (71.05±11.13 μg/m3) > winter (56.39±7.42 μg/m3) > autumn (56.13±8.27 μg/m3). 490 

Based on the critical value set by WHO, most of the cities in Tibetan Plateau shared with the 491 

excellent air quality, while several cities (e.g., Huangnan, Haidong, and Guoluo) still suffered from 492 

more than 40 nonattainment days each year. 493 

The RF-GAM model for O3 estimation has several limitations. First of all, the O3 estimation in 494 

North Tibetan Plateau might show some uncertainties because the ground-level monitoring site is 495 

very scarce, and thus we cannot validate the reliability of predicted value in the region without 496 

monitoring site. Secondly, our approach did not include data on emission inventory, or traffic count 497 

because the continuous emissions of NOx and VOCs were not open access. At last, we only focused 498 

on the temporal variation of surface O3 concentration in recent ten years, and the short-term O3 data 499 

cannot reflect the response of O3 pollution to climate change. In the future work, we should combine 500 

more explanatory variables such as long-term NOx and VOCs emissions to retrieve the surface O3 501 

level over Tibetan Plateau in the past decades. 502 
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Figure and table captions 

Fig. 1 The geographical locations and annually mean 8-h O3 concentrations in the ground-observed 

sites (red dots) over Tibetan Plateau during 2014-2018. The elevation data are collected from 

geographical and spatial data cloud at a 30-m spatial resolution. 

Fig. 2 The workflow for predicting the spatiotemporal distributions of 8-h O3 levels. 

Fig. 3 Density scatterplots of model fitting and cross-validation result at a daily level. (a), (b), and 

(c) represent RF-GAM, RF-STK, and RF models, respectively. The red dotted line denotes the 

fitting linear regression line. The full names of MPE, RMSE, and RPE are mean prediction error 

(μg/m3), root mean squared prediction error (μg/m3), relative percentage error (%), respectively.  

Fig. 4 The transferring ability validation of RF-GAM method based on the measured daily 8-h O3 

concentration during December 2013-May 2014. 

Fig. 5 The variable importance of predictors in the final RF-GAM model.  

Fig. 6 The mean value of estimated 8-h O3 concentration during 2005-2018 over Tibetan Plateau. 

Fig. 7 The inter-annual variation of predicted 8-h O3 level (μg/m3) from 2005 to 2018 across Tibetan 

Plateau. 

Fig. 8 The trend analysis of predicted 8-h O3 concentration. (a) and (b) represent the result of Mann-

Kendall method and discrepancy of estimated O3 level during 2005-2018 across Tibetan Plateau. 

Fig. 9 The seasonal variability of estimated 8-h O3 level across Tibetan Plateau. (a), (b), (c), and (d) 

represent the predicted 8-h O3 concentrations in spring, summer, autumn, and winter, respectively. 

Fig. 10 The spatial distributions of nonattainment days in Tibetan Plateau during 2005-2018. 

Table 1 The R2 values, RMSE, MPE, and RPE of RF-GAM in different years during 2014-2018 

over Tibetan Plateau. 
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Table 2 The R2 values, RMSE, MPE, and RPE of RF-GAM in four seasons over Tibetan Plateau. 

Table 3 The predictive performances of RF-GAM in different provinces over Tibetan Plateau. 

Table 4 The estimated 8-h O3 concentration in 19 prefecture-level cities over Tibetan Plateau during 

four seasons including spring, summer, autumn, and winter. 

Table 5 The mean nonattainment days (8-h O3 level >100 μg/m3) in 19 prefecture-level cities over 

Tibetan Plateau each year.
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Fig. 6 
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Fig. 7 
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Fig. 8 



44 
 

Fig. 9 
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Table 1  

 2014 2015 2016 2017 2018 

R2 0.69 0.72 0.76 0.73 0.75 

RMSE 13.65 14.56 14.28 14.52 14.35 

MPE 9.53 10.82 10.84 10.95 10.93 

RPE 23.27% 23.26% 23.02% 23.20% 23.09% 
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Table 2 

 Spring Summer Autumn Winter 

R2 0.64 0.74 0.67 0.69 

RMSE 15.32 15.13 13.23 14.58 

MPE 11.94 11.75 10.52 11.44 

RPE 24.63% 22.35% 23.32% 23.24% 
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Table 3  

 Tibet Qinghai Gansu Sichuan Yunnan 

R2 0.69 0.70 0.74 0.71 0.54 

RMSE 14.81 14.83 13.65 13.23 12.49 

MPE 11.24 11.33 10.88 10.08 10.20 

RPE 22.90% 22.65% 22.51% 22.62% 25.85% 
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Table 4  

 Province Spring Summer Autumn Winter Annual Measured O3 

level 

Aba Sichuan 65.61±14.30 59.46±14.32 45.55±12.03 47.95±10.55 55.17±12.77 47.75±19.47 

Ngari Tibet 71.34±3.12 70.10±3.57 53.14±3.67 51.84±3.69 62.21±3.34 53.34±24.46 

Qamdo Tibet 72.52±4.29 62.74±5.79 52.06±4.01 55.42±3.09 61.10±3.93 59.76±23.77 

Diqing Yunnan 56.38±7.87 44.35±5.90 37.45±5.76 45.88±7.05 46.22±6.51 47.81±21.63 

Gannan Gansu 76.77±9.73 73.27±10.67 54.74±8.33 54.72±6.95 65.60±8.91 68.86±25.45 

Ganzi Sichuan 69.38±10.99 61.45±11.58 48.49±8.79 50.94±6.62 58.06±9.48 38.07±19.08 

Guoluo Qinghai 80.12±5.12 76.13±5.83 58.86±5.71 57.38±4.66 68.77±5.25 80.04±23.90 

Haibei Qinghai 78.18±10.21 78.84±10.31 60.90±9.69 57.48±9.78 69.47±9.99 81.07±32.74 

Haidong Qinghai 74.20±10.34 73.70±9.12 53.61±8.11 51.02±9.60 63.84±9.21 44.28±34.96 

Hainan Qinghai 83.01±5.36 82.27±5.72 61.57±5.39 58.96±5.44 72.24±5.34 78.34±27.11 

Haixi Qinghai 79.39±6.88 79.48±7.79 60.78±7.48 57.71±6.99 69.99±7.24 80.60±27.17 

Huangnan Qinghai 85.21±4.98 83.01±4.66 61.95±4.18 60.62±4.49 73.48±4.53 74.83±22.63 

Lhasa Tibet 80.08±9.63 70.13±8.42 55.86±5.78 55.85±5.19 65.99±7.24 75.45±26.65 

Nagqu Tibet 74.59±5.13 70.46±6.69 54.60±5.16 53.53±4.83 63.83±5.23 44.79±28.75 

Shigatse Tibet 77.31±8.62 69.66±7.69 55.93±4.58 55.57±4.72 65.15±6.14 75.62±26.50 

Sannan Tibet 73.90±5.97 61.00±5.86 54.70±3.13 61.71±4.32 63.04±4.00 73.04±26.31 

Xining Qinghai 77.43±10.27 77.84±9.44 58.19±9.29 54.72±10.04 67.77±9.70 61.77±22.58 

Yushu Qinghai 77.35±5.55 73.34±6.37 56.12±5.53 55.02±5.01 66.05±5.50 57.14±31.98 

Nyingchi Tibet 73.22±2.77 59.60±2.33 53.84±2.06 62.24±3.63 62.40±2.20 66.61±26.71 
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Table 5  

 Spring Summer Autumn Winter Annual 

Aba 0 0 0 0 0 

Ngari 0 0 0 0 0 

Qamdo 0 0 0 0 0 

Diqing 0 0 0 0 0 

Gannan 0 1 0 0 1 

Ganzi 13 2 0 0 15 

Guoluo 19 21 0 0 40 

Haibei 0 0 0 0 0 

Haidong 22 18 0 0 40 

Hainan 14 12 1 0 27 

Haixi 1 1 0 0 2 

Huangnan 23 22 0 0 45 

Lhasa 12 7 0 0 19 

Nagqu 24 14 0 0 38 

Shigatse 28 13 0 0 41 

Sannan 33 7 0 0 40 

Xining 2 1 0 0 3 

Yushu 0 0 0 0 0 

Nyingchi 0 0 0 0 0 
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