1	Developing a novel hybrid model for the estimation of surface 8-h ozone (O ₃) across the
2	remote Tibetan Plateau during 2005-2018
3	Rui Li ^a , Yilong Zhao ^a , Ya Meng ^a , Wenhui Zhou ^a , Ziyu Zhang ^a , Hongbo Fu ^{a-c *}
4	^a Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of
5	Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University,
6	Shanghai, 200433, P.R. China
7	^b Collaborative Innovation Center of Atmospheric Environment and Equipment Technology
8	(CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, P.R.
9	China
10	^c Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
11	Corresponding author
12	fuhb@fudan.edu.cn
13	Abstract
14	We developed a two-stage model named random forest-generalized additive model (RF-GAM)
15	based on satellite data, meteorological factors, and other geographical covariates to predict the
16	surface 8-h O3 concentrations across the remote Tibetan Plateau. The 10-fold cross-validation result
17	suggested that RF-GAM showed the excellent performance with the highest R^2 value (0.76) and
18	lowest root mean square error (RMSE) (14.41 μ g/m ³) compared with other seven machine learning
19	models. The predictive performance of RF-GAM model showed significantly seasonal discrepency
20	with the highest R^2 value observed in summer (0.74), followed by winter (0.69) and autumn (0.67),
21	and the lowest one in spring (0.64). Additionally, the unlearning ground-observed O ₃ data collected
22	from open websites were applied to test the transferring ability of the novel model, and confirmed

23	that the model was robust to predict the surface 8-h O_3 concentration during other periods ($R^2 = 0.67$,
24	RMSE = 25.68 μ g/m ³). RF-GAM was then used to predict the daily 8-h O ₃ level over Tibetan
25	Plateau during 2005-2018 for the first time. It was found that the estimated O3 concentrations
26	displayed a slow increase from 64.74 \pm 8.30 $\mu g/m^3$ to 66.45 \pm 8.67 $\mu g/m^3$ from 2005 to 2015,
27	whereas it decreased from the peak to $65.87 \pm 8.52 \ \mu g/m^3$ during 2015-2018. Besides, the estimated
28	8-h O ₃ concentrations exhibited notably spatial variation with the highest values in some cities of
29	North Tibetan Plateau such as Huangnan (73.48 \pm 4.53 $\mu g/m^3)$ and Hainan (72.24 \pm 5.34 $\mu g/m^3),$
30	followed by the cities in the central region including Lhasa ($65.99 \pm 7.24 \ \mu\text{g/m}^3$) and Shigatse (65.15
31	\pm 6.14 $\mu g/m^3)$, and the lowest one in a city of Southeast Tibetan Plateau named Aba (55.17 \pm 12.77
32	μ g/m ³). Based on the 8-h O ₃ critical value (100 μ g/m ³) scheduled by World Health Organization
33	(WHO), we further estimated the annually mean nonattainment days over Tibetan Plateau. It should
34	be noted that most of the cities in Tibetan Plateau shared the excellent air quality, while several cities
35	(e.g., Huangnan, Haidong, and Guoluo) still suffered from more than 40 nonattainment days each
36	year, which should be paid more attention to alleviate local O ₃ pollution. The result shown herein
37	confirms the novel hybrid model improves the prediction accuracy and can be applied to assess the
38	potential health risk, particularly in the remote regions with sparse monitoring sites.
39	Keywords: Surface O ₃ level; satellite data; random forest; generalized additive model; Tibetan
40	Plateau
41	1. Introduction
42	Along with the rapid economic development and urbanization, the anthropogenic emissions of
43	nitrogen oxides (NO _x) and volatile organic compounds (VOCs) displayed high-speed growth. The

- 44 chemical reactions between NO_x and VOCs in the presence of sunlight triggered the ambient ozone

45	(O ₃) formation (Wang et al., 2019; Wang et al., 2017). As a strong oxidant, ambient O ₃ could play a
46	negative role on human health through aggravating the cardiovascular and respiratory function
47	(Ghude et al., 2016; Marco, 2017; Yin et al., 2017a). Apart from the effect on human health, O3 also
48	posed a great threaten on vegetation growth (Emberson, 2017; Feng et al., 2015; Qian et al., 2018;
49	Feng et al., 2019). Moreover, the tropospheric O ₃ can perturb the radiative energy budget of the
50	earth-atmosphere system as the third most important greenhouse gas next to carbon dioxide (CO ₂)
51	and methane (CH ₄), thereby changing the global climate (Bornman et al., 2019; Fu et al., 2019;
52	Wang et al., 2019). Recently, the particulate matter less than 2.5 μ m (PM _{2.5}) concentration showed
53	the persistent decrease, while the O ₃ issue has been increasingly prominent in China (Li et al., 2017b;
54	Li et al., 2019b). Therefore, it was critical to accurately reveal the spatiotemporal variation of O_3
55	pollution and assess its heath risk in China.
56	A growing body of studies began to investigate the spatiotemporal variation of O3 level
57	worldwide. Wang et al. (2014b) demonstrated that the 8-h O3 concentration in nearly all of the
58	provincial cities experienced the remarkable increase during 2013-2014. Following the work, Li et
59	al. (2017) reported that the annually mean O ₃ concentration over China increased by 9.18% during
60	2014-2016. In other Asian countries except China, Vellingiri et al. (2015) performed long-term
61	obervation and found that the O3 concentration in Seoul, South Korea displayed gradual increase in
62	the past decades. In the Southeast United States, Li et al. (2018) observed that the surface O_3
63	concentration displayed the gradual decrease in the recent ten years. Although the number of
64	ground-level monitoring sites have been increasing globally, the limited monitoring sites still cannot
65	accurately reflect the fine-scale O3 pollution status because each site shows small spatial
66	representativeness (0.25-16.25 km ²) (Shi et al., 2018). Furthermore, the number of monitoring

67	sites in many countries (e.g., China and the United States) displays uneven distribution
68	characteristic at the spatial scale. In China, most of these sites focus on North China Plain (NCP)
69	and Yangtze River Delta (YRD), while West China extremely lacks the ground-level O3 data,
70	which often increases the uncertainty of health assessment. Therefore, many studies used
71	various models to estimate the O ₃ concentration without monitoring sites. Chemical transport
72	models (CTMs) were often considered as the typical methods to predict the surface O ₃ level.
73	Zhang et al. (2011) employed the Geos-Chem model to simulate the surface O ₃ concentration
74	over the United States, suggesting that the model could capture the spatiotemporal variation of
75	surface O3 concentration at a large spatial scale. Later on, Wang et al. (2016) developed a hybrid
76	model named land use regression (LUR) coupled with CTMs to predict the surface O_3
77	concentration in the Los Angeles Basin, California. In recent years, these methods were also
78	applied to estimate the surface O3 level over China. Liu et al. (2018) used Community
79	Multiscale Air Quality (CMAQ) model to simulate the nationwide O3 concentration over China
80	in 2015. Nonetheless, the high-resolution O ₃ prediction using CTMs might be widely deviated
81	from the measured value owing to the imperfect knowledge about the chemical mechanism and
82	the higher uncertainty of emission inventory. Moreover, the continuous emission data of NO_x
83	and VOCs were not always open access, which restricted the long-term estimation of surface
84	O ₃ concentration using CTMs.
85	Fortunately, the daily satellite data enable the fine-scale estimations of O ₃ level at a regional
86	scale due to broad spatial coverage and high temporal resolution (McPeters et al., 2015). Shen
87	et al. (2019) confirmed that satellite retrieved O ₃ column amount can accurately reflect the
88	spatiotemporal distribution of surface O3 level. Therefore, some studies tried to use traditional

statistical models coupled with high-resolution satellite data to estimate the ambient O₃ level. 89 90 Fioletov et al. (2002) used the satellite measurement to investigate the global distribution of O_3 91 concentrations based on simple linear model. Recently, Kim et al. (2018) employed the integrated empirical geographic regression method to predict the long-term (1979-2015) 92 93 variation of ambient O₃ concentration over United States based on O₃ column amount data. Although the statistical modelling of ambient O₃ concentration is widespread all around the 94 95 world, most of these traditional statistical modelling only utilized the linear model to predict the ambient O_3 concentration, which generally decreased the prediction performance because 96 97 the nonlinearity and high-order interactions between O_3 and predictors cannot be managed by 98 a simple linear model.

As an extension of traditional statistical model, machine learning methods have been widely 99 100 applied to estimate the pollutant level in recent years because of their excellent predictive performances. Among these machine learning algorithms, decision tree models such as random 101 forest (RF) and extreme gradient boosting (XGBoost) generally showed fast training speed and 102 103 excellent prediction accuracy (Li et al., 2020; Zhan et al., 2018). Furthermore, decision tree 104 models can obtain the contributions of each predictor to air pollutants, which was beneficial to the parameter adaption and model optimization. Chen et al. (2018b) firstly employed RF model 105 to simulate the PM_{2.5} level in China since 2005. Following this work, we recently used the 106 107 XGBoost model to estimate the 8-h O₃ concentration in Hainan Island for the first time and captured the moderate predictive performance ($R^2 = 0.59$) (Li et al., 2020). While decision tree 108 109 model shows many advantages in predicting pollutant level, the spatiotemporal autocorrelation of pollutant concentration is not concerned by these studies. Li et al. (2019a) confirmed that the 110

prediction error by decision tree model varied greatly with space and time. Thus, it is imperative 111 to incorporate the spatiotemporal variables into the original model to further improve the 112 performance. To resolve the defects of decision tree models, Zhan et al. (2018) developed a 113 hybrid model named RF-spatiotemporal Kriging (STK) to predict the O₃ concentration over 114 China and achieved the better performance (Overall $R^2 = 0.69$, Southwest China $R^2 = 0.66$). 115 Unfortunately, RF-STK model still showed some weaknesses in predicting O₃ concentration. 116 117 First of all, the predictive performance of the STK model was strongly dependent on the number of monitoring sites and their spatial density. The model often showed worse predictive 118 119 performance in the region with sparse monitoring sites (Gao et al., 2016). Moreover, the 120 ensemble model cannot simulate the O_3 level during the periods without ground-measured data. In contrast, generalized additive model (GAM) not only considers the time autocorrelation of 121 122 O₃ concentration, but also shows the better extrapolation ability (Chen et al., 2018a; Ma et al., 2015). Thus, the ensemble model of RF and GAM is proposed to predict the spatiotemporal 123 variation of surface 8-h O₃ concentration. 124

125 Tibetan Plateau, the highest plateau around the world, shows the higher surface solar 126 radiation compared with the region outside the plateau. It was well documented that high solar radiation tended to generate large amount of OH radical, resulting in the O₃ formation via the 127 reaction of VOC and OH radical (Ou et al., 2015). While the total O₃ column amount in Tibetan 128 129 Plateau displayed the slight decrease since 1990s, the convergent airflow formed by subtropical anticyclones could bring ozone-rich air surrounding the plateau to the low atmosphere (Lin et 130 131 al., 2008), thereby leading to the higher surface O_3 concentration over the plateau. Most studies focused on the stratosphere-troposphere transport of O₃ in Tibetan Plateau, whereas limited 132

effort was spared to investigate ground-level O₃ level over this region. To date, only several 133 studies concerned about the spatiotemporal variation of surface O₃ concentration in this region 134 based on field-observation data (Chen et al., 2019; Shen et al., 2014; Yin et al., 2017b). 135 Unfortunately, these scarce monitoring sites in Tibetan Plateau cannot capture real O₃ pollution 136 status especially in the remote areas (e.g., Northern part of Tibetan Plateau) because each site 137 only possessed limited spatial representativeness. Apart from these field measurements, Liu et 138 al. (2018) (R = 0.60) and Zhan et al. (2018) ($R^2 = 0.66$) used CTM and machine learning model 139 to simulate the surface O_3 concentration over China in 2015, respectively. Both of these studies 140 141 included the predicted O_3 level in Tibetan Plateau. Although they have finished the pioneering 142 work, the predictive performances of both studies were not very excellent. Therefore, it was imperative to develop a higher quality model to enhance the modelling accuracy. 143

Here, we developed a new hybrid method (RF-GAM) model integrating satellite data, meteorological factors, and geographical variables to simulate the gridded 8-h O₃ concentrations over Tibetan Plateau for the first time. Based on the estimated surface O₃ concentration, we clarified the long-term variation (2005-2018) of surface O₃ concentration and quantified the key factors for the annual trend. Filling the gap of statistical estimation 8-h O₃ level in a remote region, this study provides useful datasets for epidemiological studies and air quality management.

151 2. Materials and methods

152 2.1 Study area

Tibetan Plateau is located in Southwest China ranging from 26.00 to 39.58°N and from
73.33 to 104.78°E. Tibetan Plateau is surrounded by Taklamakan Desert to north, Sichuan Basin

155	to southeast. The land area of Tibetan Plateau reaches 2.50 million km ² (Chan et al., 2006).
156	Based on the air circulation pattern, Tibetan Plateau can be roughly classified into the monsoon-
157	influenced region and the westerly-wind influenced region (Wang et al., 2014a). The annually
158	mean air temperature in most regions are below 0°C. The annually mean rainfall amount in
159	Tibetan Plateau ranges from 50 to 2000 mm. The terrain conditions are complex and the higher
160	altitude focused on the central region. Tibetan Plateau is generally treated as the remote region
161	lack of anthropogenic activity and most of the residents focus on southeast and south parts of
162	Tibetan Plateau. Tibetan Plateau consists of 19 prefecture-level cities and their names and
163	corresponding geographical locations are shown in Fig. 1 and Fig. S1.
164	2.2 Data preparation
165	2.2.1 Ground-level 8-h O ₃ concentration
166	The daily 8-h O_3 data in 37 monitoring sites over Tibetan Plateau from May 13th , 2014 to
167	December 31th, 2018 were collected from the national air quality monitoring network. The O ₃ levels
168	in all of these sites were determined using an ultraviolet-spectrophotometry method. The highest 8-
169	h moving average O3 concentration each day was calculated as the daily 8-h O3 level after data
170	quality assurance. The data quality of all the monitoring sites was assured on the basis of the HJ
171	630-2011 specifications. The data with no more than two consecutive hourly measurement missing
172	in each day was treated as the valid data.
173	2.2.2 Satellite-retrieved O ₃ column amount
174	The O ₃ column amounts (DU) during 2005-2018 were downloaded from the Ozone Monitoring
175	Instrument-O ₃ (OMI-O ₃) level-3 data with a 0.25° spatial resolution from the website of National

- 176 Aeronautics and Space Administration (NASA) (https://www.nasa.gov/). The OMI-O3 product

177 shows global coverage and traverses the earth once a day. The O₃ column amount with cloud

178 radiance fraction > 0.5, terrain reflectivity > 30%, and solar zenith angles $> 85^{\circ}$ should be removed.

179 In addition, the cross-track pixels significantly influenced by row anomaly should be deleted.

- 180 2.2.3 Meteorological data and geographical covariates
- 181 The daily meteorological data were obtained from ERA-Interim datasets with 0.125° resolution. These meteorological data were consisted of 2 meter dewpoint temperature (d2m), 2 meter 182 183 temperature (t2m), 10 meter U wind component (u10), 10 meter V wind component (v10), boundary 184 layer height (blh), sunshine duration (sund), surface pressure (sp), and total precipitation (tp). The 30 m-resolution elevation data (DEM) was downloaded from China Resource and Environmental 185 186 Science Data Center (CRESDC). The data of gross domestic production (GDP) and population density with 1 km resolution were also extracted from CRESDC. Population density and GDP in 187 188 2005, 2010, and 2015 were integrated into the model to predict the surface 8-h O3 concentration over Tibetan Plateau because these data were available each five years. Additionally, the land use 189 data of 30 m resolution (e.g., waters, grassland, urban, forest) were also extracted from CRESDC. 190 191 At last, the latitude, longitude, and time were also incorporated into the model. 192 All of the explanatory variables collected were resampled to $0.25^{\circ} \times 0.25^{\circ}$ grids to predict the O₃ level. The original meteorological data with 0.125° resolution were resampled to 0.25° grid. The 193 194 land use area, elevation, GDP and population density in each grid were calculated using spatial
- 195 clipping. Lastly, all of the predictors were integrated into an intact table to train the model.
- 196 2.3 Model development and assessment

197 The RF-GAM model was regarded as the hybrid model of RF and GAM. The RF-GAM model198 is a two-stage model that the prediction error estimated by the RF model was then simulated by

199 GAM. The prediction results of RF and GAM were summed as the final result of RF-GAM model200 (Fig. 2). The detailed equation is as follows:

201
$$Z(s,t) = P(s,t) + E(s,t)$$
 (1)

202 where Z(s,t) is the estimated 8-h O₃ level at the location s and time t; P(s,t) represents the 8-h O₃

203 concentration predicted by the RF model; E(s,t) denotes the prediction error by GAM.

204 In the RF model, a large number of decision trees were planted based on the bootstrap sampling 205 method. At each node of the decision tree, a random sample of all predictors was applied to 206 determine the best split among them. Following the procedure, a simple majority vote was employed 207 to predict the 8-h O₃ level. The RF model avoided priori linear assumption of O₃ concentration and 208 predictors, which was often not in good agreement with actual state. The RF model has two key 209 parameters including ntree (the number of trees grown) and mtry (the number of explanatory variables 210 sampled for splitting at each node). The prediction performance of the RF model was strongly dependent on the two parameters. The optimal ntree and mtry were determined based on the least out-211 of-bag (OOB) errors. Based on the iteration result, the optimal n_{tree} and m_{try} reached 500 and 5, 212 213 respectively. Besides, the backward variable selection method was performed on the RF submodel 214 to achieve the better performance. At each step of the predictor selection, the variable with the least 215 important value was excluded from the next step. This one-variable-at-a-time exclusion method was 216 repeated until only two explanatory variables remained in the submodel. Finally, all of the selected 217 variables except the area of waters were integrated into the model to achieve the best prediction 218 performance. The detailed RF model is as follows:

 $O_{3} = O_{3} \ column + Elevation + Agr + Urban + Forest + GDP + Grassland + Population +$ (2) Pr ec + T + WS + P + tsun + RH

220 where O_3 denotes the observed 8-h O_3 level in the monitoring site; the O_3 column represents the O_3 221 column amount in the corresponding grid; Elevation denotes the corresponding elevation of the site; 222 Agr, Urban, Forest, Grassland are the agricultural land, urban land, forest land, and the grassland, respectively. Population represents the population density in the corresponding site. Prec, T, WS, P, 223 224 tsun, and RH are precipitation, air temperature, wind speed, air pressure, sunshine duration, and relative humidity, respectively. Additionally, other five models including RF, generalized regression 225 226 neutral network (GRNN), backward propagation neural network (BPNN), Elman neural network 227 (ElmanNN), and extreme learning machine (ELM) also used the backward variable selection 228 method. The R^2 value was treated as an important parameter to add or reduce the variable. The variable should be removed when the R² value of the submodel showed the remarkable decrease 229 230 with the integration of this variable. Lastly, the optimal variable group was applied to establish the 231 submodel.

Following the RF submodel, the prediction error estimated by the RF submodel was further modelled by the GAM. GAM could reflect the time autocorrelation of predictive error of RF model, and thus the ensemble model of RF and GAM might decrease the modelling error of one-stage model. All of the variables were incorporated into the models to establish the second-stage model, and the backward variable selection was also used to determine the optimal variable group.

The 10-fold cross-validation (CV) technique was employed to evaluate the predictive performances for all of the machine learning models. All of the training data set were randomly classified into 10 subsets uniformly. In each round of validation, nine subsets were used to train and the remaining subset was applied to test the model performance. The process was repeated 10 times until every subset has been tested. Some statistical indicators including R², Root Mean Square Error (RMSE), Mean Prediction Error (MPE) and the slope were calculated to assess the model
performance. The optimal model with the best performance was used to estimate the 8-h O₃
concentration in the past decades.

- 245 **3. Results and discussion**
- 246 3.1 The validation of model performance

Figure 3 and figure S2 show the density scatterplots of the fitting and 10-fold cross-validation 247 results for eight machine learning models for China. The 10-fold cross-validation R² values 248 followed the order of RF-GAM ($R^2 = 0.76$) > RF-STK ($R^2 = 0.63$) > RF ($R^2 = 0.55$) > GRNN ($R^2 = 0.55$) 249 $(0.53) > BPNN (R^2 = 0.50) > XGBoost (R^2 = 0.48) > ElmanNN (R^2 = 0.47) > ELM (R^2 = 0.32)$. The 250 RMSE values of RF-GAM, RF-STK, RF, GRNN, XGBoost, BPNN, ElmanNN, and ELM were 251 252 14.41, 17.79, 19.13, 19.41, 20.73, 20.06, 20.61, and 23.36 µg/m³, respectively. Both of MPE and 253 RPE showed the similar characteristic with RMSE in the order of RF-GAM (10.97 μ g/m³ and 26.50%) < RF-STK (13.48 µg/m³ and 35.15%) < RF (14.71 µg/m³ and 35.51%) < GRNN (14.89 254 $\mu g/m^3$ and 35.82%) < BPNN (15.43 $\mu g/m^3$ and 36.19%) < ElmanNN (15.75 $\mu g/m^3$ and 37.05%) < 255 256 XGBoost (15.80 μ g/m³ and 38.13%) < ELM (18.23 μ g/m³ and 44.05%) (Fig. 3 and Fig. S2). Besides, 257 the slope of the RF-GAM model was closer to 1 compared with other models. It was well documented that the RF model generally showed the better performance than other models because 258 259 this method did not need to define complex relationships between the explanatory variables and the 260 O₃ concentration (e.g., linear or nonlinear). Furthermore, the variable importance indicators 261 calculated by the RF model can help user to distinguish the key variables from noise ones and make 262 full use of the strength of each predictor to assure the model robustness. Although BPNN, GRNN, 263 XGBoost, ElmanNN, and ELM have been widely applied to estimate the air pollutant concentrations

264	(Chen et al., 2018c; Zang et al., 2018; Zhu et al., 2019), these methods suffered from some
265	weaknesses in predicting the pollutant level. For instance, both of BPNN and ElmanNN models
266	could capture the locally optimal solution when the training subsets were integrated into the final
267	model, which decreased the predictive performance of the model (Wang et al., 2015). Moreover,
268	BPNN generally showed slow training speed, especially with the huge training subsets (Li and Park,
269	2009; Wang et al., 2015). ELM often consumed more computing resource and experienced the over-
270	fitting issue due to the increase of sampling size (Huang et al., 2015; Shao et al., 2015). GRNN
271	method advanced the training speed compared with BPNN model and avoided the locally optimal
272	solution during the modelling process (Zang et al., 2019), whereas the predictive performance is
273	still worse than that of RF model. XGBoost was often considered to be robust in predicting air
274	pollutant level (Li et al., 2020), while the model did not display the excellent performance in the
275	present study. It might be attributable to that the sampling size in the present study was not enough
276	because the model generally showed the better performance with big samples. Moreover, we found
277	that the two-stage model was superior to the one-way model in the predictive performance. The
278	encouraging result suggested that the relationship between the predictors and the 8-h O_3
279	concentration varied with space and time. The two-stage model used the GAM method to further
280	adjust the prediction error of the RF model, and considered the spatiotemporal correlation of
281	predictor error in Tibetan Plateau. Although the STK model incorporated space and time into the
282	model simultaneously, the RF-GAM model outperformed the RF-STK model. It was assumed that
283	the STK model showed the higher uncertainty in predicting the O ₃ concentration in the region with
284	scarce sampling sites (Gao et al., 2016; Li et al., 2017a). Overall, the ensemble RF-GAM model
285	showed the significant improvement in predictive performance.

I

286	The performances of RF-GAM displayed slight difference in each year during 2014-2018. As
287	shown in Table 1, the R^2 value showed the highest value (0.76) in 2016, followed by that in 2018
288	(0.75), 2017 (0.73), 2015 (0.72), and the lowest one in 2014 (0.69). Both of RMSE and MPE
289	exhibited the lowest values in 2014, while these parameters did not show significant variation during
290	2015-2018. The lowest R^2 value and the highest RPE focused on 2014 due to the least sample size,
291	while the highest R^2 value and lowest RPE in 2016 was contributed by the maximum sample size.
292	Geng et al. (2018) found that the predictive performance of machine learning model was strongly
293	dependent on the number of training samples and sampling frequency. The lower RMSE and MPE
294	in 2014 might be attributable to the lack of measured O ₃ data in spring, which decreased the higher
295	value of O_3 concentration. The performances of the RF-GAM model in four seasons were also
296	assessed by 10-fold cross-validation (Table 2). The predictive performance of the RF-GAM model
297	showed significantly seasonal difference with the highest R^2 value observed in summer (0.74),
298	followed by winter (0.69) and autumn (0.67) , and the lowest one in spring (0.64) . However, both of
299	RMSE and MPE displayed different seasonal characteristics with the R ² value. Both of RMSE and
300	MPE for RF-GAM followed the order of spring (15.32 and 11.94 μ g/m ³) > summer (15.13 and 11.75
301	μ g/m ³) > winter (14.58 and 11.44 μ g/m ³) > autumn (13.23 and 10.52 μ g/m ³). The lowest R ² value
302	in spring might be caused by multiple O ₃ sources and complicate O ₃ formation mechanisms. On the
303	one hand, the O3 in spring might be generated from the local anthropogenic emission or long-range
304	transport (Li et al., 2017; Li et al., 2019b). On the other hand, a strong stratosphere-troposphere
305	exchange process due to lower height of troposphere in Tibetan Plateau might lead to the higher O ₃
306	concentration in spring (Skerlak et al., 2014). Unfortunately, both of long-range transport and
307	stratosphere-troposphere exchange process were missing in the RF-GAM model, which restricted

I

the accuracy of O_3 estimation in spring. The large estimation errors (e.g., RMSE, MPE, and RPE)

309

in spring and summer were attributable to the high 8-h O₃ concentration in these seasons, while the

low prediction error observed in autumn was contributed by the low O₃ level.

311 Apart from the seasonal variation, we also investigated the spatial variabilities of the predictive accuracy for RF-GAM model. Tibetan Plateau was classified into five provinces and then the 312 predictive performance of RF-GAM model in each province was calculated. Among the five 313 provinces, Gansu province displayed the highest R² value (0.74), followed by Sichuan province 314 315 (0.71), Qinghai province (0.70), Tibet autonomous region (0.69), and Yunnan province (0.54) (Table 3). The result shown herein was not in agreement with the previous studies by Geng et al. (2018), 316 317 who confirmed that the predictive performance of machine learning model was positively associated with the sampling size. It was assumed that the spatial distribution of the sampling sizes in Tibet was 318 319 uneven and the sampling density is low, though Tibet possessed the maximum monitoring sites 320 compared with other provinces. The prediction error (RMSE and MPE) did not exhibit the same characteristics with the R² value. The higher RMSE and MPE focused on Tibet autonomous region 321 322 $(14.81 \text{ and } 11.24 \text{ }\mu\text{g/m}^3)$ and Qinghai province $(14.83 \text{ and } 11.33 \text{ }\mu\text{g/m}^3)$ due to the higher values of 323 blh and sund. The lowest values of RMSE and MPE could be observed in Yunnan province, which was contributed by the higher rainfall amount. The highest RPE was concentrated on Yunnan 324 325 province (25.85%), followed by Tibet (22.90%), Qinghai (22.65%), Sichuan (22.62%), and the 326 lowest one in Gansu province (22.51%), which might be linked with the sample size. 327 Although 10-fold cross-validation verified that the RF-GAM model showed the better predictive

328 performance in estimating the surface 8-h O₃ concentration, the test method cannot validate the 329 transferring ability of the final model. The monitoring site in Tibetan Plateau before May, 2014 is

330	very limited, and only the daily 8-h O3 data in Lhasa from the open website
331	(https://www.aqistudy.cn/historydata/) was available to compare with the simulated data. As
332	depicted in Fig. 4, the R ² value of unlearning 8-h O ₃ level against predicted 8-h O ₃ concentration
333	reached 0.67, which was slightly lower than that of the 10-fold cross-validation R^2 value. Overall,
334	the extrapolation ability of the RF-GAM model is satisfactory, and thus it was supposed that the
335	model could be applied to estimate the O ₃ concentration in other years. Both of RMSE and MPE
336	for the unlearning 8-h O ₃ level against the predicted 8-h O ₃ concentration were significantly higher
337	than those of the 10-fold cross-validation. It was supposed that Lhasa showed the higher surface 8-
338	h O ₃ concentration over Tibetan Plateau.
339	To date, some previous studies also simulated the surface O ₃ concentration in Tibetan Plateau
340	using statistical models (Zhan et al., 2018). For instance, Zhan et al. (2018) employed the RF-STK
341	model to estimate the surface O3 concentration over China, and explained the 66% spatial variability
342	of O3 level in Tibetan Plateau. Apart from these statistical models, some classical CTMs were also
343	applied to estimate the O ₃ concentration in the remote area. Both of Liu et al. (2018) and Lin et al.
344	(2018) used CMAQ to estimate the O_3 level across China, while the R^2 values in most of cities were
345	lower than 0.50. In terms of the predictive performance, the RF-GAM model in our study showed
346	the significant advantages compared with previous studies. It should be noted that our RF-GAM
347	model could outperform most of current models, chiefly because of (1) accounting for the temporal
348	autocorrelation of surface O_3 concentration; and (2) the use of high-quality satellite data.
349	3.2 Variable importance
350	The results of variable importance for key variables are depicted in Fig. 5. In the final RF-GAM
251	model, it was found that time was the dominant factor for the 8-h Os concentration in Tibetan Plateau

- $\label{eq:solution} 351 \qquad \text{model, it was found that time was the dominant factor for the 8-h O_3 concentration in Tibetan Plateau,}$

352	indicating that the ambient O3 concentration displayed significantly temporal correlation. Following
353	the time, meteorological factors served as the main factors for the O ₃ pollution in the remote region.
354	The sum of sund, sp, d2m, t2m, and tp occupied 34.43% of the overall variable importance. Among
355	others, sund was considered to be the most important meteorological factors for the O ₃ pollution. It
356	was assumed that strong solar radiation and long duration of sunshine favored the photochemical
357	generation of ambient O ₃ (Malik and Tauler, 2015; Stähle et al., 2018). Tan et al. (2018)
358	demonstrated that the chemical reaction between NO_x and VOCs was strongly dependent on the
359	sunlight. Besides, the atmospheric pressure (sp) was also treated as a major driver for the O_3
360	pollution over Tibetan Plateau. Santurtún et al. (2015) have demonstrated that sp was closely linked
361	to the atmospheric circulation and synoptic scale meteorological pattern, which could influence the
362	long-range transport of ambient O3. Apart from sund and sp, d2m and t2m played significant role
363	on the O ₃ pollution, which was in consistent with many previous studies (Zhan et al., 2018). Zhan
364	et al. (2018) observed that cold temperature was not favorable to the O ₃ formation. d2m can affect
365	the surface O ₃ pollution through two aspects. On the one hand, RH affected heterogeneous reactions
366	of O ₃ and particles (e.g., soot, mineral) (He et al., 2017; He and Zhang, 2019; Yu, 2019). On the
367	other hand, high RH could increase the soil moisture and evaporation, and thus the water-stressed
368	plants tended to emit more biogenic isoprene, thereby promoting the elevation of O ₃ concentration
369	(Zhang and Wang, 2016). It should be noted that the effect of precipitation on O ₃ pollution was
370	relatively weaker than those of other meteorological factors. Zhan et al. (2018) also found the similar
371	result and believed that rain scavenging served as the key pathway for the O3 removal only when
372	O ₃ pollution was very serious. The power of O ₃ column amount on surface O ₃ concentration seemed
373	to be lower than those of most meteorological factors, suggesting that vertical transport of ambient

374	O ₃ was complex. Although socioeconomic factors and land use types were not dominant factors for
375	the O ₃ pollution in Tibetan Plateau, they still cannot be ignored in the present study because the
376	predictive performance would worsen if these variables were excluded from the model. It was
377	widely acknowledged that the anthropogenic emissions focused on the developed urban areas with
378	high population density especially in the remote plateau (Zhang et al., 2007; Zheng et al., 2017).
379	Compared with the urban land, the grassland played more important role on the O3 pollution in
380	Tibetan Plateau. It was thus supposed that the grassland was widely distributed on Tibetan Plateau,
381	which could release a large amount of biogenic volatile organic compounds (BVOCs) (Fang et al.,
382	2015). It was well known that photochemical reactions of BVOCs and NO_x in the presence of
383	sunlight caused the O ₃ formation (Calfapietra et al., 2013; Yu et al., 2006). Furthermore, Fang et al.
384	(2015) confirmed that the BVOC emission in Tibetan Plateau displayed a remarkable increase in
385	the wet seasons.

386 3.3 The spatial distribution of estimated 8-h O₃ concentration over Tibetan Plateau

Figure 6 depicts the spatial distribution of the 8-h O3 level estimated by the novel RF-GAM 387 388 model. The spatial distribution pattern modelled by the RF-GAM model showed the similar 389 characteristic with the result simulated by previous studies except North Tibetan Plateau (Liu et al., 390 2018). The estimated 8-h O₃ concentration displayed the highest value in some cities of North Tibetan Plateau such as Huangnan (73.48±4.53 µg/m³) and Hainan (72.24±5.34 µg/m³), followed 391 by the cities in the central region including Lhasa (65.99 \pm 7.24 µg/m³) and Shigatse (65.15 \pm 6.14 392 μ g/m³), and the lowest one in some cities of Southeast Tibetan Plateau such as Aba (55.17±12.77 393 $\mu g/m^3$). The spatial pattern of 8-h O₃ concentration is highly consistent with the result predicted by 394 395 Liu et al. (2018) using CMAQ model, while it is not in agreement with the result estimated by Zhan

396	et al. (2018) using RF-STK model. The difference of the present study and Zhan et al. (2018) focuses
397	on the North Tibetan Plateau, which lacks of monitoring site and remains the higher uncertainty.
398	Firstly, it might be contributed by the weakness of RF-STK mentioned above. Moreover, Zhan et al.
399	(2018) only used the ground-level measured data in 2015 to establish the model and the data in new
400	sites since 2015 were not incorporated into the model, which could increase the model uncertainty
401	(Zhan et al., 2018). As shown in Fig. 6, most of the cities in Qinghai province (e.g., Huangnan,
402	Hainan, and Guoluo) generally showed the higher 8-h O3 concentration over Tibetan Plateau, which
403	was in a good agreement with the spatial distribution of O ₃ column amount (Fig. S3). Besides, some
404	cities in Tibet such as Shigatse and Lhasa also showed the higher 8-h O3 levels. It was supposed that
405	the precursor emissions in these regions were significantly higher than those in other cities of
406	Tibetan Plateau (Fig. S4). Zhang et al. (2007) used the satellite data to observe that the higher VOCs
407	and NO_x emission focused on the residential area with high population density in the remote Tibetan
408	Plateau. Apart from the effect of anthropogenic emission, the meteorological conditions could be
409	also the important factors for the 8-h O3 concentration. As shown in Fig. S5-S10, the higher blh and
410	sp in the Northeast Tibetan Plateau might promote the O_3 formation through the reaction of VOC
411	and OH radical, leading to the higher 8-h O ₃ concentration in these cities (Ou et al., 2015). In
412	addition, the lower tp occurred in North Tibetan Plateau and Northeast Tibetan Plateau, both of
413	which were unfavorable to the ambient O_3 removal (Yoo et al., 2014). In contrast, the higher tp
414	observed in the Southeast Tibetan Plateau resulted in the slight O ₃ pollution.
415	3.4 The temporal variation of the simulated 8-h O ₃ concentration over Tibetan Plateau
416	The annually mean estimated 8-h O3 concentration in Tibetan Plateau displayed the slow
417	increase from 64.74 \pm 8.30 $\mu g/m^3$ to 66.45 \pm 8.67 $\mu g/m^3$ 2005 through 2015 (Table S1), whereas it

418	decreased from the peak to 65.87 \pm 8.52 $\mu g/m^3$ during 2015-2018 (Fig. 7). Based on the Mann-
419	Kendall method (Fig. 8a), it was found that the surface O3 concentration exhibited the slight increase
420	as the whole, while the increase degree was not significant ($p > 0.05$). Besides, it should be noted
421	that the O ₃ concentrations in various regions showed different increase speed. As depicted in Fig.
422	8b, we found that the 8-h O3 concentrations in North, West, and East Tibetan Plateau displayed
423	significant increase trend by the speed of 1-3 μ g/m ³ during 2005-2018. The middle region of Tibetan
424	Plateau showed the moderate increase trend by the speed of 0-1 $\mu\text{g/m^3}.$ However, the 8-h O_3
425	concentration in Shigatse and Sannan even displayed the decrease trend 2005 through 2018.
426	Besides, the 8-h O3 concentrations in Tibetan Plateau displayed significantly seasonal
427	discrepancy. The estimated 8-h O ₃ level in Tibetan Plateau followed the order of spring (75.00±8.56
428	$\mu g/m^3$) > summer (71.05±11.13 $\mu g/m^3$) > winter (56.39±7.42 $\mu g/m^3$) > autumn (56.13±8.27 $\mu g/m^3$)
429	(Fig. 9 and Table 4). The 8-h O_3 concentrations in most of prefecture-level cities showed the
430	similarly seasonal characteristics with the overall seasonal variation in Tibetan Plateau. Based on
431	the result summarized in Table S2, it was found that the key precursors of ambient O_3 generally
432	displayed the higher emissions in winter compared with other seasons. However, the seasonal
433	distribution of ambient O3 concentration was not in accordance with the precursor emissions,
434	suggesting that the meteorological factors might play more important roles on ambient O3
435	concentration. It was well known that the higher air temperature in spring and summer were closely
436	related to the low sp and high sund, both of which promoted O_3 formation (Sitnov et al., 2017).
437	Although summer showed the highest air temperature and the longest sunshine duration, the higher
438	rainfall amount in summer decreased the ambient O3 concentration via wet deposition (Li et al.,
439	2017b; Li et al., 2019b). Moreover, the highest blh occurred in spring, which was favorable to the

440	strong stratosphere-troposphere exchange process in Tibetan Plateau (Skerlak et al., 2014).
441	Therefore, the 8-h O ₃ concentration in summer and winter were relatively lower than that in spring.
442	Nonetheless, the 8-h O3 levels in Diqing, Sannan, and Nyingchi displayed the highest values in
443	spring (56.38 \pm 7.87, 73.90 \pm 5.97, and 73.22 \pm 2.77 µg/m ³), followed by winter (45.88 \pm 7.05,
444	61.71 ± 4.32 , and $62.24\pm3.63 \ \mu\text{g/m}^3$) and summer (44.35 ± 5.90 , 61.00 ± 5.86 , and $59.60\pm2.33 \ \mu\text{g/m}^3$),
445	and the lowest ones in autumn (37.45 \pm 5.76, 54.70 \pm 3.13, and 53.84 \pm 2.06 µg/m ³). The lower O ₃ level
446	in summer than winter was mainly attributable to the higher precipitation observed in the summer
447	of these cities (Fig. S11). In addition, it should be noted that the NO _x and VOCs emissions of South
448	Tibetan Plateau (e.g., Sannan) exhibited the higher values in winter compared with other seasons.
449	3.5 The nonattainment days over Tibetan Plateau during 2005-2018
450	The annually mean nonattainment days in the 19 prefecture-level cities over Tibetan Plateau are
451	summarized in Table 2. 100 μ g/m ³ was regarded as the critical value for the 8-h O ₃ level by World
452	Health Organization (WHO). The nonattainment days denoted total days with the 8-h O3
453	concentration higher than 100 μ g/m ³ . Although the annually mean 8-h O ₃ concentrations in all of
454	the cities over Tibetan Plateau did not exceed the critical value, not all of the regions experienced
455	excellent air quality in the long period (2005-2018). Some cities of Qinghai province including
456	Huangnan, Haidong, and Guoluo suffered from 45, 40, and 40 nonattainment days each year (Fig.
457	10 and Table 5). Besides, some cities in the South Tibetan Plateau such as Shigatse and Sannan also
458	experienced more than 40 nonattainment days each year, suggesting that Tibetan Plateau was still
459	faced of the risk for O3 pollution. Fortunately, some remote cities such as Ali, Ngari, and Qamdo
460	did not experience the excessive O ₃ pollution all the time, which was ascribed to the low precursor
461	emissions and appropriate meteorological conditions. It should be noted that the nonattainment days
1	

I

in the region with high O₃ concentration showed the significantly seasonal difference, whereas the
seasonal difference was not remarkable in the city with low O₃ pollution. As shown in Table 2, it
should be noted that nearly all of the nonattainment days could be detected in spring and summer,
which was in good agreement with the O₃ levels in different seasons, indicating that the O₃ pollution
issue should be paid more attention in spring and summer.

The determination of nonattainment days showed some uncertainties owing to the predictive error of modelled O_3 concentration. First of all, meteorological data used in RF-GAM model were collected from reanalysis data and these gridded data often showed some uncertainties, which could increase the uncertainty of O_3 estimation. Second, the O_3 column amount used in the present study reflected vertical O_3 column amount rather than surface O_3 concentration. Thus, it could decrease

the predictive performance of surface O₃ level.4. Summary and implication

473 In the present study, we developed a novel hybrid model (RF-GAM) based on multiple explanatory variables to estimate the surface 8-h O₃ concentration across the remote Tibetan Plateau. 474 The 10-fold cross-validation method demonstrated that RF-GAM achieved excellent performance 475 with the highest R^2 value (0.76) and lowest root mean square error (RMSE) (14.41 μ g/m³) compared 476 477 with other model including RF-STK, RF, BPNN, XGBoost, GRNN, ElmanNN, and ELM models. Moreover, the unlearning ground-measured O₃ data validated that the RF-GAM model showed the 478 better extrapolation performance ($R^2=0.67$, RMSE=25.68 $\mu g/m^3$). The result of variable importance 479 480 suggested that time, sund, and sp were key factors for the surface 8-h O₃ concentration over Tibetan 481 Plateau. Based on the RF-GAM model, we found that the estimated 8-h O₃ concentration exhibited 482 notably spatial variation with the highest value in some cities of North Tibetan Plateau such as Huangnan (73.48 \pm 4.53 µg/m³) and Hainan (72.24 \pm 5.34 µg/m³) and the lowest one in some cities of 483

484	Southeast Tibetan Plateau such as Aba (55.17 \pm 12.77 µg/m ³). Besides, we also found that the O ₃
485	level displayed a slow increase from 64.74 \pm 8.30 µg/m ³ to 66.45 \pm 8.67 µg/m ³ 2005 through 2015,
486	while the O_3 concentration decreased to 65.87 $\pm 8.52~\mu g/m^3$ in 2018. The estimated 8-h O_3 level in
487	Tibetan Plateau showed the significantly seasonal discrepancy with the order of spring (75.00±8.56
488	$\mu g/m^3$) > summer (71.05±11.13 $\mu g/m^3$) > winter (56.39±7.42 $\mu g/m^3$) > autumn (56.13±8.27 $\mu g/m^3$).
489	Based on the critical value set by WHO, most of the cities in Tibetan Plateau shared with the
490	excellent air quality, while several cities (e.g., Huangnan, Haidong, and Guoluo) still suffered from
491	more than 40 nonattainment days each year.
492	The RF-GAM model for O ₃ estimation has several limitations. First of all, the O ₃ estimation in
492 493	The RF-GAM model for O ₃ estimation has several limitations. First of all, the O ₃ estimation in North Tibetan Plateau might show some uncertainties because the ground-level monitoring site is
493	North Tibetan Plateau might show some uncertainties because the ground-level monitoring site is
493 494	North Tibetan Plateau might show some uncertainties because the ground-level monitoring site is very scarce, and thus we cannot validate the reliability of predicted value in the region without
493 494 495	North Tibetan Plateau might show some uncertainties because the ground-level monitoring site is very scarce, and thus we cannot validate the reliability of predicted value in the region without monitoring site. Secondly, our approach did not include data on emission inventory, or traffic count

- 499 more explanatory variables such as long-term NO_x and VOCs emissions to retrieve the surface O_3
- 500 level over Tibetan Plateau in the past decades.
- 501 Author contributions
- 502 This study was conceived by Rui Li and Hongbo Fu. Statistical modelling was performed by Rui
- 503 Li, Yilong Zhao, Ya Meng, Wenhui Zhou and Ziyu Zhang. Rui Li drafted the paper.
- 504 Acknowledgements
- 505 This work was supported by National Natural Science Foundation of China (Nos. 91744205,

506 21777025, 21577022, 21177026).

- 507 Reference
- 508 Bornman, J.F., Barnes, P.W., Robson, T.M., Robinson, S.A., Jansen, M.A., Ballaré, C.L., Flint, S.D.:
- 509 Linkages between stratospheric ozone, UV radiation and climate change and their implications for
- terrestrial ecosystems. Photoch. Photobio. Sci. 18, 681-716, 10.1039/C8PP90061B, 2019.
- 511 Calfapietra, C., Fares, S., Manes, F., Morani, A., Sgrigna, G., Loreto, F.: Role of Biogenic Volatile
- 512 Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: A review.
- 513 Environ. Pollut. 183, 71-80, <u>https://doi.org/10.1016/j.envpol.2013.03.012</u>, 2013.
- 514 Chan, C., Wong, K., Li, Y., Chan, L., Zheng, X.: The effects of Southeast Asia fire activities on
- 515 tropospheric ozone, trace gases and aerosols at a remote site over the Tibetan Plateau of Southwest
- 516 China. Tellus B 58, 310-318, <u>https://doi.org/10.1111/j.1600-0889.2006.00187.x</u>, 2006.
- 517 Chen, G., Knibbs, L.D., Zhang, W., Li, S., Cao, W., Guo, J., Ren, H., Wang, B., Wang, H., Williams, G.:
- 518 Estimating spatiotemporal distribution of PM₁ concentrations in China with satellite remote sensing,
- 519 meteorology, and land use information. Environ. Pollut. 233, 1086-1094,
- 520 <u>https://doi.org/10.1016/j.envpol.2017.10.011</u>, 2018a.
- 521 Chen, G., Li, S., Knibbs, L.D., Hamm, N., Cao, W., Li, T., Guo, J., Ren, H., Abramson, M.J., Guo, Y.: A
- 522 machine learning method to estimate $PM_{2,5}$ concentrations across China with remote sensing,
- 523 meteorological and land use information. Sci. Total Environ. 636, 52-60,
 524 <u>https://doi.org/10.1016/j.scitotenv.2018.04.251</u>, 2018b.
- 525 Chen, G., Morawska, L., Zhang, W., Li, S., Cao, W., Ren, H., Wang, B., Wang, H., Knibbs, L.D., Williams,
- 526 G.: Spatiotemporal variation of PM₁ pollution in China. Atmos. Environ. 178, 198-205,
- 527 https://doi.org/10.1016/j.atmosenv.2018.01.053, 2018c.

- 528 Chen, P., Yang, J., Pu, T., Li, C., Guo, J., Tripathee, L., Kang, S.: Spatial and temporal variations of
- 529 gaseous and particulate pollutants in six sites in Tibet, China, during 2016-2017. Aerosol Air Qual.
- 530 Res. 19, 516-527, doi: 10.4209/aaqr.2018.10.0360, 2019.
- 531 Emberson, L.: Critical air quality effects: A focus on assessing crop growth, productivity and socio-
- economic implications of food supply. Air Qual. Climat. Change 51, 50, 2017.
- 533 Fang, K., Makkonen, R., Guo, Z., Zhao, Y., Seppä, H.: An increase in the biogenic aerosol concentration
- as a contributing factor to the recent wetting trend in Tibetan Plateau. Sci. Rep. 5, 14628, doi:
- 535 10.1038/srep14628, 2015.
- 536 Feng, Z., De Marco, A., Anav, A., Gualtieri, M., Sicard, P., Tian, H., Fornasier, F., Tao, F., Guo, A.,
- 537 Paoletti, E.: Economic losses due to ozone impacts on human health, forest productivity and crop
- yield across China. Environ. Interna. 131, 104966, <u>https://doi.org/10.1016/j.envint.2019.104966</u>,
 2019.
- 540 Feng, Z., Hu, E., Wang, X., Jiang, L., Liu, X.: Ground-level O₃ pollution and its impacts on food crops
- 541 in China: a review. Environ. Pollut. 199, 42-48, <u>https://doi.org/10.1016/j.envpol.2015.01.016</u>, 2015.
- 542 Fioletov, V., Bodeker, G., Miller, A., McPeters, R., Stolarski, R.: Global and zonal total ozone variations
- estimated from ground-based and satellite measurements: 1964-2000. J. Geophy. Res. 107, ACH 21-
- 544 21-ACH 21-14, <u>https://doi.org/10.1029/2001JD001350</u>, 2002.
- 545 Fu, Y., Liao, H., Yang, Y.: Interannual and decadal changes in tropospheric ozone in China and the
- associated chemistry-climate interactions: A review. Adv. Atmos. Sci. 36, 975-993,
 <u>https://doi.org/10.1007/s00376-019-8216-9</u>, 2019.
- 548 Gao, Z., Shao, X., Jiang, P., Cao, L., Zhou, Q., Yue, C., Liu, Y., Wang, C.: Parameters optimization of
- 549 hybrid fiber laser-arc butt welding on 316L stainless steel using Kriging model and GA. Optics &

- 550 Laser Technology 83, 153-162, <u>https://doi.org/10.1016/j.optlastec.2016.04.001</u>, 2016.
- 551 Geng, G., Murray, N.L., Chang, H.H., Liu, Y.: The sensitivity of satellite-based PM_{2.5} estimates to its
- 552 inputs: Implications to model development in data-poor regions. Environ. Interna.121, 550-560,
- 553 <u>https://doi.org/10.1016/j.envint.2018.09.051</u>, 2018.
- 554 Ghude, S.D., Chate, D., Jena, C., Beig, G., Kumar, R., Barth, M., Pfister, G., Fadnavis, S., Pithani, P.:
- 555 Premature mortality in India due to $PM_{2.5}$ and ozone exposure. Geophy. Res. Lett. 43, 4650-4658,
- 556 https://doi.org/10.1002/2016GL068949, 2016.
- 557 He, X., Pang, S., Ma, J., Zhang, Y.: Influence of relative humidity on heterogeneous reactions of O₃ and
- 558 O₃/SO₂ with soot particles: potential for environmental and health effects. Atmos. Environ. 165, 198-
- 559 206, <u>https://doi.org/10.1016/j.atmosenv.2017.06.049</u>, 2017.
- 560 He, X., Zhang, Y.-H.: Influence of relative humidity on SO₂ oxidation by O₃ and NO₂ on the surface of
- 561 TiO₂ particles: Potential for formation of secondary sulfate aerosol. Spectrochimica Acta Part A:
- 562 Molecular and Biomolecular Spectroscopy 219, 121-128, <u>https://doi.org/10.1016/j.saa.2019.04.046</u>,
- **563** 2019.
- Huang, G., Huang, G.-B., Song, S., You, K.: Trends in extreme learning machines: A review. Neural
 Networks 61, 32-48, https://doi.org/10.1016/j.neunet.2014.10.001, 2015.
- 566 Kim, S.-Y., Bechle, M., Hankey, S., Sheppard, E.L.A., Szpiro, A.A., Marshall, J.D.: Concentrations of
- 567 criteria pollutants in the contiguous US, 1979–2015: Role of model parsimony in integrated empirical
- 568geographic regression, 2018.
- 569 Li, C.H., Park, S.C.: Combination of modified BPNN algorithms and an efficient feature selection
- 570 method for text categorization. Inform. Process Manag. 45, 329-340,
- 571 <u>https://doi.org/10.1016/j.ipm.2008.09.004</u>, 2009.

- 572 Li, H., Liu, T., Wang, M., Zhao, D., Qiao, A., Wang, X., Gu, J., Li, Z., Zhu, B.: Design optimization of
- 573 stent and its dilatation balloon using kriging surrogate model. Biomed. Eng. Online 16, 13, 2017a.
- 574 Li, J.Y., Mao, J.Q., Fiore, A.M., Cohen, R.C., Crounse, J.D., Teng, A.P., Wennberg, P.O., Lee, B.H.,
- 575 Lopez-Hilfiker, F.D., Thornton, J.A., Peischl, J., Pollack, I.B., Ryerson, T.B., Veres, P., Roberts, J.M.,
- 576 Neuman, J.A., Nowak, J.B., Wolfe, G.B., Horowitz, L.W.: Decadal changes in summertime reactive
- 577 oxidized nitrogen and surface ozone over the Southeast United States. Atmos. Chem. Phys. 18, 2341–
- 578 2361, <u>https://doi.org/10.5194/acp-18-2341-2018</u>, 2018.
- 579 Li, R., Cui, L., Li, J., Zhao, A., Fu, H., Wu, Y., Zhang, L., Kong, L., Chen, J.: Spatial and temporal
- variation of particulate matter and gaseous pollutants in China during 2014–2016. Atmos. Environ.
- 581 161, 235-246, <u>https://doi.org/10.1016/j.atmosenv.2017.05.008</u>, 2017b.
- 582 Li, R., Cui, L., Meng, Y., Zhao, Y., Fu, H.: Satellite-based prediction of daily SO₂ exposure across China
- using a high-quality random forest-spatiotemporal Kriging (RF-STK) model for health risk
- 584 assessment. Atmos. Environ. 208, 10-19, <u>https://doi.org/10.1016/j.atmosenv.2019.03.029</u>, 2019a.
- 585 Li, R., Wang, Z., Cui, L., Fu, H., Zhang, L., Kong, L., Chen, W., Chen, J.: Air pollution characteristics
- 586 in China during 2015–2016: Spatiotemporal variations and key meteorological factors. Sci. Total
- 587 Environ. 648, 902-915, <u>https://doi.org/10.1016/j.scitotenv.2018.08.181</u>, 2019b.
- 588 Li, R., Cui, L.L, Fu, H.B., Li, J.L., Zhao, Y.L., Chen, J.M.: Satellite-based estimation of full-coverage
- 589 ozone (O₃) concentration and health effect assessment across Hainan Island. J. Clean Prod. 118773,
- 590 https://doi.org/10.1016/j.jclepro.2019.118773, 2020.
- 591 Lin, W., Zhu, T., Song, Y., Zou, H., Tang, M., Tang, X., Hu, J.: Photolysis of surface O₃ and production
- 592 potential of OH radicals in the atmosphere over the Tibetan Plateau. J. Geophy. Res. 113,
- 593 https://doi.org/10.1029/2007JD008831, 2008.

- Lin, Y.Y., Jiang, F., Zhao, J., Zhu, G., He, X.J., Ma, X.L., Li, S., Sabel, C.E., Wang, H.K.: Impacts of O₃
- on premature mortality and crop yield loss across China. Atmos. Environ. 194, 41-47,
 https://doi.org/10.1016/j.atmosenv.2018.09.024, 2018.
- 597 Ma, Z., Hu, X., Sayer, A.M., Levy, R., Zhang, Q., Xue, Y., Tong, S., Bi, J., Huang, L., Liu, Y.: Satellite-
- based spatiotemporal trends in PM_{2.5} concentrations: China, 2004-2013. Environ. Health Per. 124,
- 599 184-192, <u>https://doi.org/10.1289/ehp.1409481</u>, 2015.
- 600 Malik, A., Tauler, R.: Exploring the interaction between O₃ and NO_x pollution patterns in the atmosphere
- of Barcelona, Spain using the MCR-ALS method. Sci. Total Environ. 517, 151-161,
- 602 <u>https://doi.org/10.1016/j.scitotenv.2015.01.105</u>, 2015.
- Marco, D.: Exposure to PM_{10} , NO_2 , and O_3 and impacts on human health. Environ. Sci. Pollut. Res., 24,
- 604 2781, <u>https://doi.org/10.1007/s11356-016-8038-6</u>, 2017.
- 605 McPeters, R., Frith, S., Labow, G.: OMI total column ozone: extending the long-term data record. Atmos.
- 606 Meas. Tech. 8, 4845-4850, <u>https://doi.org/10.5194/amt-8-4845-2015</u>, 2015.
- 607 Ou, J., Zheng, J., Li, R., Huang, X., Zhong, Z., Zhong, L., Lin, H.: Speciated OVOC and VOC emission
- 608 inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta
- 609 region, China. Sci. Total Environ. 530, 393-402, <u>https://doi.org/10.1016/j.scitotenv.2015.05.062</u>,
- **610** 2015.
- 611 Qian, M., Zhaosheng, W., Rong, W., Mei, H., Jiali, S.: Assessing the Impact of Ozone Pollution on
- 612 Summer NDVI based Vegetation Growth in North China. Remote Sensing Technology and
- 613 Application 33, 696-702, DOI: 10.11873/j.issn.1004-0323.2018.4.0696, 2018.
- 614 Santurtún, A., González-Hidalgo, J.C., Sanchez-Lorenzo, A., Zarrabeitia, M.T.: Surface ozone
- 615 concentration trends and its relationship with weather types in Spain (2001-2010). Atmos. Environ.

- 616 101, 10-22, <u>https://doi.org/10.1016/j.atmosenv.2014.11.005</u>, 2015.
- 617 Shang, Y., Sun, Z., Cao, J., Wang, X., Zhong, L., Bi, X., Li, H., Liu, W., Zhu, T., Huang, W.: Systematic
- 618 review of Chinese studies of short-term exposure to air pollution and daily mortality. Environ. Interna.
- 619 54, 100-111, <u>https://doi.org/10.1016/j.envint.2013.01.010</u>, 2013.
- 620 Shao, Z., Er, M.J., Wang, N.: An effective semi-cross-validation model selection method for extreme
- learning machine with ridge regression. Neurocomputing 151, 933-942,
 https://doi.org/10.1016/j.neucom.2014.10.002, 2015.
- 623 Shen, Z., Cao, J., Zhang, L., Zhao, Z., Dong, J., Wang, L., Wang, Q., Li, G., Liu, S., Zhang, Q.:
- 624 Characteristics of surface O₃ over Qinghai Lake area in Northeast Tibetan Plateau, China. Sci. Total
- 625 Environ. 500, 295-301, <u>https://doi.org/10.1016/j.scitotenv.2014.08.104</u>, 2014.
- 626 Shen, L., Jacob, D.J., Liu, X., Huang, G.Y., Li, K., Liao, H., Wang, T.: An evaluation of the ability of the
- 627 Ozone Monitoring Instrument (OMI) to observe boundary layer ozone pollution across China:
- 628 application to 2005–2017 ozone trends. Atmos. Chem. Phys. 19, 6551-6560,
- 629 https://doi.org/10.5194/acp-19-6551-2019, 2019.
- 630 Shi, X., Zhao, C., Jiang, J.H., Wang, C., Yang, X., Yung, Y.L.: Spatial Representativeness of PM_{2.5}
- 631 Concentrations Obtained Using Observations From Network Stations. J. Geophy. Res 123, 3145-
- 632 3158, <u>https://doi.org/10.1002/2017JD027913</u>, 2018.
- 633 Sitnov, S., Mokhov, I., Lupo, A.: Ozone, water vapor, and temperature anomalies associated with
- 634 atmospheric blocking events over Eastern Europe in spring-summer 2010. Atmos. Environ. 164, 180-
- 635 194, <u>https://doi.org/10.1016/j.atmosenv.2017.06.004</u>, 2017.
- 636 Skerlak, B., Sprenger, M., Pfahl, S., Roches, A., Sodemann, H., Wernli, H.: Rapid exchange between the
- 637 stratosphere and the planetary boundary layer over the Tibetan Plateau, EGU General Assembly

- 638 Conference Abstracts, 2014.
- 639 Stähle, C., Rieder, H.E., Mayer, M., Fiore, A.M.: Past and future changes in surface ozone pollution in
- 640 Central Europe: insights from observations and chemistry-climate model simulations, EGU General
- 641 Assembly Conference Abstracts, p. 12677, 2018.
- Tan, Z., Lu, K., Jiang, M., Su, R., Dong, H., Zeng, L., Xie, S., Tan, Q., Zhang, Y.: Exploring ozone
- 643 pollution in Chengdu, southwestern China: A case study from radical chemistry to O_3 -VOC-NO_x
- 644 sensitivity. Sci. Total Environ. 636, 775-786, <u>https://doi.org/10.1016/j.scitotenv.2018.04.286</u>, 2018.
- 645 Vellingiri, K., Kim, K.H., Jeon, J.Y., Brown, R.J., Jung, M.C.: Changes in NO_x and O₃ concentrations
- over a decade at a central urban area of Seoul, Korea. Atmos. Environ. 112, 116-125,
- 647 <u>https://doi.org/10.1016/j.atmosenv.2015.04.032</u>, 2015.
- 648 Wang, C., Wang, X., Gong, P., Yao, T.: Polycyclic aromatic hydrocarbons in surface soil across the
- Tibetan Plateau: Spatial distribution, source and air-soil exchange. Environ. Pollut. 184, 138-144,
- 650 https://doi.org/10.1016/j.envpol.2013.08.029, 2014a.
- 651 Wang, L., Zeng, Y., Chen, T.: Back propagation neural network with adaptive differential evolution
- algorithm for time series forecasting. Expert Syst. Appl. 42, 855-863,
 https://doi.org/10.1016/j.eswa.2014.08.018, 2015.
- Wang, M., Sampson, P.D., Hu, J.L., Kleeman, M., Keller, J.P., Olives, C., Szpiro, A.A., Vedal, S.,
- 655 Kaufman, J.D.: Combining land-use regression and chemical transport modelling in a spatiotemporal
- geostatistical model for ozone and PM_{2.5}. Environ. Sci. Tech. 50, 5111-5118,
 <u>https://doi.org/10.1021/acs.est.5b06001</u>, 2016.
- Wang, N., Lyu, X., Deng, X., Huang, X., Jiang, F., Ding, A.: Aggravating O₃ pollution due to NO_x
 emission control in eastern China. Sci. Total Environ. 677, 732-744,
- I

660 <u>https://doi.org/10.1016/j.scitotenv.2019.04.388</u>, 2019.

- 661 Wang, T., Xue, L., Brimblecombe, P., Lam, Y.F., Li, L., Zhang, L.: Ozone pollution in China: A review
- of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ.
- 663 575, 1582-1596, <u>https://doi.org/10.1016/j.scitotenv.2016.10.081</u>, 2017.
- 664 Wang, Y., Ying, Q., Hu, J., Zhang, H.: Spatial and temporal variations of six criteria air pollutants in 31
- provincial capital cities in China during 2013–2014. Environ. Interna. 73, 413-422,
 https://doi.org/10.1016/j.envint.2014.08.016, 2014b.
- 667 Yin, P., Chen, R., Wang, L., Meng, X., Liu, C., Niu, Y., Lin, Z., Liu, Y., Liu, J., Qi, J.: Ambient ozone
- pollution and daily mortality: a nationwide study in 272 Chinese cities. Environ. Health Per. 125,
- 669 117006, <u>https://doi.org/10.1289/EHP1849</u>, 2017a.
- 670 Yin, X., Kang, S., de Foy, B., Cong, Z., Luo, J., Zhang, L., Ma, Y., Zhang, G., Rupakheti, D., Zhang, Q.:
- 671 Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional
- 672 representativeness. Atmos. Chem. Phys. 17, 2017b.
- 673 Yoo, J.M., Lee, Y.R., Kim, D., Jeong, M.J., Stockwell, W.R., Kundu, P.K., Oh, S.M., Shin, D.B., Lee,
- 674 S.J.: New indices for wet scavenging of air pollutants (O₃, CO, NO₂, SO₂, and PM₁₀) by summertime
- 675 rain. Atmos. Environ. 82, 226-237, <u>https://doi.org/10.1016/j.atmosenv.2013.10.022</u>, 2014.
- 476 Yu, S.C., Mathur, R., Kang, D., Schere, K., Eder, B., Plein, J.: Performance and diagnostic evaluations
- of a real-time ozone forecast by the Eta-CMAQ model suite during the 2002 New England Air
- 678 Quality Study (NEAQS). J. Air Waste Manage. 56, 1459-1471, 2006.
- 679 Yu, S.C.: Fog geoengineering to abate local ozone pollution at ground level by enhancing air moisture.
- 680 Environ. Chem. Lett. 17, 565-580, 2019.
- 681 Zang, L., Mao, F., Guo, J., Gong, W., Wang, W., Pan, Z.: Estimating hourly PM₁ concentrations from

- 682 Himawari-8 aerosol optical depth in China. Environ. Pollut. 241, 654-663,
 683 https://doi.org/10.1016/j.envpol.2018.05.100, 2018.
- 684 Zang, L., Mao, F., Guo, J., Wang, W., Pan, Z., Shen, H., Zhu, B., Wang, Z.: Estimation of spatiotemporal
- 685 PM1. 0 distributions in China by combining PM_{2.5} observations with satellite aerosol optical depth.
- 686 Sci. Total Environ. 658, 1256-1264, <u>https://doi.org/10.1016/j.scitotenv.2018.12.297</u>, 2019.
- 687 Zhan, Y., Luo, Y., Deng, X., Grieneisen, M.L., Zhang, M., Di, B.: Spatiotemporal prediction of daily
- ambient ozone levels across China using random forest for human exposure assessment. Environ.
- 689 Pollut. 233, 464-473, <u>https://doi.org/10.1016/j.envpol.2017.10.029</u>, 2018.
- 690 Zhang, L., Jacob, D.J., Downey, N.V., Wood, D.A., Blewitt, D., Carouge, C.C., van Donkelaar, A., Jones,
- 691 D.B., Murray, L.T., Wang, Y.: Improved estimate of the policy-relevant background ozone in the
- 692 United States using the GEOS-Chem global model with $1/2 \times 2/3$ horizontal resolution over North
- 693 America. Atmos. Environ. 45, 6769-6776, <u>https://doi.org/10.1016/j.atmosenv.2011.07.054</u>, 2011.
- 594 Zhang, Q., Streets, D.G., He, K., Wang, Y., Richter, A., Burrows, J.P., Uno, I., Jang, C.J., Chen, D., Yao,
- $Z_{...}$ NO_x emission trends for China, 1995-2004: The view from the ground and the view from space.
- 696 J. Geophy. Res. 112, <u>https://doi.org/10.1029/2007JD008684</u>, 2007.
- 697 Zhang, Y., Wang, Y.: Climate-driven ground-level ozone extreme in the fall over the Southeast United
- 698 States. P. Natl. Acad. Sci. USA. 113, 10025-10030, <u>https://doi.org/10.1073/pnas.1602563113</u>, 2016.
- 699 Zheng, C., Shen, J., Zhang, Y., Huang, W., Zhu, X., Wu, X., Chen, L., Gao, X., Cen, K.: Quantitative
- assessment of industrial VOC emissions in China: Historical trend, spatial distribution, uncertainties,
- 701 and projection. Atmos. Environ. 150, 116-125, <u>https://doi.org/10.1016/j.atmosenv.2016.11.023</u>, 2017.
- 702 Zhu, Y., Zhan, Y., Wang, B., Li, Z., Qin, Y., Zhang, K.: Spatiotemporally mapping of the relationship
- between NO_2 pollution and urbanization for a megacity in Southwest China during 2005-2016.

704	Chemosphere 220, 155-162, https://doi.org/10.1016/j.chemosphere.2018.12.095, 2019.
705	
706	
707	
708	

Figure and table captions

Fig. 1 The geographical locations and annually mean 8-h O₃ concentrations in the ground-observed sites (red dots) over Tibetan Plateau during 2014-2018. The elevation data are collected from geographical and spatial data cloud at a 30-m spatial resolution.

Fig. 2 The workflow for predicting the spatiotemporal distributions of 8-h O₃ levels.

Fig. 3 Density scatterplots of model fitting and cross-validation result at a daily level. (a), (b), and (c) represent RF-GAM, RF-STK, and RF models, respectively. The red dotted line denotes the fitting linear regression line. The full names of MPE and RMSE are mean prediction error (μ g/m³) and root mean squared prediction error (μ g/m³), respectively.

Fig. 4 The transferring ability validation of RF-GAM method based on the measured daily 8-h O₃ concentration during December 2013-May 2014.

Fig. 5 The variable importance of predictors in the final RF-GAM model.

Fig. 6 The mean value of estimated 8-h O₃ concentration during 2005-2018 over Tibetan Plateau.

Fig. 7 The inter-annual variation of predicted 8-h O_3 level ($\mu g/m^3$) from 2005 to 2018 across Tibetan Plateau.

Fig. 8 The trend analysis of predicted 8-h O₃ concentration. (a) and (b) represent the result of Mann-Kendall method and discrepancy of estimated O₃ level during 2005-2018 across Tibetan Plateau.

Fig. 9 The seasonal variability of estimated 8-h O₃ level across Tibetan Plateau. (a), (b), (c), and (d) represent the predicted 8-h O₃ concentrations in spring, summer, autumn, and winter, respectively.

Fig. 10 The spatial distributions of nonattainment days in Tibetan Plateau during 2005-2018.

Table 1 The R² values, RMSE, MPE, and RPE of RF-GAM in different years during 2014-2018 over Tibetan Plateau.

Table 2 The R² values, RMSE, MPE, and RPE of RF-GAM in four seasons over Tibetan Plateau.

Table 3 The predictive performances of RF-GAM in different provinces over Tibetan Plateau.

 Table 4 The estimated 8-h O3 concentration in 19 prefecture-level cities over Tibetan Plateau during

four seasons including spring, summer, autumn, and winter.

Table 5 The mean nonattainment days (8-h O_3 level >100 µg/m³) in 19 prefecture-level cities overTibetan Plateau each year.

|

|

Fig. 6

Fig. 10

	2014	2015	2016	2017	2018
\mathbb{R}^2	0.69	0.72	0.76	0.73	0.75
RMSE	13.65	14.56	14.28	14.52	14.35
MPE	9.53	10.82	10.84	10.95	10.93
RPE	23.27%	23.26%	23.02%	23.20%	23.09%

Table 1

	Spring	Summer	Autumn	Winter
\mathbb{R}^2	0.64	0.74	0.67	0.69
RMSE	15.32	15.13	13.23	14.58
MPE	11.94	11.75	10.52	11.44
RPE	24.63%	22.35%	23.32%	23.24%

Table 2

Table 5					
	Tibet	Qinghai	Gansu	Sichuan	Yunnan
\mathbb{R}^2	0.69	0.70	0.74	0.71	0.54
RMSE	14.81	14.83	13.65	13.23	12.49
MPE	11.24	11.33	10.88	10.08	10.20
RPE	22.90%	22.65%	22.51%	22.62%	25.85%

Table 3

Table 4							
	Province	Spring	Summer	Autumn	Winter	Annual	Measured O ₃
							level
Aba	Sichuan	65.61±14.30	59.46±14.32	45.55±12.03	47.95±10.55	55.17±12.77	47.75±19.47
Ngari	Tibet	71.34±3.12	70.10±3.57	53.14±3.67	51.84±3.69	62.21±3.34	53.34±24.46
Qamdo	Tibet	72.52±4.29	62.74±5.79	52.06±4.01	55.42±3.09	61.10±3.93	59.76±23.77
Diqing	Yunnan	56.38±7.87	44.35±5.90	37.45±5.76	45.88±7.05	46.22±6.51	47.81±21.63
Gannan	Gansu	76.77±9.73	73.27±10.67	54.74±8.33	54.72±6.95	65.60±8.91	68.86±25.45
Ganzi	Sichuan	69.38±10.99	61.45±11.58	48.49±8.79	50.94±6.62	58.06±9.48	38.07±19.08
Guoluo	Qinghai	80.12±5.12	76.13±5.83	58.86±5.71	57.38±4.66	68.77±5.25	80.04±23.90
Haibei	Qinghai	78.18±10.21	78.84±10.31	60.90±9.69	57.48±9.78	69.47±9.99	81.07±32.74
Haidong	Qinghai	74.20±10.34	73.70±9.12	53.61±8.11	51.02±9.60	63.84±9.21	44.28±34.96
Hainan	Qinghai	83.01±5.36	82.27±5.72	61.57±5.39	58.96±5.44	72.24±5.34	78.34±27.11
Haixi	Qinghai	79.39±6.88	79.48±7.79	60.78 ± 7.48	57.71±6.99	69.99±7.24	80.60±27.17
Huangnan	Qinghai	85.21±4.98	83.01±4.66	61.95±4.18	60.62±4.49	73.48±4.53	74.83±22.63
Lhasa	Tibet	80.08±9.63	70.13±8.42	55.86±5.78	55.85±5.19	65.99±7.24	75.45±26.65
Nagqu	Tibet	74.59±5.13	70.46±6.69	54.60±5.16	53.53±4.83	63.83±5.23	44.79±28.75
Shigatse	Tibet	77.31±8.62	69.66±7.69	55.93±4.58	55.57±4.72	65.15±6.14	75.62±26.50
Sannan	Tibet	73.90±5.97	61.00±5.86	54.70±3.13	61.71±4.32	63.04±4.00	73.04±26.31
Xining	Qinghai	77.43±10.27	77.84±9.44	58.19±9.29	54.72±10.04	67.77±9.70	61.77±22.58
Yushu	Qinghai	77.35±5.55	73.34±6.37	56.12±5.53	55.02±5.01	66.05±5.50	57.14±31.98
Nyingchi	Tibet	73.22±2.77	59.60±2.33	53.84±2.06	62.24±3.63	62.40±2.20	66.61±26.71

Table 4

Table 5	
---------	--

	Spring	Summer	Autumn	Winter	Annual
Aba	0	0	0	0	0
Ngari	0	0	0	0	0
Qamdo	0	0	0	0	0
Diqing	0	0	0	0	0
Gannan	0	1	0	0	1
Ganzi	13	2	0	0	15
Guoluo	19	21	0	0	40
Haibei	0	0	0	0	0
Haidong	22	18	0	0	40
Hainan	14	12	1	0	27
Haixi	1	1	0	0	2
Huangnan	23	22	0	0	45
Lhasa	12	7	0	0	19
Nagqu	24	14	0	0	38
Shigatse	28	13	0	0	41
Sannan	33	7	0	0	40
Xining	2	1	0	0	3
Yushu	0	0	0	0	0
Nyingchi	0	0	0	0	0