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Abstract 9 

To improve the operational air quality forecasting over China, a new aerosol/gas phase pollutants 10 

assimilation capability is developed within the WRFDA system using 3DVAR algorithm. In this first 11 

application, the interface for MOSAIC aerosol scheme is built with flexible extending potentials. 12 

Based on the new WRFDA-Chem system, five experiments assimilating different surface observations, 13 

including PM2.5, PM10, SO2, NO2, O3, and CO are conducted for January 2017 along with a control 14 

experiment without DA. Results exhibit that the WRFDA-Chem system evidently improves the air 15 

quality forecasting. On the analysis aspect, the assimilation of surface observations reduces the bias 16 

and RMSE in the initial condition (IC) remarkably; on the forecast aspect, better forecast performances 17 

are acquired up to 24-h, in which the experiment assimilating the six pollutants simultaneously displays 18 

the best forecast skill overall. With respect to the impact of DA cycling frequency, the responses 19 

toward IC updating are found out to be different among the pollutants. For PM2.5, PM10, SO2, and CO, 20 

the forecast skills increase with the DA frequency. For O3, although improvements are acquired at the 21 

6-h cycling frequency, the advantage of more frequent DA could be consumed by the disadvantages 22 

of the unbalanced photochemistry (due to inaccurate precursor NOx/VOC ratios) or the changed 23 

titration process (due to changed NO2 concentrations but not NO) from assimilating the existing 24 

observations (only O3 and NO2, but no VOC and NO); yet the finding is based on the 00 UTC forecast 25 

for this winter season only and O3 has strong diurnal and seasonal variations, more experiments should 26 

be conducted to draw further conclusions. In addition, considering after one aspect (IC) in the model 27 

is corrected by DA, the deficiencies from other aspects (e.g., chemical reactions) could be more evident, 28 

this study explores the model deficiencies by investigating the effects of assimilating gaseous 29 

precursors on the forecast of related aerosols. Results exhibit that the parameterization (uptake 30 
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coefficients) in the newly added Sulfate-Nitrate-Ammonium (SNA) relevant heterogeneous reactions 31 

in the model are not fully appropriate although it best simulates observed SNA aerosols without DA; 32 

since the uptake coefficients were originally tuned under the inaccurate gaseous precursor scenarios 33 

without DA, the biases from the two aspects (SNA reactions and IC DA) were just compensated. In 34 

the future chemistry development, parameterizations (such as uptake coefficients) for different gaseous 35 

precursor scenarios should be adjusted and verified with the help of DA technique. According to these 36 

results, DA ameliorates certain aspects by using observation as constraints, and thus provides an 37 

opportunity to identify and diagnose the model deficiencies; it is useful especially when the 38 

uncertainties of various aspects are mixed up and the reaction paths are not clearly revealed. In the 39 

future, besides being used to improve the forecast through updating IC, DA could be treated as another 40 

approach to explore necessary developments in the model. 41 

1. Introduction 42 

Air pollution is almost inevitable for all developed (historically) and developing (in present days) 43 

countries. From acid rain, haze to smog etc., the air pollution significantly impacts atmospheric 44 

visibility, human health, and climate. As one of the fastest-growing countries, China has been suffering 45 

from the extreme haze with high particulate matter (PM) national-wide and increasing tropospheric 46 

ozone (O3) pollution in city clusters (Fu et al., 2019; Lu et al., 2019). To control the pollutions as well 47 

as to improve the air quality forecast, Chinese governments had enforced stricter air quality standards 48 

from 2012, and deployed monitoring network for six “criteria” air pollutants since 2013, which 49 

includes PM2.5 and PM10 (aerosols/fine particulate matter with aerodynamic diameters less than 2.5 or 50 

10 µm), SO2 (sulfur dioxide), NO2 (nitrogen dioxide), O3 (ozone), and CO (carbon monoxide). Among 51 
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the six pollutants, the forecast on aerosols (especially PM2.5) is of greatest research interest as the 52 

severity of aerosol pollution and its negative effects on both health and climate. However, it’s still 53 

challenging to accurately simulate and forecast aerosols by pure air quality models due to some issues, 54 

such as the large uncertainties in primary and precursor emissions processes, the incomplete 55 

understanding and parameterization of secondary inorganic/organic reactions from precursors, and the 56 

accumulation of meteorology simulation errors. In addition to aerosol forecast, the elevated O3 levels 57 

in city clusters over eastern China draw more and more attentions recently. Under this circumstance, 58 

in the urban regions in China, where suffer from complex air pollution with both haze and smog, the 59 

accurate forecast of air quality has been not only a challenge for operational centers, but also a common 60 

concern for the scientific community.  61 

To improve the forecast skill, data assimilation (DA), a combination of observations and numerical 62 

model output, has been widely used in meteorology forecast since last century, and recently extended 63 

to air pollutant forecasts. Based upon various techniques, DA is proven to be skillful at improving the 64 

meteorology and aerosol forecasts (Bannister 2017; McHenry et al. 2015; Peng et al. 2018; Sandu and 65 

Chai 2011; Schutgens et al. 2010; Sekiyama et al. 2010; Tang et al. 2011; Tang et al. 2013). Focusing 66 

on aerosol assimilation, NCAR group had conducted a series of work. Using three-dimensional 67 

variational (3DVAR) algorithm, Liu et al. (2011) implemented DA on aerosol optical depth estimates 68 

within the Grid-point Statistical Interpolation (GSI) system. Schwartz et al. (2012), Jiang et al. (2013), 69 

and Chen et al. (2019) further extended this system to assimilate surface PM2.5 and PM10. It should be 70 

noted that the aerosols are complicated not merely from primary emissions but also secondary 71 

reactions with gaseous precursors in the atmosphere (Huang et al. 2014; Nie et al. 2014; Xie et al. 72 

2015). However, the assimilation of aerosols along with gas phase pollutants are seldom investigated. 73 
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Recently, it is encouraging that an Ensemble Kalman Filter (EnKF) DA system is developed to 74 

assimilate multi-species surface chemical observations (Peng et al. 2017), while the EnKF system may 75 

not be the favorite choice in operational applications due to its massive computational cost. In addition, 76 

at the Institute of Urban Meteorology (IUM), regional NWP system–RMAPS-ST (adapted from WRF) 77 

and regional air quality model–RMAPS-Chem (adapted from WRF-Chem) are applied operationally 78 

for the weather and air quality forecast over Northern China. RMAPS-ST provides the meteorology 79 

drivers for RMAPS-Chem, and WRFDA is utilized for the meteorology DA in RMAPS-ST (Fan et al. 80 

2016; Yu et al. 2018). In result, to implement the assimilations of aerosols along with gas phase 81 

pollutants in the future air quality forecast operational system (e.g. the RMPAS-Chem), and to design 82 

an efficient and unified DA platform that satisfies the operational needs in both meteorology and air 83 

quality forecast, this study works on the WRFDA system with 3DVAR algorithm. To the authors’ 84 

knowledge, this is the first attempt to assimilate hourly ground-based aerosols simultaneously with gas 85 

phase pollutants in the WRFDA system.  86 

With regard to the aerosol data assimilation, the first and foremost challenge comes from the 87 

complex components related to the aerosol scheme. With different emphasis and applications, the 88 

chosen aerosol scheme in the model could be different, which will lead to various choices and 89 

treatments for the analysis variables in the DA system. For example, in the existed DA developments, 90 

many studies used the GOCART aerosol scheme to address the dust or the natural-source related events. 91 

However, the GOCART aerosol scheme is well known to underestimate the PM concentrations due to 92 

lack of secondary organic aerosol (SOA) formation, as well as aerosol species related to the 93 

anthropogenic emission, such as nitrate and ammonium (McKeen et al. 2009; Pang et al. 2018). 94 

Different from the GOCART scheme, the MOSAIC (Model for Simulating Aerosol Interactions and 95 
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Chemistry) aerosol scheme uses a sectional approach to represent the aerosol size distribution with 96 

different size bins, and it takes black carbon, organic carbon, sulfate, nitrate, ammonium, sodium, 97 

chloride, and other inorganic compounds that are related to anthropogenic emissions into consideration. 98 

In result, the MOSAIC scheme exhibits a better performance in representing the complex PM2.5 99 

pollution over China (Chen et al. 2016; Chen et al. 2019). Therefore, to make the DA system suitable 100 

for different emphasis and applications, a flexible aerosol assimilation capability is built within the 101 

WRFDA system in this study, which will facilitate developments and applications for more chemistry 102 

schemes in the future. Focusing on the air quality forecast over China, this study mainly analyses the 103 

results of MOSAIC aerosol scheme. 104 

It should be mentioned that the forecast performance with DA also relies on the air quality model 105 

itself. Due to the limited observational information as constraint, the DA system uses large parts of 106 

model mechanism and processes to derive the full analysis information (e.g. use total PM mass 107 

observations to analyze all PM components). However, there are still potential deficiencies in the 108 

model. For example, some reaction paths are missing in the heavily polluted events in China (e.g. 109 

Wang et al., 2014), since the chemistry schemes are originally developed for relatively clean areas and 110 

recently observed pathways haven’t been timely reflected in the model. Moreover, the large 111 

uncertainties of precursor and primary emissions could bring errors to the aerosol species partitioning 112 

and size distribution in the model. Nevertheless, when it comes to DA, as one aspect (initial conditions 113 

of aerosols and some precursors) in the model is corrected by using observation as constraints, the 114 

deficiencies from other aspects, such as the above mentioned chemical reactions, could be more 115 

evident. From this point of view, after investigating to what extent the DA technique can help to 116 
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improve the forecast of air quality, this study further explores the model deficiencies with the help of 117 

DA, aiming to provide helpful indications for future model development. 118 

In the rest of the paper, an overview of the model description, observations, and methodology is 119 

presented in Section 2, followed by evaluations of the new WRFDA-Chem system in Section 3. 120 

Section 4 analyzes the DA experiments in consideration of potential issues in the model, aiming to 121 

provide beneficial references on further model development. Conclusions and discussions are given in 122 

section 5. 123 

2. Model description, observations, and methodology 124 

In this study, the interfaced air quality model is WRF-Chem. The WRF-Chem settings are very 125 

similar to those of Chen et al. (2016). Here, only a summary of the model configuration and 126 

observations is provided below. Descriptions of the most important development of this study, the 127 

WRFDA-Chem system, are presented in Section 2.3. 128 

2.1 WRF-Chem model and emissions 129 

As in Chen et al. (2016), version 3.6.1 of the WRF-Chem model is used in this study to simulate 130 

the aerosols and gas-phase chemistry processes. A summary of the used physical parameterizations is 131 

given in Table 1. Details of the WRF-Chem model have been described by Grell et al. (2005) and Fast 132 

et al. (2006). The Carbon Bond Mechanism version Z (CBMZ) and Model for Simulating Aerosol 133 

Interactions and Chemistry (MOSAIC) schemes are used as the gas-phase and aerosol chemical 134 

mechanisms, respectively. The relative humidity (RH) dependent heterogeneous reactions added by 135 

Chen et al. (2016) are also applied in the simulations. The model computational domain covers most 136 
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of China and its surrounding regions. Figure 1 presents the horizontal range of the domain, which 137 

contains 121 x 121 horizontal grids at a 40.5-km resolution. Vertically, there are 57 levels extending 138 

from the surface to 10 hPa.  139 

As in Chen et al. (2019), the emission input is based on the 2010 Multi-resolution Emission 140 

Inventory for China (MEIC) (He 2012; Lei et al. 2011; Li et al. 2014; Zhang et al. 2009), which has 141 

already been applied in many recent studies over China (Wang et al. 2016; Wang et al. 2013; Zheng 142 

et al. 2015). The emission inventory has also been processed to match the model grid spacing (40.5 143 

km) from an original grid spacing of 0.25º × 0.25º (Chen et al. 2016). Admittedly, the difference 144 

between the emission base year and our simulation year and the spatial-temporal allocations may arise 145 

uncertainties in our simulation, this emission is the only publicly available emission inventory when 146 

the study is conducted. Meanwhile, the inhomogeneous spatial changes and large uncertainties in 147 

seasonal allocations of the emissions made it difficult to simply scale the original emission inventory 148 

for our study period (Chen et al. 2019). 149 

The dust emission is the GOCART dust emission and the biogenic emission is calculated online 150 

by the Gunther scheme within the WRF-Chem model. Given the time period of this study (January) is 151 

not the period with massive fires (crop/biomass burning), the fire emission is not used in this study. 152 

2.2 Observations 153 

For the future application in RMAPS-Chem operational air quality forecast system, the WRFDA-154 

Chem system is designed to assimilate the hourly surface observations of six major pollutants (PM2.5, 155 

PM10, SO2, NO2, O3, and CO) from the China National Environmental Monitoring Center (CNEMC). 156 

To verify the capability of the system, we use the data for the whole month of January 2017. As in 157 
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Chen et al. (2019), to perform statistical calculations, an observation dataset at 531 locations (Fig. 1) 158 

is acquired by averaging all the original observations (1600+ sites) that fall into the same model grid. 159 

Meanwhile, two steps of data quality control are conducted before DA. Firstly, observations lager than 160 

a threshold are treated as unrealistic and are not assimilated. Secondly, observations leading to 161 

innovations (observations minus the model-simulated values) higher than a maximum deviation are 162 

omitted. For PM2.5, PM10, SO2, NO2, O3, and CO, the threshold in the first step is 500 μg m-3, 700 μg 163 

m-3, 200 μg m-3, 200 μg m-3, 200 μg m-3, and 20 mg m-3, respectively; the maximum deviation in the 164 

second step is 120 μg m-3, 120 μg m-3, 60 μg m-3, 60 μg m-3, 60 μg m-3, and 6 mg m-3, respectively. 165 

To verify sulfate-nitrate-ammonium partitioning, a site observation of different chemical species 166 

is used in Section 4. The measurements were performed over January 14–20, 2017, and carried out on 167 

the roof of IUM in Beijing (green dot in Fig. 1). A detailed description for the features of the 168 

observation, including the quality assurance and quality control has been given by Su et al. (2018). 169 

This study mainly uses the sulfate (SO#$%) and nitrate (NO'%) in this dataset. 170 

2.3 WRFDA-Chem system 171 

In this study, an aerosol/chemical assimilation capability is built within the version 4.0.3 of the 172 

WRFDA system with 3DVAR algorithm. The WRFDA 3DVAR produces the analysis through the 173 

minimization of a scalar objective function 𝐽 𝑥  given by  174 

𝐽 𝑥 = +
$
𝑥 − 𝑥- .𝐵%+ 𝑥 − 𝑥- + +

$
[𝐻 𝑥 − 𝑦].𝑅%+[𝐻 𝑥 − 𝑦],   (1) 175 

where 𝑥-  denotes the background vector, y is a vector of the observations, and 𝐵  and 𝑅 176 

represent the background and observation error covariance matrices, respectively. The covariance 177 

matrices determine how close the analysis is weighted toward the background and observations. 𝐻 is 178 
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the observation operator that interpolates model grid point values to observation space and converts 179 

model-predicted variables to observed quantities. 180 

Generally, the implementation of WRFDA-Chem 3DVAR includes several parts: WRF-Chem 181 

model and surface air pollutants observation interface to WRFDA, the addition of aerosol/chemical 182 

analysis variables, the surface air pollutants observation operators, the update of observation errors, 183 

and the statistics of background error covariances for chemical analysis variables. Detailed 184 

descriptions will be presented in the following parts. It’s worth mentioning that the new WRFDA-185 

Chem system is designed with a flexible aerosol assimilation capability that can switch between 186 

different aerosol schemes. Given the fact that WRF-Chem model predicts the PM concentrations in 187 

the forms of different prognostic variables depending on the chosen aerosol scheme, the 188 

aerosol/chemical prognostic variables are given in the registry file of the WRFDA-Chem, instead of 189 

specifically defined in the code. With the help of the registry mechanism of WRF model, the prognostic 190 

variables in the entire DA process can be easily adjusted by modifying the registry file. The WRFDA-191 

Chem system has been tested with GOCART and MOSAIC aerosol scheme, while this study focuses 192 

on the MOSAIC scheme. 193 

2.3.1 Observation operators 194 

The WRFDA-Chem is designed to assimilate six types of surface aerosol/chemical observations, 195 

including PM2.5, PM10, SO2, NO2, O3, and CO. For aerosol assimilation, the aerosol species in the 196 

MOSAIC scheme are defined as black carbon (BC), organic compounds (OCs), sulfate (SO#$%), nitrate 197 

(NO'%), ammonium (NH#7), sodium (NA), chloride (CL), and other inorganic compounds (OIN). To 198 

represent the aerosol size distribution, MOSAIC uses a sectional approach with different bins. This 199 
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study uses four size bins with aerosol diameters ranging from 0.039–0.1, 0.1–1.0, 1.0–2.5, and 2.5– 200 

10μm. The PM2.5 total is controlled by the 24 variables in the first three bins (8 species multiplied by 201 

3 bins), and the PM10 total is controlled by the 32 variables in the four bins (8 species multiplied by 4 202 

bins). In result, the model-simulated PM2.5 is computed by summing the 24 variables as 203 

𝑦89:.<
= = 𝜌? [𝐵𝐶A + 𝑂𝐶A + 𝑆𝑂#D + 𝑁𝑂'D + 𝑁𝐻#D + 𝐶𝐿A + 𝑁𝐴A + 𝑂𝐼𝑁A]

'
AI+ .    (2) 204 

The model-simulated PM10 observations are computed by summing the 32 variables as 205 

𝑦89JK
= = 𝜌? [𝐵𝐶A + 𝑂𝐶A + 𝑆𝑂#D + 𝑁𝑂'D + 𝑁𝐻#D + 𝐶𝐿A + 𝑁𝐴A + 𝑂𝐼𝑁A]

#
AI+ .    (3) 206 

 Correspondingly, 207 

𝑦89JKL:.<
= = 𝜌? [𝐵𝐶A + 𝑂𝐶A + 𝑆𝑂#D + 𝑁𝑂'D + 𝑁𝐻#D + 𝐶𝐿A + 𝑁𝐴A + 𝑂𝐼𝑁A]

#
AI# ,   (4) 208 

where 𝜌? is the dry-air density, which is used to convert the unit of the analysis variable (μg/kg) to 209 

the observations (μg/m3); 𝑖  denotes the bin number in the MOSAIC aerosol scheme. In the 210 

experiment assimilating PM2.5 alone, the PM2.5 observations are used to analyze the species in the first 211 

three bins (Eq. 2). In the experiment assimilating PM2.5 and PM10 simultaneously, the PM2.5 212 

observations are used to analyze the species in the first three bins (Eq. 2), and the PM10-2.5 (PMcoarse, 213 

hereafter) in the observations is used to analyze the species in the 4th bin (Eq. 4). A similar approach 214 

has been adopted by Peng et al. (2018). 215 

In the assimilation of the gas-phase pollutants, the model-simulated values are computed by 216 

𝑦N
= = 𝜌? ∙

9P
9QRDS

∙ 𝑅N ∙ 10',  (5) 217 

where 𝑥 denotes the four gas-phases pollutants as in SO2, NO2, O3, and CO, ρW is the dry-air density, 218 

MY is the relative molecular mass for the four gas-phases pollutants, MWZ[\ is the relative molecular 219 

mass for dry-air, and RY is the mixing ratio for the four gas-phases pollutants. Since the gas-phase 220 
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pollutants observations are mass concentrations in μg/m3 and the analysis variables are mixing ratios 221 

in ppmv, the Eq. 5 is used for the unit conversion.  222 

2.3.2 Observation errors 223 

Following Chen et al. (2019) and Peng et al. (2018), the observation error covariance matrix R in 224 

Eq. (1) is estimated from measurement error 𝜀_ and the representativeness error 𝜀` in this study. The 225 

measurement error 𝜀_ is defined as 𝜀_ = 1.0 + 0.0075 ∙ 𝑀A, where 𝑀A denotes the observation of 226 

the six major pollutants in unit μg/m3; the representativeness error 𝜀` is defined as 𝜀` = 𝛾𝜀_
∆N
f

. 227 

where 𝛾 is an adjustable parameter scaling (set as 0.5), ∆x is the grid spacing (40.5 km in our case) 228 

and L is the radius of influence of the observation (set to 2 km). These parameter settings are based 229 

on the sensitivity tests by Chen et al. (2019). The total observation error (εY) is computed as εY =230 

ε_j
$ + ε\j$ , where 𝑥 denotes the six major pollutants as in PM2.5, PM10, SO2, NO2, O3, and CO. 231 

2.3.3 Background error covariance 232 

To implement the aerosol/chemical DA with the MOSAIC-4Bin scheme, this study expands the 233 

GEN_BE v2.0 (Descombes et al. 2015) to compute the B matrix in Eq. (1) for the 32 chemical variables 234 

as in Eq. 3 (BC, OC, SO#$%, NO'%, NH#7, NA, CL, and OIN in four bins), as well as the four gas-phase 235 

variables as in Eq. 5 (SO2, NO2, O3, and CO). Since it is both technically and scientifically challenging 236 

to model the cross-correlations between different aerosol/chemical variables in a 3DVAR framework, 237 

they are not considered in this study. We plan to introduce the cross-variable correlations with the 238 

ensemble-variational approach in the future extension of the system. With the updated GEN_BE v2.0, 239 
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the statistics for background error covariance, such as standard deviation, vertical and horizontal length 240 

scales, and vertical correlations, are computed for each of the aerosol/chemical variables. In this study, 241 

the background error covariance is estimated using the National Meteorological Center (NMC) method 242 

(Parrish and Derber, 1992) from one-month WRF-Chem forecasts over January 2017. 243 

Following the analyses based on the GEN_BE v2.0 (Descombes et al. 2015), Figure 2 presents the 244 

background error standard deviations of each species at different vertical levels. For the aerosols in the 245 

first three size bins (Fig. 2a-2c), although the standard deviation errors vary across the species, the 246 

errors of NO'%, SO#$%, NH#7, OC, and OIN are generally larger than that of the others (BC, Cl and NA) 247 

in the three size bins. These results are consistent with the finding in Chen et al. (2019), which allows 248 

inorganic compounds (NO'%, SO#$%, NH#7), OC and OIN to be adjusted more in corresponding to their 249 

larger background errors. For the aerosols in the 4th size bin (Fig. 2d), the errors are unreasonably 250 

much smaller than that in the first three bins due to model deficiency. Under this circumstance, to get 251 

a reasonable bigger adjustment for the aerosols in the 4th size bin, it might need to enlarge their 252 

background errors in the DA procedure. As for the gaseous pollutants (Fig. 2e), CO has the biggest 253 

background errors in the middle and lower layers, followed by O3, SO2 and NO2. 254 

For the background error horizontal correlation length scales, the results are similar as in Liu et al. 255 

(2011) (figure omitted). The length scales of aerosols are comparable in most of the species, which 256 

generally span from 1.5 to 2.5 times the grid spacing, while the aerosol species NA exhibits a smaller 257 

horizontal length scale than all the other species. For the background error vertical correlations (figure 258 

omitted), the results are similar as in Descombes et al. (2015), in which the vertical correlations are 259 

bigger in the lower levels (where they are emitted) in most of the species. According to Descombes et 260 
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al. (2015), the reactions with species emitted near the surface might create these strong correlations in 261 

the lower model levels. 262 

2.3.4 Experimental design 263 

To seek for the best forecast performance, six experiments were conducted for January 2017 in 264 

this study, including NODA, PM1, PM2, ALL, ALL_3h, and ALL_1h (detailed in Table 2). NODA is 265 

the control experiment without any data assimilation. The design of PM1, PM2, and ALL is to 266 

investigate the assimilation impacts of PM2.5, PMcoarse, and gas-phase pollutants (SO2, NO2, O3, CO) 267 

step-by-step. 268 

 The NODA experiment initialized a new WRF-Chem forecast every 6-h between 00:00 UTC, 20 269 

December 2016 and 18:00 UTC 31 January 2017, in which the aerosol/chemical fields were simply 270 

carried over from cycle to cycle, and the meteorological initial condition/boundary conditions were 271 

updated from GFS data every 6-h. The first 10 days were treated as the spin up period, and only 272 

simulations in January were used in the following analyses. The PM1, PM2, and ALL experiments 273 

updated the chemical IC using the WRFDA-Chem system every 6-h starting from 00:00 UTC, 1 274 

January. The background of the first cycle was obtained from the NODA experiment, and all 275 

subsequent cycles were derived from the 6-h forecast of the previous cycle. The only difference 276 

between PM1, PM2, and ALL experiments is that PM1 only assimilated PM2.5 observations; PM2 277 

assimilated PM2.5 and PMcoarse (PM10-2.5) simultaneously; ALL assimilated PM2.5, PM10-2.5, 278 

SO2, NO2, O3, and CO together.  279 
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In view of the cycling frequency is an important aspect in the DA strategy, especially for 3DVAR, 280 

two more experiments that assimilate all the six major pollutants with 3-h and 1-h cycling frequency 281 

are conducted respectively (experiment ALL_3h and ALL_1h). To investigate the forecast 282 

improvements, a 24-h forecast is initialized for all the experiments at 00:00 UTC of each day.  283 

3. Performance of the WRFDA-Chem system 284 

3.1 Impact on analyses 285 

 To evaluate the performance of the WRFDA-Chem system, the impact on analyses is firstly 286 

investigated. Figure 3 presents the domain-averaged bias and root-mean-square-error (RMSE) of the 287 

analysis at 00 UTC over January 1-31, 2017. For PM2.5 (Fig. 3a), the NODA experiment displays a 288 

general overestimation of 36.60 μg/m3, along with a large RMSE of 70.41 μg/m3. After DA, in the 289 

PM1, PM2, and ALL experiments, the bias of PM2.5 drops to 5.62 μg/m3, 5.19 μg/m3, and 5.98 μg/m3, 290 

respectively; the RMSE drops to 22.10 μg/m3, 22.84 μg/m3, and 23.15 μg/m3, respectively.  291 

In the analyses of PM10, it is noted that the PM1 experiment has a larger bias than the NODA run 292 

(Fig. 3b). To explain this phenomenon, Figure 4 presents the monthly mean difference between PM10 293 

and PM2.5 (PM10 minus PM2.5, PMcoarse) in the analysis. In the observation, the PMcoarse generally 294 

increases from south to north, reaching above 50 μg/m3 over northern China (Fig. 4a). However, the 295 

PMcoarse in the NODA experiment (with an average of 5.47 μg/m3) is much smaller than that in the 296 

observation (with an average of 39.13 μg/m3). This result suggests that the WRF-Chem model failed 297 

to reasonably represent the PMcoarse, which is actually the 4th bin of the aerosol species in the 298 

MOSAIC scheme. Under this circumstance, when the assimilation of PM2.5 trying to reduce its evident 299 

overestimation (Fig. 3a), components in the first three bins (within 2.5 μm) of PM10 decrease 300 
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dramatically. Meanwhile, since the simulated PMcoarse is too small, the PM10 variates are eventually 301 

dominated by the adjustment of PM2.5. In result, the assimilation of PM2.5 causes a large negative bias 302 

in the PM10 analysis (Fig. 3b). Correspondingly, compared to the NODA run, the PMcoarse in the PM1 303 

experiment exhibit no significant changes (only slightly decrease) in the analysis (Figs. 4b and 4c) and 304 

also in the forecast (Fig 4f).  305 

To overcome this issue, several adjustments have been adapted in the PM10 assimilation: instead 306 

of using the PM10 observations directly, the PMcoarse is used to analyze the species in the 4th bin (Eq. 307 

4); to reflect the large uncertainty of the simulated PMcoarse and to appropriately weighting the model 308 

and observation errors, the background error covariance of the PMcoarse (species in the 4th bin) is 309 

arbitrarily inflated (inflation factor 1 is normally used and 90 is selected after tuning). By this means, 310 

after assimilating the PM10 observations, the PM2 and ALL experiments exhibit similar distributions 311 

in the PMcoarse (Figs. 4d-e, with an average of 34.58 μg/m3 and 34.68 μg/m3) as in the observation 312 

(with an average of 39.13 μg/m3). Correspondingly, compared to the NODA experiment, evident 313 

improvements for PM10 analysis appear in the PM2 and ALL experiments, in which the bias and RMSE 314 

drops evidently (Fig. 3b). Overall, the DA experiments exhibit strong contributions to the analyses of 315 

PM2.5 and PM10, suggesting that the WRFDA-Chem system works effectively in updating the initial 316 

conditions.  317 

 As for the analyses of gaseous pollutants (Figs. 3c-3f), large improvements can be seen in the ALL 318 

experiment by further assimilating SO2, NO2, O3, and CO. Compared to the PM2 experiment, although 319 

the bias and RMSE for PM2.5 and PM10 in the ALL experiment are slightly larger, the bias for the four 320 

gaseous pollutants decrease from 4.74 μg/m3, -4.59 μg/m3, 4.92 μg/m3, and -8.31 mg/m3 (PM2 321 

experiment) to -1.68 μg/m3, -1.25 μg/m3, -0.31 μg/m3, and -0.18 mg/m3 (ALL experiment), 322 
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respectively, and the corresponding RMSE drops from 37.87 μg/m3, 15.39 μg/m3, 21.04 μg/m3, and 323 

1.11 mg/m3 (PM2 experiment) to 23.85 μg/m3, 9.70 μg/m3, 8.62 μg/m3, and 0.43 mg/m3 (ALL 324 

experiment). In general, by assimilating all the six major pollutants, the ALL experiment displays the 325 

largest improvement in the analyses of gaseous pollutants among all the experiments, along with a 326 

comparable improvement in the analyses of the aerosols. 327 

 Due to the lack of vertical information within the observations, the common mathematical solution 328 

to use the surface total mass observations to analyze multiple 3-D fields variables is to utilize prior 329 

information in the background. As shown in Fig. 5, based on vertical correlations specified in the 330 

background error covariance, the observation impact spreads to a certain height, even though the 331 

analysis variables used in the observation operator (Eq. 2-5) are only at the lowest model level. It is 332 

also noted that observations contribute differently to the analysis variables. Corresponding to the 333 

strong overestimation of PM2.5 (Fig. 3a), all the three DA experiments (PM1, PM2 and ALL) tend to 334 

reduce the PM2.5 below 6 km; corresponding to the distinct underestimation for CO (Fig. 3f), the 335 

experiment assimilating CO (ALL experiment) increases the value below 9 km. Relative small analysis 336 

increments are shown in the other three gas pollutants (SO2, NO2, and O3). 337 

3.2 Forecast improvements 338 

After illustrating the effect of WRFDA-Chem on the analyses, this section further investigates the 339 

forecast performances based on the new analyses. A 24-h forecast is performed at each 00 UTC from 340 

1 to 31 January 2017. The forecast error statistics, including bias, RMSE, and correlation, are computed 341 

by verifying against the surface observations at 531 stations over China. 342 
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As shown in Fig. 6, the model performs relative poorly in the forecast of aerosols without DA. 343 

For PM2.5, the average bias, RMSE, and correlation over 0-24 h are 31.17 μg/m3, 88.99 μg/m3, and 344 

0.41, respectively (Tab. 3). As expected, all the DA experiments improve the forecasts evidently. 345 

Along with the forecast range, distinct improvements on bias, RMSE and correlation last from 0 to 24 346 

h. For example, in PM1 experiment, the average improvement percentages (over 0-24 h) for bias, 347 

RMSE and correlation reach up to 71.8%, 39.4%, and 43.9%, respectively. It is also noted that PM2.5 348 

observation is the dominant data source in improving PM2.5 forecast. As for PM10, distinct 349 

improvements on RMSE and correlation can be seen from 0 to 24 h. Especially after assimilating the 350 

PMcoarse (PM10-2.5 in PM2 and All experiments), the averaged improvement percentage for RMSE 351 

and correlation reach up to about 27.0 % and 55.5%. For bias, since the statistics are averaged over the 352 

531 stations, the offset of large positive and negative bias at different stations leads to the small 353 

averaged bias in the NODA run (see the spatial distribution of bias at the individual site in Section 1 354 

of the supplementary material). Considering the DA experiments exhibit distinct improvements on 355 

RMSE and correlation, WRFDA-Chem still provides a generally positive contribution to the PM10 356 

forecast. 357 

Figure 7 presents the averaged forecast error statistics for SO2, NO2, O3, and CO with respect to 358 

forecast range. In PM1 and PM2 experiments that do not assimilate the gas-phase observations, no 359 

significant changes appear in the forecasts of the gaseous pollutants compared to the NODA run; after 360 

assimilating the gas-phase observations, the ALL experiment shows evident improvements in all the 361 

four gaseous pollutants, in which the improvements for SO2, NO2, and O3 are more significant in 0-10 362 

h, and the improvements for CO last up to 24 h. According to the numbers shown in Table 3, for SO2, 363 

NO2, O3, and CO, the average bias (RMSE) in the ALL experiment decreases by 43.3%, 42.2%, 73.9%, 364 
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and 74.0% (13.4%, 5.3%, 11.3%, and 33.7%), compared to the NODA run, and the average correlation 365 

increases by 37.9%, 8.3%, 41.4%, and 103.5%, respectively. It is worth noting that the WRFDA-Chem 366 

system has a positive impact on the forecast of NO2 and O3 by merely analyzing the IC. Since NO2 367 

and O3 are related to complex photochemical reaction processes, the assimilation of NO2 and O3 368 

usually does not work well as other gas-phase pollutants on the forecast aspect, even with both 369 

emission and IC analyzed (Peng et al. 2018). In result, the aerosol/chemical assimilation based on 370 

WRFDA-Chem could not only contribute to the conventional aerosol forecasts in operational 371 

applications but also provide valuable help in the emerging study demands for gaseous pollutants, 372 

especially O3. 373 

Air Quality Index (AQI), which is used for reporting daily air quality and issuing alarms, is one 374 

of the service products of RMAPS-Chem operational air quality model over Northern China. Generally, 375 

AQI is classified into six levels rating from good to hazardous: 0-50 (level 1), 51-100 (level 2), 101-376 

150 (level 3), 151-200 (level 4), 201-300 (level 5), and 300+ (Level 6). Similar to previous studies 377 

(Kumar and Goyal 2011; Tao et al. 2015; Zheng et al. 2014), AQI is calculated for the six major 378 

pollutants. The pollutant with the highest AQI level is deemed as the “main pollutant” and its AQI 379 

determines the overall AQI level. Accordingly, the accurate forecast of AQI requires the overall good 380 

performances of the six pollutants. To reflect the integrated DA effect of aerosols and gas-phase 381 

pollutants, the threat score (TS), one of the most commonly used criterions in the verifications of 382 

meteorology forecast, is used for AQI at each AQI level. The threat score (TS) for air quality index 383 

(AQI) is calculated by 384 

𝑇𝑆A =
lD

lD79D7mD
   (6) 385 



 20 

where H, M, and F denotes the times of the hits, the misses, and the false alarms in the forecast of 386 

AQI, and i denotes the AQI levels from 1 to 6. In result, the TS is acquired at each AQI level ranging 387 

from 0 to 1, and the higher (lower) TS represents the better (worse) forecast performance. 388 

As shown in Fig. 8, in the beginning of the forecast, DA experiments (PM1, PM2 and ALL) 389 

increase the TS remarkably at all AQI levels, and then gradually decrease (quickly drop) with the 390 

forecast range at AQI levels 2-6 (AQI level 1). Nevertheless, for the polluted situations with AQI levels 391 

3-6, evident improvements can be seen from 0 to 24h in all the DA experiments, in which the average 392 

TS increase from 0.19, 0.09, 0.16, and 0.19 (NODA experiment) to about 0.27, 0.16, 0.27, and 0.26 393 

(DA experiments), respectively. For heavily polluted situations with AQI levels 5-6 (Figs. 8e-f), 394 

compared to the PM1 case, TS experiences a further increase in the PM2 and ALL experiments after 395 

assimilating the PMcoarse (PM10-2.5). This result indicates that for heavily polluted events during this 396 

period (January 2017), PM2.5 and PM10 could be the “main pollutant” that contributes the most to the 397 

AQI. 398 

In general, the new WRFDA-Chem evidently improves the aerosol/chemical forecasting. Based 399 

on the assimilation of the six major pollutants, the chemical ICs are improved distinctly and a better 400 

forecast performance is acquired up to 24 hours. Among different experiments, the ALL experiment 401 

displays the best forecast error statistics for most of the major pollutants along with the highest TS for 402 

AQI. In the following operational applications, it is recommended to assimilate the six major pollutants 403 

simultaneously, which will help to get better analyses and forecast skills on the whole. 404 
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3.3 Response to DA cycling frequency 405 

Cycling frequency is an important aspect in the DA strategy. However, the responses toward IC 406 

updating could be different among the pollutants. To figure out this issue and to provide helpful 407 

references for future applications, DA experiments with different cycling frequencies were analyzed 408 

in this section. 409 

Figure 9 shows the domain-averaged bias and RMSE of the analysis as in Fig. 3, but for 410 

experiments with different DA frequencies (ALL_6h, ALL_3h, and ALL_1h; the ALL_6h is the ALL 411 

experiment in Tab.2). Except for O3, most of the variables display a gradual improvement with the 412 

increase of cycling frequency. For example, from NODA run to the 6-h cycling experiment, and then 413 

to the 3-h and 1-h cycling experiment, the bias (RMSE) for PM2.5 gradually decrease from 36.60 μg/m3 414 

(70.41 μg/m3) to 5.98 μg/m3 (23.15 μg/m3), and then to 5.41 μg/m3 (21.32 μg/m3) and 4.30 μg/m3 415 

(18.54 μg/m3). Similar results also exist in the bias for SO2, NO2, and CO, as well as the RMSE for 416 

PM10, SO2, and CO. In accordance with the gradual improvements in the analyses, the forecast skills 417 

increase with the cycling frequency in most of the variables except O3 (Figs. 10-11). Especially for the 418 

forecasts of aerosols, evident gradual improvements can be seen from 0 to 24 h. From the 6-h cycling 419 

experiment to the 3-h and the 1-h cycling experiment, the averaged decrease percentage of RMSE for 420 

PM2.5 (PM10) enlarges from 38.76% to 41.27% and 44.21% (27.31% to 30.17% and 32.97%); the 421 

averaged increase percentage of correlation for PM2.5 (PM10) enlarges from 42.82% to 49.51% and 422 

55.58% (57.71% to 66.39% and 74.89%). To further investigate the integrated DA effect of aerosols 423 

and gas phase pollutants under different cycling frequency, the TS for AQI is shown in Fig. 12. The 424 

forecast of air quality is improved step by step with the increase of cycling frequency. On AQI levels 425 

2-6, the TS for the ALL_1h experiment situates above the ALL_3h experiment at most of the time, 426 
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and followed by the ALL_6h experiment. These results indicate that the frequent IC updating is helpful 427 

to further improve the forecast for most of the pollutants. 428 

However, the analysis and 24-hr forecast of O3 become worse under higher cycling frequencies 429 

for this winter season (Fig. 9e and 11c). Given the analysis is at 00 UTC, the worsen analysis in the 430 

experiments with higher DA frequencies (1-h, 3-h) could be mainly due to the unfavorable changes in 431 

the 1-h/3-h forecasts period (starting from 23 UTC, 21 UTC), which is different from the situation in 432 

the 6-h cycling experiment. As for the forecasts, the 24-hr performances starting from 00 UTC show 433 

complex changes along with the forecast range: compared to the 6-h cycling experiment, the biases in 434 

the experiments with higher DA frequencies decrease at 09-14 UTC but increase for other hours; the 435 

RMSE and correlations in the experiments with higher DA frequencies become worse in most of the 436 

hours (Fig. 11c). It should be mentioned that O3 is a relatively short-lived chemical reactive species, 437 

and takes part in highly complex and photochemical reactions in association with NOx and VOC (Peng 438 

et al. 2018, Lu et al., 2019). From this perspective, the performances of O3 could also rely on the 439 

photochemistry and the NOx titration, in addition to the IC. Although the winter month (January 2017) 440 

is investigated here when ozone photochemistry is relatively weaker compared to other seasons, the 441 

photochemistry and the NOx titration still play their roles. Accordingly, when the assimilation of NO2 442 

changes the NO2 concentration and leave the NO and VOC unadjusted due to the absence of NO and 443 

VOC measurements, two results might occur: firstly, the NO2/VOC ratio which determine the 444 

photochemical reactions and even the regime might be changed (O3 production/loss direction might 445 

change); secondly, the NOx titration process might be changed due to the NO2 concentration updates 446 

(but no change on NO). Considering the relevant NOx-VOC-O3 reactions take place quickly, changing 447 

the O3 concentration in a short period, the advantage of IC DA could compete with the disadvantages 448 
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of the disordered photochemistry (inaccurate NO2/VOC ratios) or the changed titration (adjusted NO2 449 

concentrations but not NO) resulting from the DA. Under this circumstance, the more frequent the O3 450 

and NO2 were assimilated, the more incompatibilities could be brought into the related 451 

photochemical/titration reactions, resulting the model performs worse in the O3 forecasts under higher 452 

cycling frequencies. It is noted that these statistics were only for the analysis at 00UTC and the 24-hr 453 

forecast starting from 00UTC for winter season. Since O3 has strong diurnal and seasonal variations, 454 

more experiments and statistics at different time of the day and different season of the year should be 455 

conducted in the future. 456 

According to the results above, it is better to assimilate PM2.5, PM10, SO2, and CO every 1 h and 457 

assimilate O3 and NO2 every 6 h in the future applications, given the fact that the 6-h cycling 458 

experiment performs the best in the O3 forecasting (Fig. 11c) and displays no significant differences 459 

in the NO2 forecasting with experiments under higher cycling frequencies (Fig. 11b). It could also be 460 

helpful to assimilate the VOC along with O3 and NO2 after there are corresponding observations.  461 

4. Indications on further model development 462 

A higher forecast skill relies on not only better working of DA, but also better performance of the 463 

forecast model. To further improve the forecast skill, a crucial task is to understand the deficiencies in 464 

the model, while the challenge in chemistry model diagnostic is that uncertainties are from various 465 

aspects and are mixed-up in the model simulations, and the situation becomes even more complex 466 

when the reaction path is not yet revealed by laboratory. However, with the help of DA, as one aspect 467 

(IC) in the model is corrected by using observation as constraints, the deficiencies from other aspects 468 

(e.g. chemical reactions) could be more evident, and thus there could be a better chance to diagnose 469 
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the deficiencies in the model. Specifically, Sulfate-nitrate-ammonium (SNA) are the predominant 470 

inorganic aerosol species that contribute up to 50% of total PM2.5 in heavily polluted events in northern 471 

China (Wang et al. 2014). In addition to the normal pathways in the MOSAIC scheme, we added SO2-472 

NO2-NO3 related heterogeneous reactions for high relative humidity case in WRF-Chem (Chen et al. 473 

2016), which greatly improved the underestimated SNA simulations. Since the newly added reactions 474 

are calculated on both the concentration of precursors (SO2, NO2-NO3) and the uptake coefficients in 475 

the model, after DA corrected the concentrations of the precursors (one aspect), the impacts of the 476 

uptake coefficients could be more evident (the other aspect than the one corrected). Ideally, if the 477 

newly added reactions depict the heterogeneous reaction processes properly, a forecast improvement 478 

on the aerosols could be expected by assimilating their gaseous precursors. Based on this notion, this 479 

section verifies the forecast of two specific aerosol species, sulfate (SO#$%) and nitrate (NO'%), against 480 

a size-resolved particle observation over Beijing IUM station (in view of the assimilated SO2 and NO2 481 

are the corresponding gaseous precursors of these aerosol species), aiming to explore the deficiencies 482 

in the uptake coefficients in the newly added heterogeneous reactions, and to provide beneficial 483 

indications for future model development. 484 

    Figure 13 presents the time series of sulfate and nitrate over Beijing IUM station. In the ALL 485 

experiment, after assimilating both the PM concentrations and the gaseous precursors (SO2, NO2), the 486 

forecasts of sulfate and nitrate become even worse than the PM2 experiment which only assimilates 487 

the PM concentrations. In the ALL experiment, sulfate experiences a decrease, accompanied by the 488 

average RMSE grows from 4.32 to 4.88 μg/m3; nitrate exhibits an increase, accompanied by the 489 

average RMSE grows from 8.74 to 10.12 μg/m3. However, compared to the PM2 experiment, the 490 

precursors (SO2 and NO2) are indeed improved. Figure 14 displays the analysis statistics of SO2 and 491 
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NO2 in the ALL experiment around Beijing area (red dots in Fig. 1) on January 16, the period with the 492 

largest changes of sulfate and nitrate (Fig. 13). To correct the overestimated SO2 (underestimated NO2) 493 

in the background, the DA in reduces (enhances) the model value in the ALL experiment, making it 494 

closer to the observations. 495 

It should be mentioned that the heterogeneous reactions are added by using the sulfate-nitrate-496 

ammonium observations as constraints to tune the “observation-best-matched” uptake coefficients 497 

under the scenario without DA, in which the precursor concentrations are from pure model thus not 498 

very accurate. To best match the observation, when gaseous precursors are overestimated 499 

(underestimated) in the model, the uptake coefficient is tuned to low-biased (high-biased) value. In 500 

result, such a coefficient may no longer be suited for the cases with DA. For instance, after DA 501 

reducing the overestimated SO2, the uptake coefficient is still relatively low and thus the reaction from 502 

SO2 to sulfate will stay at a low rate (with both low value of SO2 and low reaction coefficient). A 503 

similar result also exists for the reaction from NO2 to nitrate. From this perspective, the negative effects 504 

on sulfate and nitrate in the ALL experiment may not be hard to understand (Fig. 13). Therefore, in 505 

the future chemistry development, it is necessary to develop more appropriate coefficients for different 506 

gaseous precursor scenarios, in which more constraints, such as precursor and species concentrations, 507 

should be provided with the help of DA technique. Accordingly, further improvements on aerosol 508 

forecast could be expected by assimilating their gaseous precursors. 509 

According to the results above, the DA technique provides an opportunity to identify and diagnose 510 

the deficiencies in the model. By correcting the precursor concentrations through DA (one aspect), the 511 

deficiency of the uptake coefficients for the SNA heterogeneous reactions (the other aspect than the 512 

one corrected) is revealed. In the future, besides being used to improve the forecast skill through 513 
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updating the IC, DA could be used as another approach to reveal the necessary developments in the 514 

model.  515 

5. Conclusions and discussions 516 

To improve the operational air quality forecasting over China, a flexible aerosol and gas phase 517 

pollutants assimilation capability that can switch between different aerosol schemes is developed based 518 

on the WRFDA system with 3DVAR algorithm. This flexibility is designed to address the complexity 519 

of current aerosol schemes and to facilitate future chemistry developments. In this first application, the 520 

assimilation capability of surface observations of six major pollutants, including PM2.5, PM10, SO2, 521 

NO2, O3, and CO, is built with MOSAIC aerosol scheme. 522 

Before application in the operational air quality model, capability of the WRFDA-Chem system is 523 

verified in terms of analysis and forecast performances. Using the updated system, five DA 524 

experiments (assimilate different combinations of pollutants in various frequencies) were conducted 525 

for January 2017, along with a control experiment without DA. Results exhibit that the WRFDA-Chem 526 

system evidently improves the forecast of aerosols and gas phase pollutants. On the aspect of analysis, 527 

the assimilation of different atmospheric-composition observation reduces the bias and RMSE in the 528 

IC remarkably (e.g. by about 68%, 61%, and 30-60% in the RMSE for PM2.5, PM10, and gas phase 529 

pollutants); on the aspect of forecast skill, better performances are acquired up to 24 hours with about 530 

10-40% (30-50%) improvements in the RMSE (correlation) for different pollutants. Among different 531 

experiments, the one assimilating all the six pollutants displays the best forecast error statistics for 532 

most of the pollutants along with the highest TS for AQI. In future applications, to get a better analysis 533 

and forecast skill in general, it is recommended to assimilate the six major pollutants simultaneously. 534 
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As the cycling frequency is an important aspect in the DA strategy, DA experiments with various 535 

cycling frequencies are also analyzed. Results exhibit that the responses toward IC updating are 536 

different among the pollutants. For PM2.5, PM10, SO2, and CO, the forecast skills increase with the DA 537 

frequency; for O3, compared to a better performance at the 6-h cycling frequency, its analysis at 00 538 

UTC and the following 24-hr forecast become generally worse under higher cycling frequencies for 539 

this winter season, although the biases did decrease at 09-14 UTC in the 24-hr forecast. Considering 540 

the relevant NOx-VOC-O3 reaction system changes the NO2/O3 concentration in a short period, the 541 

advantage of IC DA could compete with the disadvantages of the disordered photochemistry 542 

(inaccurate NO2/VOC ratios) or the changed titration (adjusted NO2 concentrations but not NO) 543 

resulting from the DA. In future applications, it is better to assimilate PM2.5, PM10, SO2, and CO 544 

every 1 h. For the frequency of O3 and NO2 assimilation, every 6 h is the best in this winter season in 545 

our study. Since O3 has strong diurnal and seasonal variations, more experiments and statistics at 546 

different time of the day and different season of the year should be conducted in the future. Also, it 547 

might be helpful to assimilate NO/VOC simultaneously with O3 and NO2 after there are corresponding 548 

measurements. 549 

 By investigating the effect of assimilating gaseous precursors on the forecast of related aerosols, 550 

the deficiencies in the WRF-Chem model are further revealed. The uptake coefficients for Sulfate-551 

Nitrate-Ammonium heterogeneous reactions in the model are found out to be not appropriate in the 552 

applications with gaseous precursors (SO2 and NO2) assimilations, since they were originally tuned 553 

under the gaseous precursor scenarios without DA and the biases from the two aspects (SNA reactions 554 

and IC DA) were just compensated. In the future chemistry development, it is necessary to develop 555 
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appropriate coefficients for different gaseous precursor scenarios, in which more constraints, such as 556 

precursor and species concentrations, should be provided with the help of DA technique. 557 

As for the significantly underestimated PMcoarse in the model, the results might relate to the 558 

missing emissions under current situations. Different from the United states or European countries that 559 

national emission inventories are provided and updated frequently by the government (e.g. US 560 

National Emission Inventory NEI 05-08-11-14-17), the publicly available emission inventories for 561 

China are mainly established by several scientific research groups. In result, the uncertainties of the 562 

publicly available emission inventories in China are relatively larger compared with others (US, 563 

European countries), and it’s a known problem that the fugitive dust emissions over the whole of China 564 

is still lack, which might cause the underestimated PMcoarse simulation in the model. 565 

 Contributed by the flexible aerosol assimilation capability of the WRFDA-Chem system, 566 

development for other aerosol schemes targeting different regions in Asia is undergoing. In the next 567 

step, a study will focus on assimilating chemical observations from different observing platforms, such 568 

as satellite AOD observations, which contain more information over the areas with sparse surface 569 

observations. In addition, more advanced DA techniques, such as 4DVAR and Hybrid DA, could be 570 

taken into consideration in further developing the aerosol/chemical DA system. 571 
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Tables and Figures  703 

Table 1. WRF-Chem model configurations. 704 

Table 2. The detail setting of six experiments and the purposes. 705 

Table 3. Averaged bias (units: μg/m3), RMSE (units: μg/m3), and correlation over forecast hour 0-24 706 

h for different variables and different experiments. The statistics for gas phase pollutants in PM1 and 707 

PM2 experiments are highly close to the results in NODA experiment, and thus leave with blank in 708 

the table. 709 

Figure 1. Computation domain. Dots depict surface observations with 531 stations spreading over 710 

China. The red dots indicate the observations around Beijing. The green dot indicates the IUM station. 711 

Figure 2. Background error standard deviations of aerosol species in the (a) 1st size bin, (b) 2nd size 712 

bin, (c) 3rd size bin, (d) 4th size bin, and of (e) gas pollutants. The units for the x-axis are µg m-3 for 713 

(a)-(d) and ppm for (e). The left y-axis denotes the model level, and the right y-axis denotes the vertical 714 

height (units: km). 715 
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Figure 3. Averaged bias (color bar, left y-axis) and RMSE (hallow bar, right y-axis) of the analysis at 716 

00 UTC over January 1-31, 2017 for (a) PM2.5, (b) PM10, (c) SO2, (d) NO2, (e) O3 and (f) CO in different 717 

experiments, verified against the surface observations of 531 stations in China. The blue, red, green 718 

and gray shaded bars denote the bias of the experiment NODA, PM1, PM2, ALL, respectively; the 719 

corresponding hallow bars denote the RMSE of these experiments. Units of the y-axis are μg/m3 in 720 

Figs. 3a-e and mg/m3 in Fig. 3f. 721 

Figure 4. Averaged PMcoarse (PM10-2.5, units: μg/m3) at 00 UTC over January 1-31, 2017 in (a) 722 

observation and four experiments (b) NODA, (c) PM1, (d) PM2, (e) ALL, and (f) averaged bias (units: 723 

μg/m3) for PMcoarse in different experiments as a function of forecast range (the blue, red, green and 724 

gray lines denote the results of experiment NODA, PM1, PM2, ALL, respectively), verified against 725 

the surface observations of 531 stations in China. The numbers on the top of each panel denote the 726 

average PMcoarse concentrations over 531 stations (units: μg/m3). 727 

Figure 5. Vertical profile of the analysis at 00 UTC over January 1-31, 2017 for (a) PM2.5, (b) PM10, 728 

(c) SO2, (d) NO2, (e) O3, and (f) CO in different experiments, averaged over the 531 surface stations 729 

in China. The blue, red, green and gray lines denote the results of experiment NODA, PM1, PM2, and 730 

ALL, respectively. Units of the y-axis are μg/m3 in Figs. 5a-e and mg/m3 in Fig. 5f. 731 

Figure 6. Averaged bias (units: μg/m3), RMSE (units: μg/m3), and correlation for (a) PM2.5 and (b) 732 

PM10 in different experiments as a function of forecast range, verified against the surface observations 733 

of 531 stations in China. The blue, red, green and gray lines denote the results of experiment NODA, 734 

PM1, PM2, ALL, respectively. 735 

Figure 7. Same as Fig. 6, but for the forecast of (a) SO2, (b) NO2, (c) O3 (units: μg/m3), and (d) CO 736 

(units: mg/m3). 737 
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Figure 8. Averaged threat score (TS) for Air Quality Index (AQI) from AQI level 1 to level 6 (a-f) in 738 

different experiments as a function of forecast range, verified against the surface observations of 531 739 

stations in China. The blue, red, green and gray lines denote the results of experiment NODA, PM1, 740 

PM2, and ALL, respectively. The numbers on the right of each panel denote the averaged TS from 0 741 

to 24 h for different experiments. 742 

Figure 9. Same as Fig. 3, but for the experiments of NODA, ALL_6h, ALL-3h, ALL_1h, respectively. 743 

Units of the y-axis are μg/m3 in Figs. 9a-e and mg/m3 in Fig. 9f. 744 

Figure 10. Averaged bias (units: μg/m3), RMSE (units: μg/m3), and correlation for (a) PM2.5 and (b) 745 

PM10 in different experiments as a function of forecast range, verified against the surface observations 746 

of 531 stations in China. The blue, red, green and gray lines denote the results of experiment NODA, 747 

ALL_6h, ALL_3h, and ALL_1h, respectively. 748 

Figure 11. Same as Fig. 10, but for the forecast of (a) SO2, (b) NO2, (c) O3 (units: μg/m3), and (d) CO 749 

(units: mg/m3). 750 

Figure 12. Same as Fig. 8, but for the experiments of NODA, ALL_6h, ALL-3h, ALL_1h, respectively. 751 

Figure 13. Time series of (a) sulfate, (b) nitrate over January 14-20, verified against the size-resolved 752 

particle observation at IUM station (units: μg/m3). The gray, blue and red lines denote the observation 753 

and the results of experiment PM2 and ALL, respectively. The numbers on the right of each panel 754 

denote the averaged RMSE over January 14-20 for different experiments. 755 

Figure 14. Averaged scatter plot of (a, c) observation versus background and (b, d) observation versus 756 

analysis for (a, b) SO2 and (c, d) NO2 around Beijing area (red dots in Fig. 1) on January 16. The 757 

numbers on the title denote the accumulated numbers of the used observations around Beijing area 758 

during January 16 (1600 UTC, 1606 UTC, 1612 UTC, and 1618 UTC). 759 
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Table 1. WRF-Chem model configurations. 760 

Aerosol scheme MOSAIC (four bins, Zaveri et al. (2008))  

Photolysis scheme Fast-J (Wild et al. 2000) 

Gas-phase chemistry CBM-Z (Zaveri and Peters 1999) 

Cumulus parameterization Grell 3-D scheme  

Short-wave radiation 

Goddard Space Flight Center short-wave radiation scheme 

(Chou and Suarez 1994) 

Long-wave radiation RRTM (Mlawer et al. 1997) 

Microphysics Single-moment 6-class scheme (Grell and Dévényi 2002) 

Land-surface model (LSM) NOAH LSM (Chen and Dudhia 2001)  

Boundary-layer scheme YSU (Hong et al. 2006) 

Meteorology initial and boundary 

conditions GFS analysis and forecast every 6 h 

Initial condition for chemical 

species 11-day spin-up 

Boundary conditions for 

chemical species  Averages of mid-latitude aircraft profiles 

Dust and sea salt emissions  GOCART  

  761 
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Table 2. The detail setting of six experiments and the purposes 762 

Experiments PM2.5 

assimilation 

PM10-2.5 

assimilation          

Gas phase 

(SO2, NO2, 

O3, CO) 

assimilation     

Assimilated 

time

（UTC） 

Purposes for forecast 

performances 

NODA No  No No -- Control simulation  

PM1 Yes No No 00, 06, 12, 18 Basic PM2.5 assimilation  

PM2 Yes Yes No 00, 06, 12, 18 PM2.5 and PM10-2.5 assimilation 

ALL Yes Yes Yes 00, 06, 12, 18 Aerosol and precursor 

simultaneously assimilation 

ALL_3h Yes Yes Yes 00, 03, 06, 09, 

12, 15, 18, 21 

Different assimilation 

frequencies on forecast 

performances  ALL_1h Yes Yes Yes 0-23, every 

hour 
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Table 3. Averaged bias (units: μg/m3), RMSE (units: μg/m3), and correlation over forecast hour 0-24 764 

h for different variables and different experiments. The statistics for gas phase pollutants in PM1 and 765 

PM2 experiments are highly close to the results in NODA experiment, and thus leave with blank in 766 

the table. 767 

    NODA PM1 PM2 ALL 

PM2.5 

Bias 31.17 8.78 8.39 9.36 

RMSE 88.99 53.93 54.35 54.49 

Correlation 0.41 0.59 0.58 0.59 

PM10 

Bias -1.13 -22.73 -15.43 -14.41 

RMSE 98.5 74.41 71.9 71.6 

Correlation 0.36 0.54 0.56 0.56 

SO2 

Bias 6.67 - - 3.78 

RMSE 44.11 - - 38.18 

Correlation 0.29 - - 0.4 

NO2 

Bias -2.87 - - -1.66 

RMSE 25.61 - - 24.26 

Correlation 0.48 - - 0.52 

O3 

Bias -3.22 - - -0.84 

RMSE 31.96 - - 28.36 

Correlation 0.29 - - 0.41 

CO 

Bias -0.73 - - -0.19 

RMSE 1.13 - - 0.75 

Correlation 0.28 - - 0.57 
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 769 

Figure 1. Computation domain. Dots depict surface observations with 531 stations spreading over 770 

China. The red dots indicate the observations around Beijing. The green dot indicates the IUM station. 771 

  772 
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 773 

Figure 2. Background error standard deviations of aerosol species in the (a) 1st size bin, (b) 2nd size 774 

bin, (c) 3rd size bin, (d) 4th size bin, and of (e) gas pollutants. The units for the x-axis are µg m-3 for 775 

(a)-(d) and ppm for (e). The left y-axis denotes the model level, and the right y-axis denotes the vertical 776 

height (units: km). 777 
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 779 

Figure 3. Averaged bias (color bar, left y-axis) and RMSE (hallow bar, right y-axis) of the analysis at 780 

00 UTC over January 1-31, 2017 for (a) PM2.5, (b) PM10, (c) SO2, (d) NO2, (e) O3 and (f) CO in different 781 

experiments, verified against the surface observations of 531 stations in China. The blue, red, green 782 

and gray shaded bars denote the bias of the experiment NODA, PM1, PM2, ALL, respectively; the 783 

corresponding hallow bars denote the RMSE of these experiments. Units of the y-axis are μg/m3 in 784 

Figs. 3a-e and mg/m3 in Fig. 3f. 785 

 786 
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 787 

Figure 4. Averaged PMcoarse (PM10-2.5, units: μg/m3) at 00 UTC over January 1-31, 2017 in (a) 788 

observation and four experiments (b) NODA, (c) PM1, (d) PM2, (e) ALL, and (f) averaged bias (units: 789 

μg/m3) for PMcoarse in different experiments as a function of forecast range (the blue, red, green and 790 

gray lines denote the results of experiment NODA, PM1, PM2, ALL, respectively), verified against 791 

the surface observations of 531 stations in China. The numbers on the top of each panel denote the 792 

average PMcoarse concentrations over 531 stations (units: μg/m3). 793 
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 794 

Figure 5. Vertical profile of the analysis at 00 UTC over January 1-31, 2017 for (a) PM2.5, (b) PM10, 795 

(c) SO2, (d) NO2, (e) O3, and (f) CO in different experiments, averaged over the 531 surface stations 796 

in China. The blue, red, green and gray lines denote the results of experiment NODA, PM1, PM2, and 797 

ALL, respectively. Units of the y-axis are μg/m3 in Figs. 5a-e and mg/m3 in Fig. 5f. 798 
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 799 
Figure 6. Averaged bias (units: μg/m3), RMSE (units: μg/m3), and correlation for (a) PM2.5 and (b) 800 

PM10 in different experiments as a function of forecast range, verified against the surface observations 801 

of 531 stations in China. The blue, red, green and gray lines denote the results of experiment NODA, 802 

PM1, PM2, ALL, respectively. 803 
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 804 

Figure 7. Same as Fig. 6, but for the forecast of (a) SO2, (b) NO2, (c) O3 (units: μg/m3), and (d) CO 805 

(units: mg/m3). 806 
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 807 

Figure 8. Averaged threat score (TS) for Air Quality Index (AQI) from AQI level 1 to level 6 (a-f) in 808 

different experiments as a function of forecast range, verified against the surface observations of 531 809 

stations in China. The blue, red, green and gray lines denote the results of experiment NODA, PM1, 810 

PM2, and ALL, respectively. The numbers on the right of each panel denote the averaged TS from 0 811 

to 24 h for different experiments. 812 
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 813 

Figure 9. Same as Fig. 3, but for the experiments of NODA, ALL_6h, ALL-3h, ALL_1h, respectively. 814 

Units of the y-axis are μg/m3 in Figs. 9a-e and mg/m3 in Fig. 9f. 815 
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 817 

Figure 10. Averaged bias (units: μg/m3), RMSE (units: μg/m3), and correlation for (a) PM2.5 and (b) 818 

PM10 in different experiments as a function of forecast range, verified against the surface observations 819 

of 531 stations in China. The blue, red, green and gray lines denote the results of experiment NODA, 820 

ALL_6h, ALL_3h, and ALL_1h, respectively. 821 
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 822 

Figure 11. Same as Fig. 10, but for the forecast of (a) SO2, (b) NO2, (c) O3 (units: μg/m3), and (d) CO 823 

(units: mg/m3). 824 
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 825 

Figure 12. Same as Fig. 8, but for the experiments of NODA, ALL_6h, ALL-3h, ALL_1h, respectively. 826 
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 827 

Figure 13. Time series of (a) sulfate, (b) nitrate over January 14-20, verified against the size-resolved 828 

particle observation at IUM station (units: μg/m3). The gray, blue and red lines denote the observation 829 

and the results of experiment PM2 and ALL, respectively. The numbers on the right of each panel 830 

denote the averaged RMSE over January 14-20 for different experiments.  831 
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 832 

Figure 14. Averaged scatter plot of (a, c) observation versus background and (b, d) observation versus 833 

analysis for (a, b) SO2 and (c, d) NO2 around Beijing area (red dots in Fig. 1) on January 16. The 834 

numbers on the title denote the accumulated numbers of the used observations around Beijing area 835 

during January 16 (1600 UTC, 1606 UTC, 1612 UTC, and 1618 UTC). 836 


