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Abstract. Open burning of agricultural crop residues is
widespread across eastern China, and during certain post-
harvest periods this activity is believed to significantly in-
fluence air quality. However, the exact contribution of crop
residue burning to major air quality exceedances and air qual-
ity episodes has proven difficult to quantify. Whilst highly
successful in many regions, in areas dominated by agricul-
tural burning, MODIS-based (MODIS: Moderate Resolution
Imaging Spectroradiometer) fire emissions inventories such
as the Global Fire Assimilation System (GFAS) and Global
Fire Emissions Database (GFED) are suspected of signif-
icantly underestimating the magnitude of biomass burning
emissions due to the typically very small, but highly numer-
ous, fires involved that are quite easily missed by coarser-
spatial-resolution remote sensing observations. To address
this issue, we use twice-daily fire radiative power (FRP) ob-
servations from the “small-fire-optimised” VIIRS-IM FRP
product and combine them with fire diurnal cycle informa-
tion taken from the geostationary Himawari-8 satellite. Using
this we generate a unique high-spatio-temporal-resolution
agricultural burning inventory for eastern China for the years
2012–2015, designed to fully take into account small fires
well below the MODIS burned area or active fire detection
limit, focusing on dry matter burned (DMB) and emissions
of CO2, CO, PM2.5, and black carbon. We calculate DMB
totals 100 % to 400 % higher than reported by the GFAS and
GFED4.1s, and we quantify interesting spatial and temporal
patterns previously un-noted. Wheat residue burning, primar-

ily occurring in May–June, is responsible for more than half
of the annual crop residue burning emissions of all species,
whilst a secondary peak in autumn (September–October) is
associated with rice and corn residue burning. We further
identify a new winter (November–December) burning sea-
son, hypothesised to be caused by delays in burning driven by
the stronger implementation of residue burning bans during
the autumn post-harvest season. Whilst our emissions esti-
mates are far higher than those of other satellite-based emis-
sions inventories for the region, they are lower than estimates
made using traditional “crop-yield-based approaches” (CY-
BAs) by a factor of between 2 and 5. We believe that this is
at least in part caused by outdated and overly high burning
ratios being used in the CYBA, leading to the overestima-
tion of DMB. Therefore, we conclude that satellite remote
sensing approaches which adequately detect the presence of
agricultural fires are a far better approach to agricultural fire
emission estimation.

1 Introduction

Eastern China (111–123◦ E, 27–40◦ N) is home to around
one-third of the Chinese population and includes the area of
the North China Plain and the Yangtze Plain – two of the
largest agricultural zones in China (Fig. 1). Cropland cov-
ers over 1.7 million km2 of eastern China, and the region is
responsible for an estimated 25 % of China’s crop produc-
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Figure 1. The spatial extent of the study area (111–123◦ E, 27–
40◦ N). The agricultural land ratio taken from the GlobeLand30
land cover product (Chen et al., 2015) was regridded to 0.01◦ spatial
resolution and is overlain with the main provinces, megacities, and
some important provincial capital cities in eastern China. The ba-
sic layer of country–province borders within this map was created
using the Python Basemap library.

tion, including around 51 % of the national rice yield (NBSC,
2012). Large amounts of crop residue (∼ 60 Tg yr−1 includ-
ing stems, stalks, straw, etc.) result from this agricultural
production (Chen et al., 2017; Huang et al., 2012; Zhang
et al., 2015), and the burning of this waste in open fields is
widespread across much of eastern China (Fig. 2).

This biomass burning has both local- and regional-scale air
quality impacts, with emissions of particulate matter (PM)
of particular concern (Bond et al., 2013). The East Asian
monsoon system that influences much of mainland China
results in prevailing north-westerly to south-easterly atmo-
spheric transport during winter, which is reversed in the sum-
mer months. Under these influences, the smoke from agri-
cultural residue fires in eastern China often affects “megaci-
ties” like Beijing and Shanghai (Chan and Yao, 2008; Cheng
et al., 2013; Du et al., 2011; Li et al., 2010). Modelling
studies show that these agricultural emissions can drive in-
tense regional air pollution episodes; Huang et al. (2012)
suggest that PM10 concentrations in some cities could reach
600 µg m−3 during such episodes, a level 6 times higher than
the WHO 24 h mean PM10 air quality guideline for human
health (WHO, 2006).

Agricultural burning in eastern China accounts for a sig-
nificant part of China’s total biomass burning emissions
(Streets et al., 2003; Chen et al., 2017); however, the spe-
cific contribution of crop residue burning to air quality ex-
ceedances in China remains uncertain, partly because there
is considerable doubt as to the amount of dry matter burned
(DMB) in crop residue fires. For example, this leads to a

∼ 450 % range in total crop residue burning black carbon
(BC) emissions in Asia between different emissions inven-
tories (Streets et al., 2003), while emissions estimates of
gaseous species are similarly varied.

A major source of this uncertainty stems from the hitherto
relatively poor ability of Earth observation (EO) satellite in-
struments to adequately detect biomass burning activity in
many agricultural areas due to the small size of the fires usu-
ally found in these areas. Many agricultural fields in east-
ern China are typically only around 700 m2 in area (NBSC,
2012); fires ignited to burn across the stubble left in place af-
ter harvest are therefore hard to detect with moderate-spatial-
resolution burned area (BA) mapping from sensors such as
MODIS (Moderate Resolution Imaging Spectroradiometer)
and are made even more elusive by the common farming
practice of piling up residues into an even smaller area be-
fore igniting them (Zhang et al., 2017, 2018). As most BA
mapping methods require ∼>20 % of a pixel to be burned
in order for it to be classified as “fire-affected” (Giglio et
al., 2006, 2009), BA-based emissions inventories such as the
GFED (Global Fire Emissions Database) tend to significantly
underestimate fire activity in areas such as eastern China
(Zhang et al., 2018).

Infrared active-fire-based (AF-based) detection techniques
can discriminate fires covering only 0.01 %–0.1 % of a pixel
area (Wooster et al., 2005; Schroeder et al., 2014) and as
such should in theory be able to capture far more fire ac-
tivity in agricultural areas than BA-based methods. Never-
theless, due to the extremely small size of agricultural fires
in eastern China, a large proportion of fire activity remains
undetected by AF detection algorithms applied to moderate-
spatial-resolution imagery (from sensors such as MODIS).
This limitation is a key source of uncertainty within the FRP
approach and can indeed lead to biased (underestimated)
FRP totals caused by the non-detection of the lower FRP
component of a region’s fire regime (e.g. Roberts et al.,
2015). Higher-spatial-resolution polar-orbiting sensors such
as VIIRS (Visible Infrared Imaging Radiometer Suite) can
provide the ability to identify an increased number of AFs
having lower FRP values, particularly when used with al-
gorithms optimised for small fire detection (Zhang et al.,
2017) (Fig. 2), but they still only capture fires burning in
clear skies at the time of the satellite overpass (Giglio et al.,
2003, 2006). This limitation is also a considerable source
of uncertainty and a hinderance given the sometimes short
duration of active burning (especially of agricultural fires)
and the typical polar-orbiting imaging frequency of only a
few times per day. To cope with this issue, FRP-based emis-
sions inventories such as the Global Fire Assimilation Sys-
tem (GFAS) based upon AF methods are generally required
to make assumptions or exploit additional data on the tim-
ing and relative diurnal variability of fire activity occurring
between polar-orbiting overpasses in order to estimate, for
example, total daily fire radiative energy (FRE) (Kaiser et
al., 2012; Xu et al., 2017; Zhang et al., 2017). Here we pro-
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Figure 2. Example of the spatial distribution of total gridded FRP (MW; calculated per 0.1◦ grid cell) calculated from near-simultaneous
VIIRS-IM and MODIS Aqua data collected over the eastern China study area in Fig. 1 on 12 June 2012. The VIIRS-IM data product clearly
quantifies a higher proportion of the FRP from fires burning in the region at the time of the satellite overpass than MODIS Aqua does. The
basic layer of country–province borders within this map was created using the Python Basemap library.

vide this additional information by exploiting new fire di-
urnal cycle information taken from the geostationary satel-
lite Himawari-8, combining it with twice-daily FRP informa-
tion provided by the “small-fire-optimised” VIIRS-IM prod-
uct of Zhang et al. (2017) to produce a unique high-spatio-
temporal-resolution agricultural fire dataset (referred to here-
after as the VIIRS-IM/Him dataset) for eastern China based
on FRE totals. This new inventory is designed to reduce bias
and uncertainty caused by use of one FRP data type alone
and to account for small fires burning even for short peri-
ods and often well below the MODIS AF and BA detection
limit. The fuel for these fires is waste straw and other agri-
cultural residues, and we use a crop rotation map to classify
the type of agricultural residue being burned at each observed
location and time. It is then used to select the most appropri-
ate smoke emissions factor for calculating the final fire emis-
sions totals from FRE-derived estimates of dry matter burned
(DMB).

2 Datasets

2.1 Polar-orbiting VIIRS-IM FRP product

The Visible Infrared Imaging Radiometer Suite (VIIRS) in-
strument is currently flown aboard the polar-orbiting Suomi
NPP (since 2011) and NOAA-20 (since 2017) satellites and
expands upon the capabilities of the AVHRR and MODIS in-
struments for environmental monitoring (Zhou et al., 2019).

VIIRS has 22 channels spanning the visible to the longwave
infrared, a 3000 km swath width, and nadir pixel resolution
ranging between 375 and 750 m (Goldberg et al., 2013). Fur-
thermore, a “pixel aggregation” scheme is applied to VIIRS,
which limits pixel area increase with scan angle to a maxi-
mum of 4× compared to 10× in the case of MODIS (Wolfe
et al., 2013).

With a necessary emphasis on the detection of small fires
typical of agricultural regions, our work focuses on generat-
ing a gridded daily biomass burning fuel consumption prod-
uct that estimates DMB and emissions from the VIIRS-IM
AF detection and FRP product developed and optimised for
eastern China by Zhang et al. (2017) using data from the in-
strument aboard the Suomi NPP satellite with a mean local
daytime overpass time of 13:30 in the ascending node and a
mean local night-time overpass time of 01:30 in the descend-
ing node (Wolfe et al., 2013). Figure 2 shows an example of
the VIIRS-IM FRP product generated from the two obser-
vations per day provided by Suomi NPP VIIRS. This FRP
product blends the advantages of the “small fire” sensitiv-
ity of the VIIRS 375 m I-band, with the ability to retrieve
fire radiative power (FRP) over larger fires using the 750 m
M-band observations. Due to the very small size of agricul-
tural fires in China, and because the VIIRS I-band pixel area
is 10 times smaller than the pixel area of MODIS, far more
fires can be detected in eastern China using the VIIRS-IM AF
product of Zhang et al. (2017) than can be identified in near-
simultaneous MODIS data, and on average across eastern
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Figure 3. Time series of spatially summed FRP for eastern China, as
retrieved from geostationary Himawari, and polar-orbiting VIIRS-
IM and MODIS observations made on 11 June 2015. VIIRS and
MODIS Aqua typically provide two observations per day, some-
times three when swath overlaps from different orbits occur. Hi-
mawari provides 144 observations per day.

China it retrieves FRP totals around 4 times higher (Zhang
et al., 2017).

2.2 Geostationary Himawari FRP product

To convert the twice-daily VIIRS-IM FRP product to daily
integrated FRE, information on the fire diurnal cycle is re-
quired (Ellicott et al., 2009; Freeborn et al., 2008; Roberts
et al., 2009). We obtained this from 10 min temporal resolu-
tion observations from the geostationary Himawari-8 satel-
lite, whose data have recently been used to derive AF detec-
tions and FRP metrics across Asia by Xu et al. (2017). Hi-
mawari cannot be used in isolation to directly estimate daily
FRE for each year in the 4 years of the study because (i) Hi-
mawari data are only available from early 2015 onwards, and
(ii) Himawari’s relatively coarse pixel size (2 km at the sub-
satellite point) means that it omits even more of the agri-
cultural fires than MODIS (as illustrated by Xu et al., 2017,
and in Fig. 3). However, where agricultural fires are concen-
trated in sufficient density, observations by Himawari do en-
able their detection and these data can be used to map the
changing FRP of these fires over the day for the derivation of
the fire diurnal cycle.

2.3 Crop rotation map

The predominant agricultural residues burned across eastern
China are wheat, corn, and rice straw (Huang et al., 2012). To
classify the likely residue type of each detected fire, a crop
rotation map (Supplement Fig. S1) was generated from the
MIRCA2000 0.08◦ global monthly crop area dataset (Port-
mann et al., 2010), which has a spatial resolution equivalent
to 9.2 km×9.2 km at the Equator. These data were used to
assign fire activity to a particular crop residue type, which de-
termined the appropriate agricultural biomass burning emis-
sion factors to apply (see Sect. 3.3).

2.4 Land cover data

We use the GlobeLand30 land cover product (Chen et al,
2015) to classify land cover and land use for our study area in
eastern China. GlobeLand30 provides 30 m spatial resolution
land cover data for a baseline year of 2010 derived primar-
ily from Landsat (TM5 & ETM+) and China Environmental
Disaster Alleviation Satellite (HJ-1) imagers. Figure 1 shows
the spatial distribution of the agricultural land ratio (regrid-
ded to 0.01◦ spatial resolution) calculated using this dataset
in eastern China.

2.5 GFED and GFAS emissions inventory data

The results from the combined VIIRS-IM and Himawari
FRP-based emissions (VIIRS-IM/Him) dataset were com-
pared to two state-of-the-art global fire emission databases,
the Global Fire Emissions Database (GFED) and the Global
Fire Assimilation System (GFAS). The GFED was built to
combine remotely sensed data on BA with fuel loads from
the Carnegie–Ames–Stanford Approach (CASA) biogeo-
chemical model of vegetation growth, producing monthly,
spatially explicit pyrogenic fuel consumption, carbon, green-
house gas (GHG), and air pollution emission estimates at
0.25◦ grid cell resolution globally (van der Werf et al., 2010;
Giglio et al., 2013). The most recent version (GFED4.1s) in-
cludes a “small fire boost” based on AF detections in an at-
tempt to counteract the inability of the MODIS BA product
to detect many agricultural fires (Randerson et al., 2012; van
der Werf et al., 2017). Due to this boost, GFED4.1s shows
higher values of dry matter burned (DMB) in most east-
ern China grid cells compared to the “unboosted” GFED4,
and a more extensive fire distribution. However, Zhang et
al. (2018) show that the boosting procedure can introduce
significant anomalies into the GFED dataset at certain times
of year, generated when the MODIS AF detection procedure
incorrectly identifies urban features in eastern China as fires.

In contrast to the GFED, the GFAS fire emissions
database is based on AF detections and is integrated into the
Copernicus Atmosphere Monitoring Service (CAMS) sys-
tem for near-real-time atmospheric composition monitoring
and forecasting. Developed by Kaiser et al. (2012) and based
on the FRP method, MODIS supplies the FRP data for the
current GFAS v1.2 up to four times per day at most latitudes.
From these observations, DMB is calculated via a regression
against GFED DMB values (Kaiser et al., 2012), and daily
emissions of 40 emitted species are then calculated at 0.1◦

spatial resolution.

2.6 Crop-yield-based approach emissions inventory
data

The traditional method for the estimation of agricultural
fire emissions is the so-called crop-yield-based approach
(CYBA), and we compare data from such approaches to our
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new VIIRS-IM/Him methodology. CYBAs typically calcu-
late the amount of crop residue burned in a region using a
combination of crop production statistics and related addi-
tional parameters using following equation:

DMB=
∑n

i=1
PiRiBiC, (1)

where i stands for each n different crop, DMB is total dry
matter burned (kg) in the region, Pi is the regional produc-
tion of crop i (kg) usually derived from annual agricultural
statics reports, Ri is the dry matter production-to-residue ra-
tio (unitless), which depends on the crop type i, Bi is the
proportion of residue burned in the field for crop type i in
the region under study (i.e. the “burning ratio”; 0–1, unit-
less), and C is crop combustion completeness (0–1, unitless;
Huang et al., 2012). DMB is then multiplied by appropriate
particulate and gaseous emission factors in order to estimate
the total emissions from agricultural burning.

Certain parameters in Eq. (1) are not so easily determined.
For example, the burning ratio (Bi) is often based on ques-
tionnaires or investigations on the use of crop residues con-
ducted with farmers (Gao et al., 2002; Wang and Zhang,
2008). Because of strong variations in socio-economic de-
velopment across the huge expanse of mainland China, large
differences in the estimates of Bi exist (Jiang et al., 2012; Liu
et al., 2008; Yamaji et al., 2010). Bi may also change consid-
erably from year to year since it is strongly impacted by the
level of local economic development, the availability of alter-
native uses for crop residues in the region, and the regional
governance of fire prohibition (Chen et al., 2017). Moreover,
considering the official prohibition of open-air burning, the
reliability of data based on surveys that ask farmers how
much residue they burn is questionable. Despite this, most
studies that include an estimation of agricultural fire emis-
sions in eastern China have relied on the CYBA (e.g. Cao et
al., 2006; He et al., 2011; Huang et al., 2012; Li et al., 2009;
Qin and Xie, 2011; Yan et al., 2006; Zhao et al., 2015).

3 Methodology

3.1 Data gridding and cloud cover adjustment

The VIIRS-IM FRP product data (MW), originally derived
at the pixel scale, were aggregated to 0.1◦ resolution for
this analysis. Unlike the daily average MODIS FRP calcu-
lation of the GFAS, which individually weights contribut-
ing MODIS FRP observations by their view zenith angle
to downgrade the importance of far off-nadir measurements
(Kaiser et al., 2012), no such weighting was applied to the
VIIRS-IM FRP data since they have already shown very lim-
ited view zenith angle dependence as a result of the VIIRS
pixel-averaging procedure (Zhang et al., 2017). For each VI-
IRS overpass, the total observed FRP present in each 0.1◦

grid cell j (i.e. FRPj ) was calculated from the cumulative

FRP of all native-resolution AF pixels i within the grid cell:

FRPj =
∑

i∈j
FRPi . (2)

Total observed agricultural area (A, excluding cloud-covered
area) within each 0.1◦ grid cell was calculated similarly using
the GlobeLand30 30 m land cover map:

Aj =
∑

i∈j
Ai . (3)

The VIIRS-IM product is only affected to a limited degree by
smoke because of the relative transparency of smoke plumes
at mid-wave infrared (MWIR) wavelengths due to the dom-
inant particle size being smaller than the wavelengths of the
VIIRS MWIR channel (Zhang et al., 2017). However, the
product cannot provide information in cloud-covered areas,
so an adjustment is required to take into account actively
burning fires hidden from view by clouds. Following Streets
et al. (2003) we assume that for partially cloud-covered grid
cells, the AF and FRP distribution under cloud is the same as
under clear-sky areas, as is also assumed in the GFAS (Kaiser
et al., 2012).

Subsequently, the gridded and cloud-adjusted FRP areal
density (ρj , MW km−2) is calculated using

ρj =
FRPj
Aj

. (4)

Cloud cover (CC) fractions in some grid cells occasionally
reach 0.5 (50 %), but most are zero. After the cloud cover ad-
justment, the mean FRP areal density across the study area
increased by 11.5 %, so the overall effect of the CC adjust-
ment is relatively minor.

3.2 Diurnal cycle and daily FRE generation

Hourly averages of the 10 min FRP data from the Himawari-
8 product of Xu et al. (2017) were gridded to the same 0.1◦

grid cell resolution as the VIIRS-IM dataset. For each grid
cell and calendar day, hourly FRP data were normalised in
order to minimise the impact of day-to-day variations in fire
activity:

F̃RPhj,d =
FRPhj,d −min

(
FRPj,d

)
max

(
FRPj,d

)
−min

(
FRPj,d

) , (5)

where F̃RPhj,d is the normalised Himawari-8 FRP for hour h
on day d for grid cell j ; FRPhj,d is the averaged Himawari-
8 FRP (MW) for hour h on day d for grid cell j ; and
max(FRPj,d) and min(FRPj,d) are respectively the maxi-
mum and minimum hourly Himawari-8 FRP (MW) observed
on day d for grid cell j . Note that h is in local time (UTC)
and the diurnal cycle runs from 00:00 to 23:00.

F̃RPhj,d data for 2015 were used to produce two nor-
malised “seasonal” diurnal fire cycles for the eastern China
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Figure 4. Time series of hourly normalised fire radiative power de-
rived from Himawari-8 FRP data generated using the algorithm of
Xu et al. (2017) over eastern China at 0.1◦ for June 2015 (the “sum-
mer” diurnal fire cycle). The blue curve shows the best fit of the
Gaussian distribution, with the orange error bar showing the stan-
dard deviation. Grey shading shows the two daily VIIRS overpass
periods.

study area: a “summer” diurnal cycle constructed from May–
June data and an “autumn” diurnal cycle constructed from
September–October data. Both normalised seasonal diurnal
cycles were calculated using a weighted mean so that days
and grid cells with high fire activity had the greatest influ-
ence on the cycle:

FRPh =

∑
d

∑
j

(
F̃RPhj,d×FRPhj,d

)
∑
d

∑
j

(
FRP hj,d

) , (6)

where FRPh is the normalised FRP for hour h for the en-
tire study area and fire season (summer or autumn). Figure 4
shows the resulting weighted-mean fire diurnal cycle for the
summer season for eastern China. This diurnal cycle is bi-
modal: a primary peak occurs around 13:00 local time that
extends from around 08:00 to 18:00 (daytime), and a second
much smaller peak occurs around 21:00 local time (with a
magnitude of only ∼ 20 % of the normalised FRP value of
the first peak).

We blended information from the Himawari FRP diur-
nal cycle with the instantaneous twice-daily VIIRS-IM FRP
areal density (ρj , MW km−2) data using an approach based
on Andela et al. (2015) to create the VIIRS-IM/Him dataset.
Here we represent the diurnal fire cycle as a Gaussian func-
tion parameterised using the Himawari FRP diurnal cycle su-
perimposed on a fixed baseline. For a given grid cell j at in-
stantaneous time t , VIIRS-IM/Him FRP areal density is cal-

culated by

ρVIIRS-Himj,t
= ρVIIRSnight,j +µ(ρVIIRSday,j

− ρVIIRSnight,j )e
−
(t −tHimpeak)

2

2σ2 , (7)

where ρVIIRS-Himj,t
is the instantaneous VIIRS-IM/Him FRP

areal density (MW km−2) for grid cell j at time t ; ρVIIRSnight,j

is the night-time (∼ 01:00 LST) VIIRS-IM FRP areal density
value (MW km−2) for grid cellj ; ρVIIRSday,j is the daytime (∼
13:00 LST) VIIRS-IM FRP areal density value (MW km−2)
for grid cell j ; µ is an adjustment factor used to account for
the difference between the VIIRS daytime overpass time and
the peak time of the weighted-mean fire diurnal cycle (Eq. 8);
tHimpeak is the hour of the day at which the seasonal Himawari
FRP diurnal cycle peaks; and σ is the standard deviation of
the main peak of the Himawari FRP diurnal cycle calculated
by fitting a Gaussian function (using non-linear least squares)
to the seasonal Himawari FRP diurnal cycles. The summer
diurnal cycle σ value (2.39± 0.053) was applied during the
April–August period, and the autumn diurnal cycle σ value
(1.63±0.041) was applied during the September–March pe-
riod.

The adjustment factor µ is used to account for the fact that
the VIIRS daytime overpass time is unlikely to coincide with
the peak of the fire diurnal cycle:

µ= e

(
tVIIRSday,j

−tHimpeak

)2

2σ2 ,
(8)

where tVIIRSday,j is the local time of the VIIRS-IM FRP ob-
servation for grid cell j .

Daily FRE was then estimated for each grid cell j and
calendar day by integrating the instantaneous VIIRS-IM/Him
FRP data calculated using Eq. (7).

3.3 Conversion to dry matter burned (DMB) and
smoke emissions

To convert the estimated FRE areal density to fuel consump-
tion and DMB, we multiplied FRE by the 0.368 kg MJ−1

(±0.015 kg MJ−1) factor derived by Wooster et al. (2005)
from a series of outdoor experimental straw fires that were
very similar to the Chinese agricultural residue fires used
herein (Zhang et al., 2015). To convert the resultant DMB
into smoke emissions, we used the emission factors of wheat
and rice derived from in situ measurements in agricultural ar-
eas by Zhang et al. (2015) (Table 1). Corn residue was not a
fuel type measured during those experiments, so for this fuel
type (which was only 16 %–22 % of the total agricultural fuel
consumption) we used the emissions factors for agricultural
corn fires from Andreae and Merlet (2001), as is used in the
GFAS (Kaiser et al., 2012) (Table 1). Together with the crop
rotation map (see Sect. 2.3 and Fig. S1) the emission factors
from Table 1 enabled us to select the appropriate emissions
factor for use at a particular location and time of year.
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Table 1. Emission factors for agricultural residue burning used in
this study. Wheat and rice emission factors were derived from field
measurements conducted in eastern China and reported by Zhang
et al. (2015), while the corn emission factors are from Andreae and
Merlet (2001), the same as those used in the GFAS (Kaiser et al.,
2012). ∗ PM2.5: particulate matter with diameter<2.5 µm.

Emissions factor (g kg−1)

Wheat Corn Rice

CO2 1739± 19 1308± 14 1761± 30
CO 60± 12 92± 18 47± 19
PM∗2.5 6.1± 1.3 8.3± 1.8 9.6± 4.3
Black carbon 0.70± 0.09 0.42± 0.05 0.56± 0.04

Figure 5. Time series of mean daily FRE areal density (kJ m−2;
calculated per 0.1◦ grid cell) from 2012 to 2015 for the entire study
area disaggregated by crop residue type (wheat, corn, and rice) ac-
cording to the method described in Sect. 2.3. Grey shaded areas
highlight the newly discovered winter burning season from mid-
November to December when no crop harvesting occurs but where
fires are clearly occurring. This period of agricultural burning is dis-
cussed further in Sect. 5.2.

Furthermore, a winter burning season was discovered dur-
ing November and December (see details in Sect. 5.1) when
no cultivation crop is shown in the MIRCA2000 data in the
study region. Analysis in this study shows that winter fires
are likely to result from the combustion of stored residues
from the autumn harvest season; therefore, all fire activity in
winter was assigned to crop types (and therefore emission
factors) using the crop rotation map from the previous clos-
est month (October) (Fig. S1). This methodological change
is accounted for in the data presented in Fig. 5.

4 Biomass burning and emissions results

4.1 Temporal and spatial distribution of FRE in
eastern China

Figure 5 shows the time series of daily mean FRE areal den-
sity in eastern China from February 2012 to December 2015

reported at 0.1◦ grid cell resolution and broken down into
three main crop residue types. A strong seasonal variation is
seen, with peak activity in summer (May–June) associated
with wheat residue burning and a smaller secondary peak
in activity occurring in autumn (September–October) associ-
ated with corn and rice residue burning. In fact, the secondary
peak is a combination of several fluctuations lasting from Oc-
tober until December, further discussed in Sect. 5.1. Over the
whole 4-year period, wheat crop residues contributed 65 % of
the total FRE, rice residues 18 %, and corn residues 17 %.

A distinct spatial pattern showing two main burning sea-
sons can also been seen when FRE areal density is mapped
(Fig. 6). During the summer burning season (May–June),
most fires are located between 32 and 36◦ N, extending
from 112 to 120◦ E near the coast. In the autumn season
(September–October), less fire activity occurs than in the
summer fire season and it is more evenly distributed across
the entire study area, though there is still a focus of fire ac-
tivity between 32–34◦ N and 112–119◦ E. Moreover, in the
south-west of the study area (29–32◦ N and 112–114◦ E) we
see a region that only appears to undergo substantial burning
in the autumn. This is located in the centre of Hubei Province,
which contributes around 12 % of the total rice yield of the
whole of China (NBSC, 2015). This area contributes to be-
tween 10 % and 18 % (year dependent) of the total autumn
burning season FRE.

4.2 DMB comparisons to the GFAS and GFED

The outputs generated by our combined VIIRS and Hi-
mawari processing chain were compared to those of the
GFAS and GFED4.1s (Fig. 7). Dry matter burned (DMB)
was used as the common comparison metric, as this removes
differences arising from the use of different emissions factors
within the inventories. Overall, the VIIRS-IM/Him DMB es-
timates are around 2 to 5 times higher than those reported
for corresponding months by the GFAS and GFED 4.1s. As
detailed in Zhang et al. (2017) and discussed in Sect. 2, VI-
IRS has the ability to detect far smaller (and lower FRP) fires
than MODIS due to its far smaller pixel size and the fact that
the I-band observations also retain their pixel area more ef-
fectively across the swath. Ultimately, this difference results
in far higher DMB being obtained by the VIIRS-IM/Him in-
ventory compared to the MODIS-based GFAS and GFED in-
ventories.

During the summer months of May–June, all three inven-
tories (GFAS, GFED, and VIIRS-IM/Himawari) show a clear
peak in DMB, but the GFAS and VIIRS-IM/Him show a
much sharper peak in June, while the GFED’s summer burn-
ing season extends 1 month earlier (May) and later (July).
This extended summer fire season reported by the GFED is
likely the result false fire reporting, discussed at length in
Zhang et al. (2018). VIIRS-IM/Him shows a June DMB peak
ranging from 3.30 to 11.2 Tg, 2 times higher than GFED4.1s
(1.89–5.34 Tg) and GFAS (2.00 to 4.30 Tg). It should be re-
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Figure 6. Spatial distribution of FRE areal density (MJ m−2, 0.1◦ grid cells) for agricultural fires in eastern China from 2012 to 2015 (top
to bottom rows) split by fire season: summer (May–June, top row), autumn (September–October, middle row), and winter (November–
December, bottom row). Mean regional FRE for each season is indicated in white text, and the capital city location of each province is shown
as an orange star on each map. The basic layer of country–province borders within this map was created using the Python Cartopy library.

Figure 7. Monthly (2012–2015) time series of total dry matter burned (DMB) retrieved using the VIIRS-IM/Him FRP product developed in
this study (with standard deviation shown as black error bars), along with comparable GFAS and GFED4.1s DMB totals. Grey shaded areas
highlight the winter burning season from mid-November to December (Sect. 5.2).

membered that the conversion of daily average FRP to DMB
in the GFAS is derived via a calibration to GFED4.1s (Kaiser
et al., 2012), so these two emissions databases understand-
ably report similar monthly DMB totals.

For the autumn (September–October) burning season, the
peaks in the GFAS and GFED inventories are much less
pronounced than the summer burning season peaks (Fig. 7).
DMB in October ranges 0.57–1.74 Tg for the GFED, signif-
icantly higher than the 0.31–0.61 Tg reported by the GFAS
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but far lower than the 1.62–3.05 Tg of the VIIRS-IM/Him
inventory. The VIIRS-IM/Him-derived DMB estimates for
eastern China are thus 2 to 3 times higher than GFED4.1s
and 5 times higher than the GFAS; these represent larger dif-
ferences than those for the earlier summer burning season.
This indicates that agricultural fires burning during the au-
tumn fire season may be on average smaller and/or more iso-
lated from other fires than they are in the summer burning
season, and thus they are even more likely to be missed by
the MODIS AF detection product (Giglio et al., 2006) and/or
the MODIS BA product (Giglio et al., 2013) than they are
during other more intense burning periods.

4.3 Agricultural fire emissions intercomparison

This section presents a comparison of the total annual agri-
cultural fire emissions calculated using the VIIRS-IM/Him
method with other inventories of Chinese agricultural fire
emissions in the literature, as well as against emissions totals
from other sectors, to gain a better understanding of the rel-
ative importance of agricultural fire emissions. To compare
with other reported agricultural fire emission inventories for
China, the DMB estimates produced herein were converted
to fire emissions estimates using the emissions factors and
methods described in Sect. 3.3; these results are summarised
in Fig. 8 and Table 2.

From Fig. 8, it is clear that wheat residue burning is the
primary agricultural emission source, accounting for over
50 % of the total emissions released each year (specifically
55 %–69 % of PM2.5, 71 %–81 % of BC, 66 %–77 % of CO2,
and 69 %–80 % of CO). Figure 8 also indicates a consid-
erable reduction in emissions in 2015 compared to previ-
ous years, largely attributable to a reduction in the amount
of wheat residue burnt. For example, total PM2.5 emissions
from agricultural residue burning in eastern China for 2012–
2014 cover a relatively narrow range of 107–130 Gg (Fig. 8
and Table 2) but decrease to 67±24 Gg in 2015 due to an al-
most halving of DMB (Fig. 7); similar patterns are observed
for BC, CO2, and CO (Fig.8).

From Table 2, it is apparent that emissions totals calculated
using the VIIRS-IM/Him approach are consistently higher
than those reported by the GFAS by factor of 1.2–4.2 (species
and year dependent). Similarly, VIIRS-IM/Him emissions to-
tals for CO2 and PM2.5 are greater than those reported by
the GFED by a factor of 1.1–1.7. In both cases, this can be
explained by the tendency of MODIS to miss activity from
small fires compared to VIIRS. VIIRS-IM/Him emissions for
CO and BC in 2015 are lower than those reported for the
GFED, which can be attributed to differences in the emis-
sions factors used between the approaches.

Emissions totals calculated using the VIIRS-IM/Him ap-
proach are smaller than those estimated by CYBA studies
for the eastern China–North China Plain regions (Zhang et
al., 2008; Huang et al., 2012; Qiu et al., 2016) by a factor of
2–5. It is possible that the much higher totals estimated from

CYBA studies may be due to the use of very high residue
burning ratios (Bi in Eq. 1) for corn and rice in particular.
This finding is discussed further in Sect. 5.

Liu et al. (2015) estimated total emissions in the North
China Plain region (a similar area to the study area used in
this paper) using MODIS FRP-based calculations and as-
sumed a modified Gaussian function for the diurnal cycle
to generate daily FRE estimates from which emissions were
then derived. These estimates are much closer in magni-
tude to the equivalent estimates calculated using the VIIRS-
IM/Him method than those from the CYBA studies. How-
ever, 2013 and 2014 estimates by Liu et al. are consistently
lower (by a factor of 0.3–0.9); again, we attribute this dif-
ference to the fact that MODIS-based methods capture less
fire activity than our VIIRS-IM/Him approach. Interestingly,
Liu et al. (2015) estimated far higher emission totals for 2012
compared to 2013 and 2014 and report greater total CO and
BC emissions than we do. For example, annual CO2 emis-
sions in 2012 (26 000 Gg) are >2 times their reported total
emissions for 2013 (9800 Gg) and 2014 (13 000 Gg). How-
ever, the Liu et al. processing approach did not provide any
adjustment for the impact of the MODIS “bow-tie” scan ge-
ometry effect, which leads to duplicated AF detections and
FRP towards the edge of the MODIS swath; this was high-
lighted as a significant issue for FRP quantification by Free-
born et al. (2008) and Zhang et al. (2017). This is a partic-
ular problem in MODIS data from the year 2012, for which
a large number of duplicated observations have been found
towards edge of swath (Fig. S2). This problem has been ad-
dressed in the GFAS using a scan-angle-dependent weighing
factor for the MODIS FRP data (Kaiser et al., 2012), as de-
scribed in Sect. 2.5, and GFAS CO2 emissions from 2012
are only 24 % and 10 % higher than from 2013 and 2014, re-
spectively, a much more modest increase compared to that
reported in Liu et al. (2015).

Figure 9 presents a comparison of agricultural emis-
sions calculated using the VIIRS-IM/Him method with emis-
sions from non-biomass-burning sources produced by Li et
al. (2017) for a sub-area of eastern China (32–36◦ N, 112–
122◦ E) for the year 2013. We note that crop burning emis-
sions are of relatively little significance when considered
on an annual basis; for all four species (CO2, CO, PM2.5,
BC), contributions from agricultural residue burning range
between 0.56 % and 2.0 % of total annual emissions, with
the majority of emissions resulting from industry and resi-
dential sources. However, in June when agricultural burning
and emissions are at a maximum, residue burning contributes
8.1 %, 18 %, 22 %, and 20 % of the total monthly emissions
for CO2, CO, PM2.5, and BC, respectively, highlighting the
strong seasonal impact agricultural burning can have on the
emission of species that affect both climate and air quality.
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Figure 8. Annual total PM2.5, BC, CO2, and CO emissions for eastern China for the three main crop residue burning types (wheat, corn,
rice) calculated for 2012–2015 using the VIIRS-IM/Him-based emissions inventory developed herein. Coloured error bars indicate 1 standard
deviation.

Figure 9. Comparison of monthly CO2, CO, PM2.5, and BC emissions from agricultural fires with those from other emission sources
(residential, industry, power, transport; data source: Li et al., 2015) in the intensive burning area (32–36◦ N, 112–122◦ E) of eastern China in
the year 2013.
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Table 2. Total species-specific fire emissions calculated in this study for agricultural burning in eastern China and a comparison to those
contained within other fire emissions inventories and calculated in previous studies.

Reference Region Year Method Emissions (Gg yr−1)

CO2 CO PM2.5 BC

This study Eastern China 2012 Satellite 31066± 1960 1035± 327 124± 43 11± 1.8
2013 31107± 1748 1025± 320 130± 44 11± 1.7
2014 27069± 1421 904± 279 107± 36 10± 1.5
2015 16932± 1044 562± 177 70± 24 6± 0.95

GFAS Eastern China 2012 Satellite 9219 649 58 3.0

Kaiser et al. (2012) 2013 8173 576 52 2.6
2014 8760 617 55 2.8
2015 6818 480 43 2.2

GFED4.1s Eastern China 2012 Satellite 18 629 1199 74 8.8

van der Werf et al. (2017) 2013 24 034 1547 95 11
2014 18 241 1173 72 8.6
2015 15 892 1023 63 7.5

Liu et al., 2015 NCP1 2012 Satellite 26 000 1700 102 13
2013 9800 630 39 5
2014 13 000 820 50 6

Zhang et al. (2008) Eastern China3 2004 CYBA2 67 703 5624 – –

Huang et al. (2012) Eastern China3 2006 CYBA 41 374 2668 164 20

Qiu et al. (2016) Eastern China 2013 CYBA 72 071 2549 445 42

Li et al. (2016) NCP 2012 CYBA 68 675 5983 452 23

Sun et al. (2016) China 2013 CYBA 192 540 – – –

Streets et al. (2003) China 2000 CYBA 160 000 10 000 – 70

Yan et al. (2006) China 2000 CYBA 184 000 11 000 470 80

1 NCP refers to the North China Plain, which has a geographic extent similar to that of this study (32–41◦ N, 113–121◦ E). 2 CYBA refers to the
crop-yield-based approach; see Sect. 2.6.1. 3 Sum of provinces and cities shown in Fig. 1 of this study.

5 Analysis and discussion

5.1 Importance of wheat residue burning

Findings in Sect. 4 (Figs. 5 and 8) indicate that a larger pro-
portion of wheat residue than corn or rice residue is burnt
for several reasons. First, the yields of these three crop types
in eastern China are relatively similar – in 2015, for exam-
ple, wheat yield was 10 % lower than rice yield and only
20 % higher than corn (Table S1 in the Supplement; NBSC,
2015). Second, the dry matter production-to-residue ratio (Ri
in Eq. 1) of wheat is not higher than that of rice or corn (Ta-
ble S2; Wang and Zhang, 2008). Third, with the exception
of black carbon, the emission factors for wheat residues are
broadly similar to or smaller than the corresponding rice and
corn emission factors. It is unknown why a greater fraction of
wheat residue than corn and rice residue is burnt. However,
it is possible that local management practices and/or stake-

holder priorities differ depending upon the residue type and
time of year at which crops are harvested, ultimately impact-
ing the fate of these residues; e.g. residues from certain crops
may be valuable as fertiliser (Huang et al., 2012), animal
feed, or for domestic and/or local energy production (Chen
et al., 2017; Liu et al., 2008).

5.2 Discovery of a winter burning season

As detailed in Sect. 4.1, small peaks in our dry matter burned
(DMB) time series are apparent in November–December of
each year (grey shaded area shown in Fig. 5). Since no men-
tion of such a winter burning season was found in the litera-
ture (e.g. Chen et al., 2017; Huang et al., 2012; Zhang et al.,
2008), these winter peaks were initially considered to be er-
roneous and likely caused by VIIRS AF false alarms that had
failed to be excluded by the land cover and/or persistent ther-
mal anomaly masking detailed in Zhang et al. (2017). Fur-
thermore, according to the crop rotation map derived from
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the MIRCA2000 data (Fig. S1), there is no obvious harvest-
ing of wheat, corn, or rice during the winter in eastern China.
However, close examination of the original VIIRS data and
the VIIRS-IM FRP product generated from them by Zhang et
al. (2017) shows that most of the AF pixels detected in east-
ern China in winter are in fact located in or very close to areas
classified as agricultural land (Fig. S3) and are not located
close to industrial areas of the type known to cause false AF
detections (Zhang et al., 2017). The AF detections also do
not appear multiple times in the same month at the same lo-
cation, as would be expected if they were false alarms gener-
ated by non-fire features. It therefore seems highly probable
that these AF detections are actually a consequence of true
agricultural burning (Figs. S3–S5).

The most reasonable explanation for the winter AFs
appears to be that some of the crop residues from the
September–October (autumn) harvest season were left idle
for a few months and burned in the winter rather than im-
mediately. Local newspapers, online media, and other infor-
mation sources were consulted and were found to support
the existence of winter residue burning episodes. One exam-
ple is a report by the Jiangsu Province TV station on 5 De-
cember 2013, when a huge crop residue burning episode was
reported in Hongze (Jiangsu Province) close to the location
shown in Fig. S3. Stills from this TV report show flames,
thick smoke, and extremely poor visibility resulting from the
crop residue burning, described in Chinese language subtitles
(Fig. S4). Reports of similar episodes were found on different
websites and/or in newspapers from across much of eastern
China (e.g. Wang and Zhang, 2016; Za, 2015; Zuo, 2015).
Subsequent to this confirmation, an explanation as to why
this activity may have occurred outside the normal burning
season was sought. According to Yun Xia, a local governor
of the Environmental Department in Hefei (interview con-
ducted by Anhui News; Zuo, 2015), the prohibition on agri-
cultural burning started at the beginning of September in that
area and continued until 20 November. During this period,
the local government strongly enforced its polices aiming to
restrict agricultural residue burning and established almost
continuous patrols to identify areas likely to host crop residue
fires in order to prevent their ignition. However, without a
widespread and cost-effective alternative way to dispose of
their crop residues, local farmers may simply have stored the
residue material and burned it soon after the end of the pro-
hibition period when the intensive patrol period had ceased.
The end of the prohibition period coincides almost exactly
with the time of the new winter burning season identified by
our VIIRS-IM/Him dataset (Figs. 5–7).

The winter season is important for biomass burning in this
area of China, accounting for between 19 % and 36 % (year
dependent) of the combined autumn and winter FRE total.
Based on the crop rotation map (Fig. S1), this fire activity
was attributed to the burning of both corn and rice residues,
with the contribution of each residue to total FRE (and thus
DMB) almost equal (49 % and 51 %; average over all years).

This split by residue type is very similar to that observed
in the autumn burning season (corn 54 %, rice 46 %; aver-
age over all years), despite the observed variation in the spa-
tial distribution of fire between autumn and winter (Fig. 6).
In general, winter burning appears to take place closer to
provincial capitals than autumn burning does; the reason for
this spatial shift in fire is discussed in Sect. 5.4.

5.3 Disagreement between satellite-derived emissions
and crop-yield-based approaches

In Sect. 4.3, it was noted that annual emissions totals cal-
culated using crop-yield-based approaches (CYBAs) are
greater than those calculated using the VIIRS-IM/Him
method by a factor of 2–3, depending on species. We be-
lieve that this discrepancy relates to the burning ratio (BR)
used in CYBAs to produce emissions estimates. The burning
ratio is the ratio of crop residue burned in the field to the to-
tal amount of residue produced by harvesting, and it is a key
parameter in bottom-up CYBAs (see Eq. 1, and Chen et al.,
2017; Gao et al., 2002; Huang et al., 2012; Li et al., 2016).
Streets et al. (2003) used a uniform BR of 17 % derived from
1970s data; however, more recent studies often make use of
regionally varying fractions. We identified three sources of
regionally varying burning ratios that are widely used in the
CYBA literature.

Wang and Zhang (2008) divided all provinces in China
into six zones according to their geographical distribution.
A questionnaire-based survey conducted amongst farmers
within these regions was used to elucidate the level of burn-
ing activity, and using the responses it was determined that
burning ratios for the different categories ranged from 11 %
to 33 %. Outputs were applied and referenced in a series of
fire emission studies (He et al., 2011; Qin and Xie, 2011;
Zhang et al., 2016).

Gao et al. (2002) derived a set of province-dependent burn-
ing ratios adopted from a large-scale investigation of crop
residue use across different Chinese provinces. These ratios
have been used and referenced in Huang et al. (2012), Yan
et al. (2006), and Zhang et al. (2008), and they are shown in
Fig. 10.

A derived value is based on farmer income levels because
Cao et al. (2006) found a positive linear correlation between
the income of farmers and the burning ratio (r = 0.81). This
relationship has been applied within several fire emission
studies (Sun et al., 2016, Zhao et al., 2015) and will be ex-
amined in Sect. 5.4.

Using crop yield information and the DMB data derived
from the VIIRS-IM/Him processing performed herein, it is
straightforward to reverse the CYBA methodology to calcu-
late the burning ratio for each crop type. This procedure can
help confirm whether the outputs derived herein are compa-
rable with those in the existing literature, as well as enabling
the advantages offered by the remote sensing time series to
be fully exploited. The burning ratios (Bij ) for each province
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Figure 10. Temporal and spatial variability of province-specific percentages of crop residues burned in fields (burning ratio metrics) in
eastern China. Data are calculated using crop yield estimates from the National Bureau of Statistics of China and the dry matter burned totals
derived herein using our VIIRS-IM/Him DMB datasets for 2012–2015, then compared to the temporally invariant estimates provided by Gao
et al. (2002, final column). The basic layer of country–province borders within this map was created using the Python Basemap library.

i and crop type j are calculated from

Bij =
DMBij
PijRiC

, (9)

where DMBij is the estimated VIIRS DMB (g m−2) for
province j and crop i; Pij is the yield of crop i for province j
(kg); Ri is the dry matter production-to-residue ratio for crop
i (unitless); and C is crop combustion completeness (propor-
tion, 0–1). The province-level crop yield Pij is derived from
annually published statistical reports and presented in Table
S1. Ri and C are from Huang et al. (2012) and are presented
in Table S2.

The crop- and province-dependent burning ratios calcu-
lated from the VIIRS-IM/Him data are shown in Fig. 10,
alongside the burning ratios from Gao et al. (2002). Figure 10
indicates that there is considerable variation in burning ratios
between individual provinces and that VIIRS-IM/Him wheat
burning ratios are clearly much higher than rice-to-corn burn-
ing ratios. When averaged over the entire eastern China study
area, yearly mean burning ratios from our results for wheat
are the highest (7.8 %–12 %), followed by corn (1.7 %–
2.3 %), then rice (0.9 %–2.0 %). Equivalent mean burning ra-
tios calculated using data from Gao et al. (2002) are 9.8 %,
5.9 %, and 8.5 %, respectively. While VIIRS-IM/Him wheat
residue burning ratios are in reasonable agreement with those

used in the various CYBA studies, our rice and corn burning
ratios are much lower; this appears to explain why total an-
nual emissions from the VIIRS-IM/Him approach are much
lower than the total emissions obtained from the CYBA stud-
ies.

Figure 10 also indicates that burning ratios are not only
influenced by crop type and province, but also vary consid-
erably from year to year. For example, in 2012, satellite-
derived wheat burning ratios for the important agricul-
tural provinces of Anhui (30 %), Shandong (11 %), Jiangsu
(24 %), and Henan (11 %) are not dissimilar to the corre-
sponding ratios (20 %, 8 %, 10 %, and 7 %, respectively)
from Gao et al., (2002). However, during 2015, values de-
rived in this study are much lower (Anhui 6 %; Shandong %;
Jiangsu %; Henan %). This interannual variation may be
linked to changing local farming activity and prohibition
policies (Chen et al., 2017; Li et al., 2016; Yang et al., 2008).

We believe that the disagreement between the burning ra-
tios derived here and those used in CYBA studies indicates
that emissions inventories derived using traditional CYBAs
may be overestimating agricultural burning emissions for
two main reasons: (1) there appears to be considerable uncer-
tainty and subjectivity associated with the methods used to
estimate burning ratios in CYBA studies, and (2) many burn-
ing ratios used in CYBA studies are taken from relatively
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old (>5–10 years) sources of data. For example, Streets et
al. (2003) use data from the 1970s, while most recent re-
search uses burning ratios from Wang and Zhang (2008) and
Gao et al. (2002) as listed above in this section.

As shown by this analysis, burning ratios appear to be sub-
ject to high spatial and interannual variability due to rapidly
changing agricultural policies and decision-making that in-
fluence the fate of crop residues. As such, in order to ensure
reliable emissions estimates, we suggest that future agricul-
tural emission studies and inventories based upon CYBAs
should endeavour to use burning ratios derived from data
(1) with high granularity and (2) that were collected in the
corresponding inventory year.

5.4 Influence of social factors on agricultural burning

As highlighted in Sect. 5.3, some studies assume a positive
relationship between burning ratio and the mean local in-
come of farmers (Cao et al., 2006; Qin and Xie, 2011). The
explanation for this is that higher-income areas have bet-
ter access to electricity and other energy sources, and thus
there is less need to utilise crop residues for heating and
cooking, leading to higher ratios of open burning at these
locations. However, this is not what we observe from anal-
yses carried out for this study. In Fig. 11a, minimal correla-
tion was found between gross domestic product (GDP) and
burning ratio, and there is some suggestion of an inverse re-
lationship between these variables (y =−89x+ 9542, r2

=

0.13, p<5). When directly comparing GDP with DMB, as
Fig. 12 demonstrates, the provinces with the highest av-
erage annual DMB per square metre (Anhui and Henan;
46 and 27 g m−2 yr−1, respectively) have lower GDP values
(USD 5580 and USD 5335 per capita) than provinces with
lower annual DMB densities (e.g. Shandong and Jiangsu,
with 15 and 21 g m−2 yr−1, respectively) but high GDP per
capita (USD 9882 and USD 13 311, respectively). In fact,
across the eastern China study area, our annual total DMB
metric was found to be somewhat inversely correlated with
GDP per capita (r2

= 0.33; Fig. 11b).
We theorise that the observed inverse correlation between

GDP and DMB results from the fact that alternative residue
disposal methods to biomass burning have a relatively high
cost and can only be afforded by wealthier farmers and/or
provinces. For example, the local government of Jiangsu
Province (a relatively wealthy province with USD 13 311 per
capita and only moderate DMB of 21 g m−2 yr−1) released
a regulation in 2009 stating that by the end of 2012, over
35 % of crop residues should be incorporated into the soil af-
ter mechanised harvesting. The regulation also indicated that
the local government should include a budget for improving
the efficiency of agricultural machinery and subsidise farm-
ers who follow this regulation. Furthermore, alternative uses
for crop residues are often expensive and are likely only a vi-
able option in relatively wealthy areas. For example, research
on residue burning for power generation shows the govern-

Figure 11. Direct comparisons of mean GDP per capita with (a) the
burning ratio for wheat from 2012 and (b) province-specific yearly
dry matter burned (DMB). The best-fit linear relationships are
shown, along with their equations, and the grey shaded area rep-
resents the 95 % confidence limit on the relationship.

ment needs to pay at least 20 % of the total cost of the oper-
ation to keep the power plants running, partly because of the
high costs associated with residue collection and transporta-
tion from the fields (Li and Hu, 2009).

In addition to influencing the quantity of material burned
and when it is burned, societal factors also appear to influ-
ence the spatial pattern of burning within provinces and at
more granular levels such as at the 0.1◦ grid cell level. The
work presented in Sect. 5.2 suggests that the winter burning
season (November–December) is caused by delayed burning
of residues left over from the autumn harvest season because
of prohibition policies related to burning being more robustly
enforced earlier in the season. Figure 6 also shows that the
spatial distribution of FRE areal density during winter is dif-
ferent from the normal autumn burning season that occurs in
September–October. Generally, the areas of strongest burn-
ing are further from the provincial capital cities (marked by
the orange stars in Fig. 6) during autumn. For example, fires
in Anhui Province are mainly distributed in the north during
autumn, whilst fire locations change to the south (closer to
the capital city of Hefei) during the delayed winter burns. A
similar example can also be seen in Hubei Province, where
fires shift from west to east from the autumn to winter burn-
ing seasons.

To examine this in a more quantitative manner, we cal-
culated the distance from each grid cell shown in Fig. 6 to
their provincial capitals. Figure 13 shows the normalised fre-
quency distribution of the distance from the capital to the top
10 % of FRE-releasing grid cells in each province using data
from the four burning seasons during the 2012–2015 period.
The first and third distance quartiles during the autumn sea-
son are 109 and 214 km, respectively, but for the “lagged”
winter burning season, the distribution shifts to far shorter
distances (first and third quartiles of 70 and 153 km, respec-
tively). Similarly, the mean distance from provincial capitals
also decreased from 165 km in autumn to 124 km in winter.
A Kolmogorov–Smirnov (K-S) test was performed to evalu-
ate the difference between the distributions of distance data
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Figure 12. Spatial distribution of province-specific (a) mean annual
dry matter burned as calculated using the VIIRS-IM/Him approach
developed herein, (b) population (data source: Fu et al., 2014a),
(c) agricultural land area (data source: GlobeLand30, http://www.
globallandcover.com/, last access: 4 August 2020), and (d) mean
GDP per capita (data source: Fu et al., 2014b). The basic layer
of country–province borders within this map was created using the
Python Basemap library.

Figure 13. Normalised frequency distribution of distance from the
province capital for the top 10 % of high FRE VIIRS-IM/Him prod-
uct 0.1◦ grid cells during the three burning seasons: summer – May
to June (a, blue), autumn – September to October (b, green), and
winter – November to December (c, orange). A clear shift towards
the origin can be observed in the November–December period com-
pared with September–October.

for the autumn and winter burning seasons, and the result-
ing high K-S statistic (0.30, p<0.001) indicates that the dis-
tribution of distances during the winter months is substan-
tially different to the autumn distance distribution. Similar
results were found when we applied the K-S test to each cal-
endar year of data separately (not shown). One possible ex-
planation for this observed difference is that the geographical
shift might also be linked to the policies aimed at prohibit-
ing burning, since areas close to capital cities are likely to
have more resources for enforcing the prohibition compared
to areas more distant from the major urban populations.

6 Summary and conclusion

We have developed a new state-of-the-art agricultural burn-
ing emissions inventory (VIIRS-IM/Him) for eastern China
by combining fire radiative power (FRP) observations from
the VIIRS and Himawari-8 sensors for the 2012–2015 pe-
riod. While several other studies have also used satellite
EO data to develop such inventories, they have all relied on
MODIS fire products for their source observations. Such in-
ventories include the global GFED and GFAS inventories, as
well as several Chinese regional studies (e.g. Huang et al.,
2012; Liu et al., 2015). MODIS fire products are known to
show very high omission rates in environments dominated
by small agricultural fires (Randerson et al., 2012; Zhang
et al., 2017, 2018), but the “small-fire-optimised” VIIRS-IM
product of Zhang et al. (2017) used in this study detects far
more of the fire activity across eastern China and on aver-
age shows FRP totals around 4 times higher than those of
the MODIS AF products. To convert the twice-daily VIIRS-
IM FRP product information to daily time-integrated FRE,
we have used new diurnal fire cycle data from Himawari-8, a
geostationary satellite positioned over East Asia that can best
capture the specific diurnal fire variability of the agricultural
burning regions.

Our final VIIRS/Him agricultural fire emissions inventory
reports dry matter burned (DMB) totals around 2–5 times
higher than reported by the GFAS and GFED 4.1s in east-
ern China for corresponding time periods. The use of a crop
rotation map allowed our VIIRS-IM/Him fire and emissions
outputs to be disaggregated by individual crop types, and we
found wheat residue burning to be the primary agricultural
emission source, accounting for over 50 % of the total emis-
sions each year for all investigated smoke constituents (CO2,
CO, PM2.5, and black carbon). A strong seasonal variation
in fire activity and emissions is seen, with annual peak ac-
tivity occurring in summer (May–June) as a result of wheat
residue burning and a smaller secondary activity peak occur-
ring in autumn (September–October) as a result of corn and
rice residue burning. Furthermore, we discovered a new win-
ter (November–December) agricultural residue burning sea-
son. As no crop harvesting occurs during winter, we suspect
that this fire activity results from farmers burning previously
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stored residues from the autumn harvest in winter, after au-
tumn residue burning prohibitions have been lifted. This the-
ory is supported by our observation of statistically distinct
spatial burning patterns in the autumn and winter seasons;
the majority of autumn burning occurs at a greater distance
from provincial capitals than the winter burning does. This
may reflect stronger enforcement of autumn residue burning
prohibition measures in close proximity to major urban pop-
ulation centres than in rural locations. Farmers in areas with
stronger prohibition enforcement (typically closer to urban
areas) then burn their agricultural residue in winter.

Detailed comparison to existing inventories showed that
our VIIRS-IM/Him annual emissions totals are 1.2–4.7 times
greater than those reported by the GFAS and 0.5–1.7 times
those reported by GFED4.1s, with some interspecies vari-
ability due to the use of different emissions factors between
the inventories. By contrast, the VIIRS-IM/Him inventory
shows emissions totals that are on average lower than those
from emission inventories derived using crop-yield-based ap-
proaches (CYBAs) by a factor of 2–5. This discrepancy is
believed to be primarily due to many CYBAs using outdated
and/or inappropriate burning ratios that consequently lead
to CYBAs overestimating the amount of crop residue DMB
annually. Back-calculated burning ratios from the VIIRS-
IM/Him data suggest that burning ratios for rice and corn
are much lower than the CYBA literature suggests (approx.
0.9 %–2.3 % rather than 11 %–33 %). We also noted con-
siderable interprovincial and interannual variation in these
back-calculated burning ratios; for example, wheat burn-
ing ratios significantly decrease over our 4-year study pe-
riod. This strongly suggests that high-spatial-resolution, up-
to-date burning ratios should always be used in CYBAs for
agricultural burning fire emission estimation. Furthermore,
several CYBAs (e.g. Sun et al., 2016; Zhao et al., 2015) have
derived burning ratios from provincial GDP data, assuming
a positive relationship between these variables (Cao et al.,
2006). However, we found evidence of an opposite (i.e. neg-
ative) relationship between provincial GDP and the amount
of DMB in agricultural fires, hypothesised to be due to the
higher cost of the disposal of crop residues by non-biomass-
burning methods. This suggests that great care needs to be
taken when deriving burning ratios for use in future agricul-
tural emissions inventories based upon CYBA methods and
that satellite remote sensing approaches based on EO datasets
that adequately detect the presence of agricultural fires are a
far better approach to fire emissions estimation in such envi-
ronments.

Data availability. Data from the Gridded Daily Agricul-
tural Burning Emission Inventory of Eastern China are
available from the Centre for Environmental Data Analysis
(https://doi.org/10.5285/1d70803fab8f46ba983b730ede52421f;
Zhang et al., 2020).
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