
Anonymous Referee #1 
We thank the reviewer for providing valuable comments on our manuscript. The reviewer 
comments are shown below in bold font, followed by our response in normal font. 
 
The article proposes a new method to compute temporal trends in ozone vertical profiles. 
They take stock of auto-correlation in the vertical dimension to minimize uncertainties in 
the estimated trends. 
 
Most of the paper is devoted to statistical considerations, with very little geophysical 
discussions, so that I agree with Anonymous Referee #2 that such a paper would have 
been more suited for a statistical journal. But the manuscript remains well written and the 
topic of trend detection for tropospheric ozone is important and relevant to Atmos. 
Chem. Phys. so that I see little ground for not supporting its publication. 
 
My main frustration is that the added value of the integrative method is only tested 
in terms of trend estimate, whereas in atmospheric ozone studies the significance of the 
trend is also often challenging to assess. The benefit of this method in terms of  
significance would deserve to be discussed. 
Thanks for pointing out the evaluation of method in terms of the significance, we added an 
additional analysis and discussion in Section 3.2 as follows: 
 
The above discussion is focused on the precision and accuracy of the trend estimate at various 
sampling frequencies. In addition, we can explore the impact of sampling frequency on our 
ability to simply detect the presence of a trend, based on uncertainty analysis.  In order to 
evaluate the resulting uncertainty associated with the sampled trends, we include the mean 
signal-to-noise ratio (MSNR) between trends derived from the full data set (the assumed true 
trend values) and the uncertainty in each sample (i.e. standard error associated with the trend 
estimate) in Table 1. In the interest of a fair comparison, this calculation is done by comparing 
the sampling uncertainty with trend values derived by the same method. Note that we do not 
use the concept of ``statistical significance'' to indicate evidence for the trends, following the 
recent  recommendations from  the American Statistical Association (Wasserstein and Lazar, 
2016; Wasserstein et al., 2019). Instead, the benchmark we selected for comparing trend 
uncertainties is a rejection of the null hypothesis at the 95\% confidence when the SNR exceeds 
a threshold value of 2. As noted in Table 1 we already knew the MSNR is around 2.3 for both 
methods when using the full datasets, however, the SNR analysis shows that the benchmark 
value of 2 can be achieved at a sampling frequency of just four profiles per month when using 
the integrated fit, whereas the separated fit requires 8 profiles per month.  In summary, at a low 
sampling frequency the integrated fit provides not only more precise and accurate trend 
estimates, but the uncertainty associated with trends can be reduced. 
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It is not fully clear how European and Chinese IAGOS profiles are treated but an 
“aggregate” is mentioned P8L1. It is very questionable to average all profiles collected 
over a whole continent, and subsequently seek to assess such subtilities in the 
estimated trend. 
The IAGOS datasets in this study are from limited regions and are not aggregated across the 
entire continent of Europe or across the entire country of China.  We now state in Section 2.2 
(where the IAGOS data are introduced) that the Europe and China datasets focus on limited 
regions of central-Western Europe (0-15 E, 47-55 N) and northeast China/South Korea 
(110-135 E, 28-45 N). 
We added a review of IAGOS observations to demonstrate the regional representativeness of 
IAGOS data in the beginning of Section 3: 
 
 
Several studies have demonstrated that IAGOS data above Western Europe are consistent with 
ozonesonde records in the UTLS (Staufer et al., 2013, 2014), and the data have compared well 
to regional surface and free tropospheric ozonesonde records (Thouret et al., 1998; Logan et 
al., 2012; Petetin et al., 2018). Petetin et al. (2018) validated IAGOS data in the lowest 
troposphere over Western Europe against rural monitoring sites at various elevations and 
concluded that those observations can be used to study the air quality in the agglomeration. 
Nevertheless, to reduce the influence from the strong diurnal cycle at the surface, all 
observations below the 950 hPa level and within 300 m of the surface were removed from the 
analysis (Gaudel et al., 2020).  
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The benefit of the new method could be considered relatively marginal. It would be 
interesting to provide more discussion on tropospheric ozone trends to demonstrate the 
importance to refine these estimates. 
In addition to the above new demonstration and discussion, we also provided a new discussion 
in the Conclusion as follows: 
 
Detecting trends of tropospheric ozone from ozonesonde profiles is challenging due to relatively 
low sampling frequency combined with high temporal variability. Regularization is a statistical 
learning tool which makes a trade-off between, 1) high fitted bias (low flexibility) that results from 
underfitting, and 2) high sensitivity to small data fluctuations (low generalizability) that results 
from overfitting. The underfitting can be avoided by making sure the number of basis functions 
(e.g. thin-plate splines) are large enough to represent the underlying process. A model can be 
considered to be overfitted if a high cross validation error is found (which can be investigated 
by, e.g., iteratively removing one observation and predicting this value from the remaining 
observations). In terms of detecting tropospheric ozone trends from vertical profiles, the vertical 
correlated structures in the neighboring pressure layers can be used to inform the learning 
process. The benefit of this approach can be reflected by the detectable trends (if any) at a low 
sampling rate (i.e. we have higher confidence of our ability to detect a trend from weekly 
sampled ozonesonde data), and by an improved quantification of trend estimates in terms of 
accuracy and precision. 
 
This technique efficiently reduces the uncertainty of the resulting trends, and thus increases our 
ability to detect and quantify trends of smaller magnitude. Therefore, this method is valuable for 
improved trend detection of ozonesonde records, because although these records are 
sufficiently long-term and have high vertical resolution with high accuracy, standard trend 
analysis is still challenging due to the  limited sampling rate. This refined estimation is also 
expected to be beneficial when comparing trends derived from different regions or observing 
systems, since the result is less sensitive to incoherent or unstructured variations. 
 
 
Specific comments 
In several occasions in the manuscript, I would avoid the term “noise”. The vertical 
structures documented by atmospheric profiles are not due to instrument random 
uncertainty but they carry an actual “signal” to understand atmospheric variability. I 
understand that this variability is not in the focus for long term trend studies, but they 
can not be considered as “noise”. In turn, the regularization applied in eq 4 is very 



questionable, and the impact of this step on the overall findings should be assessed 
through a sensitivity study. 
We replaced the term "noise" by short-lived anomalies or unstructured variation in the 
manuscript. The only exception was made for the discussion of "signal to noise ratio", as this is 
a well known relative concept. We also added a new analysis and discussion on the 
regularization in Section 3.1: 
 
To demonstrate the role of regularization in the model fitting, we first provide a synthetic 
example that illustrates the problems of underfitting (the model is not flexible enough to capture 
the general pattern in the data) and overfitting (the model is overparameterized, so some 
unphysical fluctuations are present) in supplementary Figure S1. Neither underfitting nor 
overfitting is an appropriate representation of the true process. Once sufficient model complexity 
is supplied (e.g. placing a knot for spline functions every 50 hPa), the statistical regularization 
can be used to penalize overly complex models and thus prevent overfitting. The overfitting of a 
surface is less obvious than a curve, but we provide a demonstration of the fitting by adjusting 
the optimized penalty coefficient (which is selected by the generalized cross validation (Wood, 
2006) and is proven to be reliable, as discussed above). We scale the penalty coefficient 
(\lambda_2 in Equation (A2) while keeping \lambda_1 fixed) by a factor of 10 and 0.1, 
respectively (i.e. the smaller penalty, the more roughness will be present). The result is shown in 
Figure 6: the underfitting can be seen as an over-smoothed representation of the underlying 
structure, and sharp variations (e.g. overly complicated roughness) are an indication of 
overfitting. 
 



 
 
Figure S-1: A synthetic prole for the illustration of the issue of underfitting and overfitting. A 
synthetic profile for the illustration of the issue of underfitting and overfitting. Data points are 
generated by adding random error to the function  (black curve). Thein(y/100) y/100)x = s × ( 2  
appropriate fit should closely follow the true process (red curve), while the underfit indicates that 
the result failed to represent the general pattern of the true process (blue curve), and the overfit 
indicates that the result is overly complicated and is influenced by the noise component (green 
curve). Note that these three fits are based on the same model specification, except that we 
adjust the roughness penalty to illustrate the underfit and overfit. 
 
  



 

 
Figure 6. Sensitivity analysis of the fitted result from different smoothing penalties: (middle) the 
smoothness determined by the generalized cross validation (GCV) criterion, and potentially 
underfitting (upper)  and overfitting (lower) by scaling the penalty coefficient (lambda_2 in 
Equation (A2)) by a factor of 10 and 0.1, respectively. 
  



 
Abstract: Add the number of years available in GMD/IAGOS 
The study period for each data set was added. 
 
P8L30: a geophysical interpretation of the 2010 anomaly should be provided. 
We added a clarification as following: 
The 22-year time series has one data gap spanning March-August 2010 when instrument 
failures resulted in just a few sporadic profiles (Petetin et al. 2016b) (the 2010 annual mean is 
represented by the other 6 months, after adjustments for seasonality). 
 
Petetin, H., Thouret, V., Fontaine, A., Sauvage, B., Athier, G., Blot, R. et al. (2016). 
Characterising tropospheric O3 and CO around Frankfurt over the period 1994-2012 based on 
MOZAIC-IAGOS aircraft measurements. Atmospheric Chemistry & Physics, 16(23). 
 
P8L32: the figure does not provide anomaly for the seasonal cycle, so that this statement 
is poorly supported 
Yes you are right, we removed this sentence from the manuscript. 
 
P10L18: I find figure S4 more insightful than Figure 6, suggest swapping both 
We moved this figure to the manuscript and added a discussion: 
We can see substantial improvement of the trend estimate when more data are available, with a 
similar trend accuracy for both approaches.  However, in terms of trend precision, the integrated 
fit produces lower uncertainty. 
 
P11L22: which geophysical process could explain the difference vertical correlation 
depending on the region? 
Thanks for pointing out this issue, we added a discussion on the difference of vertical correlation 
between Europe and China: 
This vertical correlation range is greater than was found for the IAGOS data above Western 
Europe. The longer correlation range is the result of the more systematic temporal variations 
across ozone vertical profiles, as seen in Figure 10(b). While the correlation structure above 
Europe is heavily affected by the high anomalies from stratospheric influences, if those high 
anomalies are filtered out (see supplementary Figure S2), the vertical correlation range 
increases and becomes similar to the IAGOS data above China 
 
P12L2: add percentiles in the figure legend 
Figure legend was added. 
 
P14L5: this sentence seems misplaced 
We revised the sentence as following: 
We provide an example in Supplementary Figure S8 to illustrate the application of this method 
to the quantification of trends in the lower stratosphere above Hilo, Hawaii. 
  



Anonymous Referee #2 
We thank the reviewer for providing valuable comments on our manuscript. The reviewer 
comments are shown below in bold font, followed by our response in normal font. 
 
My initial impression and doubts remain. The paper is well written and presented, the 
discussion accurate although quite technical. Overall scopes are, in my opinion, quite 
narrow. I still see the manuscript better suited for a journal with a more speciliased 
focus on the subject of statistical methods, or on measurements. 
 
Anyhow, the subject covered here is explicitely mentioned in the ACP subject 
areas (https://www.atmospheric-chemistry-and-physics.net/about/subject_areas.html) 
and several references used by the authors confirm that other studies dealing with 
trend detection and tropospheric measurements have been published in ACP. 
 
I therefore advice the editor to accept the manuscript for publication, and suggest the 
authors to simplify the discussion where possible, to reach out larger audience. Perhaps 
some technical material can be moved to appendix? 
Thanks for the suggestion, we moved the technical details from Section 2.1 to Appendix A. 
  
Moreover, what about comparing the result of your methodology with profiles treated 
with other methods mentioned by the authors in the introduction? this would help 
determine what is the cost-effectiveness with respect to benefits of your approach 
compared to simpler ones. 
To our knowledge, previous work on the trend detection of vertical profile data simply averaged 
the observations into fewer layers (i.e. lower, mid and upper troposphere), or treated each 
pressure level independently. Therefore this work is the first attempt to obtain a vertically 
resolved result of trend distribution by a systematic approach (taking vertical correlation into 
account). The other methods described in the introduction deal with spatial averaging or using 
principal component analysis, which are very different from trying to take advantage of the 
correlation between adjacent layers. 
 
A useful comparison between our approach and the standard method of ignoring vertical 
correlation is demonstrated by the sensitivity analysis of sampling frequency, as we provided in 
Section 3.2. Nevertheless, we have further demonstrated the benefit of our approach with a new 
analysis added to Section 3.2, which focuses on sampling strategy: 
 
In order to investigate the impact of sampling strategy on the integrated and separated fits, we 
carry out an additional sensitivity analysis in supplementary Table S2 by a comparison of two 
strategies: (A) a completely random design as illustrated above; (B) a fixed sampling strategy 
based on the random selection of an initial day followed by additional profiles at fixed intervals 
of  1 to 10 days. For example, a 5-day sampling frequency is based on the random selection of 
an initial reference from day 1 to day 5 in the beginning of the record, followed by the random 
selection of a profile every 5th day until the end of the record. For both strategies, only a single 



profile is chosen randomly if multiple profiles are available on the same day. Therefore the 
sampling scheme with a fixed frequency of 1 day represents a random selection of a single 
profile in each day, instead of using all available data. Also, if the chosen day does not have any 
profiles, we treat it as missing and do not look for a replacement. 
 
The sensitivity analysis demonstrates that sample size remains the dominant influence on 
precision and accuracy. When the sampling interval is not dense enough (e.g. greater than 
10-days), the benefit of a regular frequency scheme is inconsequential. However, when the 
monthly sample size is greater than 4 profiles (i.e. the sampling frequency is less than once per 
week), the fixed frequency scheme could achieve a better performance. As a result, an optimal 
frequency can decrease to 10 profiles (3-day frequency) for an integrated fit and 15 profiles 
(2-day frequency) for a separated fit. 


