We thanks all three anonymous reviewers for their time and feedback. We are confident that the revised manuscript now addresses all of their concerns and we agree that it is a much stronger article as a result.

Reviewer #1:

10

5 We thank Reviewer #1 for highlighting the excellence and rigour of our dataset, the quality of our analysis and presentation and the interest of our conclusions to the atmospheric chemistry community.

Specific comments:

1/ The paper compares CH4, CO2 and CO fluxes derived using mass balancing with those reported using highly analogous aircraft sampling and methods by O'Shea et al., 2014 and Pitt et al., 2019. The paper currently discusses the relative quantitative differences with those studies. A further useful dimension to the discussion surrounding that comparison could be more thought as to "why" they

- dimension to the discussion surrounding that comparison could be more thought as to "why" they differ... I don't believe that difference in method and footprint solely explain the different fluxes, which is the message that is perhaps currently conveyed.
- The reviewer makes a good point that the text places undue emphasis on methodological
 discrepancies and makes very little mention of the temporal differences between flights. We have added text around differences in emissions which provide better balance in the discussion of results (Section 3.3.1) and again in the conclusion.

"When considering these data, one should be mindful that aircraft measurements are representative of a single point in time and therefore cannot be aggregated over longer periods. As such they are highly

- 20 sensitive to meteorology and hence emissions footprint and source strength at the time of measurement. Due to the short duration of and significant separation in time between our and O'Shea's flights, variation in emissions from London (either diurnally, seasonally or longer-term) are likely to be substantial and should be borne in mind when comparing between studies although differences in methodology need also be considered."
- 25 2/ The paper often refer to "spikes" or "spiking". I think words such as "concentration enhancement" or "transient enhancement" could be more intuitive.

We have replaced the word "spike" with local / transient enhancement / elevation throughout the manuscript.

3/ All concentrations are reported in units of ppv (e.g. ppbv) in the paper. As far as I understand, most
 in situ instruments on the FAAM aircraft report molar mass concentration

We can confirm that final datasets released by FAAM and made available via Centre for Environmental Data Analysis (CEDA) report molar (equivalent to vol vol⁻¹) as used throughout the manuscript rather than mass concentrations.

Technical comments:

35 1/ Some units do not have a space between quantity and unit, e.g. 450m (and elsewhere where m are used).

This inconsistency has been rectified.

2/ Figure 3 – does not appear well on my screen. Can the axes lines be thickened?

The lines have been thickened, the font size increased and the resolution increased. Note that this is now Figure 2.

3/ Legend on Figure 12 – hard to read – can a larger font size be used?

The font size for the legend, axis titles and labels have been increased.

Reviewer #2:

- 45 This paper is largely a description of the observations, with some analysis of emissions that carries large caveats and uncertainties. These particular measurements have not been presented before, but there have been previous similar observations. It is not clear to the reviewer what new or novel things we have learned, or can learn, from this dataset. Some reorganization would help, as would focusing more on current open questions.
- 50 We believe that the reorganisation of our analysis and the highlighting of specific novelties in our data set fully addresses the reviewer's concerns and considerably strengthens the resulting manuscript. In particular we have focused on the relative contribution of local sources rather than the influence of London outflow and highlighted the potential of using aircraft measurements to understand air pollution in this complex region.

55 Specific Comments

Use of WAS data for source identification: there are many examples in the literature of the use of specific hydrocarbon ratios to identify distinct emission sources. Why was this not done here?

This technique is most powerful in situations with few large emissions sources or when tracking a single plume over time and space. We have made it clearer in the text around the analysis of the WAS

- 60 samples that this could only be done in a limited way here as we were sampling in a region of multiple pollution sources mixing into a relatively regional distributed air mass over very different temporal and spatial scales. However what we have been able to do is advise that emission profiles are changing very substantially over time and some of these traditional methods (particularly benzene:toluene ratios) are likely no longer reliable for positive attribution or estimating air mass age.
- 65 Flight segments: It is helpful to number flight segments when comparing the map (Fig. 1) and time series (Figs 5 7). However, there are so many flight segments that the map looks cluttered and it is sometimes difficult to identify features discussed in the text. Rather than using one for every 5 minutes, how about 4 5 sections per flight?
- We tried reducing the number of flight segments (to 6-7 per flight) and while this did make Fig. 1 easier
 to read it was far harder to pinpoint the individual pollution events we now describe in Section 3.3. We have therefore kept the original versions of these figures.

L342 onward: discussion seems to indicate that the flux estimates shown in Table 3 are not comparable because of differences in the methodology and data used to do the calculation. Is this really the case, or is it just that the footprint is different? Also this makes Table 3 itself questionable, as it is comparing numbers that are not comparable

75 *it is comparing numbers that are not comparable.*

The text has been modified in this section as Reviewer #1 raised the same point (see previous response).

Statements regarding the comparison could also be more honest. For example, while it is true that the mean CO2 estimate is within 10% of O'Shea, the uncertainties are large. It would be better to state that the numbers agree to within combined uncertainties which is comparison to within a provide the state that the numbers agree to within a provide the numbers agree to wi

80 the numbers agree to within combined uncertainties, which is something like 25 – 30%. This is also true for the abstract.

We have amended the text accordingly

L420: This should not be surprising given that the observations were in the afternoon, when the diel cycle of ozone typically peaks.

85 We agree and make this clearer in the text: "slightly higher (~44 vs. 40 ppbv) in the afternoon than morning, as expected for a secondary pollutant formed as a product of the photochemistry"

L432: The discussion from here to the end of the section could benefit from improved organization. In particular, I recommend organizing paragraphs and order-of-presentation by plume rather than by

chemical species. All paragraphs should have topic sentences. And, it might be clearest if the most likely source(s) are stated at the beginning, followed by evidence to support that identification.

This suggestion has been followed, with 4 specific plumes described in results Section 3.3 with additional headings as required and attribution where possible. We thank the reviewer for this as it has indeed improved the flow of the discussion.

L535: what is meant by "methods that can provide improved quantification of surface interaction"? 95 Fluxes? Please be more specific.

This line has been removed in the reorganisation and refocusing of the manuscript

Technical Comments

The word "spike" is used throughout the manuscript to refer to features in the observed time series. In typical usage, this word refers to artifacts (e.g. due to electrical noise). Recommend replacing these words with "features" or "enhancements" or similar.

We have replaced the word "spike" with local / transient enhancement / elevation throughout the manuscript.

L219: "that WAS"

The sentence makes sense as it stands

105 L245: "Fig. 4"

90

100

Amended, thank you

L294: which segments are the "background" ones?

The text has been substantially altered throughout the results section. However, segment numbers have now been added each time a feature is referred to.

110 L322: "southwesterly wind"

Amended, thank you

L403: replace "the profile of VOCs by altitude" with "the vertical profile of VOCs."

Text amended accordingly.

L418: please quantify "far higher"

115 The following text has been added: "(peaking at 0.05 ppbv vs. <0.01 ppbv)"

L506: which numbered section is this in the time series/map?

The text has been substantially altered throughout the results section. However, segment numbers have now been added throughout.

L554: replace "known" with "assumed"

120 Text amended accordingly

L556: "These three flights demonstrate"

Text amended accordingly.

L556: This data is not "remote sensing"

Some parts of the community consider anything above tower-based measurements to be "remote sensing". However we have re-phrased this sentence to simply read "airborne measurements".

Figures in general: text is very hard to read in many cases. Too small. please fix.

Text size increased

Figure 2: line colors for GPH and coastlines are identical. Please change one.

Figure 2 has in fact been removed from the final version

130 Fig. 4: please mark London with a symbol. Also, do we need all 4 trajectories to get the point across?

Now Fig. 3. A symbol marking central London has been added to this and the other back-trajectory plots (Figs. 7 & 11). We believe we do need all four trajectories as an important requirement for the flux estimation method is that the plume has clear and distinct edges which these demonstrate.

Fig. 8 & 11: what is the triangle?

135 Now Fig. 7 & 11. This is already stated in the caption of both figures: "the location of FAAM BAe-146 (black triangles)"

Fig. 9 & 12: Please flip so altitude is on the y-axis. Also, is the "total VOC" bar really that useful a metric?

Now Fig. 10 & 12. Altitude now on y-axis as requested and the total VOC bar has been removed

140 Fig 14 & 15: Not sure we need both plots; just 15 would suffice. Also, blue color bar clashes with background.

We have removed Fig. 15 as Fig. 14 provided an overview of all shipping. The colour bar has been altered. (Note that Fig. 14 is now Fig. 9)

Reviewer #3

- 145 Generally, the manuscript lacks focus. The introduction should clearly set out what is unique or novel about this study, but it does not do so. It is imperative that ones describes in the introduction, how this study is any different than others, and what additional information is gained here. This is especially important here, since there have in fact been other similar studies aboard aircraft around the London area. Without this introductory information, this paper seems like a simple reporting of obtained data
- 150 without a clear motivation or scientific objective. Determining the relative importance of London outflow is not a sufficient objective and lacks detail, neither is the sampling of an urban plume, as that has been done many times. I suspect the paper would be more coherent if the objectives were clearly stated from the outset.

The paper has now been substantially reorganised in response to the comments of both this reviewer and Reviewer 2. The objectives are now stated clearly at the beginning and the main aim identified as assessing the extent to which local sources play an important role in influencing air pollution episodes in a region proximal to a megacity. We believe that the paper is substantially more coherent as a result and thank both reviewers for their suggestions.

In the methods section, more information regarding where the flight took place relative to the urban city is needed. How far from the city were you? How far downwind from London were the flights? Were multiple altitudes flown for each flight? A sense of the photochemical age for the air masses should be provide up front, as should a description of the purpose of fling the type of flight conducted.

The distance from London has been added and the different altitudes of the flight legs, already shown in the accompanying figures and in the results section, have been stated

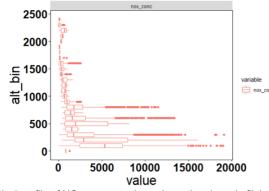
- 165 Only a single flight is not sufficient to say anything meaningful regarding the flux of CO, CO2, CH4. In addition, the method by which the flux was determined was very poorly described. Nothing is mentioned about how the flux below the lowest flight track is determined. This can be a substantial amount but is unclear how this is treated here. Was an extrapolation performed to the ground? This is in fact critical for ground based sources, as the highest concentration of pollutants is often below the
- 170 lowest flight track, and without this information it is unclear how accurate the estimate would be. Significantly more description of the flux approach is needed.

The description of the flux calculation has been improved and the interpolation and extrapolation methods and assumptions stated more clearly.

Regardless, it is unclear how the flux from one flight is illustrative of anything. Nor is it possible to make
 a meaningful comparison to anything else, due to hourly/daily variability of emissions. Furthermore, some effort into determining the impact of the background subtraction on the flux is required.

The text around the validity of the comparison has been amended to highlight the uncertainties due in particular to the time variation in emission sources. The paper that we have made our comparison against was also only able to use the mass balance approach in one flight as the conditions required

180 for it to be appropriate are only rarely encountered. we therefore highlight that it offers the potential to constrain bottom-up estimates but is limited by spatial and temporal resolution and coverage.


The impact of the background subtraction has been included.

Finally, this is not technically a "mass balance" approach as stated, as the authors have not gone through the task of determining if a mass balance is actually achieved, particularly through the top of the cylinder.

The term "mass balance" has been removed from throughout the manuscript. Instead we refer to calculating emission fluxes. We have also added a statement regarding the very clear cap at the top of the cylinder based on the boundary layer conditions (shown in Fig 2) and the concentrations observed at different altitudes during that flight. The NOx profile (Fig R1 below but not included in the paper)

190 shows a clear upper altitude bound.

185

Figure R1. Vertical profile of NOx concentrations above the plume in flight C016

The following text has been added to this section of the manuscript:

"We assumed that air below the lowest flight track was well mixed and that the full vertical profile of the plume was captured by these flight legs. Boundary layer height was estimated from temperature-

- 195 humidity profiles to be between 800 and 1000 m while the plume was being sampled. Vertical profiles for NOx only showed significant enhancement below these heights indicating a lack of mixing into the free troposphere. NOx was used to indicate this, as its shorter lifetime leads to near zero concentrations above the boundary layer, whereas the difference is less pronounced in the longer-lived CO/CO2/CH4. We assumed that air below the lowest flight track was well mixed and that the full
- 200 vertical profile of the plume was captured by these flight legs. Boundary layer height was estimated from temperature-humidity profiles to be between 800 and 1000 m while the plume was being sampled. Vertical profiles for NOx only showed significant enhancement below these heights ."indicating a lack of mixing into the free troposphere. NOx was used to indicate this, as its shorter lifetime leads to near zero concentrations above the boundary layer, whereas the difference is less pronounced in the free troposphere.
- 205 in the longer-lived CO/CO2/CH4.

The paper is generally poorly organized, which makes it very difficult to read. The sections should more likely be organized by scientific objective rather than by flight. However, without clearly stated objectives in this paper, that is a difficult task. Clearly stating the objectives at the beginning of the paper would help to determine how to better organize the rest of the paper.

- 210 The paper has now been substantially reorganised in response to the comments of both this reviewer and Reviewer 2. The objectives are now stated clearly at the beginning and the main aim identified as assessing the extent to which local sources play an important role in influencing air pollution episodes in a region proximal to a megacity.
- What is the point of having a section on marine emissions? This section seems to come out of nowhere, and is of minimal value. How did this suddenly become a marine vessel paper? I suggest

removing this section unless it fits with the objectives of this paper as a whole. As written it currently does not.

It has been re-written and now does fit the stated objectives which were to identify local sources that were substantial enough to be clearly visible as pollution episodes even in a region dominated by

220 megacity outflow.

There are far too many figures in this paper to be readable. It reads as a set of observations associated with these figure with no clear outcome. Many of these figures can be in the SI, keeping only the ones that provide evidence of the objective.

One table and 3 figures have been removed and with the new framing of the paper the remaining ones are used to provide evidence / support for our stated objectives.

Specific items:

245

Line 82: "These observations match those of the EM25 campaign". If this statement is true, then what is the purpose of this paper?

Line 82 is referring to the Aruffo observations not ours. This has been made clearer.

230 Line 121: "Local" vs London outflow need to be put in context and properly defined. Since at this point the reader has no idea how far from London the flights were conducted, local and London could be the same thing. If you were flying around London, then presumably everything is "local" to London.

We have stated the distance from central London and made our distinction of London vs local clearer in the newly reorganised manuscript.

Line 181: it is not clear what is meant by "temporal stability of total aerosol"

This and the following sentence have now been re-worded to read: "Concentration of ultrafine aerosol was monitored using a condensation particle counter (CPC; Model 3786, TSI Incorporated, MN, USA) at 1 Hz, while an additional optical particle counter (OPC; Grimm Aerosol Technik GmbH & Co. KG, Germany) was used to correctly count and size aerosol particles (Allen et al., 2011)."

Line 529: what is the importance of this statement? It is not clear how this is a "conclusion".

It's a summary preamble to the conclusions. Its importance is that it enabled us to sample a range of different pollution events over the course of the two days.

Line 557-559: There is nothing new about this statement. It is quite obvious that "the factors that control the air pollution build up in the London area are various and multiple: local emissions, transport from distant sources, terrestrial and marine emissions". This is not a significantly new conclusion here.

This has been re-phrased and tied more clearly to our stated objectives: "These three flights demonstrate the power of airborne measurements which can be used for targeted sorties to provide direct source attribution (or test hypotheses of sources) and for longitudinal studies over time to provide evidence of new or changing emission sources or source profiles to inform and constrain 250 bottom-up emissions inventories. They also provide clear evidence that relatively small local sources can still play a significant role in air pollution in a megacity region, particularly downwind where they exacerbate high "background" levels of pollution. The factors that control the buildup of air pollution in the London area are various and multiple: local emissions, transport from distant sources, terrestrial and marine emissions. In the highly complex environment around a megacity where a high background level of pollution mixes with a variety of local sources at a range of spatial and temporal scales, the use of unvarying VOC:VOC ratios may not be valid given the different ages of the air. It is necessary to

consider and constrain all of the contributing factors to understand the problem and to develop

effective mitigation and control strategies."

260

Megacity and local contributions to regional air pollution: An aircraft case study over London

Kirsti Ashworth1*, Silvia Bucci2*, Peter J. Gallimore3*, Junghwa Lee4*.a, Beth S. Nelson5*, Alberto Sanchez Marroquín6*, Marina B. Schimpf^{**,b}, Paul D. Smith⁸, Will S. Drysdale^{5,c}, Jim R. Hopkins^{5,c}, James D. Lee^{5,c}, Joe R.Pitt⁹, Piero Di Carlo^{10†}, Radovan Krejci^{11†}, James B. McQuaid^{6†} 265 ¹Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK ²Laboratoire de Météorologie Dynamique, UMR8539, IPSL, CNRS/PSL-ENS/Sorbonne Université/École Polytechnique, Paris, France ³Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK 270 ⁴Institute of Meteorology and Climatology, Leibniz Universität Hannover, Hannover, Germany ⁵Wolfson Atmospheric Chemistry Laboratory, Department of Chemistry, University of York, YO10 5DD, UK ⁶School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK ⁷Facility for Airborne Atmospheric Measurements (FAAM), Cranfield, MK43 0AL, UK 275 ⁸Swedish University of Agricultural Sciences, Svartberget Fieldstation, SE-92291 Vindeln, Sweden ⁹School of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK ¹⁰Department of Psychological, Health & Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti – Italy ¹¹Department of Environmental Science and Analytical Chemistry (ACES) & Bolin Centre for Climate Research, Stockholm University, S-10691 Stockholm, Sweden 280 *Participant of STANCO training school [†]Co-PI of STANCO training school anow at: Department of Modelling of Atmospheric Processes, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany ^bnow at: German Aerospace Centre (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen, Germany 285 "National Centre for Atmospheric Science, University of York, York, YO10 5DD Correspondence to: Kirsti Ashworth (k.s.ashworth1@lancaster.co.uk)

Abstract. In July 2017 three research flights circumnavigating the megacity of London were conducted as a part of the STANCO training school for students and early career researchers organised by EUFAR (European Facility for Aircraft

- 290 Research). Measurements were made from the UK's Facility for Airborne Atmospheric Measurements (FAAM) BAe-146-301 Atmospheric Research Aircraft with the aim to sample, characterise and quantify the impact of megacity outflow pollution on air quality in the surrounding region. Conditions were extremely favourable for airborne measurements and all three flights were able to observe clear pollution events along the flight path. A small change in wind direction provided sufficiently different airmass origins over the two days such that a distinct pollution plume from London, attributable marine
- 295 emissions and a double-peaked dispersed area of pollution resulting from a combination of local and transported emissions were measured. We were able to analyse the effect of London emissions on air quality in the wider region and the extent to which local sources contribute to pollution events.

The background air upwind of London was relatively clean during both days; concentrations of CO were 88-95 ppbv, total (measured) volatile organic compounds (VOCs) were 1.6-1.8 ppbv, and NO_x were 0.7-0.8 ppbv. Downwind of London, we
 encountered elevations in all species with CO >100 ppbv, VOCs 2.8-3.8 ppbv, CH₄ >2080 ppbv and NO_x >4 ppbv, and peak concentrations in individual pollution events higher still. Levels of O₃ were inversely correlated with NO_x during the first flight, with O₃ concentrations of 37 ppbv upwind falling to ~26 ppbv in the well-defined London plume. Mass balance techniques were applied to estimate Total pollutant fluxes from London were estimated through a plane downwind of the city. Our calculated CO₂ fluxes are within 10%the combined uncertainty of those estimated previously, but there was a greater disparity in our estimates of CH₄ and CO.

On the second day, winds were lighter and downwind O₃ concentrations were elevated to ~39-43 ppbv (from ~32-35 ppbv upwind), reflecting the contribution of more aged pollution to the regional background. Elevations in pollutant concentrations were dispersed over a wider area than the first day, although we also encountered a number of clear spikes transient enhancements from local sources.

- 310 This series of flights demonstrated that even in a region of megacity outflow, such as the southeast of the UK, local fresh emissions and more distant UK sources of pollution can all contribute <u>substantially</u> to pollution events in the southeast of the UK. In the highly complex atmosphere around a megacity where a high background level of pollution mixes with a variety of local sources at a range of spatial and temporal scales, and atmospheric dynamics are further complicated by the urban heat island, the use of pollutant ratios to track and determine the ageing of air masses may not be valid. The individualse
- 315 sources must therefore all be well-characterised and constrained to understand air quality around <u>megacities such as</u> London. <u>Research aircraft offer that capability through targeted sampling of specific sources and longitudinal studies monitoring</u> <u>trends in emission strength and profiles over time.</u>

1 Introduction

Over half of the world's population live in urban areas, a figure expected to rise to ~70% by 2050. There are currently 37
 megacities (cities with population >10 million), mostly in South and East Asia, and this number is rapidly increasing with a further 6 likely to reach this size by 2030. The speed of urban growth is such that megacities act as large pollutant sources that strongly influence the environment of the surrounding region.

More than 4 million deaths each year are attributed to ambient air pollution, with >90% of the urban population exposed to air pollution levels that exceed World Health Organisation (WHO) limits (WHO, 2018). In the UK, urban air quality is an

325 issue of increasing public concern with air pollution in London a particular focus. Measurements at Marylebone Road recorded an annual average concentration of 44 ppbv of NO₂ in 2017 (over twice the European Environment Agency's limit) with 38 exceedances of the hourly limit (down from 122 in 2012) and 12 exceedances of the daily maximum PM₁₀ limit of 50 µg m⁻³ (down from 48 in 2012; WCC, 2018).

London has been the target of numerous ground-based and airborne measurement campaigns attempting to understand the
 sources, formation and extent of air pollution in the city and across the wider region. The most relevant of these to the
 current study include RONOCO (Role of Nighttime chemistry in controlling the Oxidising Capacity of the atmOsphere) in
 2010-11 (Stone et al., 2014), EM25 (Emissions around the M25) campaign in 2009 (McMeeking et al., 2012), ClearFLo
 (Clean air for London) in 2012 (O'Shea et al., 2014), flights off the southern and eastern coasts of the UK during
 EUCAARI-LONGREX in 2008, (e.g. Hamburger et al., 2011, Highwood et al., 2012), and innovative sorties to calculate
 emission fluxes (Shaw et al., 2015). Synoptic conditions, wind speed and direction were highly variable during these

- campaigns, resulting in large ranges of measured trace gas and particle concentrations.
- The flight paths during the EM25 campaign (McMeeking et al., (2012) and one daytime flight undertaken during RONOCO (Aruffo et al., 2014) were similar to ours, circuiting London above the M25 and overflying the southern and eastern coast of the UK. However, Aruffo et al. (2014) reported very weak north-easterly winds similar to one of the EM25 flights but in
- 340 contrast to the west and south-westerly observed during our three flights. The other EM25 flights encountered clear westerly and easterly air flows of different strengths making interpretation and apportionment difficult. Concentrations of most trace gases measured by Aruffo et al. (2014) were low with average levels of NOx <2 ppbv and ozone ~40 ppbv throughout the flight. However, on each of the three circuits around the M25 orbital motorway, a clear plume of pollution from Greater London was sampled to the west. In the plume NOx levels were enhanced by as much as 27 ppbv resulting in substantial</p>
- titration of ozone which reduced O₃ concentrations to as low as 16 ppbv. This effect peaked over the city of Reading (population >300,000) where it is likely that local emissions enhanced the plume. While CO concentrations were also elevated within the plumes, strong peaks were also observed to the east of London presumably as the result of large local point sources.

These Their observations match mirror those of the EM25 campaign. McMeeking et al. (2012) also report substantial elevations in NOx and CO in the London pollution plumes along with clear evidence of ozone titration. Aerosol mass

concentrations were also enhanced in the plumes (~10 µg m⁻³, compared with ~6 µg m⁻³ upwind of London). During their flight B460, when the wind was also easterly, the peak of the plume was again encountered over Reading.

O'Shea et al. (2014) demonstrated the potential of using aircraft measurements to perform a pollutant mass balan

- forcalculate pollutant emissions from the Greater London area. Such an approach can serve as an independent verification 355 and constraint of bottom-up emission inventories under meteorological conditions that ensure a clear well-defined spatiallyconstrained plume downwind of an urban source area with relatively homogeneous clean air upwind. During one flight in July 2012 with suitable meteorology, the authors report enhancements of ~3% in CO2, ~4% in CH4 and ~31% in CO relative to the mean background concentration (i.e. that observed upwind of London). The authors used the observed increases to back-calculate an emission flux for Greater London and compared their estimates to the total emissions of CO2, CH4 and CO
- 360 from London in the National Atmospheric Emissions Inventory (NAEI). Airborne estimated fluxes were found to be a factor of 2.3, 3.4 and 2.2 higher for CO₂, CH₄ and CO than the NAEI dataset. However, as the authors point out, NAEI values are annual while the airborne measurements are for a single day; this temporal difference is likely contributing at least in part to the discrepancy, highlighting one difficulty in interpreting and evaluating aircraft atmospheric measurement data.
- Shaw et al. (2015) report mixing ratios of anthropogenic VOCs, NOx and O3 measured from the Natural Environment 365 Research Council's (NERC's) Dornier 225 aircraft from six flights carried out in June-July 2013. Mean concentrations of benzene, toluene and NOx were highest over Inner London (0.20±0.05, 0.28±0.07 and 34.3±15.2 ppbv respectively) and peaked during morning rush-hour, when clear evidence of O3 titration was also observed. Mixing ratios were generally lower over Greater London and the surrounding suburbs although elevated NOx levels were encountered in the outflow from London Heathrow airport consistent with aircraft and road traffic emissions.
- 370 Here we report on a series of three flights conducted on 3rd-4th July 2017 during STANCO (School and Training on Aircraft New Techniques for Atmospheric Composition Observation), organised on behalf of EUFAR (European Facility for Aircraft Research). Each flight circled London with the aim to detect and sample the urban plume, and but more importantly to to explore whether local sources contribute strongly to air pollution downwind of a megacitydetermine the relative contributions of London outflow and local sources to other pollution plumes measured during the flights. In contrast to
- 375 previous campaigns, which flew much closer to the city, flew transects over the city or followed the London plume to study its ageing we looked to place London in a regional context rather than as the focal point, i.e. we explore the impact that fresh local emissions have on air pollution in the vicinity of a megacity and demonstrate the difficulty of disentangling the sources of pollution events given the complex mix of air masses of differing age and origin in this region.

The next section provides a short overview of the three flights, the on-board instrumentation, the sampling conducted and the 380 back-trajectory analysis performed. We present our results in Section 3, focusing on each notable observed pollution event and analyse analysing the observations in more detail. We discuss the sources for specific pollution events that we observed during each flight and conclude with a brief summary in Section 4.

2. Methods

2.1 Overview

385 Full details of the flight paths are given in Table 1 and Fig. 1. Flight C016 took off from Cranfield airfield at ~11:10 on 3rd July and flew clockwise around London; flights C017 and C018 departed at ~09:40 and 14:20 respectively on 4th July, flying counter-clockwise due to a shift in wind direction overnight. In all three cases conditions were settled with relatively good visibility. Cruising altitude was 800-1000 m, based on the on-board GPS-inertial navigation system, dropping to ~150 m over land and 25 m over the sea to sample specific plumes.

390 The dates and times of the three flights are listed in Table 1. Fig. 1 shows the flight pattern of the flights which were

designed to intercept and sample the pollution outflow from London and probe local pollution across SE England. Our flights circled London at a distance of ~80-150 km to minimise the influence of London emissions on our observations.

Due to the change in synoptic situation between the two flight days we observed two very different patterns of pollution, both local sources and the emission outflow from London. Consistent westerly winds on 3rd July gave rise to a distinct

395 "plume" east of London over the Thames Estuary, with elevated gas and particle concentrations relative to the upwind air west of London. The clear definition of the plume edges allowed us to quantify the outflow of pollution from London<u>and estimate emissions of CO₂, CO and CH₄ from the city using a mass balance approach (see Section 3.3.1). Relatively stagnant conditions and thecoupled with a shift in wind direction on 4th July reduced the influence of London emissions on the surrounding region. High pollutant levels measured during flights C017 and C018 eould were thus be more easily attributed to local sources.
</u>

2.2 Sampling platform

405

The UK's Facility for Airborne Atmospheric Measurements (FAAM) BAe-146-301 Atmospheric Research Aircraft (hereafter "FAAM BAe-146") operated by the UK's provided the airborne science platform. The aircraft has a working altitude range of 100 to 30 000 feet (Petersen and Renfrew, 2009) and a core instrument payload that has been described in full elsewhere (e.g. Harris et al., 2017). The instruments relevant to the current series of flights are described below.

2.2.1 Meteorological measurements

Temperature, wind vector, pressure and humidity are all core measurements. Temperature was recorded with an accuracy of ± 0.3 K using Rosemount (Rosemount Aerospace Ltd., UK) type 102 de-iced (Rosemount 102BL) and non-de-iced (Rosemount 102AL) Total Air Temperature sensors (Petersen and Renfrew, 2009; Harris et al., 2017). Pressure and 3-D

410 wind vectors were recorded with estimated uncertainties of 0.3 hPa and 0.2 ms⁻¹ respectively (O'Shea 2014; Allen et al., 2011). Humidity was measured only in cloud-free air with a General Eastern 1011B chilled mirror hygrometer. Altitude, position and aircraft velocity data were recorded at 32 Hz by a GPS-aided Inertial Navigation system. The measurement protocol for these and other atmospheric parameters has been described in detail by Petersen and Renfrew (2009) and Allen et al. (2011).

415 2.2.2 Trace Gas Concentrations

Volatile Organic Compounds (VOCs) were sampled using the whole air sampling (WAS) system fitted to the rear-hold of the aircraft. The system consists of sixty-four silica passivated stainless steel canisters (Thames Restek, Saunderton UK) connected via a 3/8 inch diameter stainless steel sample line to an all-stainless steel assembly metal bellows pump (Senior Aerospace, USA) which draws air from the port-side sampling manifold and pressurised air into 3 L canisters to a maximum

- 420 pressure of 3.25 bar (giving a useable analysis volume of up to 9 L). The collection time of ~20s equates to a smoothed average VOC concentration over ~2 km (Lee et al., 2018). The WAS canisters were analysed by withdrawing and drying 700 ml samples of air using a glass condensation finger held at -40 °C. These samples were preconcentrated using a Markes Unity2 pre-concentrator (fitted with an ozone precursors adsorbent trap) and CIA Advantage autosampler (Markes International Ltd), and then transferred to the GC oven for analysis as described by Hopkins et al. (2011). Further details are given by Lewis et al. (2013) and Lidster et al. (2014).
 - In-situ measurements of NO were made using a custom built chemiluminescence instrument (Air Quality Design Inc) with NO₂ measured by photolytic conversion to NO on a second channel. In-flight calibrations were carried out above the boundary layer at the beginning and end of each flight by adding a small flow of 5_ppmv NO in nitrogen (BOC) to the sample inlet. The NO₂ conversion efficiency was measured using gas-phase titration of the NO by O₃ in the calibration to

Formatted: Subscript Formatted: Subscript 430 NO₂. The calibration factors were interpolated throughout the flight to account for any sensitivity drifts in the instrument. Detection limits are ~22 pptv for NO and ~23 pptv for NO₂ for 1 Hz averaged data, with estimated accuracies of 15% for NO at 0.1 ppbv and 20% for NO₂ at 0.1 ppbv

Continuous 1 Hz measurements of CO₂ and CH₄ were made by Fast Greenhouse Gas Analyser (FGGA; Model RMT-200, Los Gatos Research, USA). The instrument was calibrated ~hourly using a two-point calibration by sampling two cylinders

- 435 of air containing CO₂ and CH₄ at mole fractions that span the normal measurement range. A third "target" cylinder containing intermediate mole fractions of CO₂ and CH₄ was sampled approximately mid-way between hourly calibrations to allow for an assessment of the calibrated data quality. During 12 flights conducted between May-July 2017, the average difference between the target cylinder measurements and the known cylinder composition was -0.047 ppmv for CO₂ and 0.49 ppbv for CH₄. The standard deviation of this difference at 1 Hz was 0.348 ppmv and 1.64 ppbv, respectively.
- 440 Combining these with the uncertainties associated with water vapour correction (0.150 ppmv and 1.03 ppbv, respectively) and the certification of the target cylinder (0.075 ppmv and 0.76 ppbv, respectively) yields nominal total uncertainties of 0.386 ppmv for CO₂ and 2.08 ppbv for CH₄ at 1 Hz. A detailed description of the in-flight calibration system is given by O'Shea et al. (2013).

Measurements of CO were made with a fast-response vacuum-UV resonance fluorescence spectrometer with an uncertainty
 of 2% (Model AL5002, Aerolaser GmbH, Germany; Gerbig et al. 1999). Ozone (O₃) concentrations were measured using a
 UV photometric analyzer (Model TEi-49i, Thermo Fisher Scientific Inc., USA).

All trace gas concentrations from the on-board instrumentation are reported as molar (volume) concentrations.

2.2.3 Aerosols

Sub-micron non-refractory aerosol composition was measured by an Aerodyne Research (Billerica, MA, USA) Compact
 Time of Flight (CTOF) type AMS (Canagaratna et al., 2007; Drewnick et al., 2005). The sampling strategy has been described in previous studies (Crosier et al., 2007; Capes et al., 2008; Morgan et al., 2009). The measurement accuracy is estimated to be 10 % (not considering the collection efficiency uncertainty) with detection limits for organics and ammonium ~40 ng m⁻³, and for nitrate and sulphate ~5 ng m⁻³ (Drewnick et al., 2005). Ionisation efficiency of nitrate and relative ionisation efficiencies of ammonium and sulphate were obtained from calibrations performed using monodisperse

455 ammonium nitrate and ammonium sulphate (see Robinson et al., 2011 and Morgan et al., 2010b). The temporal stability of total aerosol was monitored using a condensation particle counter (CPC; Model 3786, TSI Incorporated, MN, USA) at 1 Hz. An optical particle counter (OPC; Grimm Aerosol Technik GmbH & Co. KG, Germany) was used to correctly count and size aerosol particles (Allen et al., 2011). Aerosol scattering at 450, 550 and 700 nm was recorded using a three-channel TSI 3563 Integrating Nephelometer.

460 2.3 Air mass transport

We make use of the FLEXPART Lagrangian particle dispersion model (Stohl et al., 2005, and references therein) adapted for WRF (Brioude et al 2013) to characterize air mass transport conditions during the STANCO campaign. Meteorological input from WRF is provided with <u>a 1-</u>hourly time step at a spatial resolution of 3 km x 3 km. Clusters of 500 backtrajectories are computed back in time for 24 hours with ata 1-hour time stepintervals.

 465
 The output is a gridded "footprint emissions sensitivity" of the retroplume (as described in Stohl et al., 2007). It quantifies the residence time of the back trajectory plume over each bin-gridcell and, hence, the its potential contribution of such bin to the air mass composition at the point of the trajectories' release. When As we were looking for correspondences with ground-level emission sources, we select only the back-trajectories from below the boundary layer, as interpolated by FLEXPART from the WRF simulations.

470 3. Results

3.1 Meteorology and air mass history

Meteorological conditions on 3rd-4th July 2017 are summarised in Fig. 2 which shows the low-level (\$50 hPa) wind fields, with geopotential height and Liquid Water Path (LWP) during the flight period from the ERA-interim ECMWF re-analysis data.

- During C016 (3rd July) the mean flow at 850 hPa was mainly westerly with winds <15 m s⁻¹ across the London area, giving favourable conditions to study the London plume (see Section 3.3.1 for further details). There were clouds and slight precipitation in the southwest flight quadrant, and sun in the east. The high-pressure system that brought westerly flow on 3rd July moved to the north overnight, bringing south-westerlies for both flights on 4th July. Windspeed also dropped to <10 m s⁻¹ and urban air pollution was dispersed rather than concentrated into a plume.
- The SkewT-logP diagrams in Fig. 2 show that the lifted condensation level was ~890 hPa, effectively constraining pollution from near-surface emissions below this height. Fig.3a 2a-c shows the height of the mixed layer varied between ~800 m (during flight C016 on 3rd July) and ~1500 m (during C018, the afternoon flight on 4th July). Our airborne observations show good agreement of mixing layer heightdepth with those obtained from a radiosonde ascent over nearby Nottingham at 00:00 UTC on 04th July (Fig. 3b2d).; our Those sounding profiles show-indicate that all sampling was performed within the mixed layer.

The high-pressure system that brought westerly flow on 3rd July moved to the north overnight, bringing south-westerlies for both flights on 4th July. Windspeed also dropped to <10 m s⁻¹ and urban air pollution was dispersed rather than concentrated into a plume. The local air pollution sources observed during flights C017 and C018 are further discussed in Sections 3.3 and 3.4.

490 3.2 Airborne observations

95

Fig. 1 shows the path of FAAM BAe-146 during each of the three flights, broken into segments of equal duration, which are numbered for ease of reference. It should be noted that due to the change in wind direction between the two days, C016 flew in a clockwise direction whereas the flights on 4_{k}^{th} July circled anti-clockwise. to enable us to locate the observed features geographically. Time series of the aircraft altitude and continuously measured gas-phase concentrations and aerosol number density are plotted for the three each flight paths in Figs. 5-74-65. The numbers shown in the upper panel of each correspond

In addition to the suite of real-time continuous measurements sampled from the aircraft 24, 14, and 24 WAS were collected during each of the flight respectivelys and later subsequently analysed for VOC concentrations. Table 2Table 1 shows average concentrations of all trace gases and aerosol number density for the whole flight, the background (upwind (cleanof

to the numbered flight segments in Fig. 1 to enable us to locate interpret the observed features geographically-

- 500 London) flight segments, and the plume (downwind (plume)of London) flight legs at the closest in nearest altitude to the upwind segment(s) for each of C016-C018. It should be noted that as WAS were manually initiated; in response to observed elevations in other trace gases as well as to during targeted flight segments up- and down-wind of London, so must the data must be considered skewed to more polluted locations. A further caveat when interpreting these data is the very-small sample size.
- Figs. 4-6 and Table 2Table 1 shows the clear enhancement in gas-phase concentrations downwind of London during all three flights. CO concentrations are as low as ~88-95 ppbv on the upwind flight segments but increase by ~10 ppbv in the plume on each flight. Enhancements of CH4 are around 20% in all downwind plumes (rising from ~2.01-2.05 to ~2.05-2.08 ppmv). NOx reached peaks of >14 ppbv on 3rd July and >4.5 ppbv on 4th downwind of London compared to levels between ~0.7-0.8 ppbv in the relatively clean upwind air. NOx concentrations were highly variable across all 3 flights as expected for such areas and the second se

Formatted: Superscript

Formatted: Superscript

- 510 short-lived species associated with fresh local emissions. Total VOC concentrations rose by a factor of ~2 (from ~1.6-1.8 to ~2.7-3.7 ppbv) although the changes in individual species varied between the flights. The only exception to this pattern are is ozone, a secondary pollutant formed by photochemical reactions over a matter of hours and which is destroyed by direct reaction with NO (referred to as NO titration). Q₂ levels during C016 which arewere considerably lower in the plume (~26 ppbv) than along the upwind flight segment (36.5 ppbv) in flight C016 pointing to strong NO₈ sources in London.
- Interestingly, a<u>A</u>ll three flights had similar concentrations of O₃ upwind of London (~32.6-36.5 ppbv)...) leading to hHigh O₃:NO_x ratios. are This is characteristic of aged air masses and suggests that the pollution encountered along the upwind flight segments to the west (C016) and south-west (C017 and C018) of London is the result of transported rather than local fresh emissions. This is discussed in further detail in Section 3.3.1below.
- The other striking difference between the flights, also symptomatic of the origin of the transported air, is the aerosol number density. Both C016 and C018 encountered much higher numbers aerosol upwind than in the London outflow (2x10⁴ and 1.5x10⁴ cm⁻³ vs. 7x10³ and 5x10³ cm⁻³ respectively); in both cases, this background air had travelled from the west to southwest. By contrast, flight C017 sampled air transported from the west to north-west of the UK and aerosol number density was lower upwind of London (2.5x10³ vs. 7x10³ cm⁻³ downwind), suggesting the enhancement was due to a strong source SW of London rather than local to the flight track.

525 3.2.1 Flight C016: Westerly advection

A large part of C016 took place east of the UK coast, flying mostly below 800 m altitude over the sea, where we sampled air inside the PBL in conditions of high RH (values between 90 and 100_%) and a potential temperature of ~290_K. Pollutant levels during this flight were higher than the two later (inland) flights. The enhancement in the trace gas concentrations and aerosol number density can be almost entirely attributed to pollutants emitted and advected from the UK with little influence

- of continental Europe. Air-mass back trajectories for the flight segments to the east of London are shown in Fig. 5. The sharp edges to the plume can be deduced from these snapshots in time, with the air masses intercepted at 11:48:00 and 11:55:00 traversing London but those at 11:41:00 and 12:01:00 bypassing the city and bringing cleaner air from other regions. In this downwind section of the flight (2-9 of Fig. 64 and first panel of Fig. 41) CO concentrations ranged from 90-120 ppbv. We also observed the highest values of NO_x, often in excess of 10 ppbv and peaking at 14.6 ppbv, and elevated concentrations up to 450 ppmv of CO₂ and up to 2 ppbv of CH₄. Aerosol number density was mostly <10⁴ cm⁻³, with the exception of two
- up to 450 ppmv of CO₂ and up to 2 ppbv of CH₄. Aerosol number density was mostly <10⁴ cm⁻³, with the exception of two layers between 600 and 700 m altitude where numbers peaked to 3x10⁴ cm⁻³ east of and parallel to London (segments 6-7). Above the mixed layer and at higher altitudes >1500 m we did not observed any striking feature.

3.2.2 Flights C017-C018: South-westerly advection

Meteorological conditions were more quiescent on Tuesday 4th July with relatively slack air flow from WSW to WNW 540 throughout the day, giving way to some localised re-circulation, particularly to the northeast of London (the origin and transport of air masses are discussed in more detail in Section 3.3.2). We did not encounter a clear London plume, but instead were able to identify other more local pollution events which are presented in Sections 3.3.2 and 3.4.

Flights C017 and C018 followed the same flight plan, circumnavigating London in a clockwise direction along the same route and altitudes as far as possible, as shown in Figs. 1 and <u>6-75-6</u>. The initial altitude was 1500 m during both flights on

4th-of July, before a descent to 700 m to the west and south of London and then to 25 m over the Dover Straits and English Channel (flight segments 4-5 on Figs. 6-5 and 76) where we were able to sample distinct plumes from marine traffic (see Section 3.4<u>3.2</u>). There then followed the series of reciprocal runs over East Anglia (segments 6-11) where a diffuse plume of pollution was encountered with elevated CO and CH₄ concentrations and, to a lesser extent, aerosol number density over a relatively large area. Within this, two distinct plumes of pollution were observed and sampled in both flights - an interesting case of transport from two distinct outflow plumes which is analysed in more detail in Section 3.3.

The humidity and temperature during these flights were similar to those during C016, with RH varying between 95% and

Formatted: Subscript Formatted: Subscript

100% and potential temperatures between 290 and 295K. However, conditions during C017 and C018 differed in several notable ways. The morning flight (C017) was characterised by relatively stagnant winds (see Figs. 21 and 2) and a low mixed layer depth-height (~800_m). Pollutant concentrations were the lowest sampled (Fig. 65). During the afternoon, wind 555 speed increased, and the height of the PBL rose to ~1500 m and the wind direction became more southwesterly, leading to distinct differences between the composition of the upwind samples between the two flights. Upwind measurements from flight C017 showed very low levels of CO, O3 and particles (mostly <88 ppbv, <35 ppbv, <2500 cm⁻³ with periodic transient elevated concentrations) compared with flight C016, indicating much cleaner background air. NOx levels were slightly higher though (mostly ~1.0 ppbv with multiple peaks above 2.5 ppbv), suggesting a larger 60 relative contribution from local emission sources than on the previous day. This fresh NOx likely also contributed to the reduced O3 concentrations through NO titration. While the total concentrations of VOCs from the four WAS collected along this segment correlate well with other pollutants ($r^2 = 0.85, 0.99, 0.84$ and 0.79 against CO, NO_x, CH₄ and aerosol number density respectively), acetylene which has an atmospheric lifetime of ~2-3 months against a typical OH concentration of $\sim 10^{-6}$ molecules cm⁻³ is not well correlated with NO_x (r² = 0.48) although it is against the longer-lived pollutants (r² = 0.92, 565 0.88 and 0.74 against CO, CH4 and aerosol number density). This is typical of transported air (McMeeking et al., 2013), further confirmation that we were sampling aged background air mixed with some local fresh emissions. Back-trajectories (top panels of Fig. 11) show winds were blowing from the west and north during flight C017 bringing relatively clean air to the region. This is further corroborated by a high altitude leg during the reciprocal runs over East Anglia (flight segment 12 on Figs. 1 and 5) downwind of London. Along this leg, which at a height of just under 2 km was well above the BL, 570 concentrations of gas-phase pollutants were all lower than those sampled in the upwind BL (~10s pptv of NOx, CO ~80 ppbv, O₃~26 ppbv) indicating the long-range transport of clean air into the region. In contrast to the morning flight, the back-trajectories for the afternoon flight, C018 (bottom panels of Fig. 11), show a mix of airmass origins. While a large proportion of the air also arrives from the west and north, there is a substantive contribution from the west-south-west, along a similar trajectory to that for flight C016. This rather neatly explains our upwind 575 atmospheric measurements lying between those of the two other flights, C017 with clean air from north and west, and C016 with high aerosol number density and CO from strong pollution sources to the southwest. NOx concentrations are elevated along this segment with local sources strongly contributing to the pollution sampled here as would be expected given the slower wind speeds on 4th July. However, similar to C016, aerosol number density reached 2x104 cm-3 between flight segments 2 and 4 during C018, apparently associated with an air mass originating from SW England. This is in sharp 580 contrast to the C017 (<5x10³ cm⁻³ in this area) with the difference likely caused by the higher afternoon boundary layer uplifting local particles from southern England as no enhancement was observed during the latter stages of the flight when the air masses were transported from more northern and central regions. Although the absolute values differed between the two flights, similar patterns were observed in pollutant concentrations and aerosol number density. Aside from a few specific locations, which are described in Section 3.3, little pollution was 585 encountered during either flight with NOx generally <2 ppbv, CH₄<1.95 ppbv, CO₂ <430 ppmv and aerosol number density $< 10^4 \text{ cm}^{-3}$ aerosol number density reached 2x104 cm⁻² between flight segments 2 and 4, apparently associated with an air mass originating from SW England. This is in sharp contrast to the morning flight (<5x10² cm⁻² in this area) with the difference likely caused by the higher afternoon boundary layer uplifting local particles from southern England as no enhancement was 590 observed during the latter stages of the flight when the air masses were transported from more northern and central regions, resulting in important changes in the observed air composition (Figs. 6 and 7). Notably, aerosol number density reached 2x104 em3 between flight segments 2 and 4, apparently associated with an air mass originating from SW England. This is in sharp contrast to the morning flight (<5x10² cm⁻² in this area) with the difference likely caused by the higher

Formatted: Space After: 6 pt

afternoon boundary layer uplifting local particles from southern England as no enhancement was observed during the latter 595 stages of the flight when the air masses were transported from more northern and central regions. Aside from these distinct events, similar patterns were observed in pollutant concentrations and aerosol number density although the absolute values differed between the two flights. In particular, high concentrations of CO, CH₂, and NO_x were measured in the NE quadrant of both flights over northern East Anglia (around 1.5 °E, 52.5 °N, see Figs. 1, 6 and 7) and reciprocal runs were performed above this location, to sample the pollution at multiple heights in the boundary layer. CO 100 reached values of 120 ppbv, NOx-5 ppbv, O2 concentrations >50 ppbv (compared with <40 ppbv during the first part of C018 and throughout the other flights) and CH4>2 ppbv. CO2 levels however were always <420 ppmv. Back trajectories, considered alongside NAEI emission sources suggest this was associated with transport from a wider region including Wales and NW England over the previous 24 hours, which had then been advected northward in the final 6 hours to reach the Norwich region. Away from this location, little pollution was encountered during either flight with NO_{*} generally <2 ppbv, 305 CH4<1.95 ppbv, CO2<430 ppmv and aerosol number density <10⁴ cm⁻³. During C017, CO concentrations were <100 ppbv, with the exception of a peak reaching 115 ppbv, associated with an enhancement in NO* of up to 2 ppbv, detected at an altitude of around 500m in the vicinity of Gatwick airport (at 51°N, 0.55°E; close to segment 4 on Figs. 1 and 6). This feature was not observed on flight C018 (Fig. 7). Fig. 8 shows air mass 310 footprints from FLEXPART back-trajectories for the 5-minute time interval during which the plume was observed on board C017 and the equivalent interval for the afternoon flight, and indicates the difference is the result of a greater influence of

afternoon. The NAEI emission inventory suggests this was likely local pollution from the Brighton area and A26 major road. Aside from these distinct events, similar patterns were observed in pollutant concentrations and aerosol number density
 although the absolute values differed between the two flights. In particular, high concentrations of CO, CH₄, and NO₄ were measured in the NE quadrant of both flights over northern East Anglia (around 1.5 °E, 52.5 °N, see Figs. 1, 6 and 7) and reciprocal runs were performed above this location, to sample the pollution at multiple heights in the boundary layer. CO reached values of 120 ppbv, NO₄ – 5 ppbv, O₃ concentrations >50 ppbv (compared with <40 ppbv during the first part of CO18 and throughout the other flights) and CH₄ >2 ppbv. CO₂ levels however were always <420 ppmv. Back trajectories, considered alongside NAEI emission sources suggest this was associated with transport from a wider region including Wales and NW England over the previous 24 hours, which had then been advected northward in the final 6 hours to reach the Norwich region. Away from this location, little pollution was encountered during either flight with NO₄ generally <2 ppbv, CH₄<1.95 ppbv, CO₂<430 ppmv and aerosol number density <10⁴ cm³.

transported pollution from land based sources in the morning, with the sampled air spending more time over the sea in the

3.3 Megacity outflow vs local sourcesPollution episodes

Each of the three flights followed similar flight paths, circling London just beyond the outer ring road (M25)₂; in order to intersect and sample relatively clean "background" air upwind of the city (segments on C016, C017 and C018 respectively) and polluted outflow downwind. Clear increases in pollutant concentrations were detected in the urban plume. Small differences in windspeed and direction across the three flights resulted in air masses with very different origins contributing to the background composition and to individual pollution events. We were thus able not only to analyse the effect of London emissions on air quality in the wider region but also the extent to which local sources contributed significantly to specific observed pollution events. We now present four such episodes encountered during one or more of the flights, following the route round London in an anti-clockwise direction, reflecting on the similarities and differences in air mass origins and likely sources in each case.

3.3.1 Gatwick area: Flight C017, 4th July

During C017, CO concentrations were generally <<100 ppbv, with the exception of a peak reaching 115 ppbv detected at an altitude of around 500 m to the south of London in the vicinity of Gatwick airport (at 51°N, 0.55°E; close to segment 4 on Figs. 1 and 5). This elevation in CO was associated with an enhancement in NO_x of up to 2 ppbv, suggesting vehicular emissions to be a likely source. This feature was not observed during either flight C016 (Fig. 4) or C018 (Fig. 6).

Fig. 7 shows air mass footprints from FLEXPART back-trajectories for the 5-minute time interval during which the plume was observed on-board C017 and the equivalent interval for the afternoon flight (C018). Although we acknowledge that transport-related emissions are highly time-dependent, these footprints indicate the difference is more likely the result of a greater influence of transported pollution from land-based sources in the morning, with the sampled air spending more time over the sea in the afternoon. The NAEI emission inventory for this area suggests this was local pollution from the Brighton area (population ~275,000) and the A26 major road.

345 <u>3.3.2 Marine emission sources</u>

350

We observed substantial local elevations in concentrations of all pollutants during the low-level flight legs over the Dover <u>Straits and English Channel for all three flights (segments 8, 4-5 and 4 respectively on Figs. 4-6). The smaller sampling</u> footprint associated with low-level flying meant it was easier to positively identify the sources of these pollution events than over the land surface and we were able to directly attribute some of the peaks to specific vessels. We describe one such situation here.

Between around 10:21 and 10:27 UTC on 4th July (flight C017) we overflew the Dover Straits at an altitude of between 25-

<u>75 m. Clear enhancements in pollutant concentrations and aerosol number density were directly seen on most on-board</u> instruments and we were able to observe the passage of a number of large ships which appeared to correlate with these enhancements. In order to evaluate whether a part of the observable signal in the different variables was attributable to

- 55 marine traffic, we plotted the time series of NO_x, NO, NO₂, and CO₂ concentrations and the aerosol number density (CPC; Fig. 8). We identified a number of plumes throughout this portion of the flight but focused our analysis on the clear sharply defined peak in concentration observed at 10:22:30 and marked with an 'X' on Fig. 9. At this point, NO_x levels were observed to be elevated by a factor of ~20 and aerosol number density by a factor of ~5.
- As marine emissions are known to be an important source of both NO_x and PM (Corbett et al., 1999), we used data obtained from Marine Traffic (https://www.marinetraffic.com) to examine the vessels navigating this area at the time of overflying. Fig. 9 shows the portion of the flight path above the sea and maps the paths of those ships with a tonnage >10 kton (thin coloured lines, with colour ranging from purple to yellow corresponding to specific times between 10:13:20 and 10:26:40), overlaid with the path of the aircraft (thick line); arrows denote windspeed and direction.

The 'X' in Fig. 9 corresponds to the location of the prominent peaks in elevation seen in Fig. 8b-d. At this point, a large ship +
 had passed under the flight path shortly ahead of our transit and we intersected its plume around 40s later. We were able to positively identify this vessel from Marine Traffic data as a 15 kton Liberian container ship. Other smaller plumes seen during C017 and the other flights could not be directly attributed to a single ship and are likely an accumulation of emissions from a number of smaller or more distant vessels (as observable in Fig. 9).

3.3.1-3 London plume: Flight C016, 3rd July

A narrow well-defined plume of pollution was encountered downwind of London (flight segments 3-9 in Figs. 1 and 54). A series of reciprocal runs was performed in this outflow over the Thames Estuary at altitudes between 100 and 800 m capturing its vertical profile. In addition to the continuous measurements, 13 WAS were collected during these flight legs. Table 2 Table 1 shows the average concentrations of gas-phase pollutants and aerosol number density across segments 4, 6

Formatted: Font: Bold
Formatted: Superscript
Formatted: Font: Bold

(Formatted: Space Before: 0 pt, After: 3 pt

and 7 (<u>where the</u> average altitude <u>was</u>~450 m). Flight segment 12 in Figs. 1 and <u>54</u> lies directly upwind of the city and provided a contrasting relatively clean air mass (<u>as evident in Table 2Table 1</u>). Five WAS were made along this leg at an <u>average comparable</u> altitude of 550 m.

375

The outflow from London is easily identified by the <u>sharp substantial and distinct spikes enhancements</u> in NO_x, CO₂ and CH₄ concentrations seen in segments 3-9 in Fig. <u>54, which These are</u> anticorrelated with O₃ concentrations. Θ_3 <u>concentrationswhich</u> decreased sharply (to ~22-25 ppbv) in the plume due to NO titration and are highest (~35-40 ppbv) in

- 580 the upwind air mass due to the formation of O₃ and other secondary pollutants from photochemical ageing of more distant emission sources. Total (measured) VOC concentration was also elevated in the plume (peaking at 5.9 ppbv) compared with upwind air (max 1.8 ppbv). However, proportions of longer-lived compounds (e.g. ethane and propane) were higher upwind (~0.5 vs. ~0.3 and 0.35 vs. 0.17 ppbv). as were tThe ratios of benzene to toluene (B:T; 1.78 vs. 0.63) and O₃:NO_x (49.6 vs. 8.4), being higher upwind than in the plume further reinforce that the upwind airmass is more aged and <u>These</u> are typical
- characteristic of urban plumes (McMeeking et al., 2012) and further reinforce that the upwind airmass is more aged. This is also evident in the ratios of benzene to acetylene, another key marker of aged air, which fell from ~0.7 upwind and to ~0.4 downwind, although It should be noted that our value of 0.4 is slightly higher than has been previously reported for London outflow (Parrish et al., 2009; McMeeking et al., 2012; von Schneidemesser et al., 2010), and in conjunction with sampling during flights C017 and C018 suggests that there are strong local sources of benzene to the east and north-east of the city.
- Fig. 9-10 shows the concentrations of key VOCs for each reciprocal run in the plume (flight segments 3-7 on Figs. 1 and 4): the altitude of each is indicated on the xy-axis. The highest absolute concentrations occurred at altitudes between ~200-600 m. This is suggestive of pollution being lofted above a layer of cooler surface air outside of the urban heat island, i.e. the urban boundary layer phenomena. Overall, our observations support the conclusion that it was London outflow that we sampled during the reciprocal runs over the Thames Estuary, with little evidence of strong substantial contributions from
- 395 local emission sources. The relatively strong (>15 m s⁻¹) prevailing south-westerly <u>wind</u> ensured <u>on-board</u> measurements from FAAM BAe-146 provided a <u>sufficiently clear plume and sufficiently large</u> data footprint <u>large enough</u> to allow the calculation of regional-scale CO<u>. CO</u>2 and CH4 fluxes-from the plume using a mass balance approach. While measurements <u>are vertically discrete and only eover sample</u> a small percentage of the vertical profile, the high temporal and horizontal resolution of the sampling rate and spatial distribution of the data inof the plume allowed for the data to be interpolation
- 100 <u>interpolated</u> of the data for the flux to be calculated using this method<u>across the full altitude range of the observations</u>. Good characterization of the background air, found by measurements around the edges of the London plume, was also integral for this analysis.

Several secondary plumes from shipping emissions were removed from the dataset before mass balance analysis was performedpollutant fluxes were calculated. Discrete data points from 5 horizonal flight legs spanning ~30-800 m above sea
 level were then-interpolated onto a 19x19 grid consisting of 8412 m by 38 m grid boxes in the horizontal and vertical respectively. As the lowest leg of the flight fell within the lowest boxes on the interpolation grid further extrapolation towards the surfaces was unnecessary. We assumed that air below the lowest flight track was well mixed and that this track

- is therefore representative of it and that the full vertical profile of the plume was captured by these flight legs. Boundary
 layer height was estimated from temperature-humidity profiles to be between 800 and 1000 m while the plume was being
 sampled. Vertical profiles for NOx only showed significant enhancement below these heights indicating a lack of mixing
- into the free troposphere. NOx was used to indicate this, as its shorter lifetime leads to near zero concentrations above the boundary layer, whereas the difference is less pronounced in the longer-lived CO/CO2/CH4. Kriging was achieved using the MATLAB "EasyKrig3.0" program (Chu, 2004).

A vertical plane for the downwind plume was produced, along with the wind vector perpendicular to these planes, using the methodology described by Kitanidis (1997) and May et al. (2009). Vertical background runs were created by linearly Formatted: Subscript

interpolating between the northern-most and southern-most data outside of the plume for each run. These were then interpolated transformed using kriging to produce corresponding 19x19 grid boxes for the background planes. <u>Kriging was</u> achieved using the MATLAB "EasyKrig3.0" program (Chu, 2004).

Concentration data was converted point-wise from ppbv to mg m³ using in-situ pressure and temperature data. Pressure and temperature were accounted for in this analysis using the pressure and temperature dependent conversion of species concentrations from ppbv to mg m³. The total flux <u>ean-could</u> thus be calculated for species XS, where X-S is CO, CO₂ or CH₄, using Equation 1-<u>;</u>

$$Flux = \int_{0}^{z} \int_{A}^{B} (S_{ij} - S_0) U_{\perp ij} \, dx \, dz \tag{1}$$

20

where S_{ij} is the mole fraction of species S for coordinates in the downwind vertical plane, AB and S₀ is the background
 vertical plane, and S₀ the mole fraction of S on that plane, and U_{1ij} is the vertical plane of the wind vector perpendicular to the aircraft. The flux is then integrated for altitudes (z) of 0 m to z m, here the top of the plume at ~900 m. The downwind flight track coloured by CO, along with its calculated kriged plane and kriged variance plane relative to the original dataset is provided in Fig. 10.

- CH4, CO2 and CO fluxes (Table 3Table 2) can be compared to a previous study by O'Shea et al (2015) which useding a similar mass balance approach to estimate pollutant emissions from London. The CO fluxes from London during flight C016 are found estimated to be ~half those for the summer of 2012 ealeulated by O'Shea in the summer of 2012, whereas the CH4 flux ealeulated here is double that calculated by O'Shea et al. (2015). Our CO2 flux estimate, however, is falls within 10%the combined uncertainty of O'Shea's. When considering these data, one should be mindful that aircraft measurements are representative of a single point in time and therefore cannot be aggregated over longer periods. As such they are highly
- 35 sensitive to meteorology and hence emissions footprint and activity-source strength at the time of measurement, In both studies, estimates are based on the measurements of a single flight. Due to the short duration of sampling and significant separation in time between studies, variation in emissions from London (either diurnally, seasonally or longer-term) are likely to be substantial and this should be borne in mind when comparing estimated fluxes between studies and the methodology used for processingalthough differences in methodology may also contribute to the differences. For a
- 40 meaningful analysis of patterns and trends in London emissions and a top-down constraint of the NAEI emissions inventory, plumes would need to be repeatedly sampled from aircraft during different seasons, times and locations relative to the pollution source.

Of particular methodological importance to this approach is the criteria used to define the background <u>air</u>. The impact <u>of</u> this choice <u>has</u>-in determining which emission <u>sources</u> contribute to the measured <u>mass balance</u> flux<u>es</u> has been the subject of a

recent study based on the INFLUX project (Turnbull et al., 2018). In the case of flight C016, due to the development <u>evolution</u> of the boundary layer during the times between the upwind and downwind legs, <u>while</u> upwind measurements were <u>evidently sampling clean background (regional) air, we did</u> not <u>considered consider them</u> representative of the downwind background. Instead measurements from the downwind leg, outside of the plume, were used (as <u>employed byfollowing</u> Turnbull et al., 2018). This is a different approach to the upwind background used by O'Shea et al (2014), <u>and</u> therefore the measured fluxes correspond to aggregate emissions from different areas. This could <u>in part</u> explain <u>much of</u> the discrepancy in <u>results estimates</u> between the two studies.

The difficulty in defining an emission aggregation area for mass balance-flights around London, for any choice of background criteria, has been discussed in depth by Pitt et al. (2019). In that study, mass balance-fluxes from a different case study flight around London (conducted in 2016) were found to be biased high compared to the results of a simple transport model inversion using the same aircraft data, if the mass balance-fluxes were assumed to represent only emissions from

Greater London. The mass balance flux estimates from that study are given in Table 3Table 2; these were also calculated

755

using a downwind background but due to differences in prevailing wind direction they capture emissions from a difference area with respect to both this work and the results from O'Shea et al. (2014). The best way to design aircraft sampling strategies and process the data to determine bulk emissions from megacities is the subject of ongoing discussion and
 research.

3.3.2-4_Pollution plumes from different local land sources: Flights C017 & C018, 4th July

For C017-18, there were also clear differences between the composition of the air sampled upwind (flight segments 3 and 2-4 respectively on Figs. 5 and 6) and downwind (segments 6-11 and 7-11 respectively) indicating different emission sources for the air masses sampled either side of the city. During both flights, the pollution encountered downwind was more
dispersed than the previous day and exhibited a very different profile. However, there were also distinct differences between the composition of the upwind samples between the morning and afternoon flights suggesting different air mass origins. However relatively high concentrations of CO, CH4, and NO_x were measured in the NE quadrant of both flights over northern East Anglia (around 1.5 "E, 52.5 "N, see Figs. 1, 5 and 6) and reciprocal runs were performed above this location, to

- sample the pollution at multiple heights in the boundary layer. Back trajectories (see Fig. 11), considered alongside NAEI
 emission sources suggest this was associated with transport from a wider region including Wales and NW England over the previous 24 hours, which had then been advected northward in the final 6 hours to reach the Norwich region. CO reached values of 120 ppbv, NO_x ~5 ppbv, O₃ concentrations >50 ppbv (compared with <40 ppbv during the first part of C018 and throughout the other flights) and CH₄ >2 ppbv. CO₂ levels however were always <420 ppmv. Total concentrations of VOCs in WAS were higher downwind (peaking at 4.1 and 3.0 ppbv for flights C017 and C018 respectively) with the strongest
- 75 enhancements observed in propane and n-butane for both flights. Petrochemical refining and natural gas processing have previously been identified as strong sources of ethane, propane and n-butane and likely explain the enhancements here with several large processing facilities to be found east and north-east of London.

A particularly interesting feature of the reciprocal runs for both flights C017 and C018 was the presence of two spatially and chemically distinct elevated areas of pollution, which we refer to as the "West plume" and "East plume". The West plume was observed in the same location during both morning and afternoon; the East plume was slightly further (~11 km) to the

was observed in the same location during both morning and afternoon; the East plume was slightly further (~11 km) to the south and east in the morning, consistent with the back-trajectories (Fig. 11) which show recirculation from the North Sea coast and suggest that aside from the afternoon East plume influence from London outflow was minimal in this region. Table 3 provides a summary of the average and peak concentrations for the full leg and the West and East plume for each reciprocal run and shows that, although not separated far in space or time, the two plumes were chemically distinct at all heights and for both flights. The composition of each plume was consistent across time, although concentrations were

'85 heights and for both flights. The composition of each plume was consistent across time, although concentrations were generally lower in the morning, suggesting increasing local emissions during the course of the day. Upwind measurements from flight C017 showed very low levels of CO, O₃ and particles (mostly <88 ppbv, <35 ppbv, <2500 cm⁻³ with periodic spikes) compared with flight C016, indicating much cleaner background air. NO_x levels were slightly higher though (mostly ~1.0 ppbv with multiple peaks above 2.5 ppbv), suggesting a larger contribution from local

- 90 emission sources than on the previous day. This fresh NO_x likely also contributed to the reduced O₃ concentrations through NO titration. While the total concentrations of VOCs from the four WAS collected along this segment correlate well with other pollutants (r² = 0.85, 0.99, 0.84 and 0.79 against CO, NO_x, CH₄ and aerosol number density respectively), acetylene which has an atmospheric lifetime of ~2-3 months against a typical OH concentration of ~10⁴ molecules cm⁻² is not well correlated with NO_x (r² = 0.48) although it is against the longer lived pollutants (r² = 0.92, 0.88 and 0.74 against CO, CH₄
- 95 and aerosol number density). This is typical of transported air (McMeeking et al., 2013), further confirmation that we were sampling aged background air mixed with some local fresh emissions. Back trajectories (top panels of Fig. 11) show winds were blowing from the west and north during this flight bringing relatively clean air to the region. This is further corroborated by a high altitude leg during the reciprocal runs over East Anglia (flight segment 12 on Figs. 1 and 6)

Formatted: Space After: 3 pt

phase pollutants were all lower than those sampled in the upwind BL (~10s pptv of NO*, CO ~80 ppbv, O2~26 ppbv)
indicating the long-range transport of clean air into the region.
Total concentrations of VOCs ware bisher downwind (nonline at 4.1 mehr) with the strongest subsecompute in memory
Total concentrations of VOCs were higher downwind (peaking at 4.1 ppbv) with the strongest enhancements in propane
(max 0.89 vs. 0.25 ppbv) and n butane (max 0.64 vs. 0.16 ppbv). WAS have previously been successfully deployed on the
ground and from aircraft to complement real-time measurements and to identify sources (e.g. Tiwari et al., 2010; Breton et
al., 2017; Aruffo et al., 2014; Warneke et al., 2013; Cain et al., 2017; Lee et al., 2018). Tiwari et al., (2010) reported high
concentrations of ethane, propane, and n-butane in Yokohama, Japan, which they attributed to fugitive emissions from
petroleum refining and evaporation. Ethane, propane, n-butane and cyclopentane, exhibit the highest average concentrations across all three flights and can likely be similarly attributed to petrochemical refining and natural gas processing.
Whole plume: O3:NOx isratios were much lower downwind than upwind for both C017 and C018 (27.3 compared with vs.
40.7 upwindand 21.6 ps. 45.2 ppbv respectively), suggesting that downwind of London we were mostly sampling fresh local
emissions. That being said, the highest concentrations of O ₃ (up to 48 ppbv) of any of the flights were measured during the
downwind legs of C018 in spite of the relatively high NO _x (average mixing ratio of 2.0 ppbv, peaking at ~5 ppbv).
In contrast to C016, tTotal VOC concentrations in across the plume during C017 were most strongly correlated with NOx
($r^{2}\approx 0.97$). Further evidence that the pollution sampled in the plume is predominantly derived from local sources comes from
the vertical profile of VOCs and aerosol number density. Unlike the London outflow plume sampled on 3 rd , the highest
concentrations were recorded during C017 at the lowest altitude (Fig. 12a). Aerosol number density (column "CPC" in Table
4Table 3) was consistently highest at the surface, falling from >7400 at 263 m to 5700 cm ⁻³ at 831 across the full flight leg in
the morning and >5700 to 5300 cm ⁻³ at 1155 m in the afternoon. This is consistent with fresh emissions of small particles
coalescing and coagulating to form a smaller number of larger particles as they are mixed and lofted. By contrast, VOC
 concentrations in the plumealong this leg during C018 were strongly correlated with CO and CH ₄ ($r^2 \approx 0.96$ and 0.93
 respectively) but showed no correlation against either $NO_{\underline{x}}$ ($r^{2}\approx 0.07$) or aerosol number density ($r^{2}\approx 0.44$). The high $NO_{\underline{x}}$
levels observed in the plume suggest that local sources are contributing strongly while the high O3 and correlation of VOCs
with long-lived pollutants is indicative of more aged (polluted) air from the south-west. The lowest WAS sampling altitude
during C018 was ~400 m which makes a direct assessment of the relative contributions of local to transported pollution
difficult. In contrast to the morning flight, higher concentrations of VOCs appear to occur at higher altitudes (see Fig. 12b)
resulting from a combination of stronger vertical mixing during the afternoon and the influence of long-range transport.
Unlike the previous day, however, concentrations increased with altitude to the top of the BL (at >1 km) suggesting we were
sampling well-mixed pollution, rather than a still-distinct fresher London plume as in C016.
Absolute and proportional concentrations of isoprene, which is mainly emitted from biogenic sources, were far higher
(peaking at 0.05 ppbv vs. <0.01 ppbv) during the afternoon than the morning, as expected given the strong dependence of
isoprene emission rates on light and temperature (e.g. Guenther et al., 1991; 1995). During the morning flight, when
contributions from local sources were highest, we observed that benzene was well correlated with CH ₄ ($r^2 \approx 0.96$) and aerosol
number density ($r^2 \approx 0.92$) but less with NO _x ($r^2 \approx 0.71$), whereas toluene showed very weak correlation with any continuous
measurements. One possible interpretation is that local sources of benzene include a mix of vehicle and industrial (e.g.
natural gas processing and petrochemical refining) emissions, while additional toluene emissions originate from non-fossil
fuel related industries, in particular solvent processing and use, and brewing (e.g. NAEI, 2015; Gibson et al., 1995). Solvent
emissions have a large toluene component with no corresponding benzene emissions. Data from the NAEI for VOCs
indicate there has been a relative increase over the last decade in the contribution solvents to toluene emissions, changing the
source profile for benzene and toluene. This, taken in conjunction with our findings that local sources can strongly mediate
source prome for overzone and tordene. This, taken in conjunction with our findings that local sources call strongly inculate

(Formatted: Font: Bold
•(Formatted: Font: Italic
•(Formatted: Font: Italic

Formatted: Space After: 3 pt

be more limited than previously assumed.

Oz:NO, is much lower (27.3 compared with 40.7 upwind), suggesting that downwind of London we were mostly sampling fresh local emissions. Benzene was well correlated with CH4 (r²~0.96) and aerosol number density (r²~0.92) but less with 45 NO_{\star} ($t^2 \approx 0.71$), whereas toluene showed only weak correlation with all continuous measurements. One possible interpretation is that local sources of benzene include a mix of vehicle and industrial (e.g. natural gas processing and petrochemical refining) emissions, while additional toluene emissions originate from non-fossil fuel related industries, in particular solvent processing and use and brewing (e.g. NAEI, 2015; Gibson et al., 1995). Toluene emissions have a strong solvent component with no corresponding benzene emission. Data from the NAEI for VOCs indicate there has been a relative increase over the 350 last decade in the contribution solvents to toluene emissions, changing the source profile for benzene and toluene. This, taken in conjunction with our findings that local sources can strongly mediate benzene:toluene ratios on small spatial and temporal scales, suggest that their use in identifying the age of urban plumes may be more limited than previously assumed. Further evidence that the pollution sampled in the plume is predominantly derived from local sources comes from the profile of VOCs by altitude. Unlike the London outflow plume sampled on 3rd, the highest concentrations were recorded during the 355 run at the lowest altitude (Fig. 12a). In contrast to the morning flight, the back-trajectories for the afternoon flight, C018 (bottom panels of Fig. 11), show a mix of airmass origins. While a large proportion of the air also arrives from the west and north, there is a substantive contribution from the west-south-west, along a similar trajectory to that for flight C016. This rather neatly explains our upwind atmospheric measurements lying between those of the two other flights, C017 with clean air from north and west, and C016 360 with high acrosol number density and CO from strong pollution sources to the southwest. NO, concentrations are elevated along this segment with local sources strongly contributing to the pollution sampled here as would be expected given the slower wind speeds on 4th July. WAS collected during C018 show many similarities with those collected during the morning (C017). Again, total VOC concentrations are higher downwind than upwind of London (3.0 vs. 1.8 ppbv) with the highest relative increases in propane 365 and n-butane (8 to 14% and 6 to 8% respectively). The changes are smaller though, suggesting that although we were sampling emissions from the same local industries during both flights, the fresh emissions were mixed with more aged background air in the afternoon. Absolute and proportional concentrations of isoprene, which is mainly emitted from biogenic sources, were far higher during the afternoon than the morning, as expected given the strong dependence of isoprene emission rates on light and temperature (e.g. Guenther et al., 1991; 1995). Although O3:NO* ratios were reduced to 370 21.6 in the plume (from 45.2 upwind), the highest concentrations of O₂ (up to 48 ppbv) of any of the flights were measured during the downwind legs of this flight in spite of the relatively high NO_{*} (average mixing ratio of 2.0 ppbv, peaking at ~5 ppbv). VOC concentrations in the plume were strongly correlated with CO and CH+(t²≈0.96 and 0.93 respectively) but showed no correlation against either NO_x (r²=0.07) or aerosol number density (r²=0.44). The high NO_x-levels observed in the plume suggest that local sources are contributing strongly while the high O2 and correlation of VOCs with long-lived

75 pollutants is indicative of more aged (polluted) air from the south-west.

The lowest WAS sampling altitude during C018 was ~400 m which makes a direct assessment of the relative contributions of local to transported pollution difficult. In contrast to the morning flight, higher concentrations of VOCs appear to occur at higher altitudes (see Fig. 12b) resulting from a combination of stronger vertical mixing during the afternoon and the influence of long-range transport. Unlike the previous day, however, concentrations increased with altitude to the top of the

80 BL (at >1 km) suggesting we were sampling well-mixed pollution originating from both local (low-level) and distant sources, rather than a still distinct relatively local London plume as in C016. Formatted: Space After: 6 pt

A particularly interesting feature of the reciprocal runs for both flights C017 and C018 was the presence of two spatially and chemically distinct spikes of pollution, which we refer to as the "West plume" and "East plume". The West plume was observed in the same location during both morning and afternoon; the East plume was slightly further (~11km) to the south 85 and east in the morning, consistent with the back-trajectories (Fig. 11) which show recirculation from the North Sea coast and suggest that aside from the afternoon East plume influence from London outflow was minimal. Table 4Table 3-provides a summary of the average and peak concentrations for the full leg and the West and East plume for each reciprocal run and shows that, although not separated far in space or time, the two plumes were chemically distinct at all heights and for both flights. The composition of each plume was consistent across time, although concentrations were 90 generally lower in the morning. East plume: Only NOx concentrations were found to be consistently higher in the East plume than the whole leg. Mixing ratios were generally ~40% higher in the afternoon than morning, although the highest NOx levels (4.85 ppbv) were observed at 263 m in the morning. The maximum increases in NOx (>200%) also occurred at the lowest altitude. NOx concentrations fell rapidly with altitude in the East plume during both flights. NOx is relatively short-lived and these 395 observations, which were also highly variable in space and time, reflect localised sources rather than long-range transport. <u>Table 4 Table 3 also shows evidence of NOx titration of O₃ in both plumes during the afternoon flight, most pronounced in</u> the East plume and at the lowest altitudes where NOx levels were highest, with O2 falling by ~3 ppbv (~8%) due to direct reaction with NO. Outside of the two plumes, O3 mixing ratios along the entire leg were relatively constant in morning and afternoon, at ~40 ppbv in the morning and slightly higher (~44 vs. 40 ppbv) in the afternoon, as expected for a secondary 00 pollutant formed as a product of the photochemistry. Near the surface in the C018 East plume, O_2 dropped by ~3 ppby (~8%) due to direct reaction with NO (NOx levels reached >10 ppbv).

Aerosol number concentrations were lowest in the East plume. They appeared to fall during the day, with concentrations ~10% lower during C018 than C017 consistent with boundary layer effects: This is likely due to the trapping of particles in thea stable nocturnal BL and the dilution effect of the increasing mixed layer depth over the course of the day. Highest

concentrations of CO were observed at higher altitudes than NO_x (~674 m) which we attribute to long-range transport of polluted air masses from the west and south-west. Average CO concentrations were around 3 ppbv (~3%) lower in the East plume than the full leg during both morning and afternoon flights, suggesting that while there were strong local sources of NO_x and VOCs throughout the region, sources of CO and fine particles were largely confined to the west of the run. These observations are consistent with our trajectory analysis (see Fig. 11) that the eastern end of the reciprocal runs receives a flow of (relatively) clean air from the north resulting in a lower background than the western end.

<u>Concentrations of CH₄ varied little either spatially or temporally across the reciprocal runs or plumes. Although slightly enhanced near the surface, differences were <1% suggesting that local sources contribute little to atmospheric CH₄ <u>concentrations in the region.</u></u>

- West plume: Concentrations of CO and NOx and aerosol number density were all elevated in the West plume relative to the background by as much as 3 ppbv (~3%), 1.7 ppbv (>100%) and 10³ cm⁻³ (15%) in the morning and ~15%, ~100% and 20% in the afternoon. By contrast, only NO_x was found to be consistently high in the East (by as much as 200% during both flights), suggesting different source sectors or differences in air mass origins between the plumes. Average CO levels were highest in the West plume during both flights indicating the strongest sources were located to the western end of the flight
- 20 track. Vertical distributions were similar with CO concentrations peaking at 108.2 ppbv at 674 m in the morning and 127.7 ppbv at 686 m in the afternoon. The maximum enhancement of CO relative the entire flight leg was 23% during C018 at an altitude coinciding with the maximum absolute concentration. We interpret this to indicate CO concentrations in the West plume were dominated by transported air from more industrial areas to the west to north-west of our flights, consistent with

Formatted: Font: Bold

Formatted: Subscript

Formatted: Font: Italic

Formatted: Subscript

Formatted: Font: Bold

our back-trajectory analyses (Fig. 11).

965

- NO_x concentrations declined more slowly with altitude in the West than the East plume during the morning while in the afternoon, aside from an enhancement observed during the lowest flight leg, NO_x peaked at 998 m which is also where the maximum elevation relative to the entire reciprocal run occurred. NO_x to CO is relatively low in the West plume suggesting that there was a greater proportion of more aged air at this end of the run, although the surface elevation shows there are also strong local sources of NO_x.
- Aerosol number density was much higher in the West than the East plume during both flights but was also much higher (~25%) in the afternoon than morning. The largest increase in number in the West plume occurred near the surface (altitudes up to 522 m) in the morning and at 283 m in the afternoon indicating substantial local sources of PM. AMS data, only available for the afternoon flight (C018), further supports the apparent difference in emission source and strength between the eastern and western ends of the reciprocal runs with the West plume showing an increase in fine particulate matter (PM1)
- 35 indicative of fresh emissions. The increase was mostly due to high levels of organic and nitrate aerosols.

Concentrations of CH₄-varied little either spatially or temporally across the reciprocal runs or plumes. Although slightly enhanced near the surface, differences were <1% suggesting that local sources contribute little to atmospheric CH₄ concentrations in the region.

- During both morning and afternoon reciprocal runs, average CO concentrations were higher in the West plume than the full flight leg but lower in the East (by up to 3 ppbv or ~3%), indicating a strong source toward the western end of the flight track. Vertical distributions were similar across the full leg and both plumes in the morning with highest levels observed at 674m (peaking at 108.2 ppbv in the West plume), suggesting concentrations were dominated by transported air from more industrial areas to the west and north (Fig. 11). During flight C018 however, peak CO occurred at lower altitudes in each of
- the plumes (127.7 ppbv at 686m in the West and 104.5 ppbv at 553m in the East) than the leg as a whole (843m). We observed CO enhancements as high as 23% (in the afternoon in the West plume) with the maximum enhancement at an altitude coinciding with the maximum absolute concentrations. The exception to this is the East plume where the maximum peak enhancement occurs at the lowest altitude during C017; strong CO enhancements were also observed at this level in the East during the afternoon. These observations are consistent with our trajectory analysis (see Fig. 11) that the eastern end of the reciprocal runs receives a flow of (relatively) clean air from the north resulting in a lower background than the western
- end with long range transport bringing more polluted air from the west. However, the pronounced peaks in CO at relatively low altitudes suggest that there are also substantial local sources.
- NO_x is relatively short-lived so observed concentrations, which were highly variable in space and time, reflect localised sources rather than long-range transport. During flight C017, the highest NO_x levels were observed along the lowest run
 (4.85 ppbv at 263m) in the East plume but further aloft at 674m (3.73 ppbv) in the West plume. The maximum increases in NO_x also occurred at 263m in the East (>200%) and at 830m in the West (-140%). Mixing ratios were generally -40% higher in the afternoon than morning, but spatially, the pattern was repeated with peak enhancements at the surface in the East (~190%) and aloft (998m) in the West (~150%). Interestingly, while there was a rapid decline in concentration with altitude in the East plume during both flights, concentrations were relatively constant throughout most of the mixed layer in the West plume. This, together with the higher ratios of NO_x to CO in the East plume, is indicative of strong sources in the immediate vicinity while more distant sources mix with freshly emitted NO_x to enhance the concentrations at higher altitudes in the West plume, where NO_x to CO is relatively low.

 Table 3 also shows evidence of NO_x titration of O₂ in both plumes during the afternoon flight, most pronounced in the East plume and at the lowest altitudes where NO_x levels were highest. Outside of the plumes, O₂ mixing ratios were relatively constant at -40 ppbv in the morning and slightly higher (-44 ppbv) in the afternoon, as expected for a secondary

(Formatted: Subscript
(Formatted: Subscript
(Formatted: Subscript

Formatted: Subscript

	pollutant formed as a product of the photochemistry. Near the surface in the C018 East plume, O2 dropped by ~3 ppbv	
	(-8%) due to direct reaction with NO (NOx levels reached >10 ppbv).	
	Aerosol number density (column "CPC" in Table 4Table 3) was consistently highest at the surface, falling from >7400 at	
	263 m to 5700 cm ⁻² at 831 across the full flight leg in the morning and >5700 to 5300 cm ⁻² at 1155 m in the afternoon. This	
70	is consistent with fresh emissions of small particles coalescing and coagulating to form a smaller number of larger particles	
	as they are mixed and lofted. Morning number concentrations were substantially higher than in the afternoon (>25% higher	
	in the West plume and ~10% in the East). This is likely due to the trapping of particles in the stable nocturnal BL and the	
	dilution effect of the increasing mixed layer depth over the course of the dayNumber density was much higher in the West	
	than the East plume during both flights. The largest increase in number in the West plume occurred near the surface	
75	(altitudes up to 522m) in the morning and at 283m in the afternoon. AMS data, only available for the afternoon flight C018,	
	further supports this apparent difference in emission source and strength between the eastern and western ends of the	
	reciprocal runs with the West plume showing an increase in PM1 due to high levels of organic and nitrate aerosols.	
	Attribution: By combining our back-trajectories for airmasses sampled in each plume with UK NAEI data for the region,	Formatted: Font: Bold
	we were able to identify local point sources to which the observed East and West plumes is are likely to be attributable. For	
80	CO, NO _x and PM1 we calculated a "source intensity" at the point of interception based on an assumption that concentrations	
	decayed with distance from source by an inverse square law (i.e. assuming a zerolow wind dispersion and neglecting	
	chemical transformation).	
	The largest local contributions to CO in the West plume were power stations at Thetford and Ely in the morning, but the	
	slight change in wind direction in the afternoon resulted in large additional contributions from local construction and food	
35	and drink manufacturers and Interestingly, it was the same point sources that also made the biggest contribution to NOx in	
	the West plume. Landfill gas combustion and brick manufacturing were likely the principleal local sources of PM1	
	throughout the day across both plumes. Power stations again contributed strongly to the West plume and probably account	
	for the high nitrate component of the fine particles observed in this plume, while landfill gas combustion and emissions from	
	British Sugar are high in organic matter.	
90	The only likely major local source of CO in to the East plume was a British Sugar processing facility and that was only	
	directly upwind during the afternoon. There were fewer (and weaker) sources of PM at the eastern end of the reciprocal run	
	resulting in the low aerosol number density observed. There was no obvious point source affecting NOx concentrations in the	
	eastern end of the reciprocal runs and we speculate the very high levels observed in the East plume are the result of traffic	
	emissions, particularly from the junctions between the major A144, A146 and A143 roads which were almost directly	
95	overflown.	
	Landfill gas combustion and brick manufacturing were likely the principle local sources of PM1 throughout the day across	
	both plumes. Power stations again contributed strongly to the West plume and probably account for the high nitrate	
	component of the fine particles observed in this plume, while landfill gas combustion and emissions from British Sugar are	
	high in organic matter. There were fewer (and weaker) sources at the eastern end of the reciprocal run resulting in the low	
00	acrosol number density observed.	
	3.4 Marine emission sources	
	In addition to the clear pollution events described in the previous section, we observed substantial spikes in concentrations	
	during low-level flight legs over the sea. While it was difficult to positively identify the sources of the pollution observed	
	over the land surface due to the complex interactions of photochemical processing and atmospheric dynamics, we were able	
05	to directly attribute some of the peaks observed in the marine BL to specific vessels. We describe one such situation here.	
	Between around 10:21 and 10:27 UTC on 4 th July (flight C017) FAAM BAe-146 overflew the Dover Straits at an altitude of	

between 24-75 m. Clear spikes in pollutant concentrations and aerosol number density were directly seen on most on-board instruments and we were able to observe the passage of a number of large ships which appeared to correlate with these enhancements. In order to evaluate whether a part of the observable signal in the different variables was attributable to marine traffic, we plotted the time series of NO_x, NO, NO₂, and CO₂-concentrations and the aerosol number density (CPC; Fig. 13). We identified a number of plumes throughout this portion of the flight but focused our analysis on the clear sharply defined peak in concentration observed at 10:22:30 and marked with an 'X' on Fig. 14. At this point, NO_x-levels were observed to be elevated by a factor of ~20 and aerosol number density by a factor of ~5.

- As marine emissions are known to be an important source of both NO_{*} and PM (Corbett et al., 1999), we used data obtained from Marine Traffic (https://www.marinetraffic.com) to examine the vessels navigating this area at the time of overflying. Fig. 14 maps the paths of those ships with a tonnage >10 kton (thin coloured lines, with colour ranging from purple to yellow corresponding to specific times between 10:13:20 and 10:26:40), overlaid with the path of the aircraft (thick line); arrows denote windspeed and direction. Only the portion of the flight path above the sea is shown in Fig. 14 with further detail of the intersection of the aircraft with the main plume shown in Fig 15.
- 120 The 'X' in Fig. 14 and the 'X' labelled with 'A' in Fig. 15 correspond to the location of the prominent peaks seen in Fig. 13b d. At this point, a large ship had passed under the flight path shortly ahead of our transit. The second line in Fig. 15 parallel to the ship trajectory denotes the location of the plume emitted 40 s downwind of its position. We were able to identify this vessel from Marine Traffic data as a 15 kton Liberian container ship (see Fig. 15). Other smaller plumes seen in Fig. 13 could not be directly attributed to a single ship and are likely an accumulation of emissions from a number of smaller or more distant vessels (observable in Fig. 14).

4. Conclusions

10

We report here measurements of atmospheric conditions and composition made during 3 research flights from the UK's FAAM BAe-146-301 Atmospheric Research Aircraft over the course of two days in July 2017. Conditions were favourable for all flights and a change in windspeed and direction overnight enabled us to sample contrasting pollution events.

- On 3rd July, moderate west-southwesterly winds produced a narrow distinct plume of pollution outflowing London. The clear edges and strong enhancement of the plume allowed us to apply a mass balance approach to estimate emissions of long-lived pollutants from the urban area. Our calculated fluxes of CO₂ agreed well with those previously reported for 2012 by O'Shea et al. (2014) but our estimated emissions of CO were a factor of 2 lower and CH₄ a factor of 2 higher. These differences between campaigns are likely due to differences in emissions sources and strengths within the flux footprint,
- 35 methodology and the inherent sensitivity of the mass balance method to the surface that has been sampled and the methodology applied. Methods such as those employed in Pitt et al (2019) that can provide improved quantification on of surface interaction are of greater use when the emission source is not distinct from its surroundings.

The second and third flights on 4th July experienced much lighter and more variable winds with the result that pollution was more widely dispersed and derived from a mixture of sources. In general, there was a strong contribution of fresh emissions

- 540 from local point sources with evidence of mixing with air transported from further afield bringing more aged pollution to the region. We observed clear pollution events over northern East Anglia during both flights and flew a series of reciprocal runs to sample these peaks over the full altitude of the boundary layer. Continuous real-time measurements of long-lived gas-phase and aerosol pollutants were supplemented with analysis of a range of organic compounds from whole air samples taken during the reciprocal runs.
- WAS have previously been successfully deployed on the ground and from aircraft to complement real-time measurements and to identify sources (e.g. Tiwari et al., 2010; Breton et al., 2017; Aruffo et al., 2014; Warneke et al., 2013; Cain et al.,

2017; Lee et al., 2018). Tiwari et al., (2010) reported high concentrations of ethane, propane, and n-butane in Yokohama, Japan, which they attributed to fugitive emissions from petroleum refining and evaporation. Ethane, propane, n-butane and cyclopentane, exhibit the highest average concentrations across all three flights and can likely be similarly attributed to petrochemical refining and natural gas processing.

Based on different relative abundances of organic compounds and the ratio of O₃:NO_x we were able to determine source sectors and individual sources for the morning and afternoon pollution spikesevents on 4th July. During the morning most of the transported air mass was from the north and west, and therefore relatively clean, and the pollution was predominantly

- D55 fresh emissions from local food and drink and construction industries. By contrast, the air mass in the afternoon contained more aged pollution from the south-west, although still very little from the London area. We were able to attribute local emissions to the same sources as well as combined with a contribution from power plants in the area. The high NO_x concentrations observed toward the eastern end of the reciprocal runs appeared to emanate from traffic at a series of major road junctions.
- D60 Importantly though, our observations of local pollution episodes on 4th July strongly suggest that the use of the ratio of benzene to toluene concentrations to assess air mass age and emission source is unreliable when applied over small spatial and temporal scales. The increasing numbers of sources that emit toluene alone result in heterogeneous ratios of benzene to toluene emissions from different source sectors, whereas the use of concentration ratios is based on known-assumed constant relative source intensities.
- 165 These three flights give a clear demonstration of demonstrate the power of airborne remote sensingmeasurements which can be used for targeted sorties to provide direct source attribution (or test hypotheses of sources) and for longitudinal studies over time to provide evidence of new or changing emission sources or source profiles to inform and constrain bottom-up source attribution and emissions inventories. They also provide further clear evidence that relatively small local sources can still play a significant role in air pollution in a megacity region, particularly downwind where they exacerbate high
- 970 <u>"background" levels of pollution. the The</u> factors that control the <u>buildup of air pollution buildup</u> in the London area are various and multiple: local emissions, transport from distant sources, terrestrial and marine emissions. <u>In the highly complex</u> environment around a megacity where a high background level of pollution mixes with a variety of local sources at a range of spatial and temporal scales, the use of unvarying VOC:VOC ratios may not be valid given the different ages of the air. It is necessary to consider and constrain all of these-the contributing factors to understand the problem and to develop effective mitigation and control strategies.

Acknowledgements

50

This work was funded by EUFAR (European Facility for Aircraft Research) with the financial contribution from the European Commission for the management of EUFAR2, under the grant agreement no. 312609. EUFAR AISBL provided partial financial support for the publication costs of this paper. Funding for WAS collection and analysis was provided by Nutional Control for Atmospheric Science DICAS1

 D80
 National Centre for Atmospheric Science [NCAS].

Airborne data was obtained using the BAe-146-301 Atmospheric Research Aircraft flown by Airtask Ltd, maintained by Avalon Aero and managed by the Facility for Airborne Atmospheric Measurements [FAAM] Airborne Laboratory, jointly operated by UKRI and the University of Leeds. We thank in particular Axel Wellpott for his assistance with collating flight data, our incredible pilots and all of the FAAM staff and ground crew whose skills and support made these flights possible.

185 We are grateful for the input and advice we received from Alex T. Archibald and Michelle Cain. We acknowledge the help

Formatted: Level 1

Formatted: Superscript

we received with data collection and initial processing from other participants of the STANCO training school: M. Ardelean, A. Bordas, G. Cann, L. Cappellin, P. Dominutti, M. Koehler, O. Lauer, G. Methymaki, F. Pardini, L.-A. Picui, A. Holubova Smejkalova, and from undergraduate summer research intern Joe Westwood.

Kirsti Ashworth is a Royal Society Dorothy Hodgkin Research Fellow and acknowledges support and funding from the 900 Royal Society (award no. DH150070).

Data availability

In keeping with UK funding agency requirements for access and transparency in research, all data described in this analysis are available at CEDA (Centre for Environmental Data Analysis: http://data.ceda.ac.uk/badc/faam/data/2017.

Author contributions

395 K. Ashworth, S. Bucci, P. Gallimore, J. Lee, B. Nelson, A. Sanchez Marroquín, M. Schimpf, and P. Smith participated in STANCO, designed flight paths, collected, processed, analysed and plotted data from flights. P. Di Carlo, R. Krejci, J. McQuaid organised and participated in STANCO and assisted with data collection and interpretation. James Lee participated in STANCO and assisted with data collection, processing and analysis. W. Drysdale, J. Pitt and J. Hopkins processed, analysed and interpreted data. All authors contributed to discussin, writing and editing the manuscript.

100 Conflicts of interest

The authors declare that they have no conflict of interest.

References

Allen, G., Coe, H., Clarke, A., Bretherton, C., Wood, R., Abel, S. J., Barrett, P., Brown, P., George, R., Freitag, S., McNaughton, C., Howell, S., Shank, L., Kapustin, V., Brekhovskikh, V., Kleinman, L., Lee, Y.-N., Springston, S., Toniazzo, T., Krejci, R., Fochesatto, J., Shaw, G., Krecl, P., Brooks, B., McMeeking, G., Bower, K. N., Williams, P. I.,

105 Toniazzo, T., Krejci, R., Fochesatto, J., Shaw, G., Krecl, P., Brooks, B., McMeeking, G., Bower, K. N., Williams, P. I., Crosier, J., Crawford, I., Connolly, P., Allan, J. D., Covert, D., Bandy, A. R., Russell, L. M., Trembath, J., Bart, M., McQuaid, J. B., Wang, J., and Chand, D.: South East Pacific atmospheric composition and variability sampled along 20° S during VOCALS-REx, Atmos. Chem. Phys., 11, 5237-5262, doi:10.5194/acp-11-5237-2011, 2011.

Aruffo, E., Di Carlo, P., Dari-Salisburgo, C., Biancofiore, F., Giammaria, F., Busilacchio, M., Lee, J., Moller, S., Hopkins,

110 J., Punjabi, S., Bauguitte, S., O'Sullivan, D., Percival, C., Le Breton, M., Muller, J., Jones, R., Forster, G., Reeves, C., Heard, D., Walker, H., Ingham, T., Vaughan, S. and Stone, D.: Aircraft observations of the lower troposphere above a megacity: Alkyl nitrate and ozone chemistry, Atmos. Environ., 94, 479-488, doi:10.1016/j.atmosenv.2014.05.040, 2014. Bretón, J.G.C.; Bretón, R.M.C.; Ucan, F.V.; Baeza, C.B.; Fuentes, M.L.E.; Lara, E.R.; Marrón, M.R.; Pacheco, J.A.M.;

Guzmán, A.R.; Chi, M.P.U. Characterization and Sources of Aromatic Hydrocarbons (BTEX) in the Atmosphere of Two
 115 Urban Sites Located in Yucatan Peninsula in Mexico. Atmosphere, 8, 107, doi:10.3390/atmos8060107, 2017.

Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., and Wotawa, G.: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889-1904, doi:10.5194/gmd-6-1889-2013, 2013.

Brioude, J., Angevine, W. M., Ahmadov, R., Kim, S.-W., Evan, S., McKeen, S. A., Hsie, E.-Y., Frost, G. J., Neuman, J. A.,
Pollack, I. B., Peischl, J., Ryerson, T. B., Holloway, J., Brown, S. S., Nowak, J. B., Roberts, J. M., Wofsy, S. C., Santoni,

G. W., Oda, T., and Trainer, M.: Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NO_x and CO₂ and their impacts, Atmos. Chem. Phys., 13, 3661-3677, doi:10.5194/acp-13-3661-2013, 2013.

Cain, M., Warwick, N.J., Fisher, R. E., Lowry, D., Lanoisellé, M., Nisbet, E. G., France, J. Pitt, J., O'Shea, S., Bower, K. N.,
Allen, G., Illingworth, S., Manning, A. J., Bauguitte, S., Pisso, I., and Pyle, J. A.: A cautionary tale: A study of a methane enhancement over the North Sea, J. Geophys. Res., 122, 7630-7645, doi:10.1002/2017JD026626, 2017.

- Canagaratna, M., Jayne, J., Jimenez, J., Allan, J., Alfarra, M., Zhang, Q., Onasch, T., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L., Trimborn, A., Northway, M., DeCarlo, P., Kolb, C., Davidovits, P. and Worsnop, D.: Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass
 spectrometer. Mass Spectrom. Rev., 26: 185-222. doi:10.1002/mas.20115, 2007.
- Capes, G., B. Johnson, G. McFiggans, P. I. Williams, J. Haywood, and H. Coe: Aging of biomass burning aerosols over West Africa: Aircraft measurements of chemical composition, microphysical properties, and emission ratios, J. Geophys. Res., 113, D00C15, doi:10.1029/2008JD009845, 2008.
- Crosier, J., Allan, J. D., Coe, H., Bower, K. N., Formenti, P. and Williams, P. I.: Chemical composition of summertime
 aerosol in the Po Valley (Italy), northern Adriatic and Black Sea. Q.J.R. Meteorol. Soc., 133: 61-75. doi:10.1002/qj.88, 2007.

Drewnick, F., Hings, S. S., Alfarra, M. R., Prevot, A. S. H., and Borrmann, S.: Aerosol quantification with the Aerodyne Aerosol Mass Spectrometer: detection limits and ionizer background effects, Atmos. Meas. Tech., 2, 33-46, doi:10.5194/amt-2-33-2009, 2009.

- Gerbig, C., S. Schmitgen, D. Kley, A. Volz-Thomas, K. Dewey, and D. Haaks: An improved fast-response vacuum-UV resonance fluorescence CO instrument, J. Geophys. Res., 104(D1), 1699-1704, doi:10.1029/1998JD100031, 1999.
 Gibson, N.B., Costigan, G.T., Swannell, R.P.J., and Woodfield, M.J.: Volatile organic compound (VOC) emissions during malting and beer manufacture, Atmos. Env., 29(19), 2661-2672. doi:10.1016/1352-2310(94)00303-3, 1995.
 Guenther, A.B., Monson, R.K. and Fall, R.: Isoprene and monoterpene emission rate variability: Observations with
- Eucalyptus and emission rate algorithm development, J. Geophys. Res., 96(D6), 10799-10808, doi: 10.1029/91JD00960, 1991.

Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W.
A., Pierce, T., Scholes, R., Steinbrecher, R., Tallamraju, R., Taylor, J. and Zimmerman, P.: A global model of natural volatile organic compound emissions, J. Geophys. Res., 100(D5), 8873-8892, doi:10.1029/94JD02950, 1995.

150 Hamburger, T., McMeeking, G., Minikin, A., Birmili, W., Dall'Osto, M., O'Dowd, C., Flentje, H., Henzing, B., Junninen, H., Kristensson, A., de Leeuw, G., Stohl, A., Burkhart, J. F., Coe, H., Krejci, R., and Petzold, A.: Overview of the synoptic and pollution situation over Europe during the EUCAARI-LONGREX field campaign, Atmos. Chem. Phys., 11, 1065-1082, doi:10.5194/acp-11-1065-2011, 2011.

Harris, N.R., L.J. Carpenter, J.D. Lee, G. Vaughan, M.T. Filus, R.L. Jones, B. OuYang, J.A. Pyle, A.D. Robinson, S.J.
Andrews, A.C. Lewis, J. Minaeian, A. Vaughan, J.R. Dorsey, M.W. Gallagher, M. Le Breton, R. Newton, C.J. Percival, H.M. Ricketts, S.J. Bauguitte, G.J. Nott, A. Wellpott, M.J. Ashfold, J. Flemming, R. Butler, P.I. Palmer, P.H. Kaye, C. Stopford, C. Chemel, H. Boesch, N. Humpage, A. Vick, A.R. MacKenzie, R. Hyde, P. Angelov, E. Meneguz, and A.J.

- Manning: Coordinated Airborne Studies in the Tropics (CAST). Bull. Amer. Meteor. Soc., 98, 145-162, doi:10.1175/BAMS-D-14-00290.1, 2017.
 Highwood, E. J., Northway, M. J., McMeeking, G. R., Morgan, W. T., Liu, D., Osborne, S., Bower, K., Coe, H., Ryder, C.,
- and Williams, P.: Aerosol scattering and absorption during the EUCAARI-LONGREX flights of the Facility for Airborne

Atmospheric Measurements (FAAM) BAe-146: can measurements and models agree?, Atmos. Chem. Phys., 12, 7251-7267, doi:10.5194/acp-12-7251-2012, 2012.

Hopkins, J.R., Jones, C.E., and Lewis, A.C.: A dual channel gas chromatograph for atmospheric analysis of volatile organic
 compounds including oxygenated and monoterpene compounds. J Environ Monit. 13(8),2268-2276. doi: 10.1039/c1em10050e, 2011.

- Lee, J. D., Mobbs, S. D., Wellpott, A., Allen, G., Bauguitte, S. J.-B., Burton, R. R., Camilli, R., Coe, H., Fisher, R. E.,
 France, J. L., Gallagher, M., Hopkins, J. R., Lanoiselle, M., Lewis, A. C., Lowry, D., Nisbet, E. G., Purvis, R. M., O'Shea,
 S., Pyle, J. A., and Ryerson, T. B.: Flow rate and source reservoir identification from airborne chemical sampling of the
- 170 uncontrolled Elgin platform gas release, Atmos. Meas. Tech., 11, 1725-1739, doi:10.5194/amt-11-1725-2018, 2018.
- Lewis, A. C., Evans, M. J., Hopkins, J. R., Punjabi, S., Read, K. A., Purvis, R. M., Andrews, S. J., Moller, S. J., Carpenter, L. J., Lee, J. D., Rickard, A. R., Palmer, P. I., and Parrington, M.: The influence of biomass burning on the global distribution of selected non-methane organic compounds, Atmos. Chem. Phys., 13, 851-867, doi:10.5194/acp-13-851-2013, 2013.
- 175 Lidster, R. T., Hamilton, J. F., Lee, J. D., Lewis, A. C., Hopkins, J. R., Punjabi, S., Rickard, A. R., and Young, J. C.: The impact of monoaromatic hydrocarbons on OH reactivity in the coastal UK boundary layer and free troposphere, Atmos. Chem. Phys., 14, 6677-6693, doi:10.5194/acp-14-6677-2014, 2014.
 - McMeeking, G. R., Bart, M., Chazette, P., Haywood, J. M., Hopkins, J. R., McQuaid, J. B., Morgan, W. T., Raut, J.-C., Ryder, C. L., Savage, N., Turnbull, K., and Coe, H.: Airborne measurements of trace gases and aerosols over the London metropolitan region, Atmos. Chem. Phys., 12, 5163-5187, https://doi.org/10.5194/acp-12-5163-2012, 2012.
- Morgan, W. T., Allan, J. D., Bower, K. N., Highwood, E. J., Liu, D., McMeeking, G. R., Northway, M. J., Williams, P. I., Krejci, R., and Coe, H.: Airborne measurements of the spatial distribution of aerosol chemical composition across Europe and evolution of the organic fraction, Atmos. Chem. Phys., 10, 4065-4083, doi:10.5194/acp-10-4065-2010, 2010.

180

200

Morgan, W. T., Allan, J. D., Bower, K. N., Capes, G., Crosier, J., Williams, P. I., and Coe, H.: Vertical distribution of sub micron aerosol chemical composition from North-Western Europe and the North-East Atlantic, Atmos. Chem. Phys., 9, 5389-5401, doi:10.5194/acp-9-5389-2009, 2009.

O'Shea, S. J., Allen, G., Fleming, Z. L., Bauguitte, S.J.-B., Percival, C.J., Gallagher, M.W., Lee, J., Helfter, C. and Nemitz,
 E.: Area fluxes of carbon dioxide, methane, and carbon monoxide derived from airborne measurements around Greater
 London: A case study during summer 2012, J. Geophys. Res. Atmos., 119, 4940-4952, doi:10.1002/2013JD021269, 2014.

- 190 O'Shea, S. J., Allen, G., Gallagher, M. W., Bower, K., Illingworth, S. M., Muller, J. B. A., Jones, B. T., Percival, C. J., Bauguitte, S. J.-B., Cain, M., Warwick, N., Quiquet, A., Skiba, U., Drewer, J., Dinsmore, K., Nisbet, E. G., Lowry, D., Fisher, R. E., France, J. L., Aurela, M., Lohila, A., Hayman, G., George, C., Clark, D. B., Manning, A. J., Friend, A. D., and Pyle, J.: Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM project in summer 2012, Atmos. Chem. Phys., 14, 13159-13174, doi:10.5194/acp-14-13159-2014, 2014.
- 195 O'Shea, S. J., Bauguitte, S. J.-B., Gallagher, M. W., Lowry, D., and Percival, C. J.: Development of a cavity-enhanced absorption spectrometer for airborne measurements of CH4 and CO2, Atmos. Meas. Tech., 6, 1095-1109, doi:10.5194/amt-6-1095-2013, 2013.

Pitt, J, Allen, G, Bauguitte, S, Gallagher, M, Lee, JD, Drysdale, W, Nelson, B, Manning, A & Palmer, P:, Assessing London CO₂, CH₄ and CO emissions using aircraft measurements and dispersion modelling , Atmos. Chem. Phys. 19, 8931-8945, doi: 10.toluenecp-19-8931-2019, 2019.

Parrish, D. D., Kuster, W. C., Shao, M., Yokouchi, Y., Kondo, Y., Goldan, P. D., de Gouw, J. A, Koike, M., and Shirai, T.: Comparison of air pollutant emissions among mega-cities, Atmos. Environ., 43, 6435–6441, doi:10.1016/j.atmosenv.2009.06.024, 2009.

205

Petersen, G.N.and Renfrew, I.A.: Aircraft-based observations of air – sea fluxes over Denmark Strait and the Irminger Sea during high wind speed conditions. Q. J. R. Meteorol. Soc., 135, 2030-2045, doi: 10.1002/qj.355, 2009.

- Robinson, N. H., Hamilton, J. F., Allan, J. D., Langford, B., Oram, D. E., Chen, Q., Docherty, K., Farmer, D. K., Jimenez, J. L., Ward, M. W., Hewitt, C. N., Barley, M. H., Jenkin, M. E., Rickard, A. R., Martin, S. T., McFiggans, G., and Coe, H.: Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest, Atmos. Chem. Phys., 11, 1039-1050, doi:10.5194/acp-11-1039-2011, 2011.
- 210 Shaw, M. D., Lee, J. D., Davison, B., Vaughan, A., Purvis, R. M., Harvey, A., Lewis, A. C., and Hewitt, C. N.: Airborne determination of the temporo-spatial distribution of benzene, toluene, nitrogen oxides and ozone in the boundary layer across Greater London, UK, Atmos. Chem. Phys., 15, 5083-5097, doi:10.5194/acp-15-5083-2015, 2015.

Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461-8211;2474, doi:10.5194/acp-5-2461-2005, 2005.

215 Stohl, A., Berg, T., Burkhart, J. F., Fjæraa, A. M., Forster, C., Herber, A., Hov, Ø., Lunder, C., McMillan, W. W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Ström, J., Tørseth, K., Treffeisen, R., Virkkunen, K., and Yttri, K. E.: Arctic smoke - record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006, Atmos. Chem. Phys., 7, 511-534, doi:10.5194/acp-7-511-2007, 2007.

Stone, D., Evans, M. J., Walker, H., Ingham, T., Vaughan, S., Ouyang, B., Kennedy, O. J., McLeod, M. W., Jones, R. L.,

- 220 Hopkins, J., Punjabi, S., Lidster, R., Hamilton, J. F., Lee, J. D., Lewis, A. C., Carpenter, L. J., Forster, G., Oram, D. E., Reeves, C. E., Bauguitte, S., Morgan, W., Coe, H., Aruffo, E., Dari-Salisburgo, C., Giammaria, F., Di Carlo, P., and Heard, D. E.: Radical chemistry at night: comparisons between observed and modelled HOx, NO3 and N2O5 during the RONOCO project, Atmos. Chem. Phys., 14, 1299-1321, doi:10.5194/acp-14-1299-2014, 2014.
- Tiwari, V., Hanai, Y. and Masunaga, S.: Ambient levels of volatile organic compounds in the vicinity of petrochemical
 industrial area of Yokohama, Japan. Air Qual. Atmos. Health, 3: 65. doi:10.1007/s11869-009-0052-0, 2010.
- Turnbull, J. C., Karion, A., Davis, K. J., Lauvaux, T., Miles, N. L, Richardson, S. J., Sweeney, C., McKain, K., Lehman, S. J., Gurney, K. R., Patarasuk, R., Liang, J., Shepson, P. B., Heimburger, A., Harbey, R. and Whetsone, J.: Synthesis of Urban CO2 Emission Estimates from Multiple Methods from the Indianapolis Flux Project (INFLUX), Environ. Sci. Technol, 53, 1, 287-295, doi: 10.1021/acs.est.8b05552, 2018
- 230 Vaughan, A.D., Lee, J.D., Misztal, P.K., Metzger, S., Shaw, M.D., Lewis, A.C., Purvis, R.M., Carslaw, D.C., Goldstein, A.H., Hewitt, C.N., Davison, B., Beeversh, S.D. and Karl, T.G.: Spatially resolved flux measurements of NOx from London suggest significantly higher emissions than predicted by inventories, Faraday Discuss., 2016, 189, 455-472, doi:10.1039/C5FD00170F
- von Schneidemesser, E., Monks, P. S., and Plass-Duelmer, C.: Global comparison of VOC and CO observations in urban
 areas, Atmos. Environ., 44, 5053–5064, doi:10.1016/j.atmosenv.2010.09.010, 2010.
- Warneke, C., de Gouw, J.A., Edwards, P.M., Holloway, J.S., Gilman, J.B., Kuster, W.C., Graus, M., Atlas, E., Blake, D., Gentner, D.R., Goldstein, A.H., Harley, R.A., Alvarez, S., Rappenglueck, B., Trainer, M., and Parrish, D.D.:
 Photochemical aging of volatile organic compounds in the Los Angeles basin: Weekday-weekend effect, J. Geophys. Res., 118, 5018-5028, doi:10.1002/jgrd.50423, 2013.
- 240 WCC, Westminster City Council Air Quality Annual Status Report for 2017. May 2018, available at https://www.westminster.gov.uk/sites/default/files/asr_london_2017_final_westminster_city_council_002.pdf; accessed July 2019.

WHO, World Health Organization: Ambient (outdoor) air quality and health. WHO Factsheet, May 2018, available at

https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health; accessed July 2019

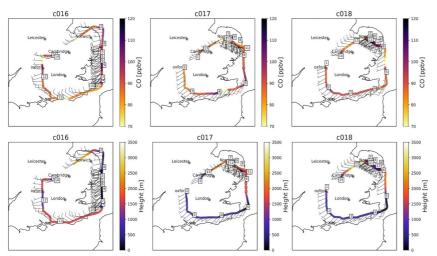
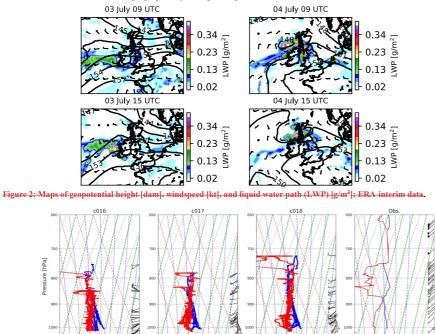
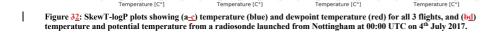




Figure 1: Map of flight paths for all three flights (C016 on Monday 3rd and C017 and C018 on Tuesday 4th July 2017). Top panels show the concentrations of CO measured on board and the bottom panels FAAM BAe-146 altitude. Arrows indicate windspeed and direction at 1-minute intervals along the path. The numbers in boxes correspond to distinct flight segments which are used hereafter to locate FAAM BAe-146 geographically during the flight. I

ure [C°]

re [C°]

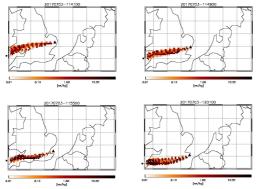
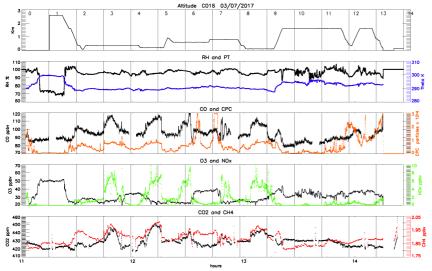
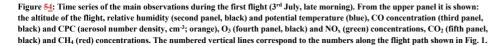




Figure 43: FLEXPART modelled footprint of air mass arriving at the location of FAAM BAe-146 (black triangles) at four different positions along the reciprocal runs of flight C016. Each coloured pixel indicates the relative contribution of an inert tracer in that air to the total concentration of that tracer sampled on-board. The large black square shows the point of release of the air 24 hours prior to being intercepted by the aircraft. The dotted line of black and white squares shows the hourly weighted average trajectory of the air mass based on the relative contributions shown.

1

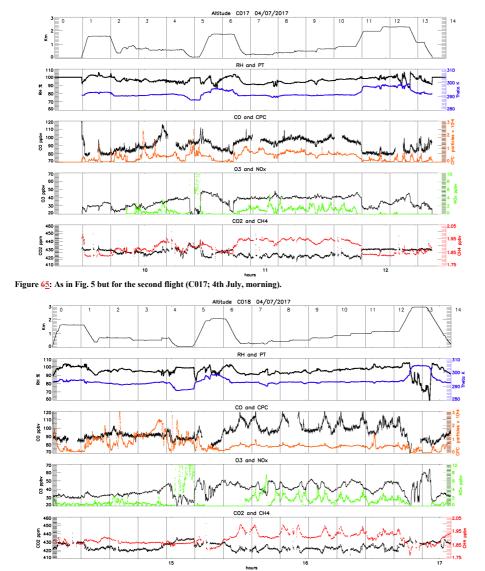


Figure 76: As in Fig. 5 but for the third flight (C018; 4th July, afternoon).

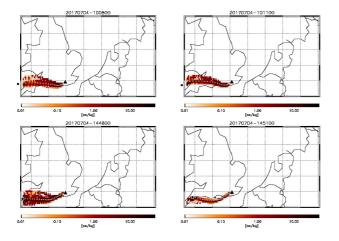


Figure 87: FLEXPART modelled footprint of air mass arriving at the location of FAAM BAe-146 (black triangles) at 10:08 and 10:11 during flight C017 (top row) and at 14:48 and 14:51 during flight C018. Each coloured pixel indicates the relative contribution of an inert tracer in that air to the total concentration of that tracer sampled on-board. The large black square shows the point of release of the air 24 hours prior to being intercepted by the aircraft. The dotted line of black and white squares shows the hourly weighted average trajectory of the air mass based on the relative contributions shown.

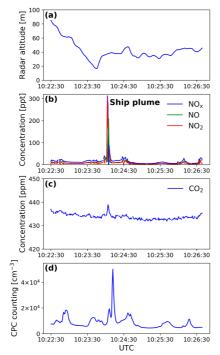
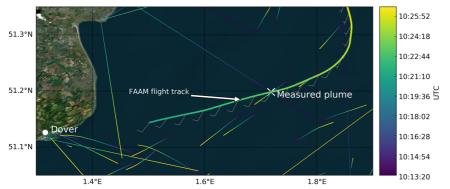
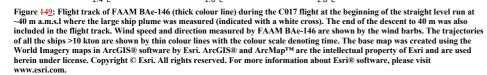




Figure 138: Time series of different variables measured above the sea during the C017 flight: (a) altitude, (b) NO, NO₂ and NO_x concentrations, (c) CO₂ concentration, and (d) total aerosol concentration. Only the times close to the large plume that could be correlated to a specific vessel are shown here. CO and O₃ concentrations (not shown) exhibited no enhancement. The plotted time period corresponds to the beginning of a level run at ~40m altitude, the trajectory of which can be seen in the Figs. 14 and 15.

I

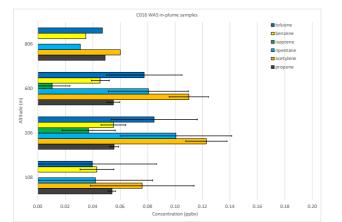
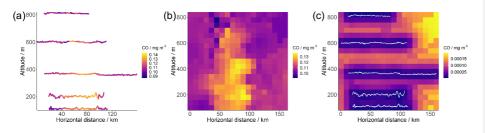



Figure 910: Average concentrations of key VOCs (ppbv) collected via WAS during individual flight legs within the plume detected during flight C016. The average altitude of each flight leg is shown on the x-axis. Error bars denote ±1s.d.; numbers in square parentheses show top of error bars.

Figure 10: Plots coloured by CO mass per volume (a) vertical plane of downwind measurements; (b) downwind flight tracks interpolated using kriging to produce a kriged plane; (c) variance map representing the kriging uncertainty, where the flight track is shown in white.

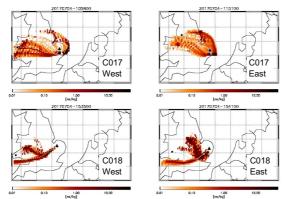


Figure 11: FLEXPART back-trajectories for air masses arriving at the location of FAAM BAe-146 as it intercepted the West (right column) and East (left) plume during the lowest of the reciprocal runs for flights C017 (top row) and C018 (bottom). Each coloured pixel indicates the relative contribution of an inert tracer in that air to the total tracer concentration sampled on-board. The large black square shows the point of release of the air 24 hours prior to interception. The dotted line of black and white squares shows the hourly weighted average trajectory of the air mass based on the relative contributions shown.

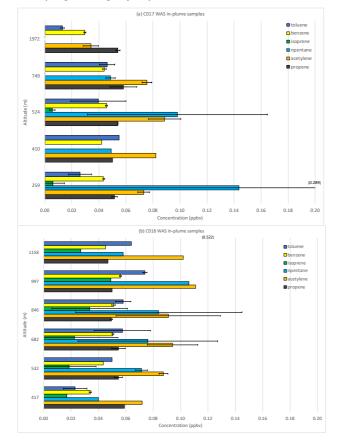


Figure 12: Average concentrations of key VOCs (ppbv) collected via WAS during individual flight legs within the pollution plume detected during (a) flight C017, and (b) flight C018. The average altitude of each flight leg is shown on the x-axis. Error bars denote ± 1 s.d.; numbers in square parentheses show top of error bars.

Flight ID	Date	Start time (UTC)	End time (UTC)
C016	3 rd July	11:10:24	14:03:07
C017	4 th -July	09:42:51	12:09:15
C018	4 th July	14:20:59	16:53:29

Table 1: Overview of flights.

		C016			C017		C018			
Species	Flight	Upwind	Plume	Flight	Upwind	Plume	Flight	Upwind	Plume	
СО	101.0	94.79	104.6	92.26	88.08	99.39	97.16	92.18	102.4	
0	(9.4)	(3.7)	(9.3)	(8.2)	(8.4)	(3.1)	(9.2)	(2.2)	(6.7)	
CH ₄	2035	2011	2050	2063	2046	2084	2064	2043	2082	
CH4	(26)	(2)	(28)	(24)	(14)	(5)	(23)	(2)	(20)	
NO _x	2.13	0.74	3.12	1.67	0.81	1.44	1.95	0.78	1.96	
NOx	(2.43)	(0.20)	(2.52)	(4.26)	(0.68)	(0.61)	(3.13)	(0.48)	(0.78)	
O ₃	28.87	36.52	26.16	34.17	32.64	39.41	36.65	35.46	42.48	
03	(5.21)	(1.14)	(4.03)	(6.54)	(4.31)	(0.44)	(7.51)	(0.67)	(2.88)	
CPC	9930	19880	7210	5420	2590	7080	7910	14870	5250	
CPC	(5940)	(2610)	(1890)	(3720)	(2160)	(810)	(5610)	(3930)	(510)	
Total VOC	3.13	1.59	3.74	2.25	1.76	2.75	2.49	1.82	2.97	
Total VOC	(1.57)	(0.27)	(1.10)	(0.83)	(0.45)	(0.25)	(1.17)	(0.08)	(1.25)	
4	1.10	0.78	1.22	0.91	0.79	1.04	0.95	0.77	1.11	
ethane	(0.33)	(0.05)	(0.25)	(0.20)	(0.10)	(0.05)	(0.32)	(0.00)	(0.32)	
4	0.14	0.04	0.17	0.08	0.08	0.09	0.09	0.07	0.09	
ethene	(0.08)	(0.01)	(0.06)	(0.03)	(0.03)	(0.01)	(0.04)	(0.01)	(0.05)	
	0.38	0.11	0.51	0.28	0.15	0.38	0.33	0.15	0.42	
propane	(0.28)	(0.03)	(0.22)	(0.23)	(0.09)	(0.11)	(0.26)	(0.02)	(0.22)	
	0.06	0.05	0.06	0.05	0.052	0.06	0.05	0.05	0.06	
propene	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	(0.01)	
iso-butane	0.14	0.03	0.19	0.07	0.04	0.10	0.09	0.05	0.11	
iso-butane	(0.12)	(0.01)	(0.09)	(0.05)	(0.03)	(0.02)	(0.07)	(0.00)	(0.07)	
n-butane	0.31	0.07	0.42	0.18	0.09	0.25	0.21	0.10	0.26	
n-outane	(0.26)	(0.03)	(0.20)	(0.17)	(0.08)	(0.08)	(0.17)	(0.01)	(0.17)	
acetylene	0.09	0.05	0.11	0.06	0.05	0.08	0.07	0.06	0.09	
acetylelle	(0.03)	(0.00)	(0.02)	(0.02)	(0.01)	(0.01)	(0.03)	(0.00)	(0.02)	
cyclopentane	0.58	0.35	0.62	0.40	0.35	0.49	0.45	0.40	0.55	
cyclopentalie	0.30	(0.11)	(0.24)	(0.12)	(0.11)	(0.13)	(0.20)	(0.10)	(0.24)	
iso-pentane	0.15	0.04	0.20	0.08	0.05	0.11	0.10	0.07	0.11	
iso-pentane	(0.13)	(0.02)	(0.09)	(0.06)	(0.04)	(0.02)	(0.06)	(0.01)	(0.07)	
n-pentane	0.07	0.02	0.09	0.06	0.02	0.07	0.05	0.03	0.07	
n-pentane	(0.05)	(0.01)	(0.04)	(0.07)	(0.02)	(0.04)	(0.04)	(0.01)	(0.04)	
isoprene	0.02	0.00	0.02	0.01	0.01	0.00	0.02	0.02	0.02	
isopiene	(0.02)	(0.00)	(0.02)	(0.01)	(0.02)	(0.00)	(0.02)	(0.02)	(0.02)	
benzene	0.05	0.03	0.05	0.05	0.05	0.04	0.04	0.03	0.04	
Jenzelle	(0.01)	(0.00)	(0.01)	(0.01)	(0.02)	(0.00)	(0.01)	(0.00)	(0.01)	
toluene	0.06	0.02	0.08	0.04	0.04	0.05	0.04	0.03	0.05	
loidelle	(0.04)	(0.01)	(0.03)	(0.02)	(0.02)	(0.01)	(0.03)	(0.01)	(0.03)	

 Table 2 Table 1: Average concentrations of trace gases (ppbv) and aerosol number density (CPC; cm^{-3}) for whole flight, upwind segment and downwind curtain runs at an altitude corresponding to the upwind leg for each flight. Numbers in parentheses show ±1 s.d.

Species	This work / mol s ⁻¹	O'Shea et al. / mol s-1	Pitt et al. / mol s-1
CH ₄	431 ± 59	238 ± 12	182 ± 9
CO ₂	$32,176 \pm 8,890$	$35,861 \pm 2,553$	$44,700 \pm 1200$
CO	116 ± 17	219 ± 8	178 ± 6

Table 3<u>Table 2</u>: Initial fluxes from Greater London determined using the mass balance approach in this study and compared to those found by O'Shea et al. (2013).

(C 017	Full flight leg			leg		"West plume" (52.57N, 1.00E)			"East plume" (52.42N, 1.45E)									
Run	Ave.	[CO]	[CH4]	[NO _x]	[O ₃]	CPC	[CO]	[CH4]	[NO _x]	[O ₃]	CPC	[CO]	[CH4]	[NO _x]	[O ₃]	CPC			
	alt. (m)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(cm^{-3})	(ppbv)	(ppmv)	(ppbv)	(ppbv)	(cm ⁻³)	(ppbv)	(ppmv)	(ppbv)	(ppbv)	(cm ⁻³)			
4	263	95.59	2.085	1.509	39.39	7415	96.68	2.082	1.324	39.08	8517	94.17	2.082	2.411	39.36	5874			
-	205	15.57	2.005	1.507	57.57	/415	(101.6)	(2.103)	(2.080)	(40.86)	(13800)	(102.2)	(2.094)	(4.855)	(41.85)	(6660)			
5	408	97.04	2.084	1.401	40.27	6969	99.48	2.089	1.520	39.67	8083	94.38	2.079	1.954	40.69	5754			
5	400	77.04	2.004	1.401	40.27	0,0,	(105.6)	(2.100)	(2.078)	(40.94)	(9650)	(99.48)	(2.092)	(4.476)	(43.54)	(10300)			
6	522	97.29	2.083	1.519	40.09	6664	100.1	2.090	1.579	39.82	7851	94.90	2.078	2.013	40.09	5760			
0	522)1.2)	2.005	1.517	40.07	0004	(107.2)	(2.097)	(2.233)	(40.99)	(12700)	(101.1)	(2.091)	(2.908)	(43.45)	(8090)			
7	674	97.85	2.083	1.415	40.23	5936	100.5	2.087	1.704	39.39	6269	95.15	2.076	1.391	40.84	5763			
'	0/4	77.05	2.005	1.715	40.25	.25 5936	(108.5)	(2.097)	(3.187)	(41.46)	(8570)	(101.3)	(2.086)	(3.182)	(42.75)	(23100)			
8	831	97.13	2.079	1.277	41.04	5682	100.7	2.083	1.804	39.88	5581	95.14	2.073	1.291	42.40	5915			
0	031	97.15	2.079	1.2//	41.04	3082	(106.3)	(2.092)	(3.063)	(42.32)	(7000)	(99.06)	(2.085)	(1.928) ((44.01)	(7020)			
(C 018	Full flight leg			"West plume" (52.57N, 1.00E)					"East plume" (52.46N, 1.30E)									
Run	Ave.	[CO]	[CH4]	[NO _x]	[O ₃]	CPC	[CO]	[CH4]	[NO _x]	[O ₃]	CPC	[CO]	[CH4]	[NO _x]	[O ₃]	CPC			
Kun	alt. (m)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(cm^{-3})	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(cm ⁻³)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(cm ⁻³)			
5	287	105.1	2 0.05	2.085	2 0.95	2 0.95	2.785	41.52	5754	111.9	2.102	2.498	43.27	6777	97.92	2.067	4.157	38.50	5222
3	287	105.1	2.085	2.785	41.32	2 3/54	(128.1)	(2.116)	(5.686)	(45.76)	(19300)	(107.7)	(2.080)	(7.760)	(47.32)	(6450)			
6	415	105.2	2.084	2.414	43.03	5460	112.5	2.101	2.624	43.46	5984	97.27	2.067	2.909	41.09	4949			
0	415	105.2	2.084	2.414	45.05	3400	(126.0)	(2.116)	(4.919)	(47.88)	(9480)	(104.3)	(2.079)	(4.177)	(47.38)	(6150)			
7	533	101.8	2.077	2.150	44.09	5388	116.2	2.097	2.440	42.47	5741	99.09	2.067	2.697	42.20	5247			
/	555	101.8	2.077	2.150	44.09	3300	(123.8)	(2.116)	(4.174)	(45.54)	(8420)	(115.6)	(2.082)	(3.780)	(49.48)	(6370)			
8	686	103.6	2.079	1.993	43.96	5167	110.5	2.093	2.404	43.09	5476	98.66	.66 2.068 2.172	43.28	5159				
0	000	105.0	2.079	1.775	+3.90	5107	(127.7)	(2.114)	(4.066)	(47.82)	(8390)	(104.5)	(2.074)	(4.919)	(47.51)	(6010)			
9	843	103.8	2.081	1.835	44.11	5077	107.6	2.087	1.985	41.61	4821	99.12	2.071	1.830	46.12	5411			
9	043	105.8	2.081	1.835	44.11	5077	(122.0)	(2.112)	(3.550)	(45.51)	(7370)	(104.5)	(2.080)	(2.780)	(49.47)	(7000)			
10	998	103.4	2.078	1.718	44.08	5103	108.7	2.086	2.311	41.83	4758	101.2	2.076	1.441	48.74	5591			
10	990	105.4	2.078	1./10	-+00	5105	(125.0)	(2.112)	(4.409)	(46.14)	(6440)	(107.8)	(2.082)	(1.774)	(50.57)	(6430)			
11	1155	102.6	2.075	1.544	41.29	5305	103.4	2.075	1.733	40.12	3914	104.8	2.082	1.677	47.96	5193			
11	1155	102.0	2.075	1.544	71.29	5505	(114.9)	(2.100)	(2.809)	(42.48)	(5110)	(113.9)	(2.094)	(2.619)	(49.30)	(6440)			

Table 4Table 3: Overview of measured concentrations of CO, CH₄, NO_x and O₃ in and aerosol number density (CPC) measured during the reciprocal runs on flights C017 (top) and C018 (bottom). The full flight leg values are averages along each run, the West plume are average and maximum (in parentheses) concentrations within the West plume and the same for the East plume. The average altitude is shown for each leg; the average latitude and longitude of the centre of each plume shown for West and East plumes.