Anonymous Referee #1

Received and published: 2 January 2020

General Comments: The manuscript lists concentrations of radionuclides and isotope ratios sampled at Rovaniemi in Finnish Lapland between 1965 and 2011, and reports on daily 48 hour-duration radionuclide dispersion simulations from hypothetical accidents at planned nuclear power plants (NPP) over one year (2010) using the SILAM model. Overall, the manuscript does not represent a substantial contribution to scientific progress (there are no substantial new concepts, ideas, or methods). In particular, the model simulations of potential NPP at specific locations fall outside the scope of Atmospheric Chemistry and Physics. In my view the modelling part of the manuscript should be eliminated. The observations are discussed in a more balanced way (with consideration of related work, including appropriate references). The two parts (observations and model) are disjoint and in particular the modelling component is not motivated scientifically and the description of calculations is not sufficiently complete and precise to allow their reproduction as the model setup and outcomes are not discussed in detail. The presentation quality of the manuscript (in particular the use of the English language but also the quality of figures and tables) is not of the standard required for publication in ACP.

2 Specific Comments: The abstract provides a concise and complete summary. I propose that the tables listing concentrations are moved to a Supplement, as they are not directly referenced and their inclusion along with the timeline plots in Figures is superfluous.

3 Technical Corrections: There are numerous editorial corrections required to reach publication standard, the authors should carefully follow the ACP guide for authors in editing the manuscript before re-submission.

Anonymous Referee #2

Received and published: 2 March 2020

Of whole text my doubts arises only regarding the Pu-241 measurements observed for Fukushima time. From what is said in the manuscript, it remains for me unclear how exactly and when the results for Pu-241 in the samples from the year 2011 were obtained? In case of Pu-241 determination by ingrown of Am-241 the whole technical details of history of sample are important. What is obvious to me is that the Authors noticed the presence of 5.5 MeV alpha peak, which they did not attribute to Pu-238, what suggests, that samples were measured twice and 5.5 MeV peak was smaller in first measurement. The results from first measurement were used for determination of Pu-238 and after some years the same Pu source was re-measured and change of count rate in 5.5 MeV peak was interpreted as Am-241. Only the sampling time points to Fukushima as origin. I will by much happy with the text if all those technical data (i.e. when Pu was separated from Am/Cm and when measured and when re-measured) data will appear in a small paragraph concerning Pu-241 measurements in "Experimental" section. Please note, that in fresh spent nuclear fuel the main actinide alpha activity comes from Cm-242 (T1/2=160 days) and it is a
bit striking, that this isotope was not detected along with Pu in reports on finding the Pu of Fukushima origin at the distances of 10 000 km. The lack of Cm-242 suggests something else then fresh release from nuclear reactor.

Besides my doubts on Pu-241 (or rather Am-241) presence interpretation as Fukushima origin I like whole manuscript. The first part present history of contaminations and the modelling part compare the past events with scenarios of possible future accidents. I think such concept is logical and answers to questions which comes from fears on possible nuclear accidents.

(2) Author’s response

Response to R1 reviewer comments

We thank the reviewer for her/his careful reading and constructive criticism towards our work. As a consequence of these comments, the forthcoming modifications of the manuscript will improve greatly the quality of the final version.

General Comments: The manuscript lists concentrations of radionuclides and isotope ratios sampled at Rovaniemi in Finnish Lapland between 1965 and 2011, and reports on daily 48 hour-duration radionuclide dispersion simulations from hypothetical accidents at planned nuclear power plants (NPP) over one year (2010) using the SILAM model. Overall, the manuscript does not represent a substantial contribution to scientific progress (there are no substantial new concepts, ideas, or methods).

Only few long time series of atmospheric radioactivity exist from Subarctic and Arctic regions, and most of the existing time series contain only gamma emitters or fission products 137Cs and 90Sr. Producing atmospheric data of Pu isotopes is more laborious as they need to be radiochemically separated from the air filter matrix prior to activity measurement or isotope ratio determination. However, Pu isotope ratios provide important information about the nuclear contamination source in Subarctic and Arctic areas as they act like fingerprints in contamination identification. Finland is one exceptional example of significant unevenness of atmospheric nuclear contamination across a single state, since as was found out in this study, the large northern part of the country was mostly saved from the Chernobyl-derived transuranium deposition while the central and southern parts were more or less contaminated by the Chernobyl accident. The presence of plutonium isotopes in the air of high northern latitudes after the Fukushima accident has not been studied either. We see that due to all the listed reasons, it is meaningful to publish these results, preferably in ACP, and they will complete other observations and studies of plutonium sources and atmospheric contamination level in northern latitudes. Obviously, we have not expressed these justifications clearly enough in the current Introduction part and they have been now summarised in the Introduction of the revised version.

In particular, the model simulations of potential NPP at specific locations fall outside the scope of Atmospheric Chemistry and Physics. In my view the modelling part of the manuscript should be eliminated. The observations are discussed in a more balanced way (with consideration of related work, including appropriate references). The two parts (observations and model) are disjoint and in
particular the modelling component is not motivated scientifically and the description of calculations is not sufficiently complete and precise to allow their reproduction as the model setup and outcomes are not discussed in detail.

We believe that the modeling part of the manuscript completes the observational part, because 1) it provides risk estimates and reference contamination levels related to future nuclear activities in and close to Arctic regions that can be compared to earlier actual releases, and 2) it shows with the Fukushima case how important accurate information on the source term is for the prediction of resulting activity concentrations in the air following an atmospheric release of radioactivity. We have added a note on this justification to the manuscript. What comes to the description of calculations we have given the appropriate literature references concerning the model, the source of the meteorological data and the release parameters. We think that with the information provided, the dispersion calculations can be repeated with any similar computer models.

The presentation quality of the manuscript (in particular the use of the English language but also the quality of figures and tables) is not of the standard required for publication in ACP.

Language proofing has been performed for the revised version throughout the text. What becomes to the quality of the figures and tables, as Reviewer 1 did not give specified comments on the tables and figures – whether one or several of these objects do not fill the requirements of the standard level – we will wait if the editorial office gives us instructions for making the possibly required modifications before publishing.

2 Specific Comments: The abstract provides a concise and complete summary. I propose that the tables listing concentrations are moved to a Supplement, as they are not directly referenced and their inclusion along with the timeline plots in Figures is superfluous.

In Results & Discussion part, both tables have been referenced several times in case of each nuclide and activity or mass ratio. We see presenting number values in the tables included in the manuscript text as useful because it is more convenient for a reader that the tables are in the same document as text and figures. However, the tables can be published as a separate Supplement part, if the editorial office requires this modification.

3 Technical Corrections: There are numerous editorial corrections required to reach publication standard, the authors should carefully follow the ACP guide for authors in editing the manuscript before re-submission.

Any typos or expressions not in line with the ACP manuscript format will be corrected first by the authors in the revised version attached and eventually by the editorial office before publishing the final form.

Respond to comments of Reviewer 2

We authors thank Reviewer 2 for giving constructing criticism particularly for our findings of 241Pu from the Fukushima accident to Finland. In the following we will clarify the background how we
have interpreted our experimental data into this conclusion, finding Fukushima-derived 241Pu in Finnish Lapland:

The radioanalytical method is briefly reported in the manuscript (page 3, line 85, chapter 2.3 “Measurement of 238,239,240Pu, 241Am, 90Sr, and 240Pu/239Pu in the air filter samples”) and the full description is presented separately in another manuscript, which is still under review in MethodsX. We have separated Pu and Am from each other and measured two separate alpha spectra for pure Pu and pure Am. From the activity of daughter nuclide 241Am in the samples we have calculated the activity of mother nuclide 241Pu in the samples back in time for the middle point of the sampling period. So assumptions of Reviewer 2 were partly correct. It is true that time points between sampling, separations and alpha spectrometric measurements of different Pu and Am isotopes, as well as other parameters of the radiochemical analysis need careful attention while determining 241Pu from the ingrowth of 241Am. Apparently some unclear issues have remained in our text and more explanation is needed. Therefore, we added the suggested clarifying text about this issue, measurement of 241Am and 241Pu, to the chapter 2.2 page 3, line 83 and chapter 2.3 at the same page.

The air filter sample set of the year 2011 (collection time was 365 days) was treated (both Pu and Am were separated from the air filter set) in 2014. It means that the short-lived 242Cm (t½ 162.8 d) had decayed 6-7 times its half-life between air sampling and archiving. A mean 242Cm/238Pu activity ratio in soil samples from FDNPP has been determined to be 18 in 11 March 2011 (Povinec et al. Fukushima Accident - Radioactivity Impact on the Environment). According to the same reference, the mean value for 238Pu/239+240Pu activity ratio in the deposition following the Fukushima accident was 2.2. From these values we see that in fresh fallout after the Fukushima accident, the activity of 242Cm was significantly higher than of 238Pu or 239+240Pu. Unfortunately, due to short half-life of 242Cm it was not possible for us to observe 242Cm in the alpha spectrum of 241Am (where also Cm isotopes would be seen due to chemical similarity of Am and Cm) three years after the accident.

The activity ratio 241Pu/239+240Pu is over 100 in deposition from the Fukushima accident (several articles by Jian Zheng et al.). Although the activity ratio 241Pu/239+240Pu could not be determined for our sample of year 2011 due to low amount of 239+240Pu (<3.5 nBq/m3), we think that the presence of Fukushima-derived 241Pu in our air filter sample can’t be excluded due to expected (and found) higher amount of 241Pu compared to 239+240Pu. We observed highly increased activity concentration of 241Pu, 602±131 nBq/m3 in 2011, compared with the level of tens nBq/m3 during years preceding 2011. Therefore, we assume that this increase was caused by the Fukushima accident since there are no other new nuclear events or atmospheric changes as options during time period between Chernobyl and Fukushima accidents.

(3) Author’s changes in manuscript

Page 2, line 54: a sentence has been added for highlighting the importance of this work and the lack of long time series for transuranium elements at Arctic and Subarctic regions, especially after nuclear accidents in Chernobyl and Fukushima. (Reviewer 1)
Page 2, line 59: An explanation how the modeled nuclear release scenarios are linked to the experimental observation series has been added. (Reviewer 1)

Page 3, line 83: A sentence describing the time when the radiochemical analyses were performed and the time difference between air sampling and radiochemical analyses has been added. (Reviewer 2)

Page 3, line 89: Information about the determination of 241Pu via 241Am and alpha measurements of 241Am has been added, including time information. (Reviewer 2)

Page 10, line 302: A sentence has been added for emphasizing the necessity of ADM as a tool for us, to compare effects of past and possibly forthcoming nuclear events in the atmospheric radionuclide concentrations at Arctic regions. (Reviewer 1)

Page 13, line 400: The significance of the modeled results as a part of our conclusions is explained further in a sentence. (Reviewer 1)

English proofing has been done to the whole text and the resulting small changes are seen with “track changes” throughout the text.
Measurements and modelling of airborne plutonium in Subarctic Finland between 1965 and 2011

Susanna Salminen-Paateroa,b, Julius Vira b, Jussi Paatero b

a) Department of Chemistry, Radiochemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland
(Present address). susanna.salminen-paatero@helsinki.fi.

b) Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland. julius.vira@fmi.fi, jussi.paatero@fmi.fi.

* Corresponding author.

ABSTRACT

The activity concentrations of $^{238,239,240}\text{Pu}$ and ^{241}Am (for determining its mother nuclide ^{241}Pu) as well as activity ratios $^{238}\text{Pu}/^{239+240}\text{Pu}$, $^{241}\text{Pu}/^{239+240}\text{Pu}$, $^{239+240}\text{Pu}/^{137}\text{Cs}$, and mass ratio $^{240}\text{Pu}/^{239}\text{Pu}$ were determined from air filter samples collected in Rovaniemi (Finnish Lapland) in 1965-2011. The origin of plutonium in surface air was assessed based on this data from long time series. The most important Pu sources in the surface air of Rovaniemi were atmospheric nuclear weapons testing in 1950’s and 1960’s, later nuclear tests onin 1973-1980, and SNAP-9A satellite accident in 1964, whereas the influence from the 1986 Chernobyl accident was only minor. Contrary to the alpha emitting Pu isotopes, ^{241}Pu from the Fukushima accident in 2011 was detected in Rovaniemi. Dispersion modelling results with the Silam model indicate that Pu contamination in northern Finland due to hypothetical reactor accidents would be negligible in case of a floating reactor at the Shtokmann natural gas field and relatively low in case of an intended nuclear power plant in western Finland.

Key words: Plutonium, isotope ratio, Chernobyl, nuclear weapons testing, nuclear accident, dispersion modelling
1. INTRODUCTION

Distribution of anthropogenic radionuclides in global fallout from nuclear weapons testing is uneven, and even more inhomogeneous is their distribution in regional and local fallout from different sources. It is known that Subarctic and Arctic regions have received radionuclide deposition with different radioactivity level and composition than the more temperate areas of the Earth. Subarctic and Arctic ecosystems have a special combination of harsh climate, often sparse vegetation, lack of nutrients and, in case of humans, dependence on traditional lines of business and life styles like hunting, fishing, reindeer herding, and collection of mushroom and berries. Consequently, these Nordic ecosystems are highly vulnerable to toxic agents, including radionuclides. Still, there are only few contiguous long-term radioactivity data series from Subarctic and Arctic areas where the changes in concentration levels and isotope ratios could be followed and different nuclear events identified as contamination sources in a particular environment.

In total, radionuclides ^{137}Cs, ^{90}Sr, total beta activity, $^{238,239,240}\text{Pu}$ and ^{241}Am were determined from the air filter samples that were collected in Rovaniemi (Finnish Lapland) in 1965-2011. ^{241}Am ($t_{1/2} = 432.2$ a) was analyzed for calculating the activity concentration of its mother nuclide, relatively short-lived beta emitter ^{241}Pu ($t_{1/2} = 14.35$ a). The major part of ^{241}Am in the samples originates from the decay of ^{241}Pu after the sampling and only a minor part of ^{241}Am originates directly from nuclear events. The results for ^{137}Cs, ^{90}Sr, and total beta activity have been reported elsewhere (Salminen-Paatero et al. 2019). The activity ratio $^{238}\text{Pu}/^{239+240}\text{Pu}$ and the mass ratio $^{240}\text{Pu}/^{239}\text{Pu}$ in Rovaniemi have been presented pictorially with other global ratio values in the article by Thakur et al. (2017), but the ratio values of Rovaniemi were not discussed in detail there.

In this work, radionuclide concentration and isotope ratio data from 1965-2011 has been used for estimating nuclear contamination sources in the surface air of Finnish Subarctic during almost five decades. The only few long time series of atmospheric radioactivity exist from Subarctic and Arctic regions, especially of Pu isotopes, and even less data has been published about atmospheric transuranium concentrations in these high northern latitudes after Chernobyl and Fukushima accidents. Furthermore, the atmospheric dispersion of one real and one hypothetical nuclear events has been modelled for finding out the potential transport of Pu isotopes and effect of these nuclear events on atmospheric radioactivity levels in Finnish Lapland. Atmospheric dispersion modeling completed the experimental data by providing risk estimates and reference values for the future accidental releases of nuclear material in and close to Arctic regions, as well as it pointed out the
importance of the accurate source term in calculating the amount of released radioactivity in the atmosphere with the Fukushima case.

2. EXPERIMENTAL

2.1 Sampling and procedures for the air filters before any chemical treatment

The air filter samples were collected at Finnish Meteorological Institute's [FMI] Rovaniemi monitoring station (66°34´N, 25°50´E, elevation 198 m above sea level [a.s.l.]). Weekly sampled air volume was ~1000 m³. First, total beta activity was measured from the filters five days after the end of sampling. Then the filters were combined to suitable sets for the gamma measurement and determination of 137Cs concentration. The details of air sampling, combining air filters and measurements for the gamma activity of 137Cs and total beta activity have been given in Salminen et al. (2019).

2.2 Radiochemical separation of Pu, Am, and Sr from air filters

The detailed description about the radioanalytical separation procedure and the radionuclide measurements is given elsewhere (Salminen-Paatero and Paatero, submitted to Methods X). 238,239,240Pu, 241Am, and 90Sr were separated from dissolved air filter sample sets containing filters from three months to five years. The separation method included extraction chromatography and anion exchange steps and it was modified from the original method designed for the air filters of 1-3 days sampling time, presented in Salminen and Paatero (2009). The radiochemical separations were performed in 2013-2014, i.e. two-three years after the last air filter sample set of 2011 was taken.

2.3 Measurement of 238,239,240Pu, 241Am, 90Sr, and 240Pu/239Pu in the air filter samples
The activity concentration of alpha emitting Pu isotopes ^{238}Pu and $^{239-240}\text{Pu}$ in the air filter samples was determined from the separated Pu fractions by Alpha Analyst spectrometer (Canberra). From the separated Am fractions the activity concentration of ^{241}Am was also measured by alpha spectrometry, for calculating the activity concentration of its mother nuclide, beta emitter ^{241}Pu in each air filter sample set of the period 1965-2011 for the time of sampling. The alpha measurements were performed soon after the radiochemical separations in 2013-2014.

The activity concentration of ^{90}Sr was measured by Quantulus 1220 liquid scintillation counter (LSC) via the activity concentration of the daughter nuclide ^{90}Y. Finally, after an additional purification step of the Pu alpha counting samples, the mass ratio $^{240}\text{Pu}/^{239}\text{Pu}$ was determined by SF-ICP-MS (Sector-Focusing Inductively Coupled Plasma-Mass Spectrometry), ELEMENT XR (Thermo Scientific).

More detailed description of the measurements is given in Salminen-Paatero and Paatero (submitted to Methods X, in review).

3. RESULTS AND DISCUSSION

3.1 The activity concentrations of ^{238}Pu, $^{239-240}\text{Pu}$, and ^{241}Pu in the surface air of Rovaniemi in 1965-2011

3.1.1 The activity concentration of ^{238}Pu

The activity concentration of ^{238}Pu had the highest value of 259±13 nBq m$^{-3}$ in 1968 during the investigated time period 1965-2011 (Table 1, Fig. 1). The years of the highest concentrations of ^{238}Pu around 1968 are a consequence from the destruction of the SNAP-9A nuclear power unit of the satellite re-entering the atmosphere in 1964. Since 1968, the activity concentration of ^{238}Pu in the surface air of Rovaniemi has been decreasing being nowadays below or close to the detection limit. The concentration of ^{238}Pu was under detection limit also during the months after the Chernobyl accident, in April-December in 1986.

3.1.2 The activity concentration of $^{239-240}\text{Pu}$
The activity concentration of $^{239+240}$Pu in the surface air of Rovaniemi has been dropping from the highest value 2270±40 nBq m$^{-3}$ in 1965, being a few nBq m$^{-3}$ since 1996 (Table 1, Fig. 1). Two years before the sampling was started, in 1963, was the deposition maximum from atmospheric nuclear tests that were performed before the Partial Test Ban Treaty. For example, at Sodankylä, 120 km North of Rovaniemi the average $^{239+240}$Pu activity concentration was 17 000 nBq m$^{-3}$ in 1963 (Salminen & Paatero 2009). Slight peaks in the $^{239+240}$Pu concentration can be seen in 1974, 1978 and 1981, evidently due to the atmospheric nuclear tests performed by People’s Republic of China between 1973 and 1980. The effect of these nuclear tests on the radionuclide concentration level in Finnish Lapland has been already observed in the concentration variation of 137Cs (Salminen-Paatero et al. 2019). Like with 238Pu, the concentration of $^{239+240}$Pu was below the detection limit on April-June 1986 following the Chernobyl accident. For comparison, the concentration of $^{239+240}$Pu was 32 µBq m$^{-3}$ in the surface air in Nurmiijärvi (Southern Finland), in 28 April, 1986 (Jaakkola et al. 1986).

Based on the extremely low activity concentrations of both 238Pu and $^{239+240}$Pu in the surface air of Rovaniemi during April-December 1986, one can conclude that hardly any plutonium was migrated to Finnish Lapland from the destroyed Chernobyl nuclear reactor after 26th April, 1986. This conclusion is also supported by the high concentration of 137Cs (1294±7 µBq m$^{-3}$) and the low concentration of 90Sr (5.2±1.1 µBq m$^{-3}$) in the same air filter samples in April-June 1986 (Salminen-Paatero et al. 2019). It has been suggested that the initial contamination plume from the destroyed Chernobyl reactor contained intermediate (90Sr) and refractory elements (Pu isotopes) and that plume passed over central and southern parts of Finland, while the volatile elements like 137Cs were mostly in the later contamination plumes which reached also Lapland (Saxén et al. 1987). However, the observations of 241Pu/$^{239+240}$Pu activity ratio discussed in a later paragraph show some possibility of Chernobyl-derived plutonium in Finnish Lapland.

3.1.3 The activity concentration of 241Pu

The concentration of 241Pu was calculated via ingrowth of 241Am and like with $^{239+240}$Pu, the activity concentration of 241Pu had the highest value in 1965, 38 198±711 nBq m$^{-3}$, and since then its concentration has been decreasing except small peaks in 1974, 1978, and 1981 (Table 1, Fig. 2). Similarly with the activity concentration changes of $^{239+240}$Pu, these peaks in the activity concentration of 241Pu are presumably caused by nuclear tests executed in People’s Republic of China. The atmospheric activity concentration of 241Pu was lower than the detection limit in April-June 1986, and since July-December 1986, the amount of 241Pu was returned again to the same level as it was
before the Chernobyl accident in the surface air of Rovaniemi. Based on the 241Pu concentration only, there is no evidence about any Chernobyl-derived 241Pu in Rovaniemi.

Interestingly, the increase in the activity concentration of 241Pu is seen in 2011, unlike with 238,239,240Pu. The activity concentration of 241Pu in 2011, 602±131 nBq m$^{-3}$, is higher than the concentration level in Rovaniemi during last decades before 2011, and it is probably due to the Fukushima accident in 11th March 2011. The activity of 241Pu has been reported to being much higher than the activity of $^{239+240}$Pu in the emissions from the destroyed Fukushima NPP, the activity ratio 241Pu/$^{239+240}$Pu having a value of 108 in soil and litter samples (Zheng et al. 2012). The activity concentrations of Pu isotopes were 25 000 nBq m$^{-3}$ for 241Pu, 130 nBq m$^{-3}$ for 239Pu and 150 nBq m$^{-3}$ for 240Pu in the air filters sampled at 120 km from Fukushima on 15th March, 2011 (Shinonaga et al. 2014).

It is unfortunate that there is the only one combined air filter sample from Rovaniemi for the year 2011, because the annual concentration is only an average of the weekly concentrations in 2011 and now the signal from the Fukushima accident has been diluted under the excess effect of global fallout in the air filters. It would have been interesting to analyze plutonium isotopes in weekly filters separately from March 2011, for determining Fukushima-derived 241Pu concentration and isotope ratios in Finnish Lapland.

3.2 The activity ratios 238Pu/$^{239+240}$Pu, 241Pu/$^{239+240}$Pu, $^{239+240}$Pu/137Cs, total beta activity/$^{239+240}$Pu, and mass ratio 240Pu/239Pu in the air filters

3.2.1 238Pu/$^{239+240}$Pu activity ratio

The activity ratio 238Pu/$^{239+240}$Pu was 0.022±0.003-0.444±0.023 in Rovaniemi in 1965-2011, the values under the detection limit excluded (Table 2, Fig. 3). The variation in the activity ratio values is 200-fold. The activity ratio 238Pu/$^{239+240}$Pu in the surface air can vary greatly even in a short time e.g., due to e.g., stratospheric-tropospheric exchange, resuspension and introduction of several contamination sources. For example, the activity ratio 238Pu/$^{239+240}$Pu varied from 0.014±0.003 to 0.32±0.11 in Sodankylä, Finnish Lapland, during one year in 1963, still the most typical value was ~0.03 that represents the activity ratio for the global fallout (Salminen and Paatero 2009). The ratio started to increase in 1966 in Rovaniemi reaching a maximum in 1967 due to the previously mentioned SNAP-9A satellite accident in 1964. Previously, an increased 238Pu/$^{239+240}$Pu activity ratio due to the SNAP-9A accident has been found in lichens both in Subarctic Finland (Jaakkola et al. 2014).
1978) and Sweden (Holm and Persson 1975) a couple of years after 1964. This over two year delay
after the accident indicates how slow the interhemispheric transport of stratospheric radionuclides is
(Fabian et al. 1968).

The activity ratio $^{238}\text{Pu}/^{239+240}\text{Pu}$ cannot be determined for the period immediately after the Chernobyl
accident because the activity concentrations of ^{238}Pu and $^{239+240}\text{Pu}$ were below the detection limit
during April-December 1986. This finding is in agreement with the previous assumptions about
hardly any Chernobyl-derived refractory elements in Finnish Lapland (Salminen-Paatero et al. 2019).

Due to the activity concentrations of ^{238}Pu and $^{239+240}\text{Pu}$ being below the detection limit, the activity
ratio $^{238}\text{Pu}/^{239+240}\text{Pu}$ cannot be determined for the year of the Fukushima accident, 2011, either. For
comparison, both ^{238}Pu and $^{239+240}\text{Pu}$ were detected in Lithuania, ~1300 km south from Rovaniemi,
soon after the Fukushima accident in Lithuania, ~1300 km south from Rovaniemi (Lujanienė et al.
2012). The combined air filter sample set in Lithuanian study contained the sampled air volume of
~2 x 10^6 m3 during March 23 – April 15 2011, the activity concentration of $^{239+240}\text{Pu}$ being 44.5±2.5
nBq m$^{-3}$, and the activity concentration of ^{238}Pu being 1.2 times higher than of $^{239+240}\text{Pu}$. The resulting
activity ratio $^{238}\text{Pu}/^{239+240}\text{Pu}$ in Lithuania was 1.2, clearly deviating from the activity ratio values in
the Chernobyl fallout and global fallout from nuclear weapons testing.

3.2.2 $^{241}\text{Pu}/^{239+240}\text{Pu}$ activity ratio

The activity ratio $^{241}\text{Pu}/^{239+240}\text{Pu}$ varied between 8.2±0.7 and 79±17 in the surface air of Rovaniemi
in 1965-2011, except April-December 1986 and 2011, when the concentration of one or both isotopes
(either $^{239+240}\text{Pu}$ or ^{241}Pu) was under detection limit (Table 2, Fig. 4). These two periods following the
accidents of Chernobyl and Fukushima would have interesting $^{241}\text{Pu}/^{239+240}\text{Pu}$ activity ratio values for
determining the Pu contamination source in Rovaniemi. Unfortunately, the concentration of $^{239+240}\text{Pu}$
in the surface air of Finnish Lapland was extremely low during those periods.

The $^{241}\text{Pu}/^{239+240}\text{Pu}$ activity ratio values of Rovaniemi were mainly due to atmospheric nuclear
weapons testing in 1965-March 1986 and for the years 1987-2005, an influence from the Chernobyl
accident can be seen as elevated ratio values. The $^{241}\text{Pu}/^{239+240}\text{Pu}$ activity ratio was determined to be
15 in fresh nuclear fallout in 1963-1972 (Perkins and Thomas 1980) and the corresponding ratio
values in the fallout from the Chernobyl accident have been 85 in Sweden and Poland (Holm et al.
1992; Mietelski et al. 1999), and 95 in Finland (Paatero et al. 1994). The published $^{241}\text{Pu}/^{239+240}\text{Pu}$
activity ratio values for the Fukushima-derived contamination are also high, e.g. 89 in air filters
(calculated from the individual isotope concentrations in Shinonaga et al. (2014)), and 108 in soil and
litter samples (Zheng et al. 2012).

3.2.3 $^{240}\text{Pu}/^{239}\text{Pu}$ mass ratio

The mass ratio $^{240}\text{Pu}/^{239}\text{Pu}$ was 0.117±0.009-0.278±0.093 in 1965-2011 (Table 2, Fig. 5) and the
major part of the ratio values correspond to the value ~0.18 for global fallout from atmospheric
nuclear weapons testing in nNorthern hemisphere (Beasley et al. 1998), taking into account the
relative measurement uncertainties. The highest mass ratio value occurred in April-June 1986, while
the activity concentrations of ^{239}Pu, $^{239+240}\text{Pu}$ and ^{241}Pu were under detection limit by alpha
spectrometry. Therefore, it was possible to determine ^{239}Pu and ^{240}Pu by mass spectrometry even
from the samples with very low Pu-concentration (April-December 1986, 2011, etc.), although the
relative measurement uncertainties by ICP-MS are much higher for these samples with very low Pu-
concentration compared with the measurement uncertainties of samples with higher Pu-
concentration level.

The mass ratio $^{240}\text{Pu}/^{239}\text{Pu}$ is higher in the emissions from the destroyed Chernobyl reactor, compared
with the global fallout value. For example, the mass ratio value 0.408±0.003 has been determined
from the samples of Chernobyl-contaminated soil layer (Muramatsu et al. 2000) and two hot particles
that migrated to Finland from Chernobyl had the mass ratios 0.33±0.07 and 0.53±0.03 (Salminen-
Paatero et al. 2012). The air filters sampled in Rovaniemi in April-June and July-December 1986
seem to have elevated mass ratios, 0.278±0.093 and 0.254±0.073 respectively, but taking into account
their high measurement uncertainties, these post-Chernobyl ratio values might be close to the global
fallout ratio 0.18 after all.

Similarly with the refractory element emissions from the Chernobyl accident, the released fuel
particles from the Fukushima accident have significantly higher mass ratio $^{240}\text{Pu}/^{239}\text{Pu}$ than the
global fallout value 0.18. Dunne et al. (2018) have compared the mass ratios $^{240}\text{Pu}/^{239}\text{Pu}$ in soil,
sediment and vegetation samples collected at the surroundings of Fukushima with the known mass
ratios in global fallout and in the destroyed nuclear reactors of Fukushima NPP. The mass ratio
$^{240}\text{Pu}/^{239}\text{Pu}$ for the Fukushima reactor units was obtained by using ORIGEN code, being 0.344
for Reactor 1, 0.320 for Reactor 2, and 0.356 for the Reactor 3, respectively (Nishihara et al. 2012).
All investigated environmental samples from the proximity of Fukushima had the $^{240}\text{Pu}/^{239}\text{Pu}$ atom
ratios between the global fallout value and the value for the Reactor Unit 3 calculated by ORIGEN,
with the exception of one deviating value (Dunne et al. 2018).
It was highlighted in the same study that the concentration level of Pu isotopes and the mass ratio $^{240}\text{Pu}/^{239}\text{Pu}$ varies greatly in the environment of Fukushima, and they don’t necessarily correlate with each other. Also the lowest mass ratio values in Fukushima have been at global fallout level. This variety of isotope concentrations and isotope ratios has been noticed in other Fukushima-related investigations as well. From a litter and soil sample set collected at 20-32 km from Fukushima, three samples had high ^{241}Pu concentrations and mass ratios 0.303-0.330 that can be considered as representing contamination from the destroyed reactors of Fukushima (Zheng et al. 2012). The rest of the soil and litter samples from the proximity of Fukushima in (Zheng et al. 2012) had low ^{241}Pu concentrations and the $^{240}\text{Pu}/^{239}\text{Pu}$ mass ratios were at the northern hemisphere global fallout level. In another study, the air filter samples collected at 120 km from Fukushima formed two groups: one having low ^{239}Pu concentration and fairly similar mass ratio to global fallout (0.141±0.002) and another having high ^{239}Pu concentration and mass ratio clearly deviating from global fallout (≥ 0.3) (Shinonaga et al. 2014).

The $^{240}\text{Pu}/^{239}\text{Pu}$ mass ratio was only 0.145±0.091 in the surface air of Rovaniemi during the year of the Fukushima accident, 2011. Again, the activity concentrations of both ^{239}Pu and ^{240}Pu were extremely low in Rovaniemi during that year and the uncertainty of the mass ratio is therefore high, suggesting that the ratio value in 2011 is probably due to global fallout though.

3.2.4 $^{239+240}\text{Pu}/^{137}\text{Cs}$ activity ratio

The activity ratio $^{239+240}\text{Pu}/^{137}\text{Cs}$ varied between 0.0005±0.0001 and 0.0393±0.0038 in the surface air of Rovaniemi in 1965-2011, excluding the samples from April-December 1986 and 2011, when the concentration of $^{239+240}\text{Pu}$ fell below the detection limit (Table 2). The lowest value for the activity ratio occurred in 2006-2010, when the activity concentration of both radionuclides ($^{239+240}\text{Pu}$ and ^{137}Cs) has been constantly decreasing in the surface air for decades. The range of the values in Rovaniemi is in agreement with the previous studies of surface air in Finland. The activity ratio $^{239+240}\text{Pu}/^{137}\text{Cs}$ was 0.0020±0.0008–0.029±0.010 in Sodankylä (Finnish Lapland) during 1963 (Salminen-Paatero and Paatero 2012) and 0.005±0.002–0.012±0.004 (range of annual mean values) in Helsinki (Southern Finland) in 1962-1977 (Jaakkola et al. 1979).

Bossew et al. (2007) have calculated the reference values for the $^{239+240}\text{Pu}/^{137}\text{Cs}$ activity ratio in global fallout and the Chernobyl accident, obtaining 0.0180±0.0024 (data from Bunzl and Kracke, 1988) and 6.6 x 10$^{-6}$ (data from Irlweck and Khademi, 1993), respectively. The values of Rovaniemi are
higher than the value for Chernobyl contamination and some values of Rovaniemi are even higher than the value for global fallout.

On the contrary to high $^{239+240}\text{Pu}/^{137}\text{Cs}$ ratio values in the surface air of Rovaniemi and in global fallout, very low $^{239+240}\text{Pu}/^{137}\text{Cs}$ activity ratios have been observed in Fukushima environment. Among all litter and soil samples of Fukushima in the study by Zheng et al. (2012), the three samples that represent the Fukushima-derived contamination, i.e. have both the high ^{241}Pu concentration and the high $^{240}\text{Pu}/^{239}\text{Pu}$ mass ratio, had the $^{137}\text{Cs}/^{239+240}\text{Pu}$ activity ratios 4×10^{-8}, 2×10^{-7}, and 5×10^{-6} in 2011.

3.2.5 Total beta activity/$^{239+240}\text{Pu}$ activity ratio

The ratio between total beta activity (Salminen-Paatero et al. 2019) and $^{239+240}\text{Pu}$ remains rather constant during the atmospheric nuclear testing era (Fig. 6). The ratio reflects the produced nuclide composition after fission and activation reactions in the detonating devices. Following the Chernobyl accident, the ratio increases almost three orders of magnitude. After the initial explosion plume, the emissions from the burning reactor were dominated by volatile fission products, which explains the high total beta activity/$^{239+240}\text{Pu}$ activity ratio. After the decay of short-lived fission products, the ratio soon returns close to the pre-Chernobyl level. Towards the end of the 20th century, the ratio starts gradually increasing. This is explained by the decreasing amount of plutonium in the atmosphere while the total beta activity remains on a constant level due to natural atmospheric radioactivity, mainly ^{210}Pb.

3.3 Effect of actual and hypothetic nuclear detonations on the surface air of Finnish subarctic

At least two new nuclear facilities in or close to the Euroarctic region are under preparation. A construction of infrastructure for a new nuclear power plant at Pyhäjoki, western Finland, has been started. Shtokmann natural gas field is located in the Barents Sea about halfway between northern Finland and Novaya Zemlya. The future production facility will have been planned to be powered by a floating nuclear power plant in the plans. In case of hypothetical accidents in these plants, the atmospheric dispersion of plutonium contamination was assessed with atmospheric transport modeling. In this study, ADM (atmospheric dispersion modeling) provided risk estimates...
and reference contamination levels related to future nuclear activities in and close to Arctic regions, which can be compared with earlier actual releases.

^{241}Pu dispersion in the atmosphere was simulated with the SILAM model (Sofiev et al., 2006; 2008). The model runs were based on the meteorological forecast data of the European Centre for Medium-Range Weather Forecasts (www.ecmwf.int) with a horizontal resolution of 0.25 degrees and with 9 vertical levels up to the height of 7700 m. Transport and dispersion calculations for both sites were made for each day in the year 2010. The average activity concentrations of ^{241}Pu in the surface air during the first 48 hours after the release were calculated.

The following accident conditions, previously listed in Paatero et al. (2014), for the Pyhäjoki power reactor ($64^\circ32'\text{N}, 24^\circ15'\text{E}$) were used:

- a pressurized water reactor with a thermal power of 4000 MW,
- the end of the refueling interval,
- an immediate release after shutdown with an effective release height of 200 m above sea level, and
- a ^{241}Pu inventory of 6.2×10^{17} Bq, release fraction of 0.1%, and a release of 6.2×10^{14} Bq.

The following accident conditions for the case of Shtokmann gas field, the Barents Sea ($73^\circ\text{N}, 44^\circ\text{E}$) were used (previously used by Paatero et al. 2014):

- an icebreaker reactor with a fuel burnup of 466000 MWdays T^{-1} HM,
- an immediate release two hours after shutdown,
- a radionuclide inventory according to Reistad and Ølgaard (2006),
- an effective release height of 100 m above sea level, and
- a ^{241}Pu inventory of 3.2×10^{14} Bq, release fraction of 0.2%, and a release of 6.4×10^{11} Bq.

Varying meteorological situations have a decisive effect on the atmospheric plutonium transport following accidental emissions from a nuclear reactor. The wind direction determines the path of the emission plume. The wind speed sets how quickly the emission plume is advected. However, the wind speed also affects the turbulence that disperses the plume vertically and horizontally. This influences the plutonium concentrations in the air. Precipitation, for one’s part, efficiently scavenges
plutonium-bearing particles from the atmosphere to the surface, which affects the deposition of plutonium and furthermore its transfer to food webs.

From the Rovaniemi region point of view the worst of the calculated 365 dispersion cases would have caused in ground-level air an average ^{241}Pu activity concentration less than 1 kBq m$^{-3}$ during the first 48 hours after the release (Fig. 7). This equals an annual average ^{241}Pu exposure of 5 Bq m$^{-3}$. For comparison, due to the atmospheric nuclear tests the ^{241}Pu activity concentration varied between a few dozens and some 1700 µBq m$^{-3}$ in 1963 in northern Finland, in other words on a several orders of magnitude lower level (Salminen and Paatero 2009). In practice, the human exposure to ^{241}Pu via inhalation would remain on a clearly lower level because the civil defence authorities would order the population to stay indoors with the ventilation systems closed and doors and windows sealed.

Compared with the Pyhäjoki accident scenario the consequences after a hypothetical accident in a floating nuclear reactor in the Barents Sea would remain much less significant from the northern Finnish point of view. This is due to the smaller emissions, greater distance and favorable climatic conditions, namely prevailing wind directions from the west and south-west. Only one case out of 365 dispersion calculations produced an atmospheric transport pattern that reached the northernmost Finland (Fig. 8). The ground-level ^{241}Pu activity concentrations would have been less than 0.01 Bq m$^{-3}$ during the first 48 hours corresponding to an annual average concentration of 55 µBq m$^{-3}$. This is similar to the activity concentrations occurring in the early 1960s.

3.4 Case “Fukushima 2011 and ^{241}Pu”

In an earlier work by Paatero et al. (2012), it was observed that the Silam model simulates well the temporal behavior of the Fukushima emission plume in the High Arctic well. The calculated activity concentration levels, however, were an order of magnitude lower than the observed ones. This deviation was attributed to the inaccuracies in the source term. From the same model dataset, the ^{137}Cs activity concentration in the surface of Rovaniemi was extracted. The level of these values was then corrected by adjusting them to the observed weekly ^{137}Cs activity concentration of 170 µBq m$^{-3}$ between 28 March and 4 April 2011 (Salminen-Paatero et al. 2019). From these values, the ^{241}Pu activity concentrations were obtained by multiplying with the $^{241}\text{Pu}/^{137}\text{Cs}$Pu activity ratio of 7.81x10$^{-6}$. This activity ratio was found in hot particles close to the Fukushima Daiichi NPP by Igarashi et al. (2019). The calculated hourly ^{241}Pu activity concentrations reach a maximum level of 0.01 µBq m$^{-3}$.

for two short periods (Fig. 9). The calculated peak activity concentrations are very low, six orders of magnitude, compared with daily 241Pu activity concentrations observed in northern Finland in 1963 (Salminen and Paatero 2009). However, there is a discrepancy between this assessment and the annual observed 241Pu activity concentration of 0.6 μBq m$^{-3}$ (Fig. 2). If we assume that the background 241Pu activity concentration due to the atmospheric nuclear tests and the Chernobyl accident would be 0.03 μBq m$^{-3}$ then the average activity concentration between 27 March and 17 April should be 9.3 μBq m$^{-3}$, between 27 March and 17 April, in other words a thousand times higher. An obvious explanation is that the 241Pu/137Cs activity ratio (7.81×10^{-6}) we used is not valid. The value may not be representative to the bulk emission mixture of the destroyed reactors. Zheng et al. (2012) found out that the 137Cs/239,240Pu activity ratio in environmental samples varied over four orders of magnitude. In addition, the hot particles were found close to the source and fractionation processes during the over 10000 km long atmospheric transport could occur too.

4. CONCLUSIONS

Based on the activity concentrations of 238,239,240,241Pu, hardly any refractory elements from the exploded Chernobyl reactor reached Finnish Lapland in 1986. Previously Chernobyl-derived 137Cs, a more volatile isotope, has been detected from the same air filter samples whereas there was no increased concentration of 90Sr in the samples after March 1986. The influence from the Fukushima Daiichi accident is seen as the increased concentration of 241Pu in the air filters. Nuclear weapons testing in 1950’s and 1960’s, later nuclear tests onin 1973-1980, SNAP 9A-satellite accident in 1964, and the Fukushima accident in 2011 have been the main sources of Pu in the surface air in Finnish Lapland during 1965-2011.

Overall, the mass ratio 240Pu/239Pu is a more sensitive contamination source indicator than the activity ratios 238Pu/$^{239+240}$Pu or 241Pu/$^{239+240}$Pu due to the lower detection limit of ICP-MS compared with alpha spectrometry and LSC. However, it is always useful to analyze more than one isotope ratio or activity ratio, and single isotope concentrations when characterizing the origin of Pu contamination. In this case, the contribution of the Fukushima accident in Rovaniemi would not have been observed without analyzing the concentration of 241Pu in the air filter samples.
Dispersion modeling results with the atmospheric dispersion model Silam indicate that Pu contamination in northern Finland would be negligible due to a hypothetical accident in a floating nuclear reactor at the Shtokmann natural gas field, the Barents Sea. The Pu contamination risk would be higher in case of a severe accident at the intended nuclear power plant at Pyhäjoki, western Finland, due to the bigger reactor and shorter distance. The modeling of the Fukushima case demonstrated how important is the accurate source term data for predicting the activity concentrations of the radionuclides in the air following an atmospheric release of radioactivity.

ACKNOWLEDGEMENTS

Emil Pesonen is acknowledged for help with cutting the air filter samples before ashing and Ilia Rodushkin (ALS Scandinavia Luleå laboratory) for measuring the Pu samples with ICP-MS. This work belongs to "Collaboration Network on EuroArctic Environmental Radiation Protection and Research (CEEPRA)". The project was funded by EU Kolarctic ENPI CBC 2007-2013 programme that was managed by the Regional Council of Lapland. The authors want to thank EU-project “TOXI Triage” (Project id. 653409) for additional support.

REFERENCES

Irlweck, K. and Khademi, B.: $^{239(240)},^{238}\text{Pu}$, ^{90}Sr, ^{103}Ru and ^{137}Cs concentrations in surface air in Austria due to dispersion of Chernobyl releases over Europe, J. Environ. Radioact., 20, 133-148, https://doi.org/10.1016/0265-931X(93)90038-9, 1993.

Salminen-Paatero, S. and Paatero, J.: Separation method for Pu, Am and Sr in large air filter sample sets, in review submitted to MethodsX.

Table captions
1. The atmospheric activity concentrations of 238Pu, 239,240Pu and 241Pu in Rovaniemi, Finnish Lapland. The activity values have been decay-corrected to the middle point of the sampling period.

2. The activity ratios 238Pu/239,240Pu, 241Pu/239,240Pu, 239,240Pu/137Cs, and the mass ratio 240Pu/239Pu in the air filters collected in Rovaniemi. The uncertainty is 1 sigma error for the activity ratios and 2 sigma error for the mass ratio. – means that one or both isotopes had concentration below the detection limit.

Figure captions

1. The activity concentration of 238Pu (thin line, nBq m$^{-3}$) and 239,240Pu (thick line, nBq m$^{-3}$) in the surface air of Rovaniemi in 1965-2011. Values below the detection limit have been depicted as half the MDA value (Table 1). The black circles indicate the times of atmospheric nuclear tests (UNSCEAR 2000).

2. The activity concentration of 241Pu (nBq m$^{-3}$) in the surface air of Rovaniemi (thick line 1965-2011 left vertical scale, thin line 1982-2011, right vertical scale). Values below the detection limit have been depicted as half the MDA value (Table 1).

3. The activity ratio 238Pu/239,240Pu in the surface air of Rovaniemi as a function of time.

4. The activity ratio 241Pu/239,240Pu in the surface air of Rovaniemi as a function of time.

5. The mass ratio 240Pu/239Pu in the surface air of Rovaniemi as a function of time.

6. The ratio of total beta activity (Salminen-Paatero et al. 2019) and 239,240Pu activity content in the surface air in Rovaniemi in 1965-2011. 239,240Pu values below the detection limit have been replaced with half the MDA values (Table 1).

7. The average activity concentration of 241Pu in the surface air during the first 48 hours after a hypothetical reactor accident at Pyhäjoki, assumed release 20 January 2010.

8. The average activity concentration of 241Pu in the surface air during the first 48 hours after a hypothetical accident in a floating reactor at Shitokmann natural gas field, the Barents Sea, assumed release 5 May 2010.

9. Modeled hourly 241Pu activity concentration (μBq m$^{-3}$) in the surface air of Rovaniemi in March-April 2011.
Table 1. The atmospheric activity concentrations of 238Pu, $^{239+240}$Pu and 241Pu in Rovaniemi, Finnish Lapland. The activity values have been decay-corrected to the middle point of the sampling period.

<table>
<thead>
<tr>
<th>Year</th>
<th>$A_{^{238}Pu}$ (nBq m$^{-3}$)</th>
<th>$A_{^{239+240}Pu}$ (nBq m$^{-3}$)</th>
<th>$A_{^{241}Pu}$ (nBq m$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>68±8</td>
<td>2270±40</td>
<td>38198±711</td>
</tr>
<tr>
<td>1966</td>
<td>117±7</td>
<td>1371±21</td>
<td>21182±451</td>
</tr>
<tr>
<td>1967</td>
<td>221±10</td>
<td>497±13</td>
<td>7768±236</td>
</tr>
<tr>
<td>1968</td>
<td>259±13</td>
<td>969±20</td>
<td>16237±396</td>
</tr>
<tr>
<td>1969</td>
<td>245±12</td>
<td>973±20</td>
<td>14585±372</td>
</tr>
<tr>
<td>1970</td>
<td>135±9</td>
<td>1040±20</td>
<td>15027±367</td>
</tr>
<tr>
<td>1971</td>
<td>76±5</td>
<td>1211±16</td>
<td>15975±387</td>
</tr>
<tr>
<td>1972</td>
<td>28±3</td>
<td>325±7</td>
<td>3456±179</td>
</tr>
<tr>
<td>1973</td>
<td>26±3</td>
<td>206±7</td>
<td>1701±128</td>
</tr>
<tr>
<td>1974</td>
<td>13±2</td>
<td>570±12</td>
<td>7383±261</td>
</tr>
<tr>
<td>1975</td>
<td>15±3</td>
<td>250±10</td>
<td>3769±182</td>
</tr>
<tr>
<td>1976</td>
<td>6.7±1.2</td>
<td>74±3</td>
<td>804±75</td>
</tr>
<tr>
<td>1977</td>
<td>6.9±1.2</td>
<td>297±7</td>
<td>3632±169</td>
</tr>
<tr>
<td>1978</td>
<td>13±2</td>
<td>563±10</td>
<td>9106±291</td>
</tr>
<tr>
<td>1979</td>
<td>6.1±1.2</td>
<td>175±5</td>
<td>3645±210</td>
</tr>
<tr>
<td>1980</td>
<td>2.7±0.9</td>
<td>74±4</td>
<td>1063±92</td>
</tr>
<tr>
<td>1981</td>
<td>7.0±1.7</td>
<td>248±9</td>
<td>2137±137</td>
</tr>
<tr>
<td>1982-March 1986</td>
<td>0.59±0.16</td>
<td>15.3±0.8</td>
<td>200±19</td>
</tr>
<tr>
<td>April-June 1986</td>
<td>< 1.6</td>
<td>< 7.2</td>
<td>< 381</td>
</tr>
<tr>
<td>July-December 1986</td>
<td>< 1.1</td>
<td>< 5.2</td>
<td>315±71</td>
</tr>
<tr>
<td>1987-1990</td>
<td>2.2±0.3</td>
<td>5.8±0.4</td>
<td>101±15</td>
</tr>
<tr>
<td>1991-1995</td>
<td>0.23±0.07</td>
<td>16.9±0.1</td>
<td>73±11</td>
</tr>
<tr>
<td>1996-2000</td>
<td>< 0.1</td>
<td>6.5±0.2</td>
<td>39±8</td>
</tr>
<tr>
<td>2001-2005</td>
<td>0.37±0.19</td>
<td>1.4±0.3</td>
<td>41±10</td>
</tr>
<tr>
<td>2006-2010</td>
<td>< 0.4</td>
<td>0.51±0.14</td>
<td>< 25</td>
</tr>
<tr>
<td>2011</td>
<td>< 1.5</td>
<td>< 3.5</td>
<td>602±131</td>
</tr>
</tbody>
</table>
Table 2. The activity ratios $^{238}\text{Pu}/^{239+240}\text{Pu}$, $^{241}\text{Pu}/^{239+240}\text{Pu}$, $^{239+240}\text{Pu}/^{137}\text{Cs}$, and the mass ratio $^{240}\text{Pu}/^{239}\text{Pu}$ in the air filters collected in Rovaniemi. The uncertainty is 1 sigma error for the activity ratios and 2 sigma error for the mass ratio. – means that one or both isotopes had concentration below the detection limit.

<table>
<thead>
<tr>
<th>Year</th>
<th>$^{238}\text{Pu}/^{239+240}\text{Pu}$</th>
<th>$^{239+240}\text{Pu}/^{137}\text{Cs}$</th>
<th>Mass ratio $^{240}\text{Pu}/^{239}\text{Pu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>0.030±0.004</td>
<td>0.177±0.006</td>
<td>0.0071±0.0001</td>
</tr>
<tr>
<td>1966</td>
<td>0.085±0.005</td>
<td>0.172±0.003</td>
<td>0.0067±0.0001</td>
</tr>
<tr>
<td>1967</td>
<td>0.444±0.023</td>
<td>0.170±0.003</td>
<td>0.0079±0.0003</td>
</tr>
<tr>
<td>1968</td>
<td>0.267±0.014</td>
<td>0.190±0.004</td>
<td>0.0108±0.0003</td>
</tr>
<tr>
<td>1969</td>
<td>0.252±0.014</td>
<td>0.172±0.005</td>
<td>0.0104±0.0003</td>
</tr>
<tr>
<td>1970</td>
<td>0.130±0.009</td>
<td>0.186±0.007</td>
<td>0.0087±0.0002</td>
</tr>
<tr>
<td>1971</td>
<td>0.063±0.004</td>
<td>0.174±0.006</td>
<td>0.0135±0.0002</td>
</tr>
<tr>
<td>1972</td>
<td>0.087±0.008</td>
<td>0.125±0.007</td>
<td>0.0116±0.0005</td>
</tr>
<tr>
<td>1973</td>
<td>0.125±0.015</td>
<td>0.131±0.008</td>
<td>0.0182±0.0009</td>
</tr>
<tr>
<td>1974</td>
<td>0.022±0.003</td>
<td>0.182±0.005</td>
<td>0.0102±0.0003</td>
</tr>
<tr>
<td>1975</td>
<td>0.058±0.011</td>
<td>0.132±0.008</td>
<td>0.0102±0.0005</td>
</tr>
<tr>
<td>1976</td>
<td>0.091±0.016</td>
<td>0.138±0.009</td>
<td>0.0130±0.0010</td>
</tr>
<tr>
<td>1977</td>
<td>0.023±0.004</td>
<td>0.216±0.015</td>
<td>0.0097±0.0004</td>
</tr>
<tr>
<td>1978</td>
<td>0.024±0.003</td>
<td>0.209±0.012</td>
<td>0.0102±0.0004</td>
</tr>
<tr>
<td>1979</td>
<td>0.035±0.007</td>
<td>0.209±0.012</td>
<td>0.0107±0.0004</td>
</tr>
<tr>
<td>1980</td>
<td>0.036±0.012</td>
<td>0.173±0.015</td>
<td>0.0090±0.0006</td>
</tr>
<tr>
<td>1981</td>
<td>0.028±0.007</td>
<td>0.117±0.009</td>
<td>0.0107±0.0005</td>
</tr>
<tr>
<td>1982-March 1986</td>
<td>0.038±0.011</td>
<td>0.142±0.011</td>
<td>0.0065±0.0006</td>
</tr>
<tr>
<td>April-June 1986</td>
<td>-</td>
<td>0.278±0.093</td>
<td>-</td>
</tr>
<tr>
<td>July-December 1986</td>
<td>-</td>
<td>0.254±0.073</td>
<td>-</td>
</tr>
<tr>
<td>1987-1990</td>
<td>0.376±0.065</td>
<td>0.152±0.026</td>
<td>0.0014±0.0001</td>
</tr>
<tr>
<td>1991-1995</td>
<td>0.245±0.082</td>
<td>0.132±0.091</td>
<td>0.0393±0.0038</td>
</tr>
<tr>
<td>1996-2000</td>
<td>-</td>
<td>0.131±0.066</td>
<td>0.0106±0.0010</td>
</tr>
<tr>
<td>2001-2005</td>
<td>0.260±0.142</td>
<td>0.170±0.082</td>
<td>0.0030±0.0007</td>
</tr>
<tr>
<td>2006-2010</td>
<td>-</td>
<td>0.194±0.116</td>
<td>0.0005±0.0001</td>
</tr>
<tr>
<td>2011</td>
<td>-</td>
<td>0.145±0.091</td>
<td>-</td>
</tr>
</tbody>
</table>
Fig. 1. Activity concentration of 238Pu (thin line, nBq m$^{-3}$) and $^{239+240}$Pu (thick line, nBq m$^{-3}$) in the surface air of Rovaniemi in 1965-2011. Values below the detection limit have been depicted as half the MDA value (Table 1). The black circles indicate the times of atmospheric nuclear tests in the People’s Republic of China (UNSCEAR 2000).
Fig. 2. Activity concentration of 241Pu (nBq m$^{-3}$) in the surface air of Rovaniemi (thick line 1965-2011, left vertical scale; thin line 1982-2011, right vertical scale). Values below the detection limit have been depicted as half the MDA value (Table 1).
Fig. 3. The activity ratio $^{238}\text{Pu}/(^{238}+^{240})\text{Pu}$ in the surface air of Rovaniemi as a function of time.
Fig. 4. The activity ratio $^{241}\text{Pu}/^{239+240}\text{Pu}$ in the surface air of Rovaniemi as a function of time.
Fig 5. The mass ratio $^{240}\text{Pu}/^{239}\text{Pu}$ in the surface air of Rovaniemi as a function of time.
Fig. 6. The ratio of total beta activity (Salminen-Paatero et al. 2019) and $^{239+240}$Pu activity content in the surface air in Rovaniemi in 1965-2011. $^{239+240}$Pu values below the detection limit have been replaced with half the MDA values in the ratio calculation (Table 1).
Fig. 7. The average activity concentration of ^{241}Pu in the surface air during the first 48 hours after a hypothetical reactor accident at Pyhäjoki, assumed release 20 January 2010.
Fig. 8. The average activity concentration of 241Pu in the surface air during the first 48 hours after a hypothetical accident in a floating reactor at Shtokmann natural gas field, the Barents Sea, assumed release 5 May 2010.
Fig. 9. Modeled hourly 241Pu activity concentration (μBq m$^{-3}$) in the surface air of Rovaniemi in March-April 2011.
Author contributions

Susanna Salminen-Paatero performed radiochemical analysis and data analysis. Julius Vira produced Silam calculations. Jussi Paatero provided the air filter sampling and sampling data, and planned the accident scenarios. All authors contributed to writing the manuscript.

Data availability

Data will be available at University of Helsinki open data system.