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Final author response 
è Thank you for your review and comments concerning our manuscript entitled “Significant 
seasonal changes in optical properties of brown carbon in the mid-latitude atmosphere.” We sincerely 
appreciate all valuable comments and suggestion. We thank all reviewers for taking the time and 
effort necessary to review our manuscript. We have concerned all your comments carefully, and all 
comments were addressed in the revised manuscript. 

Reviewer # 1 

General comments:  
This paper presents the results of stationary measurements of biomass burning aerosol in South Korea 
over the course of multiple seasons. The authors identify biomass burning as a major contributor to 
light-absorbing components of the aerosol, and assert that UV-radiation can explain the lower 
absorptivity of summer vs winter samples, with irradiation of winter samples resulting in properties 
similar to observed summer samples. The paper is generally well-written and clear, and the figures are 
appropriate for the claims being made. In some cases, the language used is too conclusive, and some 
places need clarifying, as requested below.  
è Thank you for your valuable comment. All your comments were carefully taken into account in 
the revised version.  

Specific comments:  
Abstract line 10: seasonal changes in sources and sinks of HULIS and WSOC (what was directly 
measured rather than approximated). The next sentence then relates the HULIS to total BrC.  
è We measured both HULIS (water-soluble BrC) and MeOH-soluble BrC for all samples (Fig. 2b 
and Fig. S4b). For the UV radiation experiments, we only measured HULIS as an index of BrC. Thus, 
we kept the wording unchanged.  

Abstract line 17: this was supported by laboratory UV radiation experiments (confirm is too strong of 
language)  
è We changed the word “confirmed” to “supported.”  

Lines 23–24: Black carbon aerosol should not be included in the light absorbing organic aerosol 
category, as black carbon is primarily soot (inorganic carbon)   
è We clarified this sentence in the revised version (lines 24–31).   

Lines 92–93: Since the K fraction and WSON are determined using parameterizations instead of 
direct measurements, “estimated” is a more accurate term than “calculated.” For the K/Al_crust 
parameterization, please provide the value used in addition to the reference from where it came.  
è We changed the word “calculated” to “estimated.” We also provide the values used for the 
parameterization, in addition to the reference in the revised version (lines 102–106). 

Line 95: The sea spray fraction is calculated assuming a certain ratio of Na to Cl, (1.4486:1) – how 
does this ratio compare to the measured Cl/Na ratio? Since the Cl and Na is assumed to come entirely 
from seawater, this assumption can be verified.  
è Here, 1.4486 is the ratio of the concentration of all elements except Cl to the Na concentration in 
seawater (Maenhaut et al., 2007). The mass ratio of Cl/Na is 1.79 for seawater. The measured Cl/Na 
mass ratio ranged from 0.01 to 1.78. Since the maximum sea-salt concentration in our samples was 
about 0.1% of seawater, the highest value (1.78) verifies that our assumption is valid. Since this is 
commonly referred to and sea spray fraction is negligible in this study, we do not explain this in the 
text.  

Line 98: Similarly, provide the crustal V/A; parameterization used, and replace “calculated” with 
“estimated.”  
è We provided the value and changed the word “calculated” to “estimated.” 

Line 201: While Pearson’s r-squared value of 0.5 does represent a decent correlation in atmospheric 
data, by definition this means that 50% of the variation in HULIS is attributable to levoglucosan, not a 
majority, so the phrase “was the major source” might be slightly misleading.  
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è We changed the word “major” to “significant” (lines 214–216).  

Line 228: Similarly, although the negative correlation with r-squared of 0.5 indicates a strong 
relationship between UV radiation and HULIS, it only explains half of the variance in HULIS, and the 
system is more complex than it sounds from the current language.  
è  Yes, we agree. Thus, we just state similar trends for UV and HULIS. Then, we state that “these 
results are in agreement with the following laboratory results” instead of linking UV and HULIS at 
this stage.  

Line 242: the phrase “in the winter samples with high HULIS concentrations” leads one to conclude 
that there were winter samples with low HULIS as well as high HULIS. If, as I assume, the authors 
simply want to reinforce the idea that winter had higher HULIS, then perhaps this would be clearer, 
“in the winter samples (characterized by higher average HULIS concentrations), while no significant 
changes occurred in the summer samples (characterized by low average HULIS concentrations)”  
è We clarified this paragraph in the revised version (lines 252–255). 

Line 253–254: Please rephrase this sentence so that it is easier to understand. I don’t quite understand 
what the authors are saying here.  
è We argue that the trend of “light-absorbing property” is similar to that of “fluorescence property.” 
We clarified this sentence in the revised version (lines 261–262).  

Line 264: Given this interesting result (that irradiated winter samples look like summer samples” I 
wonder if there is more to be done with predicting summer properties from winter observations. It 
seems harder to back-calculate the properties of the aerosol emitted in summer (when still fresh), but I 
assume it would be similar to the winter samples. This interesting point deserves more attention, and I 
wonder if any previous studies have come to this conclusion, or a similar conclusion.  
è Thank you for your insightful comment. Although we cannot back-calculate the summer 
properties based on unknown UV radiation intensity, exposure time, and other atmospheric conditions, 
we assume a similar initial property based on other tracers including non-crustal K, air mass back 
trajectories (Fig. S1), and light absorption property in this study. 

Line 271: The use of word “confirmed” here to describe how the laboratory studies can explain the 
observed differences in fluorescence is too strong. The studies certainly support the hypothesis, and 
they go a long way toward suggesting the mechanism, but given that other processes in the 
atmosphere (oxidative, or possibly aqueous aging) could also result in the same bleaching, the 
language should be softened until there are many further studies, or until signatures of bleaching can 
be tied specifically to the mechanism studied here.  
è We changed the word “confirmed” to “supported.”  
 
Technical corrections:  
Line 21: “and THE global climate system”  
Line 28: remove plural on “light absorbing aerosols” 
Line 40–41: remove space between number and percent symbol in all instances 
Line 153: “originates” 
Line 204: omit “the” before “BrC” 
Line 244: there must be an extra word in this sentence “exhibited followed corresponding”  
Line 248: remove plural on “carbon contents” 
Line 251: omit “a” before “photo-labile” 
Line 267: omit “the” before “different seasons” 
è We made all above technical corrections as suggested. 
 
Reviewer # 2 

Han and coauthors describe off-line analysis of filter samples collected over four sea- sons in Seoul, 
Korea in order to investigate relationships between brown carbon (BrC) and water-soluble organic 
carbon (WSOC) and how they change throughout the year. Potential sources are also discussed using 
complementary off-line techniques including high performance liquid chromatography (HPLC), 
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excitation-emission matrix (EEM) analysis and isotope ratio mass spectrometry (IRMS). The seasonal 
behaviour of the relationship between humic-like substances (HULIS) and WSOC is interesting, with 
a pronounced increase in the HULIS/WSOC ratio in the winter months. The authors propose that this 
pattern is due to more effective reduction of HULIS mas through photodegradation during 
atmospheric transport in the summertime when photolyis rates and photochemical activity are higher. 
The absence of a seasonal pattern for potassium, in particular adds weight to the argument that the 
HULIS/WSOC ratio seasonality cannot be explained only by changes in biomass burning source 
contributions throughout the year. Although levoglucosan exhibits higher wintertime values, this 
tracer can also be degraded through photochemical processing. Overall I find the manuscript to be 
well written and structured and only have some minor comments:  
è Thank you for your review and valuable comments. All your comments were addressed in the 
revised manuscript.  

In the introduction it is mentioned that “the origin of BrC is often attributed predominantly to HULIS”. 
It would be helpful to discuss known sources of HULIS here.  
è We added more about the sources of HULIS in the introduction section in the revised version 
(lines 35–42).  

Through EEM analysis, the extracted HULIS component agreed temporally with the extracted HULIS 
concentration as shown in S4. How do the other extracted EEM factors agree temporally with HULIS 
concentration? If the agreement is strong between all three factors, then it is likely that they are 
associated with the same source. If C2 is characterized by tryptophan then is vegetative debris a likely 
source for this factor? Are C1 and C3 interpreted to have the same source but differ only in their EEM 
characteristics? This section (3.1) could be clearer.  
è Since the other EEM spectra are highly influenced by one 
dominant fluorophore HULIS (C1) as shown in Figure S7 (right), we 
cannot reliably characterize C2 component using PARAFAC model. 
Thus, we only use C1 component in this study. This is mentioned in 
the text (lines 165–170). 

Either in the Introduction or Discussion it would be helpful to 
discuss the findings here in the context of previous on-line 
measurement studies that have observed similar photodegradation of 
brown carbon from biomass burning sources during atmospheric 
summer time transport, for example (Forrister et al., 2015; Selimovic 
et al., 2019; Healy et al., 2019).  
è Yes, this is mentioned in the discussion section in the revised version (lines 244–247). 

Define “RU”  
è The detailed definition about “RU” is added in the revised manuscript (lines 133–136).  

Line 186: What is the likely source of the non-crustal V- oil combustion, shipping? It would be useful 
to discuss  
è Since vanadium is mostly removed during the refining processes, the use of raw materials such as 
crude oil and coal can be the source of non-crustal vanadium. This is mentioned in the revised 
manuscript (lines 231–234). 

Line 195: Define C3 plant-origin materials 
è We mentioned about C3 plant-origin materials in the revised manuscript (lines 205–207).  

Line 209-210: The last line of this paragraph is unclear and should be rephrased.  
è Yes, we rephrased this more clearly in the revised version (lines 221–222).  

Line 244: Remove “followed” 
è removed in the revised version. 
 [END] 
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Abstract.  Atmospheric brown carbon (BrC) plays significant roles in the light absorption and photochemistry of the 

atmosphere. Although the sources and occurrences of BrC have been studied extensively, its removal processes and optical 

characteristics in the atmosphere have been poorly understood. In this study, we examined the seasonal changes in sources 

and sinks of BrC and water-soluble organic carbon (WSOC) in the atmosphere of Seoul, Korea. Our results showed that the 10 

concentrations of BrC and WSOC decreased by approximately 80% and 30%, respectively, from the cold season (Oct–Jan) 

to the warm season (Jun–Sep). Excitation–emission matrix (EEM) spectra showed that the humic-like substance (HULIS) 

was the dominant fraction of BrC as the other components were not measurable. The air mass back trajectories of fire 

burning practices and the variations in non-crustal potassium (K) and vanadium (V) contents in the water-soluble aerosols 

during all seasons showed no measureable decrease in input of biomass-burning sources in summer. However, there was a 15 

significant shift in photo-resistivity of light-absorbing organic aerosols in the summer, indicating larger removals of 

ultraviolet (UV) degradable BrC. This trend is supported by laboratory UV radiation experiments on the optical property 

changes of BrC and WSOC in aerosol samples. Thus, our results suggest that the photo-degradation has dominant roles in 

controlling the quantity and quality of light-absorbing organic aerosols in the different seasons in the mid-latitude 

atmosphere.  20 

1 Introduction 

Organic aerosols play a significant role in atmospheric chemistry and the global climate system (Ghan and Schwartz, 2007; 

Duarte and Duarte, 2013; Kirillova et al., 2014a). Most organic aerosols consist of a significant fraction of carbonaceous 

organic aerosols absorbing radiation (Laskin et al., 2015). These light-absorbing organic aerosols, referred to as brown 

carbon (BrC), have attracted increasing attention owing to their significant roles in the radiative forcing of the global climate 25 

system by directly absorbing solar radiation (Andreae and Gelencsér, 2006; Graber and Rudich, 2006; Ramanathan et al., 

2007; Kirillova et al., 2014a; Saleh et al., 2014) and indirectly acting as cloud condensation nuclei (CCN) for cloud 

formation (Kanakidou et al., 2005; Andreae and Gelencsér, 2006; Graber and Rudich, 2006; Kirillova et al., 2014a). The 

light-absorbing property of BrC, which absorbs solar radiation in the range of ultraviolet (UV) to visible wavelengths, is 
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expected to be considerably weaker than that of the black carbon (BC), which absorbs over a wide spectral range from UV to 

near-infrared radiation (Feng et al., 2013; Laskin et al., 2015). However, its contribution would be significant due to its 

higher abundances over source regions (Hoffer et al., 2006; Gustafsson et al., 2009; Feng et al., 2013). Previous studies have 

estimated that the BrC contributes to approximately 19% of the total atmospheric radiative forcing (Feng et al., 2013).     

 50 

The origin of BrC is attributed predominantly to atmospheric humic-like substance (HULIS), which has properties similar to 

terrestrial and aquatic humic and fulvic acids (Andreae and Gelencsér, 2006; Graber and Rudich, 2006; Lukács et al., 2007; 

Laskin et al., 2015; Yan and Kim, 2017). Previous studies have identified that HULIS has both direct emission sources from 

biomass burning, marine aerosols, and soil re-suspension, and indirect contribution from secondary formation (Graber and 

Rudich, 2006; Hoffer et al., 2006; Lin et al., 2010; Yan and Kim, 2017). Recently, residential coal combustion was 55 

suggested as an important source of HULIS during cold seasons (Tan et al., 2016; Voliotis et al., 2017; Li et al., 2019). 

Besides HULIS, biological aerosols (e.g., bacteria, algae, pollen, spores, fungi, plant debris, and animal tissue) are another 

important sources of BrC (Després et al., 2012; Pöhlker et al., 2012). In general, the atmospheric HULIS contributes to 

approximately 70% of the water-soluble organic carbon (WSOC) (Laskin et al., 2015; Park and Son, 2017), while the WSOC 

contributes to 10–80% of the total organic carbon contents in aerosols (Kirillova et al., 2014a; Kirillova et al., 2014b; Fu et 60 

al., 2015). However, current understanding of the optical properties, chemical compositions, and degradation processes of 

light-absorbing organic aerosols still remain uncertain.  

 

In this study, we evaluated the seasonal changes in optical and chemical characteristics, including photo-resistivity, of light-

absorbing organic aerosols in an urban region. Recently, the method of excitation–emission matrix (EEM) characterization 65 

combined with a parallel factor analysis (PARAFAC) model has been employed for BrC studies (Kieber et al., 2006; 

Mladenov et al., 2011; Matos et al., 2015; Chen et al., 2016; Yan and Kim, 2017). This unique multi-analysis method can be 

used to identify individual chromophores of aerosol samples (i.e., HULIS versus protein-like substance) and light-absorbing 

properties of each sample. In addition, the stable carbon isotope ratios of WSOC (δ13CWSOC) and various chemical 

constituents were measured to identify the potential sources of organic aerosols in different seasons. Furthermore, we 70 

conducted laboratory experiments on the direct photochemical degradations of aerosol samples to verify the impacts of the 

UV radiation on the optical properties and carbon compositions of BrC and WSOC in the atmosphere. 

 

2 Experimental methods 

2.1 Study site and sample collection  75 

Seoul is the capital city of South Korea and one of the largest metropolitan cities in the world. Korea has been highly 

affected by severe dust storms known as Asian dust or the Yellow dust originated from the Chinese and Mongolian deserts 

during the spring (Mar–May) and often during the winter (Dec–Jan) (Lin et al., 2012). The increase in contents of fine 
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aerosols associated with anthropogenic emissions is of great concern and a focus of major environmental studies in this 95 

region (Seinfeld et al., 2004; Park et al., 2007).  

 

Aerosol samples (N=78) were collected using a high volume air sampler (HV-1000, SHIBATA) from March 2015 to January 

2016 in Seoul, Korea (37.5° N, 127.0° E; 20 m above ground level) (Fig. 1). The samples were collected for 24 h at a 

constant flow rate of 1000 L min-1 through a pre-combusted (450 °C for 5 h) glass microfiber filter (GF/F, 8 × 10 inch, 2 µm 100 

pore size, Whatman). A blank sample was collected by shortly exposing a blank filter at the study site and analyzed in the 

same manner as that for the other samples. The total suspended particulates (TSP) of the aerosol samples were measured by 

using the mass differences in desiccated filters between the pre- and post-sampling. The collected samples were covered with 

an aluminium foil, placed in a polyethylene bag, and stored in the dark at -20°C.  

 105 

Meteorological parameters of the study site including the temperature and UV radiation rate were obtained from the ambient 

air quality monitoring network named AirKorea in the Korea Environmental Corporation (KECO) and Korea Meteorological 

Administration (KMA). Fire maps around the study site were obtained by using the moderate resolution imaging 

spectroradiometer (MODIS) fire location data provided by NASA’s fire information for resource management system 

(FIRMS) (Fig. S1).  110 

 

A ten-day air mass back trajectory was drawn by using the Hybrid Single-Particle Lagrangian Integrated Trajectory 

(HYSPLIT) model to determine the source regions and transport pathways of air masses to the study site (Stein et al., 2015) 

(Fig. 1). Due to a regional meteorology of the study site, which is dominated by the East Asian Monsoonal effect, most air 

masses are transported from the arid and semi-arid regions in the Asian continent for most of the year (Yan and Kim, 2012; 115 

Yan and Kim, 2017)  

 

2.2 Aerosol extraction and chemical analyses  

For the analyses of water-soluble organic aerosols, a small portion of filter paper was cut into small pieces and placed in a 

pre-HCl-rinsed bottle. The organic components in the sample were extracted using Milli-Q water (18.2 MΩ cm) shaken at 120 

125 rpm for 4 h (Wozniak et al., 2012). Then, the extracts were filtered through a syringe filter (0.45 µm pore size 

Nucleopore, Whatman) and analyzed to evaluate the WSOC and total dissolved nitrogen (TDN) by a high-temperature 

oxidation method using a total organic carbon (TOC) analyzer (TOC-VCPH, Shimadzu). The major ion species (NOX, NH4
+, 

SO4
-2, Ca2+, Cl-, Na+, and K+) were analyzed by using a high performance liquid chromatography (HPLC, Waters 2695) 

system equipped with a conductivity detector (Waters 432) (Yan and Kim, 2015). The subsamples for trace element analyses 125 

were acidified to 2% in ultra-pure HNO3 and analyzed by using a high-resolution inductively coupled plasma mass 

spectrometer (HR-ICP-MS, Thermo Element 2). In order to correct the instrumental instability, Rh was included as internal 
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standard. The molecular marker compound, levoglucosan, was measured by using a gas chromatography-mass spectrometry 

(GC-MS, 7890N, Agilent) system coupled with a fused silica capillary column (HP-5MS, 25 m length, 0.25 mm i.d. and film 

thickness of 0.10 µm). Monthly representative filter samples were used for the analysis (N=25). The water-soluble organic 

nitrogen (WSON) concentration was calculated by using the concentration difference between the TDN and sum of 135 

inorganic nitrogen species (NO2
-, NO3

-, and NH4
+).  

 

The non-crustal potassium (K) and vanadium (V) fractions were estimated by using the following equation (Yan and Kim, 

2012):  

𝑛𝑜𝑛 − 𝑐𝑟𝑢𝑠𝑡𝑎𝑙 𝑋 = 𝑋 − ([𝑋]/[𝐴𝑙])!"#$%×[𝐴𝑙]!"#$%$&,      (1) 140 

For these calculations, the element compositions of the upper continental crust for K, Al, and V are assumed to be 2.80, 8.04, 

and 0.006 wt. %, respectively (Taylor and McLennan, 1995). The sea-spray fraction was estimated by using Cl- and Na+ 

concentrations assuming that all Cl- and Na+ are originated from seawater: sea-spray = Cl- + 1.4486 Na+ (Maenhaut et al., 

2007).  

 145 

The value of δ13CWSOC was measured by using an isotope ratio mass spectrometer (IRMS) (Isoprime, Elementar) combined 

with a TOC analyzer (Vario TOC cube, Elementar) (Panetta et al., 2008; Troyer et al., 2010; Kim et al., 2015; Yan and Kim, 

2017). The isotopic composition δ13CWSOC was determined using the following equation:  

𝛿!"𝐶 =
(!"! .!"!)!"#$%&

(!"! .!"!)!"#$%#&%
− 1 ×1000 ‰,                                              (2) 

where Vienna Pee Dee Belemnite (VPDB) was used as the isotope standard (Kelly et al., 2005; Troyer et al., 2010; Fu et al., 150 

2015). Analytical tests were made with IAEA-CH6 sucrose (δ13C = -10.45±0.03 ‰) and Suwannee River Fulvic Acid 

(SRFA) (δ13C = -27.6±0.12 ‰; International Humic Substances Society) to evaluate the recovery and the accuracy of the 

measurements (Panetta et al., 2008; Troyer et al., 2010). 

 

The HULIS fraction was separated by solid-phase extraction (SPE) by using the DEAE column (GE Healthcare®, HiTrapTM 155 

DEAE FF, 0.7 cm ID × 2.5 cm) to validate the humic fraction obtained by using the EEM-PARAFAC results (Baduel et al., 

2009). The sample solutions were passed through the column at a constant flow rate of 1.0 mL min-1. The neutral 

components and hydrophobic bases, and mono-, di-carboxylic acids, and inorganic anions were removed with Milli-Q water 

and 0.04 M NaOH, respectively. The polycharged compounds, HULIS, were eluted with 1M NaCl. The final fractions were 

analyzed for the HULIS quantification using a TOC analyzer. 160 

 

2.3 Fluorescence and absorbance measurements 
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Fluorescence EEM and absorbance spectra of the aerosol samples were measured by using a spectrophotometer (Aqualog, 

Horiba). The emission and excitation wavelength ranges were 240 to 700 nm and 250 to 500 nm, respectively, with scanning 230 

intervals of 1 nm. The PARAFAC model was performed using the Solo software in order to determine the different 

fluorescent components in aerosol samples. The results were validated by split-half analysis and random initialization (Bro, 

1997; Zepp et al., 2004; Stedmon and Bro, 2008). The Raman and Rayleigh scattering signals, inner-filter effect, and blank 

subtraction were corrected using the Solo software. The fluorescence intensity was normalized by Raman peak area of water 

and stated as Raman Unit (RU) (Lawaetz and Stedmon, 2009). This is a simple calibration method for quantitative 235 

fluorescence spectroscopy using the integrated area of water Raman peak at an excitation wavelength of 350 nm (Lawaetz 

and Stedmon, 2009).  

 

The absorption coefficient was calculated using the following equation:  

𝑎 = 2.303 𝐴 𝑙,                                            (3) 240 

where a is the absorption coefficient (m-1); A is the absorbance; l is the optical path length of the quartz cuvette (m). The 

spectral slope (S) was calculated using following equation:  

𝑎! = 𝑎!!"#𝑒
!!(!!!!"#),                                                                               (4) 

where a is the Napierian absorption coefficient (m-1); λ is the wavelength; λref is the reference wavelength (Twardowski et 

al., 2004; Helms et al., 2008). In this study, two distinct spectral ranges were selected in the shorter wavelength (275–295 245 

nm) and the longer wavelength (350–400 nm).  

             

2.4 Photochemical degradation experiments for light-absorbing organic aerosols  

Laboratory experiments were conducted for two different durations (12 h and 42 d) using small portion of the aerosol filter 

samples inside of the incubator equipped with internal UV lamp (UV-B; 280–315 nm; 15 W). The filter samples for the 250 

experiment were duplicated or triplicated to rule out any experimental bias. The incubator was maintained under positive air 

pressure with a constant temperature at 20°C. Aerosol samples were directly exposed to the UV radiation as its original 

particulate form, and each of the non-irradiated aerosol samples was evaluated for the initial conditions. For a long-term test, 

two representative aerosol filter samples were randomly selected from each of the higher and lower fluorescent groups, 

which had a similar range of WSOC concentration (winter = 19 µM; summer = 16 µM). After the UV irradiation, filter 255 

samples were completely covered to prevent exposure to any light. The extraction of organic components was performed 

using the same procedure as described above. Each sample was analysed for optical and chemical properties after the 

irradiation.  

 

3 Results 260 

3.1 BrC compositions 
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The PARAFAC model identified two humic-like fluorescent components and one protein-like fluorescent component (Fig. 

S2). The spectral characteristics of component 1 (C1; Ex/Em = 305/416 nm) and component 3 (C3; Ex/Em = 365/484 nm) 

are known to be highly associated with the atmospheric HULIS (Chen et al., 2016; Yan and Kim, 2017). Component 2 (C2; 

Ex/Em = 290/340 nm) is associated with a protein-like (tryptophan-like) component, which originates mostly from 285 

biological production (Coble, 2007; Birdwell and Engel, 2010; Yan and Kim, 2017) (Table. S1). However, C2 seems to be 

largely influenced by the dominant fluorophore HULIS, as shown by the EEM spectra (Fig. S7). A good correlation between 

C1 and C2 (r2 = 0.9; p < 0.05) was obtained, although, in general, these two components have different sources and sinks in 

the atmosphere (Yan and Kim, 2017) (Fig. S3). Thus, we assumed that the HULIS (C1 and C3) was the dominant component 

of BrC in these samples, and C1 was used as a representative component of BrC in this study, as C1 and C3 exhibited a good 290 

correlation (r2 = 0.8; p < 0.05) (Fig. S3).  

 

The HULIS component obtained by the EEM-PARAFAC model agreed very well with the extracted HULIS concentration 

obtained by using the DEAE column (r2 = 0.81; p < 0.05) indicating that the C1 component represents the actual HULIS 

(Fig. S4a). In addition, we compared the extraction efficiencies of HULIS (water-soluble BrC) to that of the MeOH-soluble 295 

BrC (Fig. S4b). Although the efficiency of the water-soluble BrC was approximately 20% lower than that of the MeOH-

soluble BrC, they exhibited a good correlation (r2 = 0.9; p < 0.05) (Fig. S4b). Therefore, we conclude that the HULIS is a 

good representative component of BrC in this study.  

 

3.2 Seasonal variations in BrC and WSOC  300 

The WSOC concentrations exhibited seasonal variations in the range of 3 to 40 µg m-3 (average = 16±7 µg m-3) with higher 

values during the cold seasons (Oct–Jan) (average = 18±7 µg m-3) and lower values during the warm seasons (Jun–Sep) 

(average = 13±3 µg m-3) (Fig. 2a). Similarly, the HULIS concentrations exhibited seasonal variations in the range of 13 to 

294 RU (average = 108±77 RU) with higher values during the cold seasons (average = 152±76 RU) and lower values during 

the warm seasons (average = 46±20 RU) (Fig. 2b). After the HULIS content was normalized to the WSOC contents, the 305 

seasonal trend of the ratio of the HULIS content to the WSOC content was similar to that of the HULIS concentration 

indicating that there was pronounced decrease in the average fraction of HULIS relative to WSOC from the cold to the warm 

seasons (Fig. 2c).  

 

The δ13CWSOC values ranged from -21.0 to -27.5 ‰ (average = -24.0±1.5 ‰) with no such seasonal variation trend (Fig. 2d). 310 

The levoglucosan concentration was in the range of 0.5 to 2.2 µg m-3 (average = 1.1±0.5 µg m-3) with relatively higher values 

during the cold seasons and the lower values during Aug–Sep (Fig. 2e). The temporal variations in major ion species 

concentrations did not show such seasonal behaviours throughout the year (Fig. 2f–2k). The temporal variation in Ca2+ 

concentration (average = 0.8±0.2 mg L-1) exhibited a relatively constant level throughout the year (Fig. 2f). The SO4
2- 
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concentrations (average = 12.0±10.3 mg L-1) exhibited the highest value during the period of spring to summer and were 330 

slightly decreased during the cold seasons (Fig. 2g). The concentrations of NOX (average = 11.7±8.7 mg L-1) were high 

during the warm periods (Jun–Oct) (Fig. 2h). The concentrations of non-crustal K (average = 0.4±0.2 mg L-1) also showed a 

relatively constant level throughout the year (Fig. 2i). The non-crustal V concentrations (average = 0.01±0.01 mg L-1) 

showed no such seasonal variations (Fig. 2j). The sea-spray concentrations ranged from 4.0 to 33.6 mg L-1 (average = 

17.3±6.4 mg L-1), showing the highest concentration in July (Fig. 2k). Both temperature and UV radiation rate showed 335 

typical patterns of middle latitudes (Fig. 2l).  

 

4 Discussion  

In order to characterize the sources of HULIS and WSOC in Seoul, which may cause the seasonal variabilities, we analyzed 

various tracers including δ13CWSOC, major ions, and molecular marker as source indicators (Gabriel et al., 2002; Kelly et al., 340 

2005; Kirillova et al., 2014b; Fu et al., 2015; Yan and Kim, 2015). The average δ13CWSOC (-24.0±1.5 ‰) suggests that the 

burning activity of terrestrial C3 plant-origin materials (e.g., grassland, crop-residue, fuel-wood) could be a major source of 

WSOC in this region (Kelly et al., 2005; Das et al., 2010; Kawashima and Haneishi, 2012; Fu et al., 2015). The average 

δ13CWSOC was in good agreement with that of HULIS (-25.4±1.6 ‰) extracted from precipitation in Seoul, Korea (Yan and 

Kim, 2017).  345 

 

The good correlation (r2 = 0.6; p > 0.05) between the WSOC and WSON concentrations suggests that these two variables are 

highly associated with a common organic source (Yan and Kim, 2015) (Fig. 3a). The WSOC and HULIS concentrations also 

exhibited a good correlation (r2 = 0.5; p < 0.05) (Fig. 3b). A good linear correlation (r2 = 0.5; p < 0.05) was also observed 

between the HULIS and levoglucosan concentrations (Fig. 3c). This relationship indicates that biomass burning is a 350 

significant source of HULIS in Seoul, as levoglucosan is commonly used for the tracing of biomass burning (Fu et al., 2015; 

Kuang et al., 2015). This is consistent with the previous study, which has demonstrated that the BrC in the precipitation was 

primarily derived from biomass burning and terrestrial biogenic emissions (>70%), with minor contributions from fossil-fuel 

combustion, based on the 14C values in the HULIS (Yan and Kim, 2017). However, we observed significant decreases 

(35±2%) in levoglucosan concentrations by the UV irradiation for 12 to 24 h in the laboratory experiments (Fig. S5). This is 355 

consistent with the previous studies showing that levoglucosan could be oxidized by the hydroxyl radical in the atmosphere 

(Hennigan et al., 2010; Hoffmann et al., 2010). Thus, we suggest that the major source of HULIS in our samples was from 

biomass burning, but low concentrations in WSOC and HULIS in summer could not be evaluated by using the levoglucosan.  

 

In order to indirectly evaluate the biomass burning during the study period, we compiled the fire maps in combination with 360 

air mass back trajectories (Fig. S1). An evidence for the biomass burning effect is provided by the fire maps, where higher 

occurrences of fire spots correspond to agricultural burning practices in the East Asia continents (Fig. S1). The burning 
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practices mainly occurred in the spring and summer in the East Asia continents. No significant influence of open burning 

activity was observed in the winter (Fig. S1). These results suggest that the distinctive biomass burning was not linked to the 

seasonal variations in WSOC and HULIS concentrations in this study region. On the other hand, non-crustal K, which is an 

indicator of biomass or fossil fuel burning (Gabriel et al., 2002; Baduel et al., 2010), did not exhibit a seasonal trend (Fig. 380 

2i). The correlation between the HULIS and non-crustal K was also insignificant (r2 = 0.3; p < 0.05) (Fig. 3d). The K/V ratio 

is often used to trace V-purified fossil fuels, since V is mostly removed during the refining processed (Yan et al., 2012). The 

used of raw materials such as crude oil and coal could be the source of non-crustal V (Tsukuda et al., 2005; Yan and Kim, 

2012). However, the correlation between HULIS and non-crustal V was also insignificant (r2 = 0.04; p < 0.05) (Fig. 3e), with 

K/V ratio in the range of 17–673 (average = 124±154) in our samples. This result suggests that the V-purified fossil fuel 385 

contents in our samples were insignificant (Yan et al., 2012). No significant correlations were observed between the HULIS 

and Ca2+ (r2 = 0.1; p < 0.05), NOX (r2 = 0.1; p > 0.05), SO4
2- (r2 = 0.02; p < 0.05), and sea-spray fraction (r2 = 0.02; p > 0.05) 

(Fig. 3f–3h). This also indicates that the seasonal changes in HULIS concentrations were insignificantly influenced by 

crustal minerals, sea salts, and fossil fuels. All these tracers suggest that the summer decreases in WSOC and HULIS 

concentrations were not associated with the changes in source inputs.  390 

 

A significant negative correlation (r2 = 0.5; p < 0.05) was observed between HULIS and the UV radiation (Fig. 3i). The 

HULIS was greatly reduced during the warm seasons (Jun–Sep) when the solar UV radiation and the temperature reached 

the annual maxima (Fig. 2b, 2l). It has been widely accepted that photochemical degradation is an important process for the 

efficient removal or alteration of photo-resistivity and compositions of chromophoric dissolved organic matter (CDOM) in 395 

rainwater and aerosols (Kieber et al., 2006; Mladenov et al., 2009; Forrister et al., 2015; Dasari et al., 2019; Healy et al., 

2019). Significant seasonal changes in ratios of the HULIS concentration to the WSOC concentration, although the WSOC 

and HULIS concentrations exhibited similar seasonal changes, also suggest that HULIS is more effectively removed by the 

UV radiation in summer (Fig. 2c). These results are in agreement with the following laboratory experimental results.  

 400 

In order to quantify the UV-degradable HULIS, we performed the UV radiation experiments for short-term (12 h; 48 

samples) and long-term (42 d; 2 samples). After the 12 h of UV irradiation, the HULIS concentrations in the winter samples 

(characterized by higher average HULIS concentrations, N=35) were greatly reduced by 13% (Fig. 4a). Similar decreases 

were observed for the WSOC concentrations for the winter samples (Fig. 4b). However, negligible changes (<2%) were 

observed in the summer samples (characterized by low average HULIS concentrations, N=13) (Fig. 4a). After the 42 d of 405 

UV irradiation, the HULIS and WSOC concentrations in the winter sample decreased by approximately 52% and 25%, 

respectively (Fig. S6 and S7). However, there was no significant change in HULIS and WSOC concentrations in the summer 

sample (Fig. S6 and S7). This result suggests that the summer sample might consist largely of a photo-refractory WSOC 

pool owing to the high UV radiation, while the winter sample consisted largely of a photo-labile WSOC.  

 410 
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The change in light-absorbing property of HULIS for the UV radiation experiment also exhibited a similar change with that 

of fluorescence property (Fig. 5). The absorption coefficient of the summer sample was not changed after the irradiation, 485 

while that of the winter sample exhibited an approximately twofold change (Fig. 5). The degradation of HULIS was 

considerably more effective at shorter wavelengths (S275–295), while no significant change was observed at longer 

wavelengths (S350–400), as expected from the fact that the absorption losses are higher in shorter wavelengths than the longer 

wavelengths (Del Vecchio and Blough, 2002). In order to look at the changes in light absorption property, the spectral slope 

ratios (SR) of shorter wavelength (S275–295) relative to longer wavelength (S350–400) were compared. In general, the SR value 490 

increases with increasing irradiation (Del Vecchio and Blough, 2002; Helms et al., 2008). The SR values of non-irradiated 

samples were 1.1 in the winter and 1.4 in the summer, and the irradiated samples were 1.4 in both winter and summer (Fig. 

5). The SR values of non-irradiated and irradiated samples in summer showed no measureable change during the UV 

experiment (Fig. 5). In addition, if the input of fresh HULIS is constant throughout the seasons, SR should be constant. 

However, SR values of non-irradiated samples were 1.1 in the winter and 1.4 in the summer (Fig. 5). The SR value of the non-495 

irradiated summer sample was similar to that of the irradiated winter sample (1.4) (Fig. 5). Thus, this suggests that the lower 

summer HULIS concentration was associated to the UV degradation rather than to the reduced source inputs.  

 

5 Conclusions  

The seasonal variations in optical and chemical properties of the HULIS and WSOC were monitored in different seasons in 500 

the urban region. The air mass back trajectories combined with the fire maps and various chemical analyses demonstrated 

that biomass burning is a significant source contributing to HULIS in all seasons in Seoul, Korea. Our results suggest that 

photo-induced degradation plays a significant role in BrC quantity and quality in the atmosphere. In addition, the important 

role of photochemical degradation as a removal mechanism was supported by the laboratory experiments. This may provide 

important pieces regarding the hidden life cycle of light-absorbing organic aerosols in the atmosphere. 505 

 

The light-absorbing organic aerosols are considerably associated with climate sensitivity owing to their significant roles in 

the radiative forcing and global climate balance. Thus, this photochemical process needs to be considered in the modeling of 

climate forcing and biogeochemical cycles of the Earth’s surface. Furthermore, the deposition fluxes of organic aerosols with 

different optical and chemical characteristics can have significant impacts as potential sources of organic carbon on surface 510 

waters and soils, which can lead to major effects on the global carbon cycle.   
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Figure 1: Map of the geographical region around the study site and air mass transport pathways in the different seasons, spring 
(green), summer (red), fall (blue), and winter (brown). The ten-day air mass back trajectory was drawn by using the HYSPLIT 
model from March 2015 to January 2016 in Seoul. 750 
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 760 

Figure 2: Temporal variations in (a) WSOC concentration, (b) fluorescence intensity of HULIS, (c) ratio of HULIS to WSOC, (d) 
δ13CWSOC values, (e) levoglucosan, (f) Ca2+, (g) SO4

2-, (h) NOX, (i) non-crustal K, (j) non-crustal V, (K) sea-spray concentrations, (l) 
UV radiation rate, and temperature from March 2015 to January 2016 in Seoul, Korea. 
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Figure 3: Plots of the concentrations of (a) WSOC versus WSON, (b) WSOC versus HULIS, (c) HULIS versus levoglucosan, (d) 
HULIS versus non-crustal K, (e) HULIS versus non-crustal V, (f) HULIS versus Ca2+, (g) HULIS versus NOX (closed circle; 775 
r2=0.1, p>0.05) and SO4

2- (open circle; r2=0.02, p<0.05), (h) HULIS versus sea-spray, and (i) HULIS versus UV radiation rate. The 
dashed lines represent the regression lines. 
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Figure 4: Plots of the (a) HULIS versus UV-degradable HULIS and the (b) ratio of HULIS to WSOC versus UV-degradable 
HULIS in the different seasons, spring (green), summer (red), fall (blue), and winter (brown). The dashed lines represent the 
regression lines. 
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Figure 5: The absorption coefficients of the aerosol samples collected in the winter (30.Dec) (blue) and summer (14.Aug) (red) in 845 
2015. The solid lines represent the initial values for the non-irradiated samples, and the dashed lines represent the final values for 
the irradiated samples. 
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