Source apportionment of PM_{2.5} in Shanghai based on hourly molecular organic markers and other source tracers

Rui Li and Qiongqiong Wang, et al.

Correspondence to: Li Li (Lily@shu.edu.cn) and JianZhen Yu (jian.yu@ust.hk)

When the number of factors increases to a certain value, Q/Q_{exp} will change less dramatically. Q/Q_{exp} changed by 6.4% from the 10- to 11-factor model, less significant than the 11.4- 13.1% observed when the number of factors varied from 6 to 10, suggesting the factor number reaching ten was needed for explaining the input data. However, when examining factor profiles, the 11- factor solution provides the most reasonable source profiles by separating the vehicle exhaust from secondary nitrate factors. The 11-factor result of the vehicle emission source is a more accurate analysis of the composition of the atmospheric pollution source in Shanghai, China.

Figure S3. Change of Q/Qexp value from 5 to 11 factors run for PMFt.

When the number of factors increases to a certain value, Q/Q_{exp} will change less dramatically. Q/Q_{exp} changed by 10.3% from the 8- to 9-factor model, less significant than the 14.2- 25.0% observed when the number of factors varied from 5 to 8, suggesting the factor number reaching eight or nine was needed for explaining the input data. Increasing to 9 factors, Fe and Pb are no longer in the Industrial Emission or Coal combustion factor and forms an unexplainable factor. Finally choose the 8-factor result

Figure S5. The average concentration of PM2.5 and the percentage of components represented by each episode.

Episode 2: measured PM_{2.5}=79.8 µg/m³

Episode 3: measured PM_{2.5}=109.1 µg/m³

2.4%

Figure S6. Resolved factor profiles (left) and factor contributions (right) in eight-factor solution in PMFt.

BS Map	ping(R≥0.6)	Secondary Nitrate	Secondary Sulfate	Vehicle Exhaust	Industrial / Tire Wear	Industrial Emission 2	Residual Oil Combustion	Dust	Coal combustion	Biomass Burning	Cooking	SOA	Unmapped
Secon	dary Nitrate	97	1	0	0	0	0	0	1	1	0	0	0
Second	dary Sulfate	5	90	0	1	0	0	0	1	1	0	1	1
Vehic	le Exhaust	20	1	61	0	0	0	1	3	5	0	2	7
Industria	al / Tire Wear	0	0	0	100	0	0	0	0	0	0	0	0
Industria	al Emission 2	0	0	0	0	100	0	0	0	0	0	0	0
Residual Oil Combustion		0	0	0	0	0	100	0	0	0	0	0	0
Dust		1	1	0	1	0	0	94	1	2	0	0	0
Coal c	combustion	5	0	0	0	0	0	0	93	1	1	0	0
Biomass Burning		0	0	0	0	0	0	0	2	95	0	0	3
Cooking		0	0	0	0	0	0	0	0	0	95	2	3
SOA 6		6	1	0	0	0	0	0	1	0	0	90	2
DISP D	Diagnostics		Error Code: 0					Largest Decrease in Q: -16.3 (-0.7%)					
	dQ ^{max} =4	0	0	0	0	0	0	0	0	0	0	0	
Factor	dQ ^{max} =8	0	0	0	0	0	0	0	0	0	0	0	
Swaps	dQ ^{max} =15	0	0	0	0	0	0	0	0	0	0	0	
	dQ ^{max} =25	0	0	0	0	0	0	0	0	0	0	0	
B	S-DISP Diagnos	tics		# of runs accepted: 49 out of 101					Largest Decrease in Q: -10.5 (-0.4%)				
# of Decreases in Q: 0					# of Swa	aps in Best F	it: 32	# of Swaps in DISP: 20					
	dQ ^{max} =0.5	12	1	1	9	26	2	2	10	20	6	15	
Factor	dQ ^{max} =1	12	2	1	11	26	2	2	11	20	6	15	
Swaps	dQ ^{max} =2	13	2	2	13	30	2	4	12	22	6	15	
	dQ ^{max} =4	18	3	4	16	35	2	4	17	23	6	15	

 Table S1. Summary of error estimation diagnostics from BS, DISP and BS-DISP for MM-PMF.

BS Map	pping(R≥0.6)	Secondary Nitrate	Secondary Sulfate	Vehicle Exhaust	Industrial /Tire Wear	Industrial Emission 2	Residual Oil Combustion	Dust	Coal combustion	Unmapped
Secon	dary Nitrate	100	0	0	0	0	0	0	0	0
Secon	dary Sulfate	1	93	0	1	0	0	1	1	3
Vehic	cle Exhaust	11	0	73	5	0	0	0	3	8
Industria	al / Tire Wear	0	0	0	100	0	0	0	0	0
Industria	al Emission 2	0	0	0	0	100	0	0	0	0
Residual Oil Combustion		0	0	0	0	0	100	0	0	0
Dust		0	0	1	1	0	0	97	1	0
Coal	Coal combustion		1	0	1	0	0	0	96	0
DISP [Diagnostics		Error Co	ode: 0		Large				
	dQ ^{max} =4	0	0	0	0	0	0	0	0	
Factor	dQ ^{max} =8	0	0	0	0	0	0	0	0	
Swaps	dQ ^{max} =15	0	0	0	0	0	0	0	0	
	dQ ^{max} =25	0	0	0	0	0	0	0	0	
BS-DISF	P Diagnostics	# of runs accepted: 52 out of 101				Larg				
#	of Decreases in	Q: 0	#	of Swaps i	n Best Fit: 3) # of Swaps in DISP: 19				
	dQ ^{max} =0.5	0	18	5	23	36	22	7	22	
Factor	dQ ^{max} =1	0	19	9	24	40	22	8	23	
Swaps	dQ ^{max} =2	0	22	14	25	48	22	9	25	
	dQ ^{max} =4	1	25	18	27	60	22	10	31	

 Table S2. Summary of error estimation diagnostics from BS, DISP and BS-DISP for PMFt.

Species	\mathbb{R}^2	Intercept	Slope
Chloride	0.39	0.29	0.42
Nitrate	0.86	0.86	0.84
Sulfate	0.73	1.04	0.85
Ammonium	0.88	0.43	0.91
EC	0.86	-0.02	0.95
OC	0.86	-0.11	0.99
As	0.98	0.01	0.99
Ba	0.97	-0.01	0.99
Ca	0.95	0.01	0.93
Cr	0.95	0.01	0.92
Cu	0.88	0.01	0.86
Fe	0.42	0.22	0.32
Κ	0.95	0.01	0.99
Mn	0.98	0.01	0.97
Ni	0.91	0.01	0.85
Pb	0.54	0.02	0.42
Si	0.98	0.04	0.89
V	0.98	0.01	0.97
Zn	0.81	0.02	0.74
PAHs252	0.93	0.01	0.79
PAHs276	0.92	0.01	0.82
C _{6~8} DICAs	0.78	0.02	0.65
OHBAs	0.64	0.01	0.49
SFAs	0.81	0.02	0.62
phthalic acid	0.51	0.01	0.38
Mannosan	0.91	0.01	0.83
Levoglucosan	0.88	0.01	0.93
α-pinT	0.72	-0.01	0.88
DHOPA	0.62	0.01	0.66
C ₉ -acids	0.84	0.02	0.82

Table S3. The MM-PMF input data statistics for the modelled chemical compounds and base model diagnostics obtained for the 11-factor solution.

PMF Factor	Secondary Nitrate	Secondary Sulfate	Vehicle Exhaust	Industrial Emission /Tire Wear	Industrial Emission 2	Residual Oil Combustion	Dust	Coal combustion	Biomass Burning	Cooking	SOA
WS(m/s)	-0.52	0.16	-0.12	-0.34	-0.06	-0.08	-0.10	-0.23	-0.21	-0.15	-0.39
T(℃)	-0.18	-0.22	-0.09	0.08	-0.18	0.39	0.26	-0.08	-0.18	-0.12	-0.29
RH(%)	0.14	-0.13	-0.18	-0.01	0.05	0.19	-0.26	-0.23	0.19	0.33	0.05
SO_2	0.59	0.32	0.46	0.52	0.51	-0.05	-0.18	0.59	0.58	0.01	0.67
CO	0.79	0.36	0.58	0.35	0.59	-0.03	-0.17	0.56	0.69	0.11	0.77
NOx	0.54	-0.19	0.67	0.49	0.31	0.30	0.10	0.33	0.50	0.15	0.43

Table S4. Pearson correlation (R) of MM-PMF factor contributions with corresponding tracer species, meteorological parameters (wind speed [WS], temperature [T], and relative humidity [RH]), and gas concentrations (SO₂, CO, and NO_x).

	Cluster-1		Cluster-2		Clus	ter-3	Cluster-4		
Component	Concentratio n, ug/m ³	Percentage, %							
SO42-	10.1	16.8%	9.6	14.5%	5.1	15.2%	4.6	23.2%	
NO ₃ -	20.7	34.5%	24.1	35.5%	8.4	25.0%	3.1	15.7%	
NH4+	10.1	16.8%	11.3	16.6%	4.6	13.6%	2.7	13.5%	
Cl	1.1	1.7%	0.8	1.2%	0.8	2.4%	0.6	3.2%	
OM (1.4*OC)	9.5	15.8%	11.2	16.4%	8.4	24.9%	6.1	30.3%	
EC	1.6	2.7%	2.3	3.4%	1.4	4.1%	0.6	3.0%	
Elements	1.6	2.6%	2.2	3.2%	1.2	3.5%	1.2	5.8%	
Unexplaine d	5.4	9.1%	6.3	9.2%	3.8	11.4%	1.1	5.3%	
PM _{2.5}	60.0	/	64.4	/	32.9	/	19.8	/	

Table S5. The average concentration of PM2.5 and the percentage of components under different air mass clusters.

Cluster 1 and 4 with longer trajectory length, representing long range transport air masses; clusters 2 and 3 with shorter trajectory length, indicating local or msdian range transport air masses. Cluster 1 represents the air mass transport from Hebei, Shandong and Henan Provinces in the central region, and the average concentration of $PM_{2.5}$ reached 60.0 µg/m3. Cluster 2 represents the local transport in Shanghai and neighbouring areas. The average $PM_{2.5}$ concentration was the highest among the four clusters, which was 64.4 µg/m3. Cluster 3 is a shorter distance transport of marine air masses in the eastern sea area of Shanghai, with a low $PM_{2.5}$ average of 32.9 µg/m³. Cluster 4 represents long-distance air mass transport from the northern seas of China and the north-eastern regions of Liaoning province and Inner Mongolia. The $PM_{2.5}$ concentration was the lowest among the four clusters, only 19.8 µg/m³.

Species	\mathbb{R}^2	Intercept	Slope
Chloride	0.18	0.41	0.37
Nitrate	0.84	1.49	0.79
Sulfate	0.78	1.22	0.78
Ammonium	0.84	0.59	0.85
EC	0.85	-0.04	0.94
OC	0.84	0.22	0.93
As	0.98	-0.01	1.01
Ba	0.98	0	1.02
Ca	0.89	0.01	0.88
Cr	0.94	0.01	0.91
Cu	0.84	0.01	0.81
Fe	0.99	0.03	0.91
K	0.95	0.01	0.96
Mn	0.98	0.01	0.97
Ni	0.91	0.01	0.83
Pb	0.98	0	0.98
Si	0.98	0.04	0.88
V	0.99	0	0.99
Zn	0.81	0.01	0.75

Table S6. The PMFt input data statistics for the modelled chemical compounds and base model diagnostics obtained for the 8-factor solution.

Factor	MM-P	MF	PMFt		
Factor	PM _{2.5}	OC	PM _{2.5}	OC	
SOA	6.71	0.25			
Secondary Nitrate	15.25	1.31	19.71	1.09	
Secondary Sulfate	7.10	1.36	8.82	2.05	
Vehicle Exhaust	5.13	1.05	6.43	1.04	
Industrial Emission / Tire Wear	1.36	0.17	1.32	0.17	
Industrial Emission 2	0.46	0.05	0.91	0.21	
Residual Oil Combustion	0.82	0.69	1.40	0.83	
Dust	2.27	0.09	2.26	0.24	
Coal combustion	3.07	0.46	3.75	0.71	
Biomass Burning	2.24	0.37			
Cooking	1.17	0.69			

Table S7: Concentrations($\mu g/m^3$) of reconstructed PM_{2.5} and OC from MM-PMF and PMFt.