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Abstract  14 

Identification of various emission sources and quantification of their contributions are an essential step to formulating 15 

scientifically sound pollution control strategies. Most of the previous studies are based on traditional offline filter analysis 16 

of aerosol major components (usually inorganic ions, elemental carbon (EC), organic carbon (OC), and elements). In this 17 

study, source apportionment of PM2.5 using positive matrix factorization (PMF) model was conducted for urban Shanghai 18 

in the Yangtze River Delta region, China, utilizing a large suite of molecular and elemental tracers, together with water-19 

soluble inorganic ions, OC and EC from measurements conducted at two sites from 9 November to 3 December, 2018. The 20 

PMF analysis with inclusion of molecular makers (i.e., MM-PMF) identified 11 pollution sources, including three 21 

secondary source factors (i.e., secondary sulfate, secondary nitrate, and secondary organic aerosol (SOA) factor) and eight 22 

primary sources (i.e., vehicle exhaust, industrial emission/tire wear, industrial emission2, residual oil combustion, dust, 23 

coal combustion, biomass burning, and cooking). The secondary sources contributed 62.5% of the campaign-average PM2.5 24 

mass, with the secondary nitrate factor being the leading contributor. Cooking emission was a minor contributor (2.8%) to 25 

PM2.5 mass while a significant contributor (11.4%) to the OC mass. Traditional PMF analysis relying on major components 26 

alone (PMFt) was unable to resolve three organics-dominated sources (i.e., biomass burning, cooking, and SOA source 27 

factor). Utilizing organic tracers, the MM-PMF analysis determined that these three sources combined accounted for 24.4% 28 

of the total PM2.5 mass. In PMFt, this significant portion of PM mass was apportioned to other sources and thereby notably 29 

biasing the source apportionment outcome. Backward trajectory and episodic analysis were performed on the MM-PMF 30 
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resolved source factors to examine the variations in source origins and composition. It was shown that under all episodes, 31 

secondary nitrate and the SOA factor were two major source contributors to the PM2.5 pollution. Our work has demonstrated 32 

that comprehensive hourly data of molecular markers and other source tracers, coupled with MM-PMF, enables 33 

examination of detailed pollution source characteristics, especially organics-dominated sources, at a time-scale suitable for 34 

monitoring episodic evolution and with finer source break-down.  35 

1. Introduction 36 

Airborne PM2.5 (i.e., particulate matter with aerodynamic diameter less than 2.5 μm) has attracted increased global 37 

attention due to its well-recognized impact on climate, visibility, and human health (Chow et al., 2004; Liu et al., 2016; 38 

Foley et al., 2010). In recent years, with the increasingly prominent air pollution problems in China, more and more 39 

attention has been paid to characterize the pollution characteristics. Identifying the pollution sources and quantifying their 40 

contributions to ambient PM2.5 are of fundamental significance for PM reduction and air quality improvement (Chen et al., 41 

2007; Zhang et al., 2009a).  42 

Receptor models are widely used tools to carry out the source apportionment of atmospheric PM2.5 (Hopke, 2016; 43 

Jaeckels et al., 2007; Lee et al., 2008; Sofowote et al., 2014). Compared with other methods, such as Chemical Mass 44 

Balance (CMB) and Multi-linear Engine (ME-2), Positive Matrix Factorization (PMF) (Paatero & Tapper, 1994) does not 45 

need to input source profiles, and is able to provide as model outcome both the source profiles and contributions of various 46 

sources (Wang et al., 2018; Zhou et al., 2019). PMF relies on marker species to separate and identify different source factors 47 

and in principle more comprehensive data sets, especially chemical data of high source-specificity, would enable more 48 

accurate and finer source break-down for potential sources contributing to PM2.5. 49 

High time resolution measurements are inherently advantageous to the source analysis, as they are able to capture the 50 

diurnal variations of the main source activities (such as vehicle exhaust) and secondary formation processes. Sample sizes 51 

of over a hundred could be acquired within a short time span in the order of a week, thus providing opportunities to study 52 

pollution source variations for short-term time windows. Online measurement-based source apportionment studies 53 

available in the literature have so far been mainly based on PM1 Aerodyne Aerosol Mass Spectrometer (AMS) or Aerosol 54 

Chemical Speciation Monitoring (ACSM) measurements (Al-Naiema et al., 2018), which utilize the individual mass 55 

fragment from bulk organics. Multiple parent molecules could lead to the same fragments during the ionization process in 56 

AMS or ACSM, which introduce ambiguity in relying on fragment ions for source differentiation. In comparison, molecular 57 

markers alleviate such ambiguity, therefore could significantly improve our ability in source identification and 58 
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quantification. The recently commercialized Thermal desorption Aerosol Gas chromatography-mass spectrometry (TAG) 59 

system (Williams et al., 2006; Zhao et al., 2013b; Isaacman et al., 2014) has enabled acquiring hourly data of individual 60 

molecular markers, providing opportunities for more refined source apportionment.  61 

Shanghai, a megacity with a population of 24.3 million and a total area of 6,340 km2, represents a typical economic 62 

zone in China. Air pollution issues in Shanghai are complex and our knowledge of its aerosol sources still fall short of 63 

being sufficiently quantitative or comprehensive. Past source apportionment studies of PM2.5 in Shanghai are either based 64 

on offline filter-based data that are inherently of low time-resolution (Du et al., 2017; Chang et al., 2018), or emissions-65 

based numerical models (Li et al., 2015; Shu et al., 2019; Li et al., 2019; Feng et al., 2019). PM2.5 source apportionment 66 

studies using online data as inputs so far have been limited to the major aerosol species (i.e., inorganic ions, carbonaceous 67 

components and elements) (Wang et al., 2018), preventing proper separation of aerosol sources dominated by organic 68 

compounds.  69 

We recently carried out online monitoring of atmospheric PM2.5 composition, including inorganic ions, organic carbon 70 

(OC), elemental carbon (EC), trace elements, and organic molecular markers in an urban environment in Shanghai from 9 71 

November to 3 December 2018. The description of the organic speciation data was provided in Wang et al. (2020) and He 72 

et al. (2020). The objective of this work is to carry out source apportionment of PM2.5 using molecular-marker based PMF. 73 

Through this work we demonstrate that the comprehensive hourly data of molecular markers and other source tracers, have 74 

significantly enhanced our ability in resolving organics-dominated PM2.5 sources and the source apportionment could be 75 

achieved at a time-scale suitable for monitoring episodic evolution. The results from this work can provide support for the 76 

development of air pollution prevention and control strategies. 77 

2. Methods 78 

2.1 Online measurements 79 

Online PM2.5 and its major chemical composition (i.e., inorganic ions, OC, EC, and elements) and organic markers 80 

were measured from 9 November to 3 December 2018. Two urban sites were involved. The PM2.5 mass, inorganic ions, 81 

OC/EC, and elements were measured at Shanghai Pudong Environmental Monitoring Station (PD) (31.23oN, 121.53oE), a 82 

typical urban site for the city (Zhao et al., 2013a). The organic markers were measured at Shanghai Academy of 83 

Environmental Sciences (SAES) (31.17oN, 121.43oE), also a representative urban site for the city (Wang et al., 2018).    84 
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 85 

Figure 1. Location of the two sampling sites in Shanghai, China.  86 

The concentration of hourly PM2.5 was measured by an online beta attenuation particulate monitor (FH 62 C14 series, 87 

Thermo Fisher Scientific) (Qiao et al., 2014). Carbonaceous components (OC and EC) were monitored by a semi 88 

continuous OC/EC analyzer (model RT-4, Sunset Laboratory, Tigard, OR, USA) (Nicolosi et al., 2018; Zhang et al., 2017). 89 

The water-soluble inorganic ions were measured by a Monitor for Aerosols and Gases (MARGA, Model ADI 2080, 90 

Applikon Analytical B.V.) (Makkonen et al., 2012; Griffith et al., 2015). Concentrations of elements in PM2.5 were 91 

measured by an ambient elemental monitor (Xact 625 Ambient Continuous Multi-metals Monitor, Cooper Environmental 92 

Services, Tigard, OR, USA) using energy-dispersive X-ray fluorescence (XRF) analysis (Battelle, 2012; Jeong et al., 2019). 93 

The meteorological parameters and gas pollutants data were obtained from the open dataset at Hongqiao airport (available 94 

at http://www.wunderground.com). 95 

Quantification of hourly speciated organic markers was achieved using Thermal desorption Aerosol Gas 96 

chromatography-mass spectrometry (TAG) (Aerodyne Research Inc., https://www.aerodyne.com/wp-97 

content/themes/aerodyne/fs/TAG_0.pdf). The operation details and data quality are described in a separate paper (Wang et 98 

al., 2020), and only a brief description will be presented here. Briefly, ambient air was drawn through a PM2.5 cyclone, then 99 

http://www.wunderground.com/
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the sampled air was collected after passing through a carbon denuder to remove the gas phase and only particles were 100 

collected onto the collection matrix. The organics were then desorbed and transferred from the collection matrix to the gas 101 

chromatography (GC) spectrometer column, with in-situ derivatization of the polar organics under a variable stream of 102 

saturated helium with a derivatization agent (N-methyl-N-(trimethylsilyl) trifluoroacetamide). After GC column separation, 103 

the target organics entered the MS chamber for analysis. It should be noted that with the current TAG instrument set-up, 104 

one hourly sample was collected at every odd hour, thus generating 12 hourly samples in a 24-h cycle. The post-sampling 105 

steps, including in-situ derivatization, thermal desorption, and gas chromatography/mass spectrometer (GC/MS) analysis, 106 

took ~1.5 h, and the next sampling started concurrently with the GC/MS analysis step, lasting for a full hour. 107 

The two measurement sites involved in this work are 12 km apart. Map locations of the two monitoring sites are 108 

shown in Fig. 1. Fig. S1 provides aerial site photos, showing similar urban surroundings at the two sites. More importantly, 109 

monitoring data indicate that the two sites shared similar pollutant characteristics. Fig. S2 compares the time series of PM2.5 110 

mass and gaseous criteria pollutants (CO, SO2, and NO2), exhibiting excellent site-to-site agreement in pollutant 111 

concentrations (Table S1). No OC and EC measurements were made at SAES. Instead, black carbon (BC) and bulk organic 112 

aerosol (OA) in PM1 were monitored at this site by an aethalometer and an AMS. Fig. S3 compares BC at SAES with EC 113 

at PD, and PM1 OA at SAES with OM (organic matter, estimated from OC) at PD, showing a high degree of consistency 114 

between these two pairs of related quantities. We refer readers to Text S1 in supplemental information (SI) for more details. 115 

Overall, it is rational to pool together data from the two sites to form a more comprehensive dataset for source 116 

apportionment of PM2.5 pollution sources that are typical of the general urban environment in Shanghai as represented by 117 

the two sites.     118 

2.2 PMF receptor model 119 

PMF is a bilinear factor analysis method, which is widely used to identify pollution sources and quantify their 120 

contributions to the ambient air pollutants at receptor sites, with an assumption of mass conservation between emission 121 

sources and receptors. In this study, the United States Environmental Protection Agency (USEPA) PMF version 5.0 (Norris 122 

et al., 2014) was applied to perform the analysis. PMF decomposes the measured data matrix, Xij, into a factor profile 123 

matrix, fkj, and a factor contribution matrix, gik, (Eq 1): 124 

𝑥𝑖𝑗 = ∑ 𝑔𝑖𝑘
𝑝
𝑘=1 𝑓𝑘𝑗 + 𝑒𝑖𝑗                                                                       (1) 125 

 Q = ∑ ∑ (𝑒𝑖𝑗/𝑢𝑖𝑗)2𝑚
𝑗=1

𝑛
𝑖=1                                                                           (2) 126 

where Xij is the measured ambient concentration of target pollutants; gik is the source contribution of the kth factor to the ith 127 
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sample, and fkj is the factor profile of the jth species in the kth factor; eij is the residual concentration for each data point. 128 

PMF seeks a solution that minimizes an object function Q (Eq 2), with the uncertainties of each observation (uij) provided 129 

by the user.  130 

The PMF model assumes that the quantity of the input species is conserved, and the source profile is unchanged. In 131 

order to minimize the impact of organics degradation on the deviation of the mass conservation hypothesis, organic species 132 

with low volatility and low reactivity are selected as input. The assumption of constant source profiles is not strictly met 133 

when the receptor model is applied to measurement data covering a long duration (e.g., months or longer). The source 134 

profiles parsed by PMF can be viewed as the averaged profile over the entire sampling period. In an atmospheric 135 

environment, both primary and secondary emission sources have the problem of changing source profiles. Therefore, it is 136 

highly suggested to obtain high time resolution measurement data, preferably several hours or shorter, as an input for the 137 

PMF model. The input data in this study are hourly data for every odd hour, as limited by the organic tracer measurements 138 

and the time span of the whole campaign is less than one month. As such, the source type information will not change 139 

significantly.  140 

In this study, a total of 289 samples was collected. The chemical species selected as input to the PMF model include 141 

13 elements, 4 inorganic species, OC, EC, organic markers (including anhydrosugars, secondary organic aerosol (SOA) 142 

tracers, organic acids, polycyclic aromatic hydrocarbons (PAHs), etc.). Two types of PMF, PMFt and MM-PMF as 143 

explained below, were performed. PMFt, referring to traditional PMF, considers only elements, inorganic ions, OC and EC 144 

as inputs. MM-PMF, referring to molecular marker based-PMF (Al-Naiema et al., 2018; Wang et al., 2017; Zhang et al., 145 

2009b), includes organic markers as inputs in addition to the chemical species considered by PMFt.  146 

The uncertainty of each data point was calculated according to Eq 3: 147 

𝑢𝑖𝑗 = √(𝑥𝑖𝑗 × 𝐸𝐹)2 + (
1

2
× 𝑀𝐷𝐿)2                                                                  (3) 148 

where MDL is the method detection limit and EF is the error fraction determined by the user and associated with the 149 

measurement uncertainties. The concentration data below MDL was replaced by 0.5 of the MDL, and the corresponding 150 

uncertainty uij was calculated by five-sixths of the MDL. Missing values were replaced by the median value of the species, 151 

and its uij was assigned as four times of the median value (Norris et al., 2014). 152 

2.3 Backward trajectory analysis 153 

The backward trajectory analysis is a useful tool to identify the influence of air mass paths on PMF-resolved sources 154 
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(Wang et al., 2017). Backward trajectories of 36-h duration and arriving at an altitude of 100 m above ground level (AGL) 155 

over the PD site were calculated deploying the 0.5° Global Data Assimilation System (GDAS) meteorological data 156 

(https://www.ready.noaa.gov/archives.php). The trajectories were then classified into different clusters according to the 157 

geographical origins and movement process of the trajectories using the TrajStat model (Zhang et al., 2020). 158 

3. Results and discussion 159 

The time series of hourly meteorological parameters and PM2.5 major components during the whole monitoring period 160 

are shown in Fig. 2. The average temperature (T) was 14.6±2.9 ℃, the relative humidity (RH) was 80±15 %, and the wind 161 

speed (WS) was 3.2±1.6 m/s during the campaign. The average concentrations of the PMF input species are listed in Table 162 

1 for PM2.5 and its the major components and in Table 2 for the organic markers. The average PM2.5 concentration was 163 

46±34 μg/m3, with nitrate and OM contributing with 32% and 25% of the total mass, respectively. Sulfate and ammonium 164 

contributed with 16.5% and 16.2% of the PM2.5, respectively. The measured total elements account for 3.5% of PM2.5 mass 165 

on average. Reconstructed PM2.5 using the individual major components and the measured PM2.5 mass showed good mass 166 

closure (slope=0.93 and R2=0.98 in Fig. S4).   167 

 168 
Figure 2. (a) Time series of wind speed (WS) and wind direction (WD); (b) time series of temperature (T) and relative humidity (RH); 169 

and (c) time series of PM2.5 and its major components during the sampling period from 9 Nov. to 3 Dec. 2018. OM is estimated by 170 

assuming an OM/OC ratio of 1.8. Water soluble ions are the sum of Cl-, Na+, K+, and Mg2+. Crustal materials are calculated as sum of 171 

the oxidized form of the crustal elements (i.e., crustal=2.49[Si] + 1.63[Ca] + 2.42[Fe]). During 30 Nov. to 1 Dec. 2018, the major 172 

inorganic ions measured by MARGA are not available. The red line in (c) indicates the PM2.5 level at 75 μg/m3 and PM2.5 concentrations 173 

higher than that are denoted as episodes and the three episodes (EP1-3) are shaded in gray. 174 

(a)

(c)

(b)

https://www.ready.noaa.gov/archives.php
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Table 1. Measured PM2.5 major components (μg/m3) used in the PMF analysis in this study. 175 

Compound Average Stdev 

PM2.5 46 34 

Cl- 0.78 0.52 

Nitrate 14.8 15.1 

Sulfate 7.7 4.3 

Ammonium 7.5 6.3 

EC 1.59 1.13 

OC 6.5 2.8 

As 0.006 0.005 

Ba 0.024 0.017 

Ca 0.137 0.104 

Cr 0.004 0.005 

Cu 0.012 0.008 

Fe 0.45 0.63 

K 0.38 0.196 

Mn 0.065 0.069 

Ni 0.004 0.003 

Pb 0.025 0.026 

Si 0.42 0.32 

V 0.0031 0.0029 

Zn 0.114 0.099 

 176 

 177 

Table 2. Abundance and naming of measured organic markers (ng/m3) used in the MM-PMF analysis. 178 

Naming Grouping Average Stdev 

PAHs252 
Benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, and 

benzo[a]pyrene 
1.44 1.43 

PAHs276 Benzo[ghi]perylene, and indeno[1,2,3-cd]pyrene 0.56 0.53 

C6-8 DICAs Adipic acid, pimelic acid, and suberic acid 17.5 18.5 

C9-acids 9-Oxononanoic acid, and azelaic acid 9.3 6.5 

SFAs Palmitic acid, and stearic acid 72 61 

Mannosan  1.54 1.51 

Levoglucosan  46 39 

OHBAs 3-hydroxybenzoic acid, and 4-hydroxybenzoic acid 1.05 0.85 

α-pinT Pinic acid, and 3-methyl-1,2,3-butanetricarboxylic acid 21 19.2 

DHOPA 2,3-dihydroxy-4-oxopentanoic acid 3.9 4.9 

Phthalic acid  9.1 10.3 
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3.1 PM2.5 source apportionment 179 

In this study, PMF source analysis was conducted in two scenarios, i.e., MM-PMF with molecular markers and PMFt 180 

without inclusion of molecular markers. The abundance and nomenclature of the organic markers used are summarized in 181 

Table 2. The preferential input species for PMF analysis are those with high abundance and known to be specific to certain 182 

sources. Generally, organic markers with lower volatility and lower reactivity were selected as input species for MM-PMF. 183 

Highly correlated organic markers (R> 0.8), indicating common sources, were grouped together to reduce the number of 184 

species and to avoid collinearity problems in MM-PMF (Wang et al., 2017).  185 

3.1.1 MM-PMF results 186 

In PMF, the optimal number of factors is a compromise between identifying factors with the best physical explanations 187 

and achieving a sufficiently good fit for all species. In PMF solutions of too few factors, different sources are combined 188 

and unresolved, the resolved sources cannot fully explain the individual species. On the other hand, in PMF solutions of 189 

too many factors, one source may be split into multiple uninterpretable factors. Initially, 7 to 14 factors were tested, and 190 

the optimal factor number was determined by examining the changes in Q/Qexp (Fig. S5). Finally, the 11-factor solution for 191 

MM-PMF was selected as it gives the most reasonable factor profiles (detailed description in Text S2). Table S2 shows the 192 

summary of error estimation diagnostics from bootstrap (BS), displacement (DISP) and bootstrap combined displacement 193 

(BS-DISP) for the MM-PMF base run. Generally, BS and DISP results indicated robust PMF solutions. However, BS-DSIP 194 

results showed higher uncertainties which may be due to the limited sample size in the study. It should be noted that vehicle 195 

exhaust showed the lowest BS mappings and high chance of mixing with the secondary nitrate factor. The base run results 196 

show certain degrees of factor mixing, such as ~20% of biomass burning tracers-levoglucosan and mannosan were mixed 197 

with the secondary nitrate factor. Subsequently, a constrained run was performed to constrain levoglucosan and mannosan 198 

to be only present in the biomass burning factor (Wang et al., 2017). The summary of the model performance of individual 199 

input species for the 11-factor solution in MM-PMF is given in Table S4. 200 

The factor profiles of the 11-factor constrained run of MM-PMF are shown in Fig. 3, together with the time series of 201 

contributions from individual source factors. The diurnal variations of individual factor contributions are shown in Fig. 4. 202 

In summary, three secondary sources are resolved, namely, secondary sulfate factor, secondary nitrate factor, and SOA 203 

factor. Eight primary sources are resolved, and they are vehicle exhaust, industrial emission/tire wear, industrial emission2, 204 

residual oil combustion, dust, coal combustion, biomass burning, and cooking. The correlations of each factor contribution 205 

with meteorological parameters (WS, T and RH) and gaseous pollutants (SO2, CO, and NOx) are shown in Table S6. The 206 
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average factor contributions to PM2.5 and OC from individual source factors are shown in Fig. 5. 207 

The secondary nitrate factor (F1) is identified by high contributions of nitrate and ammonium (36% and 50% 208 

respectively). The secondary sulfate factor (F2) is characterized by high loadings of sulfate (30%) and ammonium (17%). 209 

Small amounts of organic acids and PAHs are also present in the factor. The diurnal variations of F1 show higher 210 

contributions during nighttime (e.g., 21:00-05:00) and lower contributions during daytime (e.g., 09:00-13:00). The higher 211 

contributions of secondary nitrate in the nighttime hours may be due to the lower nighttime temperature favoring the 212 

shifting of ammonium nitrate to the particle phase. Contributions of F2 lack obvious diurnal patterns (Fig. 4), which may 213 

indicate the influence from regional transport, and this speculation is supported by the backward trajectory analysis in Sec. 214 

3.2. F1 has a moderate correlation with NOx (R=0.50) and a high correlation with CO (R=0.70), while F2 does not show 215 

evident correlations with gaseous pollutants or meteorological parameters (Table S6). F1 and F2 contributed 30.4% and 216 

15.3% to the total PM2.5 mass and 20.4% and 21.2% to the total OC, respectively (Fig. 5).  217 

 218 
Figure 3. Individual source profiles of the 11 factors resolved in the constrained MM-PMF run (left) and time series of individual factor 219 

contributions (right). 220 

The third factor (F3) shows a high abundance of EC (38%), and is identified to be vehicle exhaust. It also contains 221 
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high loadings of OC, Ca, and Cu, as well as some organic tracers (PAHs and organic acids) in the profile. Vehicle exhaust 222 

is an important source for carbonaceous species, and the presence of Cu in vehicle exhaust may originate from both 223 

fuel/lubricant combustion and brake abrasions (Adachi and Tainosho, 2004; Pant and Harrison, 2013), and the element Ca 224 

may be derived from road dust. The influence of vehicle exhaust on this factor is supported by the peak hours at 7:00-9:00 225 

am and 5:00-7:00 pm in the diurnal variation (Fig. 4), coinciding with the morning and afternoon rush hours. In addition, 226 

F3 has high correlations with NOx (R=0.68) and CO (R=0.48), further supporting the association of this factor with vehicle 227 

exhaust. F3 contributed with 12.6% of the total PM2.5 mass and 19.4% of OC on average.  228 

The profile of the fourth factor (F4) contains high loadings of Fe and Mn. Industry activities related to steel production 229 

often emit a large amount of these metallic elements (Men et al., 2019). These metals, together with Cu and Zn, are also 230 

reported by Pant & Harrison (2013) and Wang et al. (2018) to be associated with non-exhaust vehicle emissions such as 231 

tire wear. The diurnal variation of F4 is similar to that of F3 and shares the commonality of peaking during the morning 232 

and afternoon rush hours, supporting its association with tire wear emissions. F4 shows a high correlation with NOx 233 

(R=0.49), and NOx in the Yangtze River Delta mainly originates from industrial and vehicular pollution sources (Fu et al., 234 

2013). Therefore, F4 is considered as a mixed source of industrial emission and tire wear. The contributions of this factor 235 

to the total PM2.5 mass and OC were minor, only 3.8% and 2.1%, respectively. Industrial emission/tire wear could not be 236 

resolved as a separate source in the source apportionment analysis based on offline filter samples in this region (Du et al., 237 

2017; Huang et al., 2014; Qiao et al., 2016). This inability is lifted with the hourly data, thus indicating the benefit of online 238 

high-time resolution measurements.  239 

The fifth factor (F5) is characterized by high loadings of Cr (74%), Ni (31%), and Zn (29%) (Fig. 3). Cr compounds 240 

are widely used in industrial activities such as plating, tanning, and metallurgy (Karar et al., 2006; Borai et al., 2002). In 241 

addition, this factor shows a strong correlation with CO (R=0.68). Thus, it is regarded as industrial emission2. No diurnal 242 

variation is observed in this factor (Fig. 4). Factor contributions of F5 to total PM2.5 and OC mass were minor, only 2.0% 243 

and 1.1%, respectively.  244 

The residual oil combustion factor (F6) is identified by high loadings of V (83%) and Ni (32%) (Fig. 3). V is often 245 

used as a source tracer for residual oil combustion (Zhao et al., 2013c). The contributions of the residual oil combustion 246 

mainly come from shipping transportation due to the coastal geographical location of Shanghai. The V/Ni ratio in the factor 247 

profile is 2.7, close to the ratio of fuel oil used in the Shanghai Port (3.6 in Zhao et al. (2013c)). The diurnal variation of 248 

this factor shows slightly higher concentrations during nighttime (e.g., 21:00-23:00 and 03:00-07:00). F6 is a minor 249 
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contributor to PM2.5, accounting for 2.0%, while its contribution to OC is higher (7.1%). Therefore, residual oil combustion 250 

is an important pollution source, especially to OM.  251 

The dust factor (F7) is distinguished by crustal elements Ca, Si, and Ba. The diurnal variation of this factor shows a 252 

broad peak during the daytime, which could be explained by more activies causing dust suspension in the daytime (e.g., 253 

construction, road traffics, etc.). This factor contributes 4.2% and 2.0% to the total PM2.5 and OC mass, respectively. 254 

 255 

Figure 4. Diurnal variation of individual source factors resolved by MM-PMF (25th and 75th percentile boxes, 10th and 90th 256 

percentile whiskers; lines inside the boxes represent the hourly median and the red points represent the hourly mean). 257 

F8 contains a high abundance of As and Pb, which identifies this factor to be associated with coal combustion (Chen 258 

et al., 2013). The diurnal variation of the factor shows higher contributions in the daytime. Good correlations with SO2 (R= 259 

0.68) and CO (R=0.68) further support the identification of this factor. No specific organic tracers such as PAHs are present 260 

in this source profile (Fig. 3). These results are different from those of Wang et al. (2017) and Yu et al. (2016), which may 261 
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be attributed to regional differences in source profiles. F8 contributes with 5.3% of total PM2.5 and 5.6% of OC, respectively. 262 

The ninth factor (F9) is identified as biomass burning by high loadings of levoglucosan and mannosan. Levoglucosan 263 

and mannosan are uniquely emitted by biomass burning activities (Engling et al., 2006; Feng et al., 2013), thereby serving 264 

as reliable source tracers to indicate biomass burning in source analysis (Wang et al., 2019; Bond et al., 2007). In 265 

comparison, it is well documented that elemental potassium (K) suffers from potential interferential sources such as dust 266 

and fire work emissions (Yu et al., 2019). The source profile of the biomass burning factor also contains high loadings of 267 

five-ring and six-ring PAHs that are considered to be derived from mixed combustion sources (including coal combustion 268 

and biomass burning, etc.) (Fig. 3). The diurnal variation of biomass burning shows higher contributions during nighttime. 269 

On average, this factor contributes 4.8% and 2.7% to the total PM2.5 and OC mass, respectively.  270 

The cooking factor (F10) was distinguished by SFAs (palmitic acid and stearic acid) and C9-acids (9-oxononanoic 271 

acid and azelaic acid). The diurnal variation of the cooking factor shows obvious peaks at lunch (11:00-13:00) and dinner 272 

(17:00-21:00) time, which are in accordance with the local dining consumption habits in Shanghai. Although the cooking 273 

factor contributes only a small fraction of PM2.5 (2.8%), it accounts for 11.4% of the total OC, indicating the importance 274 

of cooking emisions to OM in the urban metropolis.  275 

 276 

Figure 5. Percentage contributions of individual source factors to (a) PM2.5 and (b) OC based on MM-PMF. 277 

As shown in Fig. 3, F11 is identied as a SOA factor on the basis of high loadings of a toluene SOA tracer (2,3-278 

dihydroxy-4-oxopentanoic acid), α-pinene SOA tracers (pinic acid and 3-methyl-1,2,3-butanetricarboxylic acid) and 279 

phthalic acid. Thus, the factor represents mixed anthropogenic and biogenic SOA. The diurnal variation shows slightly 280 

higher contributions in the nighttime hours (Fig. 4). High correlations with SO2 (R=0.69) and CO (R=0.79) are observed 281 

(Table S6). Similar temporal variations between SOA and the secondary nitrate factor are observed (R=0.63), especially 282 

during episodic hours, which may indicate some commonality in their formation processes. Many studies have documented 283 

the enhancement of biogenic SOA production by anthropogenic species through creating a more acidic environment in the 284 

(a) Contributions to PM2.5 (b) Contributions to OC
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aerosol (Jang et al., 2002; Wang et al., 2017). The SOA factor accounts for 16.8% of PM2.5, and 7.0% of OC on average 285 

(Fig. 5). 286 

Overall, the MM-PMF source apportionment results indicate that the three secondary sources combined account for 287 

62.5% (28.9 μg/m3) of the total PM2.5 mass, among which secondary nitrate and SOA are two major source contributors. 288 

Vehicle exhaust is the largest primary source contributing to PM2.5. OC contributions from the secondary sulfate, secondary 289 

nitrate, and SOA factors are assumed as secondary OC (SOC), whereas OC from the other factors are assumed to be primary 290 

OC (POC). The SOC from the three secondary factors accounts for 48.6% (3.09 μgC/m3) of the total OC mass on average 291 

across the whole study period. The high loadings of OC in the secondary nitrate and sulfate factors may indicate 292 

commonality in the formation processes leading to secondary inorganic and organic products and lack of specific tracers 293 

to separately account for the formation pathways of much of the seondary organic products. POC accounted for 51.4% 294 

(3.27 μgC/m3) of the total OC, with vehicle exhaust and cooking emission contributing the most.  295 

3.1.2 Impact of organic markers on source apportionment 296 

The PMF model without organic markers (PMFt) was performed to examine the impact of inclusion of organic tracers 297 

on PMF. The input data for PMFt are the same as for MM-PMF except the organic molecular markers. In PMFt, eight 298 

factors are resolved, and the three factors, biomass burning, cooking, and SOA cannot be extracted due to the lack of the 299 

corresponding organic markers. The source profile and error estimation of the eight-factor solution of PMFt are shown in 300 

Fig. S7 and Text S2. The correlations of the factor contributions for the common factors between PMFt and MM-PMF are 301 

shown in Table 3. Generally, the eight common factors, except for secondary sulfate and vehicle exhaust, correlate well 302 

between the two PMF runs (R= 0.84-0.99), indicating the robustness of the resolved factors. The secondary sulfate factor 303 

and vehicle exhaust show moderate correlations (R=0.46 and 0.53) between PMFt and MM-PMF, reflecting the larger 304 

inaccuracy in their PMF-resolved source profiles and contributions. This difference is in turn rooted in the lack of distinct 305 

source tracers for the two factors. In the factor profiles (Fig. 3 and Fig. S7), the corresponding highest loading species (i.e., 306 

sulfate for the secondary sulfate factor and EC for the vehicle exhaust factor) accounted for less than 30%, leading to higher 307 

uncertainties of the two factors.  308 
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Table 3. Correlation (R) of common source factors between PMFt and MM-PMF.  309 

MM-PMF      
PMFt 

Secondary 

Nitrate 

Secondary 

Sulfate 

Vehicle 

Exhaust 

Industrial 

Emission  

/Tire Wear 

Industrial 

Emission 2 

Residual Oil 

Combustion 
Dust 

Coal 

Combustion 

Secondary Nitrate 0.84 0.29 0.58 0.33 0.32 -0.03 -0.07 0.34 

Secondary Sulfate -0.35 0.46 -0.31 -0.48 0.14 -0.38 -0.28 0.07 

Vehicle Exhaust 0.39 -0.33 0.53 0.43 0.17 0.11 0.22 0.47 

Industry / Tire Wear 0.39 -0.25 0.39 0.99 0.13 0.09 0.38 0.21 

Industry 2 0.62 0.001 0.37 0.11 0.99 -0.13 -0.19 0.63 

Residual Oil 

Combustion 
-0.03 -0.33 -0.03 0.05 -0.14 0.99 0.17 -0.09 

Dust -0.16 -0.39 -0.18 0.30 -0.15 0.21 0.99 -0.002 

Coal combustion 0.70 0.04 0.52 0.18 0.70 -0.12 -0.08 0.97 

A comparison of individual factor contributions to PM2.5 and OC between MM-PMF and PMFt is shown in Fig. 6. 310 

Generally, larger differences between the two PMF runs are noted for OC apportionment results than for PM2.5. The 311 

contributions from the combined secondary sources are relatively stable, i.e., 62.5% in MM-PMF vs. 63.9% in PMFt to 312 

PM2.5 and 48.6% in MM-PMF vs. 49.1% in PMFt to OC. In the absence of organic marker data, the contribution from the 313 

SOA factor is not resolved and distributed into the secondary sulfate and the secondary nitrate factors, thereby notably 314 

inflating the contributions from the latter two source factors. For the primary sources, MM-PMF estimates that biomass 315 

burning and cooking combined contribute to 7.6% of PM2.5 and 13.9% of OC. Wihtout organic markers, the PMFt model 316 

would distribute the contributions from these two sources to other factors, more specifically to coal combustion and residual 317 

oil combustion. Both the two latter sources show a relatively larger difference between the two PMF runs, especially to 318 

OC contributions. The coal combustion contribution to OC increases from 5.6% in MM-PMF to 11.1% in PMFt and the 319 

residual oil combustion contribution increases from 7.2% in MM-PMF to 11.1% in PMFt. In summary, MM-PMF generates 320 

a more refined allocation of PM2.5 sources through identifying more contributing sources. In other words, the source 321 

contributions of certain factors are notably biased in PMF analysis without the organic markers due to either factor mixing 322 

or distortion. 323 
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 324 

Figure 6. Comparison of individual factor contributions to PM2.5 and to OC between MM-PMF and PMFt: (a) average mass contributions 325 

(μg/m3) and (b) average percentage contributions (%). 326 

3.2 Backward trajectory analysis of MM-PMF resolved sources 327 

Fig. 7 shows the distributions of backward trajectory cluster means. Four clusters are extracted based on the clustering 328 

analysis using the TrajStat model. Cluster 1 represents air masses originating from the northeastern continental region, 329 

accounting for 17% of all trajectories. Cluster 2 is the local circulating air mass and accounts for 36% of all trajectories. 330 

Cluster 3 (28% of all trajectories) and cluster 4 (20% of all trajectories) represent oceanic air masses and long-range 331 

transport air masses, respectively. Based on the mean trajectory length, more locally-formed pollutants are expected under 332 

clusters 2 and 3, while more regional transported pollutants could be linked to clusters 4 and 1. The distributions of 333 

individual air mass trajectories during the observation period are shown in Fig. S8. The average concentrations of PM2.5 334 

and its major compositions under each cluster are provided in Fig. S9. Briefly, the PM2.5 concentration was the highest 335 

under influence of local air masses (i.e., cluster 2), with an average value of 67.7 μg/m3, followed by the northeastern 336 

continental air masses (cluster 1, 59.1 μg/m3). Lower PM concentrations were observed under influence of long-range 337 

transport air masses (cluster 4, 20.4 μg/m3) and oceanic air masses (cluster 3, 30.0 μg/m3).    338 

(a)

(b)
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 339 
Figure 7. MM-PMF resolved source factor contributions to PM2.5 in different clusters during the sampling period. The colored lines in 340 

the map show the backward trajectory cluster means of the four clusters resolved by the TrajStat model. The percentage in parentheses 341 

after each cluster is the contribution of the corresponding cluster to all trajectories. The pie chart components represent the percentage 342 

contributions of individual source factors. The size of the pie chart is proportional to the total PM2.5 mass in each cluster.    343 

The MM-PMF factor percentage contributions to PM2.5 under each cluster during the sampling period are shown as 344 

pie charts in Fig. 7 and the mass contributions of the individual factors under different clusters are shown in Fig. S10. The 345 

PM2.5 sources vary evidently in their contributions under influence of air masses of different origins. Secondary nitrate, 346 

secondary sulfate, SOA, and the vehicle exhaust factor are the top four source contributors to PM2.5, regardless of air mass 347 

cluster type. The secondary nitrate factor shows the highest contribution under cluster 2 (41.3%, 23.8 μg/m3) and the lowest 348 

contribution under cluster 4 (7.8%, 1.8 μg/m3), indicating the important contribution of NOx precursors from local vehicular 349 

emissions to the secondary formation of nitrate aerosol. Secondary sulfate, however, showed much higher contributions 350 

under cluster 4 (37.4%, 8.5 μg/m3) and cluster 1 (21.7%, 10.1 μg/m3), compared with cluster 2 (7.5%, 4.3 μg/m3). The 351 

results suggest the regionally-sourced characteristic of sulfate-rich aerosols. The sulfate input from the northeastern 352 

continental region may arise from the increased SO2 emissions from coal burning due to need of heating supply (Sun et al., 353 

2015). The SOA factor showed higher contributions under cluster 1 (21.8%, 10.1 μg/m3) and cluster 2 (18.2%, 10.5 μg/m3), 354 
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compared to clusters 3 and 4 (11.8% and 10%, 3.5 and 2.3 μg/m3, respectively), suggesting the combined influence of 355 

locally formed SOA and regional transported SOA from the northern continental area. The vehicle exhaust and cooking 356 

emissions show comparable mass contributions under different clusters (3.3-6.0 and 1.1-1.3 μg/m3), consistent with the 357 

local emission characteristics of the two sources (Fig. S10). For other factors, industrial emission/tire wear showed highest 358 

mass contributions under cluster 2, in agreement with the influence of local vehicular emission. Residual oil combustion 359 

showed the highest contributions under cluster 3, consistent with the increased influence of ship emissions when air masses 360 

pass over the Shanghai port. Industrial emission2, biomass burning, and coal combustion show higher mass contributions 361 

under clusters 1 and 2. Dust shows similar mass contributions among different clusters.  362 

In summary, in the winter period, the accumulation of pollutants caused by local emission sources such as vehicle 363 

emissions, secondary nitrate, and SOA formation in Shanghai is an important cause of PM2.5 pollution. Additionally, coal 364 

burning in northeastern China also significantly affects the PM pollution in Shanghai under the influence of air mass 365 

movement.  366 

3.3 Episodic analysis on MM-PMF resolved sources  367 

 PM2.5 concentrations higher than 75 μg/m3 and lasting for more than 24 hours are regarded as a PM episode in this 368 

study. Three episodes occurred during the entire measurement period (Fig. 2), and they are examined next to understand 369 

the source compositions of PM2.5 during pollution episodes. The first episode (EP1) occurred from 9:00 am on 19 November 370 

to 9:00 am on 20 November, 2018. The second episode (EP2) occurred from 7:00 pm on 24 November to 1:00 am on 26 371 

November, 2018. The third episode (EP3) lasted for almost three days starting from 1:00 pm on 27 November to 7:00 am 372 

on 30 November, 2018. The average wind speed was 3.3, 1.6, and 1.7 m/s for EP1, EP2 and EP3, respectively. The 373 

distributions of backward trajectories during the three episodes are shown in Fig. S11. Briefly, EP1 mainly falls under the 374 

influence of cluster 1, i.e., northeastern continental air masses. EP2 and EP3 are mainly influenced by cluster 2, i.e., air 375 

mass trajectories circulating around local area. The average PM2.5 concentrations observed during the three episodes were 376 

EP1: 96.2, EP2: 79.8, and EP3: 109.1 μg/m3. The episodic PM concentrations are 3.3 times higher than during the non-377 

episodic hours. The highest PM pollution was observed in EP3 under local air mass influence (i.e., cluster 2) with calm 378 

wind speed conducive for accumulation of pollutants. The chemical compositions of PM2.5 for the three episodes are shown 379 

in Fig. S12. 380 
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  381 

Figure 8. Source contributions to PM2.5 from individual MM-PMF source factors during the three episodes encountered in the 382 

measurement period: (a) mass contributions (μg/m3) and (b) percentage contributions (%). The source contributions for non-episodic 383 

hours are also included for comparison.  384 

The source contributions of PM2.5 under the three episodes are shown in Fig. 8 and compared with the average 385 

contributions during the non-episodic hours. In the three episodes, obvious increased contributions from SOA and 386 

secondary nitrate are noted, with contributions increased from 3.4 and 7.0 μg/m3 in the non-episodes to 17.2-20.2 and 10.6-387 

38.5 μg/m3 in the episodes, respectively. Comparing source contributions among the three episodes, EP2 and EP3 show 388 

similar percent source contributions among the sources while the source contributions in EP1 are different. In EP1, under 389 

the influence of the northeastern continental air mass, enhanced contributions are noted from secondary sulfate, coal 390 

combustion, biomass burning, and industrial emission2, in line with the study of Hua et al. (2018) on the source analysis 391 

of PM2.5 in the Beijing area. EP2 and EP3, under the influence of local-circulating air mass, showed obvious higher 392 

contributions to PM2.5 from secondary nitrate than EP1 (45-49% vs. 15%) (Fig. 8). Common to all three episodes is the 393 

consistent high contribution of the SOA factor to PM2.5 (24-28%), indicating the persistent input of this source factor on 394 

PM pollution during different episodes. Vehicle exhaust also showed similar percentage contributions to PM2.5 among the 395 

three episodes (9-10%). The remaining factors, all being minor contributors to PM under the episodic hours, showed similar 396 

contributions among the three episodes. 397 

(a)

(b)



 

20 

4. Conclusions 398 

We carried out a source apportionment study through utilizing hourly measured PM2.5 and its chemical components, 399 

including water-soluble inorganic ions, carbonaceous species, and trace elements, and organic molecular markers which 400 

were measured at every odd hour in a three-week field campaign in winter in urban Shanghai, a megacity in the Yangtze 401 

River Delta region, China. The PMF receptor modeling, with the comprehensive chemical speciation data as inputs (i.e., 402 

MM-PMF), has resolved eleven source factors, among which three organics-dominated factors, namely a SOA factor, 403 

biomass burning, and cooking factor, were resolved from other sources due to the availability of the organic marker data. 404 

Secondary nitrate and SOA are two major sources contributing to PM pollution in this urban environment. The three 405 

secondary sources combined (i.e., sum of the secondary nitrate, secondary sulfate and SOA factor) contributed to more 406 

than 60% of PM2.5 mass and 48.6% of the total OC. PMF analysis without organic markers (i.e., PMFt) was also conducted 407 

for comparison. The three factors (i.e., SOA factor, biomass burning, and cooking emissions) could not be resolved as 408 

separate sources without the organic markers. Consequently, their source contributions would be distributed to other 409 

sources, biasing the source apportionment results by PMFt.  410 

The backward trajectory clustering analysis on the MM-PMF resolved source contributions revealed the impact of the 411 

air mass origins on different source factors. Secondary nitrate showed much higher contributions under local air mass 412 

influence, while secondary sulfate showed higher contributions under the influence of northeastern continental and long-413 

range transport air masses. Three episodic events occurred during the measurement period and our analysis showed 414 

enhanced contributions from secondary nitrate and SOA factors in episodic hours. Increased contribution from secondary 415 

sulfate was observed in the episode influenced by northeastern continental air masses. The results indicated that PM 416 

pollution in winter in the Shanghai area is greatly affected by both local pollutant emissions and the regional transport from 417 

the northeastern continental regions. 418 

 This study has demonstrated with field observation data that the combination of online organic molecular markers 419 

and elemental tracers and other PM major components provides more comprehensive characterization of the PM pollution 420 

sources, in particular those dominated by organics which would be otherwise mixed into other sources and bias source 421 

apportioned to these “other sources”. The hourly resolution in source factor contributions allows convenient utilization of 422 

those hourly data that have been routinely measured or obtained (e.g., meteorological conditions, gas pollutants, and 423 

backward trajectories analysis) to achieve an in-depth understanding of the source origins. The high time resolution data 424 

also has enabled the examination of pollution characteristics of different short-term PM pollution episodes. Future studies 425 
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deploying online MM-PMF are suggested to include more organic markers such as hopanes and additional SOA tracers to 426 

resolve more source types of PM pollution. Also, MM-PMF for different ambient conditions is suggested to gain a more 427 

comprehensive understanding of the PM pollution sources at a given location. 428 

 429 
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