1	Role of amm	ionia on	fine-particle	e pH in	agricultural	regions of	China:
					a	a	

2 Comparison between urban and rural sites

- 3 Shenbo Wang^a, Lingling Wang^b, Yuqing Li^c, Chen Wang^a, Weisi Wang^b, Shasha Yin^a,
- 4 *, Ruiqin Zhang ^{a, *}
- 5 ^a Research Institute of Environmental Science, College of Chemistry, Zhengzhou
- 6 University, Zhengzhou, 450001, China
- ⁷ ^b Department of Environmental Protection of Henan Province, Zhengzhou, 450001,
- 8 China
- ^c Department of Environment Science and Engineering, Tsinghua University, Beijing
 100084, China
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21

- 22 Text S1 Calculation of ions balance and equivalent ratio.
- 23 Fig. S1 Ion balance of water-soluble inorganic ions at five sites (i.e., urban sites at Zhengzhou (U-ZZ)
- 24 and Anyang (U-AY), rural sites at Anyang (R-AY), Xinxiang (R-XX), and Puyang (R-PY)).
- Fig. S2 Comparisons of predicted and measured NH₄⁺, SO₄²⁻, NO₃⁻, NH₃, HNO₃ and HCl at the five
- sites.
- 27 Fig. S3 Comparison of predicted pH by ISORROPIA-II with E-AIM IV at U-ZZ site.
- Fig. S4 Fig. 2 Temporal variations of temperature (T), relative humidity (RH), wind speed (WS), wind
- 29 direction (WD), and concentrations of NH₃ and water-soluble inorganic ions (WSIIs) in three cases at
- 30 U-AY (a), R-AY (b), R-XX (c), and R-PY (d) sites.
- 31 Fig. S5 Trajectory frequencies of typical periods during Cases 1 (a), 2(b), and 3 (c).
- 32 Fig. S6 Sensitivity tests of $PM_{2.5}$ pH to Na^+ , K^+ , Ca^{2+} and Mg^{2+} in Case 2. The color scale bar represents
- 33 the pH values. The relative standard deviation (RSD) and range (Range) represent the variation degree
- 34 and range of pH values in the test.
- 35 Table S1 Summarized of NH₃ concentrations in this study and other sites.
- 36 Table S2 Pearson's correlation coefficients (*r*) between H^+_{air} and input data at the five sites.
- 37
- 38
- 39
- 40
- 41
- 42
- 43

44 Text S1 Calculation of ions balance and equivalent ratio.

45 The ions balance and equivalent ratio are calculated using following formulas:

46
$$[\text{cations}] = \frac{[\text{NH}_4^+]}{18} + \frac{[\text{Na}^+]}{23} + \frac{[\text{K}^+]}{39} + \frac{[\text{Ca}^{2+}]}{20} + \frac{[\text{Mg}^{2+}]}{12}$$
(1)

47
$$[\text{anions}] = \frac{[\text{SO}_4^{2-}]}{48} + \frac{[\text{NO}_3^{-}]}{62} + \frac{[\text{Cl}^{-}]}{35.5}$$
(2)

48 ion balance =
$$[cations] - [anions]$$
 (3)

49
$$equivalent ratio = [cations]/[anions]$$
 (4)

where $[Na^+]$, $[K^+]$, $[Ca^{2+}]$, $[Mg^{2+}]$, $[NH_4^+]$, $[SO_4^{2-}]$, $[NO_3^-]$, and $[Cl^-]$ are the measured concentrations ($\mu g/m^3$) in the atmosphere. The results presented in Fig. S1 show that the observed water-soluble inorganic ions have good balance and are effective as input data for ISORROPIA-II model. In addition, the equivalent ratio suggest that particle was acidic at U-ZZ site and alkaline at other four sites.

Fig. S1 Ion balance of water-soluble inorganic ions at five sites (i.e., urban sites at Zhengzhou (U-ZZ)
and Anyang (U-AY), rural sites at Anyang (R-AY), Xinxiang (R-XX), and Puyang (R-PY)).

- 57
- 58

61 Fig. S2 Comparisons of predicted and measured NH4⁺, SO4²⁻, NO3⁻, NH3, HNO3 and HCl at the five

Fig. S3 Comparison of predicted pH by ISORROPIA-II with E-AIM IV at U-ZZ site.

Fig. S4 Fig. 2 Temporal variations of temperature (T), relative humidity (RH), wind speed (WS), wind

direction (WD), and concentrations of NH₃ and water-soluble inorganic ions (WSIIs) in three cases at

- U-AY (a), R-AY (b), R-XX (c), and R-PY (d) sites.

U-7Z -	(a) RSD: 0.7% Range: 4.3-4.4	U-ZZ -	(b) $\frac{\text{RSD: } 0.7\%}{\text{Range: } 4.3-4.4}$	U-ZZ -	(c) RSD: 0.3% Range: 4.4-4.4	U-ZZ -	(d) RSD: 0.2% P Range: 4.4–4.4
U-AY -	RSD: 0.7% Range: 4.6–4.7	U-AY-	RSD: 0.5% Range: 4.8–4.8	U-AY-	RSD: 0.2% Range: 4.8–4.8	U-AY-	RSD: 0.1% Range: 4.8–4.8
R-AY -	RSD: 0.5% Range: 4.8–4.9	R-AY-	RSD: 0.4% Range: 5.0–5.1	R-AY-	RSD: 0.2% Range: 5.0–5.0	R-AY-	RSD: 0.1% Range: 5.1–5.1
R-XX -	RSD: 0.5% Range: 4.8–4.9	R-XX-	RSD: 0.5% Range: 4.9–5.0	R-XX-	RSD: 0.2% Range: 4.9–4.9	R-XX-	RSD: 0.1% Range: 4.9–4.9
R-PY -	RSD: 0.5% Range: 4.9–5.0	R-PY-	RSD: 0.4% Range: 5.1–5.1	R-PY -	RSD: 0.2% Range: 5.0–5.0	R-PY-	RSD: 0.1% Range: 5.1–5.1
	0.03 0.06 0.09 0.12 0. Na', (nmol/m ³)	0.04 0.08 0.12 0.16 0.2 K ⁺ , (nmol/m ³)		0.03 0.06 0.09 0.12 0.1 Ca ²¹ , (nmol/m ³)	5	$0.03 0.06 0.09 0.12 0.15 \\ Mg^{21}, (nmol/m^3)$	

Fig. S6 Sensitivity tests of $PM_{2.5}$ pH to Na⁺, K⁺, Ca²⁺ and Mg²⁺ in Case 2. The color scale bar represents

78 the pH values. The relative standard deviation (RSD) and range (Range) represent the variation degree

- 79 and range of pH values in the test.

- ___

Cities	Period	NH ₃	References
Zhengzhou, China	2018.01	22.0 ±8.9	This study
Anyang, China	2018.01	25.3 ± 10.5	This study
Anyang, China	2018.01	25.8 ± 12.0	This study
Xinxiang, China	2018.01	26.1 ± 14.0	This study
Puyang, China	2018.01	27.1 ± 17.3	This study
Zhengzhou, China	2017.03-2018.04	11.7	Wang et al., 2018
Beijing, China	2015.01-03	7.3	Zhang et al., 2018
Beijing, China	2008.02-2010.07	22.8 ± 16.3	Wang et al., 2018
Beijing, China	2007.01-2010.07	10.2 ± 10.8	Wang et al., 2018
Beijing, China	2001.07-2001.08	16.8-42.2	Wang et al., 2018
North China Plain, China	2006.08-2009.09	11.7–31.9	Shen et al., 2011
Xi'an, China	2006.04-2007.04	18.6	Wang et al., 2018
Xi'an, China	2006.04-2007.04	20.3	Wang et al., 2018
Chengdu, China	2014.07-2015.04	10.5 ± 4.8	Wang et al., 2016
Wanzhou, China	2014.07-2015.04	8.3 ± 4.7	Wang et al., 2016
shanghai, China	2014.05-2015.06	7.8	Chang et al., 2019
Hangzhou, China	2012.04-05	12.8	Jansen et al., 2014
Dalian, China	2010.09-2012.04	1.5	Luo et al., 2014
Fenghua, China	2010.08-2012.05	3.7	Luo et al., 2014
Fujian, China	2015.06-2016.05	21.0 ± 7.9	Wang et al., 2018
Fujian, China	2015.06-2017.03	10.5–13.5	Wu et al., 2018
Hong Kong, China	2003.10-2006.05	10.2	Tanner, 2009
Carolina, USA	2000.01-12	0.4–3.4	Walker et al., 2004
Delhi, India	2013.01-2015.12	25.3 ± 4.6	Saraswati et al., 2019

89 Table S1 Summarized of NH₃ concentrations (μ g/m³) in this study and other sites.

		TNH _x	SO_4^{2-}	TNO ₃	TCl	\mathbf{K}^+	Ca ²⁺	Na^+	Mg^{2+}	Т	RH	
	U–ZZ	0.650**	0.867**	0.828**	0.430**	0.757**	-0.161*	0.306**	-0.009	0.000	0.337**	
	U–AY	0.368**	0.625**	0.458**	0.406**	0.388**	-0.234**	-0.095	-0.027	0.045	0.610**	
	R-AY	0.544**	0.765**	0.607**	0.602**	0.551**	-0.137*	0.098	-0.018	-0.138*	0.631**	
	R-XX	0.301**	0.638**	0.502**	0.223**	0.138*	-0.248**	0.103	-0.050	-0.023	0.637**	
	R-PY	0.703**	0.811**	0.767**	0.419**	0.485**	0.060	-0.138*	0.026	0.146*	0.658**	
92	* (Correlatio	n is signi	ficant at	the 0.05	level (two	o-tailed).					
93	** Correlation is significant at the 0.01 level (two-tailed).											
94												
95												
96												
97	References:											
98	Chang,	Chang, Y., Zou, Z., Zhang, Y., Deng, C., Hu, J., Shi, Z., Dore, A. J., Collett, J. L.: Assessing										
99	cor	contributions of agricultural and nonagricultural emissions to atmospheric ammonia in a Chinese										
100	me	megacity. Environ. Sci. Technol., 53, 1822–1833, 2019.										
101	Jansen,	Jansen, R. C., Shi, Y., Chen, J., Hu, Y., Xu, C., Hong, S., Li, J., Zhang, M.: Using hourly measurements										
102	to	to explore the role of secondary inorganic aerosol in PM _{2.5} during haze and fog in Hangzhou										
103	Ch	China. Adv. Atmos. Sci., 31, 1427–1434, 2014.										
104	Luo, X.	Luo, X. S., Tang, A. H., Shi, K., Wu, L. H., Li, W. Q., Shi, W. Q., Shi, X. K., Erisman, J. W., Zhang,										
105	F.,	F., Liu, X. J.: Chinese coastal seas are facing heavy atmospheric nitrogen deposition. Environ										
106	Re	Res. Lett., 9, 095007, 2014.										
107	Saraswati, Sharma, S. K., Saxena, M., Mandal, T. K.: Characteristics of gaseous and particulate											
108	ammonia and their role in the formation of secondary inorganic particulate matter at Delhi, India											

91 Table S2 Pearson's correlation coefficients (*r*) between H^+_{air} and input data at the five sites.

- 109 Atmos. Res., 218, 34–49, 2019.
- 110 Shen, J., Liu, X., Ying, Z., Fangmeier, A., Goulding, K., Zhang, F.: Atmospheric ammonia and
- particulate ammonium from agricultural sources in the North China Plain. Atmos. Environ., 45,
 5033–5041, 2011.
- 113 Tanner, P.A.: Vehicle-related ammonia emissions in Hong Kong. Environ. Chemi. Lett., 7, 37–40, 2009.
- 114 Walker, J. T., Whitall, D. R., Robarge, W. P., Paerl, H. W.: Ambient ammonia and ammonium aerosol
- across a region of variable ammonia emission density. Atmos. Environ., 38, 1235–1246, 2004.
- 116 Wang, C., Yin, S., Bai, L., Zhang, X., Gu, X., Zhang, H., Lu, Q., Zhang, R.: High-resolution ammonia
- emission inventories with comprehensive analysis and evaluation in Henan, China, 2006–2016.
- 118 Atmos. Environ., 193, 11–23, 2018.
- 119 Wang, H., Yang, F., Shi, G., Tian, M., Zhang, L., Zhang, L., Fu, C.: Ambient concentration and dry
- 120 deposition of major inorganic nitrogen species at two urban sites in Sichuan Basin, China. Environ.
- 121 Pollut., 219, 235–244, 2016.
- 122 Wu, S., Dai, L., Wei, Y., Zhu, H., Zhang, Y., Schwab, J. J., Yuan, C.: Atmospheric ammonia
- measurements along the coastal lines of Southeastern China: Implications for inorganic nitrogen
 deposition to coastal waters. Atmos. Environ., 177, 1–11, 2018.
- Zhang, R., Sun, X., Huang, Y., Shi, A., Yan, J., Nie, T., Yan, X., Li, X.: Secondary inorganic aerosols
 formation during haze episodes at an urban site in Beijing, China. Atmos. Environ., 177, 275–
 282, 2018.
- 128
- 129