Responses to the reviewers

Title: Role of ammonia on fine-particle pH in agricultural regions of China: Comparison between urban and rural sites.

Response to Reviewer 2

Wang et al. analyzed a novel dataset of inorganic aerosol constituents and their gaseous precursors as well as organic aerosol constituents in a province in central China with heavy agricultural activity. They used ISORROPIA, an inorganic thermodynamic aerosol model, and previously published methods to estimate aerosol pH for the observed particles. The measurements were made with state of the art instruments and the modeling was carefully evaluated. They positioned their work in the broader context of aerosol acidity work very well.

Thank you for your careful reading of our paper and the valuable comments and suggestions. To facilitate your review, we used green highlights for your comments, and red color indicating our own corrections in the manuscript.

The analysis sought to elucidate differences between the pH and the pH sensitivity to aerosol constituents between urban and rural sites. In this aspect of the work, more care could be taken. First, a map with the key emissions and measurement locations marked would help readers unfamiliar with the area characterize the results. Secondly, the differences between the urban and rural sites appears to be fairly random and small. The authors draw conclusions about the rankings between sites or the degree of difference in the aerosol pH sensitivities based on these measurements. Without understanding the uncertainties in the measurements and the accuracy of calibrations between the five instruments, their conclusions seem poorly supported. With the addition of estimated uncertainty on the measurements as well as evidence of the calibration of the instruments against a standard, the authors would be better able to support their conclusions if they remain valid. Finally, relative standard deviation as are presentation of sensitivity of aerosol pH to total ammonia is unfamiliar to me. This metric seems dependent on the range of values selected for the parameters of interest (e.g., total sulfate, temperature) and is difficult to interpret. Please consider using aunit-based sensitivity analysis approach that would indicate the influence of each parameter without respect to the observed range of each influential parameter.

Response: First, a map has been supplied in the supplemental materials (Fig. S1) with the key emissions listed in Table 2.

Fig. S1 Locations of the five monitoring stations in Henan Province, China (i.e., urban sites at Zhengzhou (U-ZZ) and Anyang (U-AY), rural sites at Anyang (R-AY), Xinxiang (R-XX), and Puyang (R-PY)). © 2019 National Geomatics Center of China. All rights reserved.

Secondly, we have added the uncertainty of each instrument based on references or instrument manuals (line 127-145), and pH uncertainty was evaluated by calculating the input data in two extreme scenarios (see Section 2.4). Considering the measurement uncertainty and statistical significance, we have modified the comparison between urban and rural sites instead of the rank of five sites in the revised version (line 247-250, 252-255, 369-271).

Fig. 1 pH uncertainties of the five sites based on two extreme scenarios of measurement uncertainty. Cations and organic carbon concentrations (OC) were adjusted up to within their maximum positive uncertainties, anions, relative humidity (RH) and temperature (T) were adjusted down within their maximum negative uncertainties, which represented the pH_{max} case; for pH_{min} case, cations and OC concentrations were adjusted down, and anions, RH and T were adjusted up. The color scale bar represents adjusted RH.

Finally, we have added a paragraph to describe the sensitivity tests and explain the use of RSD (line 275-289, 310-315): "To explore the dominant factors that determine the local particle pH level and resulting in the high pH at rural sites, sensitivity tests of pH to chemical species (i.e., TNH_x, TH₂SO₄, TNO₃, TCl, TNa, K⁺, Ca²⁺, and Mg²⁺) and meteorological parameters (i.e., T and RH) were performed. Firstly, the real-time measured values of a variable (e.g., TNH_x) and the average values of other parameters (i.e., TH₂SO₄, TNO₃, TCl, TNa, K⁺, Ca²⁺, Ca²⁺, Mg²⁺, T and RH) during Case 2 were input into ISORROPIA-II to identify the major factor for local PM_{2.5} pH (Ding et al., 2019), and the results are listed in Table 4 and Fig. S10. In addition, a given range for a variable for all sites with corresponding average values of other parameters was simulated to assess the different effects of this variable among five sites (Fig. 5 and S11). The chosen variation range for each variable was close to the observed minimum and maximum values (Table S4), which aims to better reflect the actual ambient conditions of observation periods. The degree of sensitivity was represented as the relative standard deviation (%RSD) of the recalculated pH values. RSD calculates the absolute value of the coefficient of variation, which helps us to

determine how small or large is the standard deviation when compared to the mean of the re-calculated pH data set. Therefore, when the re-calculated pH data set has a higher RSD value, this variable can change the pH easier and is more important for local pH."

Specific Comments

A. Text

29-31 These two ideas are not independent. Please choose to state one or the other.

Response: These two ideas have been modified (line 28-31).

41 Typicallly, the phase is included in the subscript (e.g., "NH3(g)/NH4(aq)+").

Response: Thanks for the suggestion. This sentence has been modified (line 44-45).

42 "element" should be "elements".

Response: Done.

102 "electron" is unclear here.

Response: Sorry for the misunderstanding, "electron" has been changed to "electronic factories".

174 Case 2 seems to have different meteorological episodes within it. Consider splitting the lower RH and corresponding lower concentration days into a fourth episode.

Response: Thanks for the comment. The durations of the lower RH and corresponding lower concentration days during Case 2 were short, particularly at U-AY, R-AY, R-XX, and R-PY (Fig. S6) of which only lasted approximately 8 h. In addition, we excluded data with RH < 30 %, a condition where predicted to observed partitioning of nitrate between the gas and particle phase are in weak correlation, and thus uncertainties in the pH prediction are expected to be high (Ding et al., 2019; Guo et al., 2016). Therefore, there is no adequate data to be classified into a fourth episode.

209-10 This conclusion is simply based on Equation 1. Please consider removing the log-linear dependence from Figure 2 and this sentence. This correlation exists because of the calculation.

Response: Thanks for your suggestions. Figure 2 has been replaced by Fig. S9 in revised manuscript to support the conclusion of "predicted pH values present better correlations with H^+_{air} concentrations rather than AWC" (line 257-258).

213-5 This statement makes it difficult to see that Case 3 is being compared with Case 1. Consider making the single sentence into two sentences.

Response: This sentence has been simplified to "The pH values (Table S2) of the five sites during Cases 2 and 3 were comparable but slightly lower than those in Case 1". (Line 256-257)

221 Perhaps the back trajectories in the SI indicate the degree of influence from transport, but it may be helpful to include a summary of the influences in the description of the cases if this information will be referenced in the discussion.

Response: Thank you for the comments. A new figure has been supplied to present the trajectory frequencies for each site during three cases with detail descriptions in Text S2.

264 "figure" should be "Figure".

Response: Done.

289 "liner" should be "linear"

Response: Done.

B. Figures and Tables

Fig 1 & 2 Please add uncertainty shading or bars to the inorganic constituent measurements and to ammonia. If you could please propagate that uncertainty to aerosol pH, the aerosol pH difference across sites could be evaluated.

Response: We have added the uncertainty shading in Fig. 2. Particle pH uncertainty was evaluated by calculating the input data in two extreme scenarios (see Section 2.4), and uncertainty shading of pH for each site has been presented in Fig. S8.

Fig. 2 Temporal variations of T, RH, wind speed (WS), wind direction (WD), and concentrations of NH₃, NH_4^+ , SO_4^{2-} , and NO_3^- during three cases at the Zhengzhou (U-ZZ) site. The shaded areas represent the measurement uncertainties.

Fig. S8 Time series of predicted PM_{2.5} pH at the five sites. The shaded areas show the range of uncertainty in pH for the pH_{max} and pH_{min} calculations.

Fig 5 This figure is very difficult to understand. What were the conditions across which modeling was conducted at each site? Did those ranges that are plotted as contour colors extend beyond the ranges plotted as a bar? More information would be required in the caption or an associated table in the SI to make this figure helpful.

Response: Sorry for the misunderstanding. We have added more information about the sensitivity tests of Fig. 5 in the caption and supplied an associated table (Table S4).

Fig. 5 Comparison of the sensitivities of $PM_{2.5}$ pH to T, RH, TCl ($HCl_{(g)} + Cl_{(aq)}^{-}$), TNH_x ($NH_{3(g)} + NH_{4(aq)}^{+}$), TNO₃ ($HNO_{3(g)} + NO_{3(aq)}^{-}$), and TH₂SO₄ (replaced by observed SO₄²⁻) among the five sites. A given range for a variable for all sites with corresponding average values of other parameters was used as input to the ISORROPIA-II model. The range of the x-axis is close to the observed minimum and maximum values in Case 2 (Table S4). The color scale bar represents the pH values. The relative standard deviation (RSD) and range (Range) represent the sensitivity degree of pH to this variable and range (min-max) of the re-predicted pH value in the test, respectively. The square plots on the graph represent the average values of each variable observed in Case 2 with standard deviation as an error bar.

Table S4 Variation ranges of each variable for assessing the different effects of this variable among five

Sussian	Observation		Setting		Cradient
Species	Min	Max	Min	Max	Gradient
T (°C)	-5.8	14.3	-6	15	0.1
RH (%)	26.8	92.3	30	95	0.1
$TNH_x (\mu g/m^3)$	21.2	96.7	25	95	$0.01 \ \mu mol/m^3$
$TNO_3 (\mu g/m^3)$	5.8	132.6	1	125	$0.01 \ \mu mol/m^3$
$TH_2SO_4 (\mu g/m^3)$	6.9	82.7	10	80	0.01 µmol/m ³

sites and their observed minimum and maximum values

TCl ($\mu g/m^3$)	0.54	39.5	0.35	35	0.01 µmol/m ³
TNa (µg/m ³)	0.29	3.33	0.25	3.5	0.01 µmol/m ³
K^+ (µg/m ³)	0.27	7.8	0.1	7.5	0.01 µmol/m ³
$Ca^{2+} (\mu g/m^3)$	0.2	5.2	0.4	6	0.01 µmol/m ³
Mg^{2+} (µg/m ³)	0.11	3.1	0.25	3.5	0.01 µmol/m ³

Fig 6 Why is excess NHx not just NH3(g) as predicted from ISORROPIA? As calculated, excess NHx ignores non-ideality as well as bisulfate formation.

Response: This figure was used to examine the effects of major indicators of ammonia (i.e., TNH_x , Required-NH_x, and Excess-NH_x) on aerosol acidity and support the conclusion that the presence of Excess-NH_x was likely important for the less acidic of PM_{2.5} during the severe haze episodes in this region.

Aerosols in this research were expected to be ammonia-rich because almost all the mole ratios of NH4⁺ to SO4²⁻ were higher than 2; at this value each mole of sulfate removes 2 mol of ammonium (Squizzato et al., 2013), meaning that SO4²⁻ mainly took the form of (NH4)₂SO4. In addition, with respect to measurements of semi-volatile gases, the concentrations of NH₃ were extremely higher than HNO₃ and HCl. Therefore, similar to Blanchard et al. (2000), Song et al. (2018), and Liu et al. (2017), Required-NH_x and Excess-NH_x were calculated using the formulas in Text S3. Excess-NH_x in this study represents a part of TNH_x (gas NH₃ + particle NH4⁺), while the other NH_x plus nonvolatile cations have been equivalent to all anions.

Fig. 7 Particle pH corresponds to increasing TNH_x at the five sites to examine the effects of major

indicators of NH₃ (i.e., TNH_x, Required-NH_x, and Excess-NH_x) on aerosol acidity. Particle pH was calculated by using a wide range of TNH_x (25–130 μ g/m³) and average values of other parameters during Case 2 of each site. The concentrations of TNH_x, Required-NH_x, and Excess-NH_x with corresponding pH values are marked by a hollow box, hollow circle, and arrow respectively. The yellow and blue background colors correspond to the NH_x-poor and NH_x-rich, respectively.

References:

- Blanchard, C. L., P. M. Roth, S. J. Tanenbaum, S. D. Ziman, and J. H. Seinfeld: The use of ambient measurements to identify which precursor species limit aerosol nitrate formation, J. Air Waste Manage. Assoc., 50, 2073–2084, 2000.
- Liu, M., Song, Y., Zhou, T., Xu, Z., Yan, C., Zheng, M., Wu, Z., Hu, M., Wu, Y., Zhu, T.: Fine particle pH during severe haze episodes in northern China. Geophys. Res. Lett., 44, 5213–5221, 2017.
- Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y., Mcelroy, M. B.: Fine particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmos. Chem. Phy., 18, 7423–7438, 2018.
- Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G., Pavoni, B.: Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmos. Chem. Phys. 13, 1927–1939, 2013.

Fig 7 How was SO4(aq)2- specified when running ISORROPIA? If the authors mean total sulfate, please correct the figure caption and axis label. Although all of the sulfate remains in the aerosol phase in ISORROPIA, it does not all become SO4(aq)2- necessarily

Response: Sorry for the misunderstanding. We have modified the descriptions of the input data of ISORROPIA: "Input data, including RH, T, concentrations of K⁺, Ca²⁺, and Mg²⁺, and total (i.e., gas + aerosol) concentrations of TNH_x, H₂SO₄ (TH₂SO₄, replaced by observed SO₄²⁻), Na (TNa, replaced by observed Na⁺), TCl, and TNO₃, were used to calculate the...". Moreover, all figures have been modified. We hope it has been improved in the revised version.

Fig. 6 Particle pH calculated with fixed meteorological parameters (T = 275.5 K and RH = 60 %) under different combinations of TNH_x and (a) TH₂SO₄ (Fixed TNO₃ = 67.5 μ g/m³) and (b) TNO₃ (Fixed TH₂SO₄

= 36.5 μ g/m³). The color scale bar represents the pH values. The markers on the graph represent the

average concentrations of TNHx, TH2SO4, and TNO3 at the five sites during Case 2 with standard

deviation as error bar.

Role of ammonia on fine-particle pH in agricultural regions of	China:
---	--------

- 2 Comparison between urban and rural sites
- 3 Shenbo Wang^a, Lingling Wang^b, Yuqing Li^c, Chen Wang^a, Weisi Wang^b, Shasha Yin^a,
- 4 *, Ruiqin Zhang ^{a, *}
- ⁵ ^a Research Institute of Environmental Science, College of Chemistry, Zhengzhou
- 6 University, Zhengzhou, 450001, China
- ⁷ ^b Department of Environmental Protection of Henan Province, Zhengzhou, 450001,
- 8 China
- ^o Department of Environment Science and Engineering, Tsinghua University, Beijing
 100084, China
- 11
- 12 * Corresponding authors: Shasha Yin and Ruiqin Zhang
- 13 E-mail addresses: shashayin@zzu.edu.cn; rqzhang@zzu.edu.cn
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21

22	Abstract: Particle acidity is a fundamental property that affects atmospheric particulate chemistry.
23	Synchronous online monitoring was performed in two urban sites (e.g., Zhengzhou (U-ZZ) and
24	Anyang (U-AY)) and three rural sites (e.g., Anyang (R-AY), Xinxiang (R-XX), and Puyang (R-PY))
25	in Henan Province during a haze episode to investigate the pH value and its driving factors in the
26	agricultural regions of China. The pH values of particles calculated by ISORROPIA-II model at rural
27	sites were slightly higher than those at urban sites, with the median (min-max) values of 5.2 (4.8–6.9,
28	R-PY), 5.1 (4.7–6.5, R-AY), 4.9 (4.1–6.8, R-XX), 4.8 (3.9–5.9, U-AY), and 4.5 (3.8–5.2, U-ZZ).
29	Sensitivity tests show that TNH_x (total ammonium (gas + aerosol)), followed by total sulfate, were the
30	important factors that influenced the predicted pH. Generally, particle pH increased with the cation
31	increasing and the decrease in the anion, temperature, and relative humidity. Similar pH values (~3.0)
32	at the required NH_x concentrations for the five sites indicated that the presence of excess NH_x was
33	likely important for the less acidic of PM _{2.5} during the severe haze episodes in this region. Moreover,
34	the concentrations of excess NH _x may drive the higher pH values at rural sites, because of the higher
35	excess NH _x concentrations at rural sites than those at urban sites. The underlying influence of regional
36	transport on local particle pH cannot be neglected by differing the chemical components of PM _{2.5} and
37	meteorological conditions. Air masses transported from rural and agricultural regions may enhance the
38	particle pH value in urban aerosols given the high pH of particles and high ammonia levels. These
39	results suggest that ammonia is urgently needed to be involved in the regional strategy for the
40	improvement of air quality in China.

41 Keywords: ISORROPIA-II model, Particle acidity, Ammonia, Sensitivity test, Regional transport.

1 Introduction 42

59

High concentrations of acids and bases contained in the aqueous phase define the acidity of 43 aerosols (Spurny, 1990). Particle acidity or pH value is an important parameter for atmospheric 44 particulate chemistry, such as the gas-particle portioning of semi-volatile and volatile species (e.g. 45 NH_{3(g)}/NH_{4(aq)}⁺, HCl_(g)/Cl_(aq)⁻, and HNO_{3(g)}/NO_{3(aq)}⁻), the formation of secondary inorganic and organic 46 aerosols, and the dissolution of metallic elements (Bougiatioti et al., 2016; Meskhidze et al., 2003; 47 Seinfeld and Pandis, 2006; Shi et al., 2019; Shi et al., 2010; Surratt et al., 2010; Wang et al., 2018b). 48 Particle acidity can affect the ecosystem through its influence on wet/dry deposition, atmospheric 49 visibility, and radiative balance (Boucher and Anderson, 1995; Larssen et al., 2006; Pye et al., 2019; 50 Watson, 2002). In addition, high particle acidity has an adverse impact on public health, especially for 51 the cardiopulmonary and respiration system of humans (Dockery et al., 1996; Ostro et al., 1991). 52 Direct measurements on particle pH are challenging because of the small size and nonideality of 53 54 chemical species in solvated aerosols. Therefore, thermodynamic models, such as E-AIM

(http://www.aim.env.uea.ac.uk/aim/aim.php) and ISORROPIA-II (http://isorropia.eas.gatech.edu) 55 (Clegg et al., 1998; Nenes et al., 1998), which rely on the measurements of particulate and gaseous 56 species, are widely used in estimating particle pH. Generally, the global distribution of fine particulate 57 matter (PM_{2.5}, aerodynamic diameter $\leq 2.5 \ \mu$ m) pH is bimodal with a population of particles having a 58 mean pH of 1–3 and another population having an average pH closer to 4–5 (Pye et al., 2019). Table

1 shows that PM_{2.5} in mainland China were moderately acidic with pH values that ranged from 3.4-60

5.7 (Ding et al., 2019; Guo et al., 2017; Liu et al., 2017; Shi et al., 2017, 2019; Song et al., 2018; Wang 61

et al., 2019a), which were 3-5 units higher than those reported in other regions, such as Hong Kong, 62

Singapore, USA, and Greece (Behera et al., 2013; Bougiatioti et al., 2016; Guo et al., 2016; Guo et al.,
2014; Pathak et al., 2004).

65	High atmospheric ammonia (TNH _x , gas NH ₃ plus particle NH_4^+) is a dominant factor that drives
66	the high PM _{2.5} pH in megacities of China because it suppresses the production of particle hydronium
67	(Cheng et al., 2016; Wang et al., 2016). Liu et al. (2017) argued that excess NH ₃ and elevated aerosol
68	water content (AWC) were responsible for the high pH in Beijing. Nevertheless, Guo et al. (2017) and
69	Song et al. (2018) demonstrated that high levels of ammonia did not increase the PM _{2.5} pH into a fully
70	neutralized condition in Beijing and Xi'an, China. Weber et al. (2016) calculated that only large
71	increases in NH ₃ together with sulfate reductions can lead to an increase in pH. Correspondingly,
72	higher pH by about 1 unit than urban aerosols was observed in locations of intensive agriculture with
73	high NH ₃ concentrations in the southeastern US (Nah et al., 2018). The primary sources for ammonia
74	include agricultural emissions, such as livestock waste, N-fertilizer application, and biomass burning,
75	as well as traffic and industrial emissions (Huang et al., 2012; Shen et al., 2011; Wang et al., 2018a).
76	Field studies have reported that elevated NH ₃ and NH ₄ ⁺ concentrations were recorded at rural sites in
77	the North China Plain (Meng et al., 2011; Meng et al., 2017; Shen et al., 2011; Wen et al., 2015).
78	Therefore, studying in an agriculturally developed region is needed to obtain insight into the role of
79	ammonia in particle pH. Unfortunately, previous studies mainly concentrated on calculating the
80	particle pH in the megacity of China, and few studies focused on the agricultural regions of China. In
81	addition to ammonia, particle pH can also be influenced by other chemical compositions and
82	meteorological conditions, such as sulfate, AWC, temperature (T), and relative humidity (RH). Sulfate
83	is often the main acid component of aerosols, and largely determines the acidity of PM _{2.5} (Weber et al.,

⁸⁴ 2016). Sensitivity tests in Beijing suggested that sulfate, TNH_x , and T were the common driving factors, ⁸⁵ and Ca²⁺ and RH were the unique factors in special seasons (Ding et al., 2019). The pH sensitivity ⁸⁶ based on the 10-year record in Canada showed that chemical compositions had various effects on ⁸⁷ particle pH under different meteorological conditions; moreover, careful examination for any ⁸⁸ particular region is needed (Tao and Murphy, 2019).

Henan Province is situated in Central China; it has a dense rural population and is a top-ranking 89 province in China in terms of agricultural production and chemical fertilizer consumption (NBS, 2016). 90 NH₃ emission inventory for Henan Province reported that approximately 1031.6 Gg NH₃ was released 91 in Henan in 2015, thereby contributing to approximately 10 % of China's total emissions 92 (approximately 10 Tg) (Huang et al., 2012; Wang et al., 2018a). Livestock waste and N-fertilizer 93 application were major sources for ammonia emissions, which may increase TNH_x concentrations at 94 rural sites than in urban sites. Furthermore, Henan Province is a severely PM_{2.5}-polluted region in 95 96 China. In January 2018, a large-scale and long-lasting haze episode that caused PM_{2.5} concentration to reach 400 µg/m³ occurred in this region (Wang et al., 2019c). An experiment was performed in two 97 urban and three rural sites in Henan Province to investigate the particle acidity and its driving factor. 98 99 ISORROPIA-II model was utilized to estimate PM_{2.5} pH using a high-time-resolution dataset. The novelty of the work addressed in the present study is that this study is the first on PM_{2.5} acidity by 100 comparing urban and rural sites in the agricultural regions of China. The specific objectives of the 101 study were presented as follows: (1) Estimation and comparison of the PM_{2.5} pH at the five monitoring 102 sites, (2) identification of the factors that determine the pH, and (3) discussion of the role of ammonia 103 on pH. Our results are helpful to understand the factors that determine particle acidity better. 104

105 **2 Experiment and methods**

106 **2.1 Site descriptions**

Field sampling was synchronously conducted from January 12 to 24, 2018 at five sites (i.e., two 107 urban sites located in the center of Zhengzhou (U-ZZ) and Anyang (U-AY), and three sites located in 108 the rural areas of Anyang (R-AY), Xinxiang (R-XX), and Puyang (R-PY)). Locations of the five sites 109 (Fig. S1) with brief descriptions are listed in Table 2. U-ZZ site is surrounded by busy roads, and two 110 freeways are located 3 km to the south and 7 km to the east. Moreover, this site is near a coal-fired 111 power plant; a gas-fired power plant; and several small-scale industries, such as pharmaceutical 112 companies, electronic factories, and equipment manufacturing. U-AY site is surrounded by busy roads, 113 and Anyang steelwork is located 8 km to the west. R-AY site is surrounded by farmland and is 1 km 114 west of the Jing-Gang-Ao freeway and 1 km north of a belt freeway. R-XX and R-PY sites are 115 surrounded by farmland without other prominent anthropogenic emission sources. 116

117 **2.2 Instrumentations**

The hourly mass concentrations of water-soluble inorganic ions (WSIIs) in PM_{2.5}, such as NH₄⁺, 118 SO₄²⁻, NO₃⁻, Cl⁻, Na⁺, Mg²⁺, Ca²⁺, and K⁺ and their gaseous precursors (i.e., NH₃, HNO₃, and HCl) 119 were measured using an ambient ion monitor (URG-9000D, Thermal Fisher Scientific, USA) in U-ZZ 120 site and the monitor for aerosols and gases (MARGA, Metrohm, Switzerland) in other sites. Both 121 instruments have been successfully deployed in several other field experiments (Li et al., 2017; Shi et 122 al., 2017; Wang 2019b), and detailed information is available elsewhere (Markovic et al., 2012; 123 Rumsey et al., 2014). As a brief summary, ambient air is drawn into the systems at a flow rate of 16.7 124 L/min. Subsequently, particles and gases are collected by two aerosol sample collectors through a wet 125

126	parallel plate or wet rotating denuder. Aqueous solution samples are quantified by using two ion
127	chromatography analyzers. Detection limits for all species during the sampling periods were less than
128	0.1 μ g/m ³ . Measurement uncertainties were assumed to 10 % for URG-9000D here by reference to
129	10 % of Markovic et al. (2012) and 12 % in Hu et al. (2014). For the MARGA instrument, Song et al.
130	(2018) took 20 % as overall relative uncertainties for major species, and Rumsey et al. (2014) reported
131	that the analytical biases were lower than 10 % for SO_4^{2-} , NO_3^{-} , and HNO_3 , but higher than 15 % for
132	$ m NH_3$ and $ m NH_4^+$. Therefore, overall uncertainties were estimated to be 20 % for $ m NH_3$ and $ m NH_4^+$ and 10 %
133	for other species. The combined uncertainties for TNH_x were calculated to be 14 % and 23 % for U-
134	ZZ and other sites, respectively, and 14 % uncertainties of TNO ₃ ($NO_{3(aq)}^{-} + HNO_{3(g)}$) and TCl ($Cl_{(aq)}^{-}$
135	+ HCl _(g)) for all sites. Because of the complex interference during sampling periods at the five sites,
136	such as the slope from the internal calibration, the solution volume, temperature, pressure, and airflow
137	rate, the actual uncertainties might be different from the estimated value. Hourly elemental carbon (EC)
138	and organic carbon (OC) concentrations in PM2.5 were simultaneously obtained by the semi-
139	continuous carbon analyzers (Model 4, Sunset Laboratory Inc, USA) in the same place, except for the
140	U-ZZ site, of which data were provided by the Department of Environmental Protection of Henan
141	Province. Detailed information on this instrument can be found in Panteliadis et al. (2014). Briefly,
142	PM _{2.5} collected by the device was oxidized to carbon dioxide and analyzed by a nondispersive infrared
143	detector. The relative measurement uncertainty for this instrument was estimated to be 20 % (Liu et
144	al., 2013; Healy et al., 2013). Meteorological parameters, including T, RH, wind direction, and wind
145	speed, were recorded by smart weather sensor (LUFFT-WS500, Sutron Corporation, Germany), with
146	the accuracies of \pm 0.2 °C, \pm 2 %, < 3 °, and 0.1 m/s, respectively.

147 **2.3 pH prediction**

Particle pH was estimated using the ISORROPIA-II thermodynamic model. Input data, including 148 RH, T, concentrations of K^+ , Ca^{2+} , Mg^{2+} , TNH_x , total sulfate (TH₂SO₄, replaced by observed SO₄²⁻) 149 total sodium (TNa, replaced by observed Na⁺), TCl, and TNO₃, were used to calculate the particle 150 hydronium ion concentration per volume of air (H⁺_{air}) and particle water associated with inorganics 151 (AWC_{inorg}) by computing the equilibrium composition for the Na⁺-K⁺-Ca²⁺-Mg²⁺-NH₄⁺-SO₄²⁻-NO₃⁻-152 Cl⁻-H₂O aerosol system. Considering that forward mode is less sensitive to measurement error than 153 the reverse mode and high RH levels were recorded in sampling periods, ISORROPIA-II was run in 154 the forward model for the aerosol system in the metastable condition (Ding et al, 2019; Guo et al., 155 2015; Hennigan et al., 2015). Moreover, we excluded data with RH < 30 %, a condition where 156 predicted to observed partitioning of nitrate between the gas and particle phase are in weak correlation, 157 and thus uncertainties in the pH prediction are expected to be high (Ding et al., 2019; Guo et al., 2016). 158 159 Aerosol pH was calculated according to the formula (Bougiatioti et al., 2016): ${
m pH}=-\log_{10}H_{aq}^+=-\log_{10}rac{1000H_{air}^+}{AWC_{inora}+AWC_{ora}},$ (1)160 where the modeled concentrations for AWC_{inorg} and H^+_{air} are $\mu g/m^3$, and AWC_{org} is the particle water 161 162 associated with the organics predicted using the method:

163
$$AWC_{org} = \frac{m_s}{\rho_s} \frac{k_{org}}{\left(\frac{1}{\text{RH}} - 1\right)},$$
 (2)

- where m_s is the mass concentrations of organic matter (OC × 1.6), ρ_s is the organic density (1.35 g/cm³), and k_{org} is the organic hygroscopicity parameter (0.06) (Liu et al., 2017).
- 166**2.4 pH uncertainty**
- 167 Two extreme scenarios were evaluated to estimate the pH uncertainty based on the measurement

179 **2.5 Model validation**

180 The reliability of pH estimation using the ISORROPIA-II thermodynamic model depends on several assumptions, such as the equilibrated gas and particle phases (Pye et al., 2019). Thus, the 181 predicted and observed semi-volatile species (e.g., NH_{3(g)}/NH_{4(aq)}⁺, HCl_(g)/Cl_(aq)⁻, and HNO_{3(g)}/NO_{3(aq)}⁻) 182 183 are compared in Fig. S2. Observed and predicted NH₄⁺, Cl⁻, and NO₃⁻ exhibit significant correlations, have correlation coefficients (r) above 0.95 and slopes near 1 at the five sites. In addition, NH₃ 184 concentrations are in good agreement (r > 0.95) with slopes between 0.89 (U-ZZ) and 1.13 (R-PY). 185 These results suggest the excellent performance of ISORROPIA-II for modeling these species. The 186 differences in the slopes of NH4⁺ (Fig. S2b) and NH₃ (Fig. S2e) between U-ZZ and R-PY sites were 187 probably attributed to the unbalanced charge of input WSIIs (see Text S1 for more details of calculation) 188

189	with average equivalent ratios (Fig. S3) of 0.99 ± 0.13 (U-ZZ) and 1.20 ± 0.12 (R-PY). However, Song
190	et al. (2018) argued that ion balance was not a key factor for pH calculation in the forward mode,
191	because the forward mode calculations account for additional constraints imposed by the partitioning
192	of semi-volatile species. To verify this, we adjusted the measured NH_4^+ concentration, which was most
193	sensitive to pH modeling (see Section 3.3), to fit the ion balance, and reran the pH calculation. As
194	shown in Fig. S4, re-predicted NH ₄ ⁺ and NH ₃ concentrations have better performance ($r = 0.99, 0.94$
195	< slopes < 1.06) with input concentrations at two sites than before. However, re-calculated pH values
196	change slightly, and these deviations are included in the range of pH uncertainty discussed in Section
197	2.4. Therefore, the little differences in NH_x partitioning between the model and measurement among
198	the five sites were acceptable for pH calculation.
199	Correlations between the predicted and measured HNO3 and HCl are weak. Similar problems
200	were found in the northeast U.S. and Beijing. These discrepancies were potentially due to measurement
201	uncertainties brought about by low gas concentrations, the interference of coarse-mode particles, non-
202	volatile cation measurement artifacts, uncertainties in the thermodynamic constants, and kinetic
203	limitations to mass transfer (Ding et al., 2019, Haskins et al., 2018; Pye et al., 2019; Liu et al., 2017).
204	Pye et al. (2019) suggested that ISORROPIA-II yields a mean activity coefficient of (H ⁺ , Cl ⁻) that may
205	result in the higher predicted HCl concentration. HNO3 can be partition to both fine and coarse modes,
206	thereby affecting predicted fine-mode nitrate concentrations (Nah et al., 2018). The best semi-volatile
207	species for evaluation of pH modeling depend on the fraction of the gas phase. In this work, most of
208	HNO3 and HCl concentrated in the particle phase, and thus they are not suited to test the model (Guo
209	et al., 2016).

210	The PM _{2.5} pH was also calculated by the E-AIM (Version IV) model to evaluate the performance
211	of ISORROPIA-II using the observed data ($RH > 60$ %) of the U-ZZ site as an example. Close
212	correlation ($r = 0.89$) is found between two models with a slope of 0.95 (Fig. S5). The pH values in
213	ISORROPIA-II are 0.46 ± 0.15 units higher than those in E-AIM. These values are comparable to the
214	founding by Liu et al. (2017) and Song et al. (2018), which is possibly due to the differences of activity
215	coefficient values between the ISORROPIA-II and E-AIM models (Pye et al., 2019). Overall, the
216	predicted pH values using ISORROPIA-II are effective in this work.

217 **3 Results and discussion**

218 **3.1 Haze episodes**

During the sampling periods, five monitoring sites simultaneously experienced a long-lasting and 219 large-scale haze episode. Time series of the concentrations of major species (i.e., NH₃, NH₄⁺, SO₄²⁻, 220 and NO₃⁻) and meteorological parameters at the U-ZZ site as an example are presented in Fig. 2, and 221 222 other sites are integrated into Fig S6 with the mean values listed in Table 3. Three study cases were classified on the basis of similar meteorological conditions and WSIIs levels at the five sites. The 223 WSIIs concentration, T, and RH gradually increased in the southern wind during Case 1 (January 224 225 12-14). Case 3 (January 21-25) was characterized by decreased WSII concentrations, T, and RH with the northeastern wind. Even though the total WSIIs (TWSIIs) concentrations were comparable, the 226 chemical components of WSIIs were various between Cases 1 and 3 (Table 3). In particular, NO₃⁻, 227 NH4⁺, and NH₃ concentrations in Case 1 were higher than those in Case 3 at all sites. Conversely, 228 SO4²⁻ concentrations in Case 1 were lower than those in Case 3. Wang et al. (2018a) reported that the 229 southern cities of Henan Province (e.g., Nanyang, Shangqiu, Zhoukou, and Zhumadian) had relatively 230

higher ammonia emissions than the cities involved in this study. Moreover, the northeastern air masses 231 from the Jing–Jin–Ji regions were easily enriched with sulfate (Wang et al., 2019b; Wang et al., 2018c). 232 Evidently, back trajectory frequency analysis (see Text S2 for more details of the discussion) confirmed 233 that sampling sites during Cases 1 and 3 (Figs. S7a and c) were predominantly influenced by the 234 southern and northeastern air masses, respectively. 235 Elevated WSIIs concentrations during Case 2 (January 14-21) were under high T and RH 236 conditions with variable wind directions. In this case, local emissions played a key role in WSIIs (Fig. 237 S7b) with average NH₄⁺, SO₄²⁻, and NO₃⁻ concentrations that ranged from $31.9 \pm 12.5 \,\mu\text{g/m}^3$ (U-ZZ) 238 to $47.6 \pm 13.1 \ \mu g/m^3$ (R-AY), $32.9 \pm 12.5 \ \mu g/m^3$ (R-XX) to $46.8 \pm 16.9 \ \mu g/m^3$ (R-AY), and 58.0 ± 18.3 239 $\mu g/m^3$ (U-AY) to 76.8 ± 21.1 $\mu g/m^3$ (R-AY), respectively. Note that higher concentrations of NH₄⁺, 240 NH₃, and TNH_x during Case 2 were recorded at rural sites than those at urban sites. Moreover, NH₃ 241 levels in this work were higher than those in other studies summarized in Table S1. Agricultural 242 243 emissions, including livestock waste, N-fertilizer application, and humans, were the top three ammonia contributors in Henan Province (Wang et al., 2018a), which may result in elevated ammonia 244 concentrations at rural sites. 245

246 **3.2 pH of PM2.5 at the urban and rural sites**

252	Xi'an, and Tianjin), but higher than other countries (e.g., Singapore, USA, and Greece). Compared to
253	the rural sites in the USA, pH values were roughly 3 units higher at the R-AY, R-XX, and R-PY sites.
254	Moreover, statistical values of pH (Table S2) during three cases show higher pH values at rural sites
255	than those at urban sites, especially for the U-ZZ and R-PY sites during Case 1 despite their pH
256	uncertainties (Section 2.4).

257	The pH values (Table S2) of the five sites during Cases 2 and 3 were comparable but slightly
258	lower than those during Case 1. As shown in Fig. S9, predicted pH values present better correlations
259	with H ⁺ air concentrations rather than AWC. Particle hydronium ion aqueous concentration depends on
260	both the presence of ions and the amount of particle AWC (Guo et al., 2015). Moreover, H^+_{air} was
261	closely associated with the NH ₃ mixing ratios, and higher NH ₃ always corresponded to lower H ⁺ _{air} (Liu
262	et al., 2017). High correlations ($r > 0.5$) between H ⁺ _{air} and TWSIIs (Table S3) imply that local pH was
263	significantly affected by the TWSIIs levels, and probably resulting in the high acidity during Case 2.
264	H^{+}_{air} was also correlated with individual chemical species (e.g., TNH _x , TH ₂ SO ₄ , TNO ₃ , and TCl).
265	Therefore, the diversity of pH in Cases 1 and 3 may be partly owing to the different proportions of
266	particle- and gas-phase constituents that will be discussed in detail below. In addition, high correlations
267	between RH and H^+_{air} (Table S3) suggest the major role of meteorological conditions in particle pH.
268	Given the Case 2 was less affected by regional transport, the diurnal patterns of median pH values of
269	the five sites (Fig. 4) indicate that pH values during nighttime were 0.3 (R-PY)-0.5 (U-ZZ) units higher
270	than those during the daytime. Similar results were also found in other cities (e.g., Beijing, Tianjin,
271	southern Canada, and the USA) (Battaglia et al., 2017; Ding et al., 2019; Guo et al., 2015; Murphy et
272	al., 2017; Shi et al., 2019), resulting from the diurnal trends of T and RH (Fig. 4f). After sunrise, high

T facilitated the dissociation of particle-phase ammonium (e.g., NH₄NO₃) and led to a rapid loss of
AWC (Guo et al., 2015; Saraswati et al., 2019).

275 **3.3 Sensitivity tests of pH**

276	To explore the dominant factors that determine the local particle pH level and resulting in the high
277	pH at rural sites, sensitivity tests of pH to chemical species (i.e., TNH _x , TH ₂ SO ₄ , TNO ₃ , TCl, TNa, K ⁺ ,
278	Ca ²⁺ , and Mg ²⁺) and meteorological parameters (i.e., T and RH) were performed. Firstly, the real-time
279	measured values of a variable (e.g., TNH_x) and average values of other parameters (i.e., TH_2SO_4 , TNO_3
280	TCl, TNa, K ⁺ , Ca ²⁺ , Mg ²⁺ , T and RH) during Case 2 were input into ISORROPIA-II to investigate the
281	sensitivity of local pH to this variable (i.e., TNH _x) (Ding et al., 2019), and results are listed in Table 4
282	and Fig. S10. In addition, a given range for a variable for all sites with corresponding average values
283	of other parameters was simulated to compare its effects on pH among five sites (Figs. 5 and S11). The
284	chosen variation range for each variable was close to the observed minimum and maximum values
285	(Table S4), which aims to better reflect the actual observation conditions. The degree of sensitivity
286	was represented as the relative standard deviation (%RSD) of the re-calculated pH values. RSD
287	calculates the absolute value of the coefficient of variation, which helps us to determine how small or
288	large is the standard deviation when compared to the mean of the re-calculated pH data set. Therefore,
289	when the re-calculated pH data set has a higher RSD value, this variable can change the pH easier and
290	is more important for local pH.

As shown in Table 4, the most important factor that influenced particle pH during Case 2 was TNH_x, followed by TH₂SO₄ at the five sites, and the U-ZZ site was also affected by TNO₃. The acidity of PM_{2.5} is governed by the phase partitioning of semi-volatile gases such as NH₃, HNO₃, and HCl

294	(Pye et al., 2019). (NH ₄) ₂ SO ₄ , NH ₄ HSO ₄ , and NH ₄ NO ₃ , which are mainly formed through
295	neutralization reactions between NH ₃ with SO ₄ ^{2–} and HNO ₃ orderly according to the regime of local
296	ammonia, are the most abundant components of $PM_{2.5}$ in winter haze in this region (Wang et al., 2019c;
297	Pathak et al., 2008). Therefore, particle pH was driven by TNH _x , TH ₂ SO ₄ , and TNO ₃ . TNa, TCl, and
298	crustal ions (i.e., K ⁺ , Ca ²⁺ , and Mg ²⁺) have less influence on the predicted pH values, because these
299	species were at low concentrations, together accounting for lower than 10 % of TWSIIs. However,
300	since the low volatility of these cations allows them to preferentially neutralize sulfates over NH ₃ , the
301	role of crustal dust and sea spray in particle pH cannot be ignored when the mass fraction of these ions
302	are high in typical pollution events (e.g., sandstorm) or areas (e.g., coastland) (Allen et al., 2015; Guo
303	et al., 2018; Vasilakos et al., 2018). In addition to chemical species, T was more sensitive to local pH
304	than RH at the five sites, which is similar to the finding in Beijing and Canada (Ding et al., 2019; Tao
305	and Murphy, 2019). This result can be explained by the remarkable influence of T on the solubility and
306	dissociation constants of the partitioning of $NH_{3(g)}/NH_{4(aq)}^+$ (Hennigan et al., 2015).
307	Figures 5 and S11 compare the sensitive degrees of pH to input data among different sites. Except
308	for TNH _x , the sensitivities of pH to TH ₂ SO ₄ , TNO ₃ , and other ions at urban sites were more significant
309	than those at rural sites, particularly at U-ZZ sites of 7.2 % and 14.8 % of RSD to TH ₂ SO ₄ and TNO ₃ ,
310	respectively. To gain insight into the differences of pH sensitivity among the five sites, sensitivity tests
311	of pH to TH ₂ SO ₄ , TNO ₃ , and TNH _x were calculated using the fixed TNO ₃ (67.5 μ g/m ³) and TH ₂ SO ₄
312	(36.5 μ g/m ³) concentrations under the average meteorological conditions of five sites (i.e., T = 2.5 °C
313	and $RH = 60$ %). These chosen values were close to the average values of the five sites during Case 2
314	(i.e., $36.4 \pm 15.4 \ \mu g/m^3$ for SO ₄ ²⁻ , $67.5 \pm 23.5 \ \mu g/m^3$ for TNO ₃ , $2.5 \pm 1.5 \ ^{\circ}C$ for T, and $59.3 \pm 14.0 \ ^{\circ}M$

- for RH), and other chemical species were set to be zero. As shown in Fig. 6, sensitivities of pH to TH₂SO₄ and TNO₃ increase with the decrease in TNH_x concentration, particularly when the TNH_x concentrations are lower than 60 μ g/m³ and 40 μ g/m³, respectively. Therefore, the pH changes tended to become more sensitive to TH₂SO₄ and TNO₃ at the U-ZZ site (Fig. 5e, f) with the lowest TNH_x concentrations (46.8 ± 14.7 μ g/m³). All these results may be explained by the presence of excess ammonia that will be discussed below.
- Sensitivity tests suggest (Fig. 5, S10, and S11) that particle pH gradually grows with increased 321 cation and decreased anion concentrations. Specifically, the TNH_x concentration that increased from 322 25 μ g/m³ to 90 μ g/m³ can promote particle pH by 3.5 (U-ZZ)–4.5 (R-AY) units. The crustal cations 323 and sea spray have limited effects on pH, but a 10-fold increase in these species still can increase 324 predicted pH values by about 0.1 units. TH₂SO₄, and TNO₃ that increased from 10 μ g/m³ to 80 μ g/m³, 325 and 1 μ g/m³ to 125 μ g/m³ can reduce the pH values by 1.5 (R-PY)–4.0 (U-ZZ), and 0.2 (R-AY)–1.4 326 (U-ZZ) units, respectively. In addition, a 20 °C (-5 °C to 15 °C) and 65 % (30 % to 95 %) increase 327 drops the pH by approximately 1.3 and 2.7 units at the five sites, respectively. Corresponding to the 328 observed data during Case 2 (Table 3), lower TNH_x concentrations and higher T values were probably 329 responsible for the higher acidity at urban sites than those at rural sites. Moreover, Figure 6 shows that 330 particle pH increase with decreasing TH₂SO₄ (Fig. 6a) or increasing TNO₃ (Fig. 6b), particularly when 331 the TNH_x is at high concentration. These results indicate that predicted pH will be enhanced by 332 increasing the TNO₃/TH₂SO₄ ratio, which is consistent with the observation in Beijing (Xie et al., 333 2019). All these may be due to the elevated ammonia partitioning with nitrate fraction increase, and 334 nitrate-rich particles would absorb more water compared to the sulfate-rich particles (Xie et al., 2019). 335

336	Based on the above, higher TNH _x (Table 3) and TNO ₃ /TH ₂ SO ₄ ratios (2.9 ± 0.6 and 1.7 ± 0.6 for Cases
337	1 and 3 respectively) during Case 1 may lead to the higher pH values than those during Case 3, even
338	though the TWSIIs levels were comparable. In the long run, the decreasing sulfate concentration in
339	PM _{2.5} accompanied with increasing nitrate concentration has been recorded during haze episodes in
340	China, because strong actions were taken to reduce the coal consumption in recent years (Tian et al.,
341	2017; Wang et al., 2017). Considering the ammonia in the atmosphere of North China might still be
342	increasing (Liu et al., 2018), future acidity of PM _{2.5} during winter haze episodes is expected to become
343	increasingly less acidic in this area. A more careful analysis is needed to test this inference, however,
344	because fine-mode particle remains a relatively constant pH of 0–2 despite a 70 % reduction in sulfates
345	in the USA (Vasilakos et al., 2018; Weber et al., 2016).
346	3.4 Role of ammonia on pH
347	It has been suggested that unusually high levels of NH3 can increase pH, on average, a 5-fold to
348	10-fold increase in the NH ₃ levels leads to a one-unit change in pH (Nah et al., 2018; Weber et al.,
349	2016; Guo et al., 2017). To examine the effects of major indicators of ammonia (i.e., TNH _x , Required-
350	NH _x , and Excess-NH _x , see Text S3 for more details of calculation) on aerosol acidity, particle pH was
351	calculated by using a wide range of TNH_x (25–130 μ g/m ³) and average values of other parameters
352	during Case 2 (Table 3) of each site. Simultaneously, the concentrations of TNH _x , Required-NH _x ,
353	Excess-NH _x , and corresponding pH values are illustrated in Fig. 7. An "S-curve" growth trend of pH
354	to increasing TNH _x appears with the inflection point around the Required-NH _x concentration. In the

355 case when the input TNH_x concentration is lower than the Required- NH_x , the growth rate of pH

356 increase with TNH_x increasing, otherwise, the pH growth flattens out, which is similar to the findings

357	of Weber et al. (2016) and Bougiatioti et al. (2016). In the process of increasing NH ₃ concentration,
358	$\rm NH_3$ reacted with $\rm SO_4^{2-}$ and $\rm HNO_3$ orderly, during when large amounts of $\rm H^+$ were consumed and pH
359	values rapidly increased. Theoretically, the Required-NH _x plus nonvolatile cations can neutralize all
360	anions regardless of the phase partitioning and bisulfate formation, and thus changes in TNH _x around
361	the Required-NH _x concentrations have a significant impact on particle pH. Subsequently, dissolving
362	Excess-NH _x into the particles became difficult, and pH values increased slowly (Ding et al., 2019;
363	Seinfeld and Pandis, 2016). Therefore, the underlying reason why TNH _x concentrations lower than 60
364	μ g/m ³ and 40 μ g/m ³ elevated the pH sensitivities (Fig. 6) to TH ₂ SO ₄ and TNO ₃ is that the Excess-NH _x
365	will be exhausted under the case of TH ₂ SO ₄ and TNO ₃ that ranged from 10 μ g/m ³ to 100 μ g/m ³ ,
366	respectively. On the other hand, the pH values of the five sites at the Required- NH_x concentrations are
367	near 3.0, which is in coincidence with the pH value of Beijing in the no-excess-NH _x cases (Liu et al.,
368	2017). Therefore, the presence of $Excess-NH_x$ in the aerosol was likely important for the less acidic of
369	$PM_{2.5}$ and can enhance the pH values by 1.5 (U-ZZ)–2 (R-PY) units. Considering that the Excess-NH _x
370	concentrations at rural sites (e.g., $30.1 \pm 6.2 \ \mu\text{g/m}^3$ at R-PY) were higher than those at urban sites (e.g.,
371	$14.8 \pm 4.1 \ \mu \text{g/m}^3$ at U-ZZ), and thus Excess-NH _x concentrations may drive the pH values of rural sites
372	higher than those of urban sites.
373	3.5 Implications of regional transport
374	From the above discussion, the differences of pH among three cases indicate that the underlying
375	influence of regional transport on local particle pH cannot be neglected by differing the chemical
376	components of PM _{2.5} and meteorological conditions. In particular, the median pH values (Table S2) of
377	Case 1, during when the air masses transported from the south of sampling regions, increased by 0.2–

378	0.9 units than those during Cases 2 and 3. Aqueous formations of sulfate are strongly dependent on
379	particle pH. Chen et al. (2016) reported that the aqueous-phase sulfate production rates from NO ₂ and
380	O ₃ oxidation of SO ₂ had a positive correlation with particle pH during the Beijing haze events. When
381	pH exceeded approximately 4.5 (higher than this value at rural sites in this work), NO ₂ -oxidation
382	dominated the sulfate formation, and its reaction rate increased by one order of magnitude with the
383	rise of pH by one unit. Thus, air masses transported from rural and agricultural regions may promote
384	the sulfate formation in urban aerosols. In addition to sulfate, higher aerosol pH favors partitioning of
385	TNO ₃ toward aerosol NO ₃ rather than gaseous HNO ₃ and thus elevating the particle mass
386	concentration (Nenes et al., 2019; Weber et al., 2016). Sampling regions in this study are located in the
387	transport route for Beijing (MEP, 2017), thereby frequently affecting its local particle pH. The lifetimes
388	of NH ₃ (1–5 days or less) and NH ₄ ⁺ (1–15 days) in the atmosphere are sufficient for transporting to
389	Beijing during a haze episode (Aneja, 2000; Lefer et al., 1999; Warneck, 1988). Ding et al. (2019)
390	have also observed that PM _{2.5} pH from the southwest direction was generally higher than that from the
391	northern direction in Beijing. Therefore, the particle pH in Beijing may be enhanced when southern
392	air masses from this region accompany elevated-pH particles and high ammonia levels.

393 4 Conclusions

An experiment was performed using a series of high-time-resolution instruments in two urban (i.e., U-ZZ and U-AY) and three rural sites (i.e., R-AY, R-XX, and R-PY) in Henan Province during a large-scale and long-lasting haze episode. The ISORROPIA-II model was used to investigate the pH value and its driving factors. PM_{2.5} exhibited moderate acidity with median pH values of 4.5 (3.8–5.2), 4.8 (3.9–5.8), 4.9 (4.1–6.2), 5.1 (4.7–6.3), and 5.2 (4.8–6.5,) at U-ZZ, U-AY, R-XX, R-AY, and R-PY, respectively. The pH values at rural sites were slightly higher than those at urban sites.

The predicted pH values of PM_{2.5} were significantly affected by the WSIIs levels, different 400 proportions of particle- and gas-phase constituents, and meteorological parameters. Sensitivity tests 401 show that TNH_x, followed by TH₂SO₄, were the important factors that influenced the predicted pH at 402 the five sites. In addition, T was more sensitive to local pH than RH. Generally, particle pH rose with 403 the increase in cation and the decrease in the anion, T, and RH. Further study suggests that predicted 404 pH will be enhanced by increasing the TNO₃/TH₂SO₄ ratio. Therefore, elevated TNH_x concentrations 405 and lower T were probably responsible for the higher pH values at rural sites than those at urban sites, 406 and higher TNH_x and TNO₃/TH₂SO₄ ratios during Case 1 may lead to the higher pH values than those 407 during Case 3. 408

An "S-curve" growth trend of pH to increasing TNH_x was found with the inflection point around the Required-NH_x concentration. Moreover, the pH values of the five sites at the Required-NH_x concentrations are near 3.0, and the presence of Excess-NH_x in the aerosol can enhance the pH values by 1.5 (U-ZZ)–2 (R-PY) units, and thus Excess-NH_x <u>was</u> likely important for the less acidic of PM_{2.5} during the severe haze episodes in this region. Considering that the Excess-NH_x concentrations at rural sites were higher than those at urban sites, Excess-NH_x concentrations may drive the pH values of rural sites higher than those of urban sites.

The underlying influence of regional transport on local particle pH cannot be neglected by differing the chemical components of $PM_{2.5}$ and meteorological conditions. Air masses transported from rural and agricultural regions with elevated pH particles and high ammonia levels may promote the secondary particle formation in urban aerosols. Therefore, ammonia should be involved in the 420 regional strategy for improving the air quality in China.

74/1	42	1
------	----	---

422 Data availability. All data in this work are available by contacting the corresponding author Shasha
423 Yin (<u>shashayin@zzu.edu.cn</u>)

424

425	Author contributions. Shasha Yin and Ruiqin Zhang designed and led this study. Shasha Yin was
426	responsible for all observations and data collection. Lingling Wang, Yuqing Li, Chen Wang, and Weisi
427	Wang interpreted the data and discussed the results. Shenbo Wang wrote the paper.
428	
429	Competing interests. The authors declare that they have no conflict of interest.
430	Acknowledgment
431	This work was supported by the National Key R&D Program of China (No. 2017YFC0212403)
432	and the National Natural Science Foundation of China (No. 41907187). We thank Qi Hao and Liuming
433	Yang for their contributions to the field observations.
434	References
435	Allen, H. M., Draper, D. C., Ayres, B. R., Ault, A., Bondy, A., Takahama, S., Modini, R. L., Baumann,
436	K., Edgerton, E., Knote, C., Laskin, A., Wang, B., and Fry, J. L.: Influence of crustal dust and sea
437	spray supermicron particle concentrations and acidity on inorganic NO ₃ ⁻ aerosol during the 2013
438	Southern Oxidant and Aerosol Study. Atmos. Chem. Phy., 15, 10669–10685, 2015.
439	Aneja, V. P., Chauhan, J. P., Walker, J. T.: Characterization of atmospheric ammonia emissions from
440	swine waste storage and treatment lagoons. J. Geophy. ResAtmos., 105, 11535-11545, 2000.

- Battaglia, M. A., Douglas, S., and Hennigan, C. J.: Effect of the urban heat island on aerosol pH,
 Environ. Sci. Technol., 51, 13095–13103, 2017.
- 443 Behera, S. N., Betha, R., Liu, P., Balasubramanian, R.: A study of diurnal variations of PM_{2.5} acidity
- 444 and related chemical species using a new thermodynamic equilibrium model. Sci. Total Environ.,
- 445 452, 286–295, 2013.
- 446 Boucher, O., Anderson, T. L.: General circulation model assessment of the sensitivity of direct climate
- forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. J. Geophy. Res.-Atmos.,
 100, 26117–26134, 1995.
- Bougiatioti, A., Nikolaou, P., Stavroulas, I., Kouvarakis, G., Weber, R., Nenes, A., Kanakidou, M.,
 Mihalopoulos, N.: Particle water and pH in the eastern Mediterranean: source variability and
 implications for nutrient availability. Atmos. Chem. Phy., 16, 4579–4591, 2016.
- Bureau of Statistics of Henan (NBH), 2018. Henan Statistical Yearbook. China Statistics Press, Beijing.
 Accessed date: Dec. 2019.
- 454 Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael,
- G.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China.
 Sci. Adv., 2, e1601530–e1601530, 2016.
- Clegg, S. L., Brimblecombe, P., Wexler, A. S.: The thermodynamic model of the system
 H⁺-NH₄⁺-SO₄²⁻-NO₃⁻-H₂O at tropospheric temperatures. J. Phy. Chem. A, 102, 2137–2154,
 1998.
- 460 Ding, J., Zhao, P., Su, J., Dong, Q., Du, X., Zhang, Y.: Aerosol pH and its driving factors in Beijing.
- 461 Atmos. Chem. Phy., 19, 7939–7954, 2019.

nne, M., Speizer, F. E.: Health effects of acid aerosols on North American children:
symptoms. Environ. Health Persp., 104, 500-505, 1996.
n, A. P., Campuzanojost, P., Schroder, J. C., Lopezhilfiker, F. D., Dibb, J. E., Jimenez,
con, J. A., Brown, S. S., Nenes, A.: Fine particle pH and the partitioning of nitric acid
er in the northeastern United States. J. Geophy. ResAtmos., 121, 10-355, 2016.
R. J., Nenes, A.: High levels of ammonia do not raise fine particle pH sufficiently to
en oxide-dominated sulfate production. Sci. Rep., 7, 12109, 2017.
Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite, J. R., Carlton, A. G., Lee, S., Bergin,
N. L.: Fine-particle water and pH in the southeastern United States. Atmos. Chem.
11–5228, 2015.
A., and Weber, R. J.: The underappreciated role of nonvolatile cations on aerosol
sulfate molar ratios, Atmos. Chem. Phys., 18, 17307–17323, 2018.
egle, L., Shah, V., Lee, B. H., Lopez-Hilfiker, F. D., Campuzano-Jost, P., Schroder, J.
A., Guo, H. Y., Sullivan, A. P., Weber, R., Dibb, J., Campos, T., Jimenez, J. L., Brown,
Thornton, J. A.: Wintertime gas-particle partitioning and speciation of inorganic
he lower troposphere over the northeast United States and coastal ocean, J. Geophys.
., 123, 12897–12916, 2018
are, J., Poulain, L., Crippa, M., Wiedensohler, A., Prévôt, A. S. H., Baltensperger, U.,
e, R., McGuire, M. L., Jeong, CH., McGillicuddy, E., O'Connor, I. P., Sodeau, J. R.,
, and Wenger, J. C.: Quantitative determination of carbonaceous particle mixing state
sulfate molar ratios, Atmos. Chem. Phys., 18, 17307–17323, 20 egle, L., Shah, V., Lee, B. H., Lopez-Hilfiker, F. D., Campuzan A., Guo, H. Y., Sullivan, A. P., Weber, R., Dibb, J., Campos, T., J Thornton, J. A.: Wintertime gas-particle partitioning and sp

- 483 in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements,
 484 Atmos. Chem. Phys., 13, 9479–9496, 2013.
- 485 Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, R. J., and Nenes, A.: A critical evaluation of proxy
- 486 methods used to estimate the acidity of atmospheric particles, Atmos. Chem. Phys., 15, 2775487 2790, 2015.
- Hu, G., Zhang, Y., Sun, J., Zhang, L., Shen, X., Lin, W., Yang, Y.: Variability, formation and acidity of
 water-soluble ions in PM_{2.5} in Beijing based on the semi-continuous observations. Atmos. Res.,
 145, 1–11, 2014.
- Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M., Zhang, H.: A high-resolution
 ammonia emission inventory in China. Global Biogeochem. Cy., 26, GB1030, 2012.
- 493 Larssen, T., Lydersen, E., Tang, D., He, Y., Gao, J., Liu, H., Duan, L., Seip, H.M., Vogt, R. D., Mulder,

494 J.: Acid rain in China. Environ. Sci. Technol., 40, 418–425, 2006.

- Lefer, B. L., Talbot, R. W., Munger, J. W.: Nitric acid and ammonia at a rural northeastern US site. J.
 Geophy. Res.-Atmos., 104, 1645–1661, 1999.
- 497 Li, Y. J., Sun, Y., Zhang, Q., Li, X., Li, M., Zhou, Z., Chan, C. K.: Real-time chemical characterization
- 498 of atmospheric particulate matter in China: A review. Atmos. Environ., 158, 270–304, 2006.
- Liu, J., Bergin, M., Guo, H., King, L., Kotra, N., Edgerton, E., Weber, R. J.: Size-resolved
 measurements of brown carbon in water and methanol extracts and estimates of their contribution
- 501 to ambient fine-particle light absorption. Atmos. Chem. Phy., 13, 12389–12404, 2013.
- Liu, M., Song, Y., Zhou, T., Xu, Z., Yan, C., Zheng, M., Wu, Z., Hu, M., Wu, Y., Zhu, T.: Fine particle
- 503 pH during severe haze episodes in northern China. Geophys. Res. Lett., 44, 5213–5221, 2017.

504	Liu, W., Lin, S., and Hu, G.: Characterizing remarkable changes of severe haze events and chemical
505	compositions in multi-size airborne particles (PM_1 , $PM_{2.5}$ and PM_{10}) from January 2013 to
506	2016–2017 winter in Beijing, China, Atmos. Environ., 189, 133–144, 2018.
507	Markovic, M. Z., Vandenboer, T. C., Murphy, J. G.: Characterization and optimization of an online
508	system for the simultaneous measurement of atmospheric water-soluble constituents in the gas
509	and particle phases. J Environ. Monitor., 14, 1872–1884, 2012.
510	Meng, Z., Lin, W., Jiang, X., Yan, P., Wang, Y., Zhang, Y. M., Jia, X. F., Yu, X. L.: Characteristics of
511	atmospheric ammonia over Beijing, China. Atmos. Chem. Phy., 11, 6139-6151, 2011.
512	Meng, Z., Xu, X., Lin, W., Ge, B., Xie, Y., Song, B., Jia, S., Zhang, R., Peng, W., Wang, Y.: Role of
513	ambient ammonia in particulate ammonium formation at a rural site in the North China Plain.
514	Atmos. Chem. Phy., 18, 167–184, 2017.
515	MEP: 2017 air pollution prevention and management plan for the Beijing-Tianjin-Hebei region and its
516	surrounding areas, http://dqhj.mee.gov.cn/dtxx/201703/t20170323_408663.shtml (last access: 18
517	August 2019), 2017.
518	Meskhidze, N., Chameides, W. L., Nenes, A., Chen, G.: Iron mobilization in mineral dust: Can
519	anthropogenic SO ₂ emissions affect ocean productivity? Geophys. Res. Lett., 30, 2003.
520	Murphy, J. G., Gregoire, P. K., Tevlin, A. G., Wentworth, G. R., Ellis, R. A., Markovic, M. Z.,
521	VandenBoer, T. C.: Observational constraints on particle acidity using measurements and
522	modelling of particles and gases, Faraday Discuss., 200, 379–395, 2017.
523	Nah, T., Guo, H., Sullivan, A. P., Chen, Y., Tanner, D. J., Nenes, A., Russell, A., Ng, L. N., Huey, L.
524	G., Weber, R. J.: Characterization of aerosol composition, aerosol acidity, and organic acid

- partitioning at an agriculturally intensive rural southeastern US site. Atmos. Chem. Phy. 18,
 11471–11491. 2018.
- National Bureau of Statistics (NBS), 2016. China Statistical Yearbook. China Statistics Press, Beijing.
 Accessed date: Sept. 2019.
- Nenes, A., Pandis, S. N., Pilinis, C.: ISORROPIA: A new thermodynamic equilibrium model for
 multiphase multicomponent inorganic aerosols. Aquat. Geochem., 4, 123–152, 1998.
- 531 Nenes, A., Pandis, S. N., Weber, R. J., and Russell, A.: Aerosol pH and liquid water content determine
- when particulate matter is sensitive to ammonia and nitrate availability, Atmos. Chem. Phys.
 Discuss., in review, 2019.
- 534 Ostro, B., Lipsett, M., Wiener, M.B., Selner, J.C.: Asthmatic responses to airborne acid aerosols. Am.
- 535 J. Public Health, 81, 694–702, 1991.
- 536 Panteliadis, P., Hafkenscheid, T., Cary, B., Diapouli, E., Fischer, A., Favez, O., Quincey, P., Viana, M.,
- 537 Hitzenberger, R., Vecchi, R.: ECOC comparison exercise with identical thermal protocols after
- temperature offset correction: instrument diagnostics by in-depth evaluation of operational
 parameters. Atmos. Meas. Tech., 8, 779–792, 2014.
- 540 Pathak, R. K., Louie, P. K., Chan, C. K.: Characteristics of aerosol acidity in Hong Kong. Atmos.
- 541 Environ., 38, 2965–2974, 2004.
- 542 Pathak, R.K., Wu, W.S., Wang, T.: Summertime PM_{2.5} ionic species in four major cities of China:
- 543 nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys. 9, 1711–1722, 2008.
- 544 Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr., J. L., Fahey,
- 545 K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I.-T., McNeill, V. F.,
| 546 | Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, |
|-----|---|
| 547 | R. A., and Zuend, A.: The acidity of atmospheric particles and clouds, Atmos. Chem. Phys. |
| 548 | Discuss., in review, 2019. |

- 549 Rumsey, I. C., Cowen, K. A., Walker, J. T., Kelly, T. J., Hanft, E. A., Mishoe, K., Rogers, C., Proost,
- 550 R., Beachley, G. M., Lear, G.: An assessment of the performance of the Monitor for AeRosols
- and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds. Atmos.
- 552 Chem. Phy., 14, 5639–5658, 2014.
- 553 Saraswati, Sharma, S. K., Saxena, M., Mandal, T. K.: Characteristics of gaseous and particulate
- ammonia and their role in the formation of secondary inorganic particulate matter at Delhi, India.
- 555 Atmos. Res., 218, 34–49, 2019.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate
 Change, 2nd Edition, John Wiley and Sons, Inc., Hoboken, New Jersey, USA, 2006.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate
 Change (3rd edition), John Wiley and Sons, Inc., Hoboken, New Jersey, USA, 2016.
- 560 Shen, J., Liu, X., Ying, Z., Fangmeier, A., Goulding, K., Zhang, F.: Atmospheric ammonia and
- particulate ammonium from agricultural sources in the North China Plain. Atmos. Environ., 45,
 5033–5041, 2011.
- 563 Shi, G., Xu, J., Peng, X., Xiao, Z., Chen, K., Tian, Y., Guan, X., Feng, Y., Yu, H., Nenes, A.: pH of
- aerosols in a polluted atmosphere: source contributions to highly acidic aerosol. Environ. Sci.
- 565 Technol., 51, 4289–4296, 2017.
- 566 Shi, X., Nenes, A., Xiao, Z., Song, S., Yu, H., Shi, G., Zhao, Q., Chen, K., Feng, Y., Russell, A. G.:

567	High-resolution data sets unravel the effects of sources and meteorological conditions on nitrate
568	and its gas-particle partitioning. Environ. Sci. Technol., 53, 3048-3057, 2019.
569	Shi, Z., Bonneville, S., Krom, M. D., Carslaw, K. S., Jickells, T. D., Baker, A. R., Benning, L. G.: Iron
570	dissolution kinetics of mineral dust at low pH during simulated atmospheric processing. Atmos.
571	Chem. Phy., 11, 995–1007, 2010.
572	Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y., Mcelroy, M. B.: Fine particle
573	pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmos.
574	Chem. Phy., 18, 7423–7438, 2018.
575	Spurny, K. R.: Atmospheric acidic aerosols (review). J Aerosol Sci., 21, 1990.
576	Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M. N., Loza, C. L., Kwan, A. J., Hersey, S.,
577	Flagan, R. C., Wennberg, P. O., Seinfeld, J. H.: Reactive intermediates revealed in secondary
578	organic aerosol formation from isoprene. P. Natl. Acad. Sci. USA., 107, 6640-6645, 2010.
579	Tao, Y. and Murphy, J. G.: The sensitivity of PM _{2.5} acidity to meteorological parameters and chemical
580	composition changes: 10-year records from six Canadian monitoring sites. Atmos. Chem. Phy
581	19, 9309–9320, 2019.
582	Tian, M., Wang, H., Chen, Y., Zhang, L., Shi, G., Liu, Y., Yu, J., Zhai, C., Wang, J., Yang, F.: Highly
583	time-resolved characterization of water-soluble inorganic ions in PM _{2.5} in a humid and acidic
584	mega city in Sichuan Basin, China. Sci. Total Environ., 580, 224–234, 2017.
585	Vasilakos, P., Russell, A., Weber, R., and Nenes, A.: Understanding nitrate formation in a world with
586	less sulfate, Atmos. Chem. Phys., 18, 12765–12775, 2018.

587 Wang, C., Yin, S., Bai, L., Zhang, X., Gu, X., Zhang, H., Lu, Q., Zhang, R.: High-resolution ammonia

589

emission inventories with comprehensive analysis and evaluation in Henan, China, 2006–2016. Atmos. Environ., 193, 11–23, 2018a.

590	Wang,	G.,	Zhang,	F.,	Peng,	J.,	Duan,	L.,	Ji,	Y.,	Marreroortiz,	W.,	Wang,	J.,	, Li,	J.,	Wu,	С.,	Cao,	C.:
-----	-------	-----	--------	-----	-------	-----	-------	-----	-----	-----	---------------	-----	-------	-----	-------	-----	-----	-----	------	-----

- 591 Particle acidity and sulfate production during severe haze events in China cannot be reliably
 592 inferred by assuming a mixture of inorganic salts. Atmos. Chem. Phy., 18, 1–23, 2018b.
- 593 Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy, Z. M., Hu, M., Lin, Y., Peng, J., Guo, S., Meng,
- J.: Persistent sulfate formation from London Fog to Chinese haze. P. Natl. Acad. Sci. USA., 113,
 13630–13635, 2016.
- Wang, H., Ding, J., Xu, J., Wen, J., Han, J., Wang, K., Shi, G., Feng, Y., Ivey, C., Wang, Y.: Aerosols
 in an arid environment: The role of aerosol water content, particulate acidity, precursors, and
- relative humidity on secondary inorganic aerosols. Sci. Total Environ., 646, 564–572, 2019a.

599 Wang, J., Zhao, B., Wang, S., Yang, F., Xing, J., Morawska, L., Ding, A., Kulmala, M., Kerminen, V.,

- Kujansuu, J.: Particulate matter pollution over China and the effects of control policies. Sci. Total
 Environ., 584, 426–447, 2017.
- Wang, S., He, B., Yuan, M., Su, F., Yin, S., Yan, Q., Jiang, N., Zhang, R., Tang, X.: Characterization
- of individual particles and meteorological conditions during the cold season in Zhengzhou using
 a single particle aerosol mass spectrometer. Atmos. Res., 219, 13–23, 2019b.
- 605 Wang, S., Yan, Q., Yu, F., Wang, Q., Yang, L., Zhang, R., Yin, S., Wang, S., Yan, Q., Yu, F.: Distribution
- and source of chemical elements in size-resolved particles in Zhengzhou, China: Effects of
 regional transport. Aerosol Air Qual. Res., 18, 371–385, 2018c.
- Wang, S., Yin, S., Zhang, R., Yang, L., Zhao, Q., Zhang, L., Yan, Q., Jiang, N., Tang, X.: Insight into

609	the formation of secondary inorganic aerosol based on high-time-resolution data during haze
610	episodes and snowfall periods in Zhengzhou, China. Sci. Total Environ., 660, 47–56, 2019c.
611	Warneck, P.: Chemistry of the Natural Atmosphere, Academic Press, San Diego, CA, 1988.
612	Watson, J. G.: Visibility: science and regulation. J Air Waste Manage., 52, 973–999, 2002.
613	Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity despite declining
614	atmospheric sulfate concentrations over the past 15 years, Nat. Geosci., 9, 282–285, 2016.
615	Wen, L., Chen, J., Yang, L., Wang, X., Xu, C., Sui, X., Yao, L., Zhu, Y., Zhang, J., Zhu, T.: Enhanced
616	formation of fine particulate nitrate at a rural site on the North China Plain in summer: The
617	important roles of ammonia and ozone. Atmos. Environ., 101, 294-302, 2015.
618	Xie, Y., Wang, G., Wang, X., Chen, J., Chen, Y., Tang, G., Wang, L., Ge, S., Xue, G., Wang, Y., and
619	Gao, J.: Observation of nitrate dominant PM _{2.5} and particle pH elevation in urban Beijing during
620	the winter of 2017, Atmos. Chem. Phys. Discuss., in review, 2019.
621	

622 Figure lists:

Fig. 1 pH uncertainties of the five sites based on two extreme scenarios of measurement uncertainty. 623 Cations and organic carbon concentrations (OC) were adjusted up to within their maximum positive 624 uncertainties, anions, relative humidity (RH) and temperature (T) were adjusted down within their 625 maximum negative uncertainties, which represented the pHmax case; for pHmin case, cations and OC 626 concentrations were adjusted down, and anions, RH and T were adjusted up. The color scale bar 627 represents adjusted RH. 628 Fig. 2 Temporal variations of T, RH, wind speed (WS), wind direction (WD), and concentrations of 629 NH₃, NH₄⁺, SO₄²⁻, and NO₃⁻ during three cases at the Zhengzhou (U-ZZ) site. The shaded areas 630 631 represent the measurement uncertainties. Fig. 3 Time series and box plot of predicted PM_{2.5} pH, H⁺_{air}, and aerosol water content (AWC) at the 632 five sites. In each box, the top, middle and bottom lines represent the 75th, 50th, and 25th percentile 633 634 of statistical data, respectively; the upper and lower whiskers represent the maximum and minimum values, respectively. 635 Fig. 4 (a)–(e) Diurnal patterns of median pH values, (f) average RH, and T of the five sites in Case 2. 636 The upper and lower ends of the line represent the maximum and minimum values of pH, 637 respectively. The color scale bar represents AWC concentration. 638 Fig. 5 Comparison of the sensitivities of PM_{2.5} pH to T, RH, TCl (HCl_(g) + Cl_(aq)), TNH_x (NH_{3(g)} + 639 $NH_{4(aq)}^{+}$), TNO₃ (HNO_{3(g)} + NO_{3(aq)}⁻), and TH₂SO₄ (replaced by observed SO₄²⁻) among the five 640 sites. A given range for a variable for all sites with corresponding average values of other parameters 641 was used as input to the ISORROPIA-II model. The range of the x-axis is close to the observed 642

minimum and maximum values in Case 2 (Table S4). The color scale bar represents the pH values.
The relative standard deviation (RSD) and range (Range) represent the sensitivity degree of pH to
this variable and range (min–max) of the re-predicted pH value in the test, respectively. The square
plots on the graph represent the average values of each variable observed in Case 2 with standard
deviation as an error bar.

Fig. 6 Particle pH calculated with fixed meteorological parameters (T = 275.5 K and RH = 60 %)

under different combinations of TNH_x and (a) TH₂SO₄ (Fixed TNO₃ = 67.5 μ g/m³) and (b) TNO₃

650 (Fixed TH₂SO₄ = 36.5 μ g/m³). The color scale bar represents the pH values. The markers on the

graph represent the average concentrations of TNH_x , TH_2SO_4 , and TNO_3 at the five sites during Case

652 2 with standard deviation as error bar.

Fig. 7 Particle pH corresponds to increasing TNH_x at the five sites to examine the effects of major

654 indicators of NH₃ (i.e., TNH_x, Required-NH_x, and Excess-NH_x) on aerosol acidity. Particle pH was

655 calculated by using a wide range of TNH_x (25–130 μ g/m³) and average values of other parameters

during Case 2 of each site. The concentrations of TNH_x, Required-NH_x, and Excess-NH_x with

657 corresponding pH values are marked by a hollow box, hollow circle, and arrow respectively. The

658 yellow and blue background colors correspond to the NH_x-poor and NH_x-rich, respectively.

Fig. 3 Time series and box plot of predicted $PM_{2.5}$ pH, H^+_{air} , and aerosol water content (AWC) at the five sites. In each box, the top, middle and bottom lines represent the 75th, 50th, and 25th percentile of statistical data, respectively; the upper and lower whiskers represent the maximum and minimum values, respectively.

675

Fig. 4 (a)–(e) Diurnal patterns of median pH values, (f) average RH, and T of the five sites in Case 2.

684 The upper and lower ends of the line represent the maximum and minimum values of pH,

respectively. The color scale bar represents AWC concentration.

Table lists:

Table 1 Comparison of the particle pH values in this study (median, min-max) and other sites (mean \pm standard deviation).

Table 2 Descriptions of the five sampling sites.

Table 3 Summary (mean \pm standard deviation) of gaseous precursors (μ g/m³), water-soluble inorganic ions (μ g/m³), T (°C), and RH (%) during three cases of haze periods at five monitoring sites.

Table 4 Sensitivity of pH to input data. The real-time measured values of a variable and the average values of other parameters during Case 2 were input into the ISORROPIA II. The degree of sensitivity was represented as the relative standard deviation (%RSD) of the re-calculated pH values, higher RSD implied higher sensitivity of this factor to pH and thus is more important for local pH.

	Observation site	Period	pН	Model	Reference
	Zhengzhou, China (Urban)	Jan 2018	4.5 (3.8–5.2)		
This	Anyang, China (Urban)	Jan 2018	4.8 (3.9–5.8)		
	Anyang, China (Rural)	Jan 2018	4.9 (4.1–6.2)	ISORROPIA-II	
study	Xinxiang, China (Rural)	Jan 2018	5.1 (4.7–6.3)		
	Puyang, China (Rural)	Jan 2018	5.2 (4.8-6.5)		
	Beijing, China (Urban)	Feb 2017	4.5 ± 0.7	ISORROPIA-II	Ding et al., 2019
	Beijing, China (Urban)	Dec 2016	4.3 ± 0.4	ISORROPIA-II	Liu et al., 2017
	Beijing, China (Urban)	Jan–Feb 2015	4.5	ISORROPIA-II	Guo et al., 2017
	Xi'an, China (Urban)	Nove–Dec 2012	5.0	ISORROPIA-II	Guo et al., 2017
China	Tianjin, China (Urban)	Dec–Jun 2015	4.9 ± 1.4	ISORROPIA-II	Shi et al., 2017
	Tianjin, China (Urban)	Aug 2015	3.4 ± 0.5	ISORROPIA-II	Shi et al., 2019
	Hohhot, China	Winter 2015	5.7	ISORROPIA-II	Wang et al., 2019
	PRD, China (Rural)	Fall-winter season 2012	0.81 ± 0.24	AIM-II model	Fu et al., 2015
	Hong Kong, China (Urban)	2001	0.25	AIM-II model	Pathak et al., 2004
	Singapore (Urban)	Sep-Nov 2011	0.60	AIM-IV model	Sailesh et al., 2013
	Northeastern US (Urban)	Feb-Mar 2015	0.07 ± 0.96	ISORROPIA-II	Guo et al., 2016
Other	Alabama, USA (Rural)	Jun–Jul 2013	1.94 ± 0.59	ISORROPIA-II	Guo et al., 2015
countries	Georgia, USA (Rural)	Aug–Oct 2016	2.2 ± 0.6	ISORROPIA-II	Nah et al., 2018
	Crete, Greece (Background)	Aug–Nov 2012	1.25 ± 1.14	ISORROPIA-II	Boucher et al., 2016

Table 1 Comparison of the particle pH values in this study (median, min-max) and other sites (mean \pm standard deviation).

Table 2 Descriptions of the five sampling sites.

						Emissio	n (Gg)	
City	Classification	Site	Coordinate	Location	Surrounding environment	$\mathrm{NH_3}^*$	SO 2 ^{**}	NO _x **
Zhengzhou	Urban	U-ZZ	34.82° N 113.54° E	West totheZhengzhoudowntown(ZhengzhouUniversity)	Densely occupied residences, light industry, freeways and roads	<mark>39.2</mark>	<mark>36.7</mark>	<mark>31.8</mark>
Anyang	Urban	U-AY	36.09° N 114.41° E	East to the Anyang downtown(AnyangEnvironmentalProtection Bureau)	Occupied residences, heavy industry and traffic roads	<mark>57.8</mark>	<mark>46.9</mark>	<mark>37.1</mark>
	Rural	R-AY	36.22° N 114.39° E	15 km north of Anyang city (Baizhuang town)	High ways, small villages, and cropland			
Xinxiang	Rural	R-XX	35.38° N 114.30° E	35 km northeast of Xinxiang city (Banzao town)	Small villages and cropland	<mark>72.1</mark>	<mark>8.9</mark>	<mark>19.6</mark>
Puyang	Rural	R-PY	36.15° N 115.10° E	44 km north of Puyang city (Liangcun town)	Small villages and cropland	<mark>39.6</mark>	<mark>3.4</mark>	<mark>3.2</mark>

* Data from a 2015-based NH₃ emission inventory (Wang et al., 2018a).

** Data from Henan Statistical Yearbook of 2018 (BSH, 2018).

Table 3 Summary (mean \pm standard deviation) of gaseous precursors (μ g/m³), water-soluble inorganic ions (μ g/m³), T (°C), and RH (%) during three cases of

haze periods at five sites.

	Case 1 (Janu	ary 12–14)				Case 2 (January 14–21)				Case 3 (January 21–25)					
	U-ZZ	U-AY	R-AY	R-XX	R-PY	U-ZZ	U-AY	R-AY	R-XX	R-PY	U-ZZ	U-AY	R-AY	R-XX	R-PY
HNO ₃	0.9 ± 0.2	0.7 ± 0.2	3.1 ± 0.2	3.0 ± 0.1	3.9 ± 0.1	1.3 ± 0.3	1.1 ± 0.3	3.7 ± 0.4	3.7 ± 0.5	4.2 ± 0.2	0.9 ± 0.3	0.7 ± 0.2	4.9 ± 1.0	3.3 ± 0.2	3.3 ± 0.2
NH ₃	17.0 ± 3.7	19.6 ± 8.0	22.9 ± 6.3	21.6 ± 4.1	17.8 ± 3.7	19.5 ± 5.2	23.6 ± 6.5	25.2 ± 6.5	24.7 ± 9.9	26.5 ± 6.7	10.5 ± 6.9	8.8 ± 4.7	10.6 ± 4.7	8.4 ± 3.5	12.1 ± 3.5
HCl	0.1 ± 0.0	0.7 ± 0.6	0.5 ± 0.1	0.6 ± 0.1	1.8 ± 0.1	0.1 ± 0.1	0.4 ± 0.1	0.6 ± 0.2	0.6 ± 0.1	2.0 ± 0.1	0.1 ± 0.1	0.5 ± 0.1	1.7 ± 0.1	1.0 ± 0.4	1.5 ± 0.4
NO ₃ -	41.5 ± 14.6	28.0 ± 14.6	43.0 ± 12.5	32.8 ± 12.9	25.2 ± 9.1	74.2 ± 32.9	58.0 ± 18.3	76.8 ± 21.1	64.1 ± 18.7	64.4 ± 21.7	32.4 ± 13.5	18.9 ± 5.4	26.0 ± 5.8	25.1 ± 6.7	18.8 ± 4.3
$\mathrm{NH_4^+}$	18.6 ± 6.2	15.9 ± 8.3	21.8 ± 8.0	14.9 ± 6.2	12.8 ± 4.5	31.9 ± 12.5	35.2 ± 12.0	47.6 ± 13.1	35.6 ± 10.4	39.9 ± 14.9	17.4 ± 6.0	11.6 ± 4.4	14.3 ± 4.4	12.9 ± 4.0	10.1 ± 2.9
$\mathrm{SO_4}^{2-}$	17.8 ± 7.2	14.4 ± 9.0	13.7 ± 10.0	10.0 ± 5.5	8.6 ± 2.3	38.3 ± 18.0	34.5 ± 13.0	46.8 ± 16.9	32.9 ± 12.5	39.2 ± 13.6	19.8 ± 8.6	15.1 ± 6.1	15.1 ± 7.3	14.4 ± 4.8	13.3 ± 4.0
Ca^{2+}	0.7 ± 0.5	0.5 ± 0.3	5.0 ± 2.2	0.8 ± 0.2	3.4 ± 0.3	0.5 ± 0.4	0.4 ± 0.4	2.2 ± 1.2	1.0 ± 0.3	3.3 ± 0.6	0.1 ± 0.1	0.2 ± 0.2	1.8 ± 0.7	0.5 ± 0.1	2.4 ± 0.5
Na^+	1.5 ± 0.2	1.0 ± 0.0	1.4 ± 0.4	0.7 ± 0.1	2.2 ± 0.1	1.6 ± 0.2	1.0 ± 0.1	1.4 ± 0.4	0.8 ± 0.1	2.2 ± 0.0	1.1 ± 0.2	1.0 ± 0.2	2.2 ± 0.4	1.3 ± 0.4	2.2 ± 0.2
Cl	7.5 ± 2.5	2.7 ± 3.4	6.6 ± 2.5	5.4 ± 1.5	6.3 ± 1.2	8.5 ± 3.2	12.0 ± 4.2	18.5 ± 5.0	9.7 ± 2.6	14.4 ± 3.8	3.3 ± 1.5	4.5 ± 1.6	6.9 ± 1.6	4.7 ± 0.9	5.4 ± 1.4
Mg^{2+}	0.2 ± 0.0	0.1 ± 0.0	0.4 ± 0.1	0.1 ± 0.0	0.5 ± 0.0	0.2 ± 0.0	0.1 ± 0.0	0.4 ± 0.4	0.1 ± 0.0	0.5 ± 0.1	0.2 ± 0.0	0.1 ± 0.0	0.4 ± 0.1	0.1 ± 0.1	0.4 ± 0.1
\mathbf{K}^{+}	2.9 ± 0.7	1.4 ± 0.5	1.6 ± 0.6	1.6 ± 0.4	2.5 ± 0.6	4.4 ± 1.7	2.4 ± 0.7	2.9 ± 0.7	1.9 ± 0.6	3.7 ± 1.1	1.9 ± 0.7	0.9 ± 0.3	0.8 ± 0.3	0.8 ± 0.2	1.2 ± 0.4
Т	0.3 ± 3.1	-0.9 ± 3.7	-1.8 ± 4.4	-2.0 ± 3.9	-1.7 ± 4.8	4.2 ± 2.2	2.6 ± 2.5	0.1 ± 2.8	1.2 ± 2.9	0.4 ± 3.0	-0.8 ± 1.8	-2.7 ± 1.8	-3.2 ± 1.9	-2.8 ± 2.6	-4 ± 2.3
RH	63.7 ± 12.1	60.3 ± 15.4	54.0 ± 16.0	58.5 ± 13.5	49.7 ± 14.5	66.0 ± 11.4	60.1 ± 9.9	58.6 ± 9.9	62.7 ± 11.6	65.8 ± 11.7	67 ± 13.1	63.7 ± 13.8	55.9 ± 13.6	59 ± 13.7	56.8 ± 16

Table 4 Sensitivity of pH to input data. The real-time measured values of a variable and the average values of other parameters during Case 2 were input into the ISORROPIA II. The degree of sensitivity was represented as the relative standard deviation (%RSD) of the re-calculated pH values, higher RSD implied higher sensitivity of this factor to pH and thus is more important for local pH.

	$\mathrm{TH}_2\mathrm{SO}_4$	TNH _x	TNO ₃	TNa	TCl	Ca ²⁺	\mathbf{K}^+	Mg^{2+}	RH	Т
U-ZZ	12.1 %	12.8 %	6.1 %	0.1 %	0.3 %	3.3 %	0.3 %	0.2 %	1.3 %	2.7 %
U-AY	5.8 %	7.4 %	1.0 %	0.1 %	1.1 %	0.4 %	0.3 %	0.0 %	1.6 %	2.8 %
R-AY	6.5 %	10.9 %	1.4 %	0.1 %	0.7 %	1.2 %	0.2 %	0.3 %	1.9 %	2.7 %
R-XX	5.4 %	11.1 %	1.1 %	0.1 %	0.7 %	0.4 %	0.2 %	0.1 %	2.0 %	2.9 %
R-PY	4.7 %	9.4 %	1.5 %	0.0 %	0.7 %	0.5 %	0.4 %	0.1 %	2.3 %	3.1 %

1 Supplement materials:

2

- 3 Text S1 Calculation of ions balance and equivalent ratio.
- 4 Text S2 Backward trajectory frequency analysis
- 5 Text S3 NH_x calculation
- 6

7 Text S1 Calculation of ions balance and equivalent ratio.

8 The ions balance and equivalent ratio are calculated using the following formulas:

9
$$[\text{cations}] = \frac{[\text{NH}_4^+]}{18} + \frac{[\text{Na}^+]}{23} + \frac{[\text{K}^+]}{39} + \frac{[\text{Ca}^{2+}]}{20} + \frac{[\text{Mg}^{2+}]}{12}$$
 (1)

10
$$[\text{anions}] = \frac{[\text{SO}_4^{2^-}]}{48} + \frac{[\text{NO}_3^-]}{62} + \frac{[\text{Cl}^-]}{35.5}$$
(2)

11 ion balance =
$$[cations] - [anions]$$
 (3)

12
$$equivalent ratio = [cations]/[anions]$$
 (4)

where
$$[Na^+]$$
, $[K^+]$, $[Ca^{2+}]$, $[Mg^{2+}]$, $[NH_4^+]$, $[SO_4^{2-}]$, $[NO_3^-]$, and $[Cl^-]$ are the measured concentrations
(μ g/m³) in the atmosphere. In addition to the measurement uncertainties, equivalent ratios lower than
1 might be attributed to the loss of cations from the volatilization of ammonium and unmeasured
hydrogen ions (Meng et al., 2016). Equivalent ratios higher than 1 were most likely caused by water-
soluble organic anions, CO_3^{2-} and HCO_3^- contents that were not detected in chemical analysis (Tian et
al., 2018).

19

20 Text S2 Backward trajectory frequency analysis

21 The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Web version of the

40

35 Text S3 NH_x calculation

With respect to measurements of semi-volatile gases, the concentrations of NH₃ were extremely higher than HNO₃ and HCl, consistent with the Song et al. (2018) and Liu et al. (2017). TNHx, required NHx (Required-NHx), and excess NHx (Excess-NHx) concentrations were calculated using the following formulas:

Total
$$NH_x = 17 \times \left(\frac{[NH_4^+]}{18} + \frac{[NH_3]}{17}\right),$$
 (5)

Required
$$\operatorname{NH}_{x} = 17 \times \left(\frac{[\operatorname{SO}_{4}^{2-}]}{48} + \frac{[\operatorname{NO}_{3}^{-}]}{63} + \frac{[\operatorname{Cl}^{-}]}{35.5} + \frac{[\operatorname{HNO}_{3}]}{64} + \frac{[\operatorname{HCl}]}{36.5} \right)$$

41 $-17 \times \left(\frac{[\operatorname{Na}^{+}]}{23} + \frac{[\operatorname{K}^{+}]}{39} + \frac{[\operatorname{Ca}^{2+}]}{20} + \frac{[\operatorname{Mg}^{2+}]}{12} \right) , \quad (6)$

Excess $NH_x = total NH_x - required NH_x$, (7)

43 where $[Na^+]$, $[K^+]$, $[Ca^{2+}]$, $[Mg^{2+}]$, $[NH_4^+]$, $[SO_4^{2-}]$, $[NO_3^-]$, $[Cl^-]$, $[NH_3]$, $[HNO_3]$, and [HCl] are the

- 44 measured mass concentrations ($\mu g/m^3$) of these species. Excess-NH_x in this study represents a part of
- 45 TNH_{x} (gas NH₃ + particle NH₄⁺), while the other NH_x plus nonvolatile cations have been equivalent

to all anions (Blanchard et al., 2000). If Excess- NH_x is above 0, then the system is considered NH_x -

- 47 rich. Otherwise, the system is under the NH_x -poor condition.
- 48

49 **Figure lists:**

50 Fig. S1 Locations of the five monitoring stations in Henan Province, China (i.e., urban sites at

51 Zhengzhou (U-ZZ) and Anyang (U-AY), rural sites at Anyang (R-AY), Xinxiang (R-XX), and Puyang

52 (R-PY)). © 2019 National Geomatics Center of China. All rights reserved.

Fig. S2 Comparison between the predicted and measured NH₄⁺, NO₃⁻, Cl⁻, NH₃, HNO₃ and HCl at the
five sites.

- 55 Fig. S3 Ion balance of water-soluble inorganic ions at the five sites.
- 56 Fig. S4 Comparison between the predicted and input NH₄⁺ (a, d) and NH₃ (b, c) concentrations, the
- 57 original and adjusted pH (c, f) of U-ZZ and R-PY sites after adjusting the measured NH_4^+ 58 concentrations to fit the ion balance.
- 59 Fig. S5 Comparison of predicted pH by ISORROPIA-II with E-AIM IV at the U-ZZ site.
- 60 Fig. S6 Temporal variations of temperature (T), relative humidity (RH), wind speed (WS), wind
- direction (WD), and concentrations of NH_3 , NH_4^+ , SO_4^{2-} , and NO_3^- during three cases at U-AY (a), R-

63	Fig. S7 Trajectory frequencies of typical periods at the five sites during Cases 1(a), 2(b), and 3(c).
64	The color scale bar represents the percentage of trajectories passing through each grid to total
65	trajectories.
66	Fig. S8 Time series of predicted PM _{2.5} pH at the five sites. The shaded areas show the range of
67	uncertainty in pH for the pH_{max} and pH_{min} calculations.
68	Fig. S9 Correlations between pH and H^+_{air} during sampling periods at the five sites. The color scale
69	bar represents the aerosol water content (AWC) concentration.
70	Fig. S10 Sensitivity tests of PM _{2.5} pH to input data. The real-time measured values of a variable and
71	the average values of other parameters during Case 2 were input into the ISORROPIA II model.
72	Fig. S11 Comparisons of the sensitivities of $PM_{2.5}$ pH to TNa, K ⁺ , Ca ²⁺ , and Mg ²⁺ among the five sites.
73	The color scale bar represents the pH values. The relative standard deviation (RSD) and range (Range)
74	represent the sensitivity degree of pH to this variable and range (min-max) of the re-predicted pH
75	value in the test, respectively.

AY (b), R-XX (c), and R-PY (d) sites. The shaded areas represent the measurement uncertainties.

Fig. S2 Comparison between the predicted and measured NH₄⁺, NO₃⁻, Cl⁻, NH₃, HNO₃ and HCl at the

86 five sites.

87

Fig. S3 Ion balance of water-soluble inorganic ions at the five sites.

91 Fig. S4 Comparison between the predicted and input NH_4^+ (a, d) and NH_3 (b, c) concentrations, the

92 original and adjusted pH (c, f) of U-ZZ and R-PY sites after adjusting the measured NH4⁺

93 concentrations to fit the ion balance.

94

90

96 Fig. S5 Comparison of predicted pH by ISORROPIA-II with E-AIM IV at the U-ZZ site.

- 104 The color scale bar represents the percentage of trajectories passing through each grid to total
- 105 trajectories.

111 Fig. S9 Correlations between pH and H⁺_{air} during sampling periods at the five sites. The color scale

118 Fig. S10 Sensitivity tests of $PM_{2.5}$ pH to input data. The real-time measured values of a variable and

the average values of other parameters during Case 2 were input into the ISORROPIA II model.

	18	/	5
Cities	Period	NH ₃	References 143
Zhengzhou, China	2018.01	22.0 ±8.9	This study
Anyang, China	2018.01	25.3 ± 10.5	This study
Anyang, China	2018.01	25.8 ± 12.0	This study
Xinxiang, China	2018.01	26.1 ± 14.0	This study
Puyang, China	2018.01	27.1 ± 17.3	This study
Zhengzhou, China	2017.03-2018.04	11.7	Wang et al., 2018
Beijing, China	2015.01-03	7.3	Zhang et al., 2018
Beijing, China	2008.02-2010.07	22.8 ± 16.3	Wang et al., 2018
Beijing, China	2007.01-2010.07	10.2 ± 10.8	Wang et al., 2018
Beijing, China	2001.07-2001.08	16.8–42.2	Wang et al., 2018
North China Plain, China	2006.08-2009.09	11.7–31.9	Shen et al., 2011
Xi'an, China	2006.04-2007.04	18.6	Wang et al., 2018
Xi'an, China	2006.04-2007.04	20.3	Wang et al., 2018
Chengdu, China	2014.07-2015.04	10.5 ± 4.8	Wang et al., 2016
Wanzhou, China	2014.07-2015.04	8.3 ± 4.7	Wang et al., 2016
shanghai, China	2014.05-2015.06	7.8	Chang et al., 2019
Hangzhou, China	2012.04-05	12.8	Jansen et al., 2014
Dalian, China	2010.09-2012.04	1.5	Luo et al., 2014
Fenghua, China	2010.08-2012.05	3.7	Luo et al., 2014
Fujian, China	2015.06-2016.05	21.0 ± 7.9	Wang et al., 2018
Fujian, China	2015.06-2017.03	10.5–13.5	Wu et al., 2018
Hong Kong, China	2003.10-2006.05	10.2	Tanner, 2009
Carolina, USA	2000.01-12	0.4–3.4	Walker et al., 2004
Delhi, India	2013.01-2015.12	25.3 ± 4.6	Saraswati et al., 2019

142 Table S1 Summarized NH_3 concentrations ($\mu g/m^3$) in this study and other sites.

145 Table S2 Statistical values of pH during three cases.

	Case 1			Case 2				Case 3				
	25th		75th		25th		75th		25th		75th	
	percentile		percentile	Average	percentile	percentile		Average	percentile		percentile	Average
U-ZZ	4.7	4.8	5.0	4.8	4.3	4.5	4.8	4.5	4.3	4.5	4.7	4.5
U-AY	4.8	5.0	5.2	5.1	4.7	4.8	5.0	4.8	4.4	4.5	4.8	4.5
R-AY	5.1	5.4	5.8	5.5	5.0	5.1	5.4	5.2	4.9	5.0	5.3	5.1
R-XX	5.1	5.3	5.6	5.4	4.8	4.9	5.1	4.9	4.5	4.7	5.0	4.7
R-PY	5.7	6.0	6.3	6.0	5.0	5.1	5.4	5.2	5.0	5.2	5.4	5.3

	U–ZZ	U–AY	R-AY	R-XX	R–PY
TWSIIs	0.834**	0.521**	0.676**	0.530**	0.774^{**}
TNH _x	0.650^{**}	0.368**	0.544**	0.301**	0.703**
$\mathrm{TH}_2\mathrm{SO}_4$	0.867^{**}	0.625**	0.765^{**}	0.638**	0.811**
TNO ₃	0.828^{**}	0.458**	0.607^{**}	0.502**	0.767^{**}
TCl	0.430**	0.406^{**}	0.602**	0.223**	0.419**
K^+	0.757^{**}	0.388**	0.551**	0.138*	0.485^{**}
Ca ²⁺	-0.161*	-0.234**	-0.137^{*}	-0.248^{**}	0.06
TNa	0.306**	-0.095	0.098	0.103	-0.138^{*}
Mg^{2+}	-0.009	-0.027	-0.018	-0.050	0.026
AWC	0.63**	0.739**	0.903**	0.755**	0.938**
Т	0.012	0.045	-0.138^{*}	-0.023	0.146^{*}
RH	0.337**	0.610**	0.631**	0.637**	0.658^{**}

Table S3 Pearson's correlation coefficients (r) between H^+_{air} with observed data at the five sites.

* Correlation is significant at the 0.05 level (two-tailed).

** Correlation is significant at the 0.01 level (two-tailed).

Species	Observation		Setting		Cualiant
	Min	Max	Min	Max	Gradient
T (°C)	-5.8	14.3	-6	15	0.1
RH (%)	26.8	92.3	30	95	0.1
$TNH_x (\mu g/m^3)$	21.2	96.7	25	95	$0.01 \ \mu mol/m^3$
$TNO_3 (\mu g/m^3)$	5.8	132.6	1	125	$0.01 \ \mu mol/m^3$
$TH_2SO_4 (\mu g/m^3)$	6.9	82.7	10	80	$0.01 \ \mu mol/m^3$
TCl ($\mu g/m^3$)	0.54	39.5	0.35	35	$0.01 \ \mu mol/m^3$
TNa ($\mu g/m^3$)	0.29	3.33	0.25	3.5	$0.01 \ \mu mol/m^3$
K^+ (µg/m ³)	0.27	7.8	0.1	7.5	$0.01 \ \mu mol/m^3$
$Ca^{2+} (\mu g/m^3)$	0.2	5.2	0.4	6	$0.01 \ \mu mol/m^3$
Mg^{2+} (µg/m ³)	0.11	3.1	0.25	3.5	$0.01 \ \mu mol/m^3$

Table S4 Variation ranges of each variable for assessing the different effects of this variable among five sites and their observed minimum and maximum values.

References:

- Blanchard, C. L., P. M. Roth, S. J. Tanenbaum, S. D. Ziman, and J. H. Seinfeld: The use of ambient measurements to identify which precursor species limit aerosol nitrate formation, J. Air Waste Manage. Assoc., 50, 2073–2084, 2000.
- Chang, Y., Zou, Z., Zhang, Y., Deng, C., Hu, J., Shi, Z., Dore, A. J., Collett, J. L.: Assessing contributions of agricultural and nonagricultural emissions to atmospheric ammonia in a Chinese megacity. Environ. Sci. Technol., 53, 1822–1833, 2019.
- Jansen, R. C., Shi, Y., Chen, J., Hu, Y., Xu, C., Hong, S., Li, J., Zhang, M.: Using hourly measurements to explore the role of secondary inorganic aerosol in PM_{2.5} during haze and fog in Hangzhou, China. Adv. Atmos. Sci., 31, 1427–1434, 2014.

- Liu, M., Song, Y., Zhou, T., Xu, Z., Yan, C., Zheng, M., Wu, Z., Hu, M., Wu, Y., Zhu, T.: Fine particle pH during severe haze episodes in northern China. Geophys. Res. Lett., 44, 5213–5221, 2017.
- Luo, X. S., Tang, A. H., Shi, K., Wu, L. H., Li, W. Q., Shi, W. Q., Shi, X. K., Erisman, J. W., Zhang, F., Liu, X. J.: Chinese coastal seas are facing heavy atmospheric nitrogen deposition. Environ. Res. Lett., 9, 095007, 2014.
- Meng, C. C., Wang, L. T., Zhang, F. F., Wei, Z., Ma, S. M., Ma, J., Yang, J.: Characteristics of concentrations and water-soluble inorganic ions in PM_{2.5} in Handan City, Hebei province, China. Atmos. Res., 171, 133–146, 2016.
- Saraswati, Sharma, S. K., Saxena, M., Mandal, T. K.: Characteristics of gaseous and particulate ammonia and their role in the formation of secondary inorganic particulate matter at Delhi, India. Atmos. Res., 218, 34–49, 2019.
- Shen, J., Liu, X., Ying, Z., Fangmeier, A., Goulding, K., Zhang, F.: Atmospheric ammonia and particulate ammonium from agricultural sources in the North China Plain. Atmos. Environ., 45, 5033–5041, 2011.
- Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y., Mcelroy, M. B.: Fine particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmos. Chem. Phy., 18, 7423–7438, 2018.
- Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D. and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96: 2059–2077, 2015.
- Tanner, P.A.: Vehicle-related ammonia emissions in Hong Kong. Environ. Chemi. Lett., 7, 37-40, 2009.
- Tian, S., Pan, Y., and Wang, Y.: Ion balance and acidity of size-segregated particles during haze episodes in urban Beijing. Atmospheric Research 201, 159–167, 2018.
- Walker, J. T., Whitall, D. R., Robarge, W. P., Paerl, H. W.: Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. Atmos. Environ., 38, 1235–1246, 2004.
- Wang, C., Yin, S., Bai, L., Zhang, X., Gu, X., Zhang, H., Lu, Q., Zhang, R.: High-resolution ammonia emission inventories with comprehensive analysis and evaluation in Henan, China, 2006–2016. Atmos. Environ., 193, 11–23, 2018.
- Wang, H., Yang, F., Shi, G., Tian, M., Zhang, L., Zhang, L., Fu, C.: Ambient concentration and dry deposition of major inorganic nitrogen species at two urban sites in Sichuan Basin, China. Environ. Pollut., 219, 235–244, 2016.
- Wu, S., Dai, L., Wei, Y., Zhu, H., Zhang, Y., Schwab, J. J., Yuan, C.: Atmospheric ammonia measurements along the coastal lines of Southeastern China: Implications for inorganic nitrogen deposition to coastal waters. Atmos. Environ., 177, 1–11, 2018.
- Zhang, R., Sun, X., Huang, Y., Shi, A., Yan, J., Nie, T., Yan, X., Li, X.: Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China. Atmos. Environ., 177, 275–282, 2018.