Response to reviewers

We would like to thank both anonymous reviewers and the editor for their helpful comments which have improved the quality of this manuscript.

Responses to anonymous referee #1

(1) I find the abstract not as informative as it should be. The quantitative information is provided without context and without mention of implications. Furthermore, the quantitative results provided by the paper actually suggest that these fluxes are quite small and not that different from non-proglacial land. Hence, it is very difficult to imagine that they will become significant on a broader scale at some point in the future even with a large increase in pro-glacial land surface area. Recommendation: include many of the very informative qualitative conclusions you mention throughout the discussion section that are the result of this work (many paragraphs in section 4 and 5 start or end with one of these nuggets). Do not overstate the potential future importance of these fluxes; what might be viewed as a negative result here is still very useful and informative. Finally, if quantitative results remain in the abstract, mention also for context the magnitude of similar fluxes in other regions of the Arctic for context.

Thank you for these constructive comments. In light of your suggestions, and with a related comment from reviewer 2, we have amended the abstract to highlight some of the other conclusions in this manuscript rather than the fluxes which have been removed from the abstract. The changes to the abstract are as follows (page 1, lines 22-30):

“Bromoform (CHBr₃) and dibromomethane (CH₂Br₂) have rarely been measured from terrestrial sources but were here found to be emitted across the forefield. Novel measurements conducted on terrestrial cyanobacterial mats covering relatively young surfaces showed similar measured fluxes to the oldest, vegetated tundra sites for CH₂Cl, CH₂Br and CH₃I (which were consumed) and for CHCl₃ and CHBr₃ (which were emitted). Consumption rates of CH₂Cl and CH₂Br and emission rates of CHCl₃ from tundra and cyanobacterial mat sites were within the ranges reported from older and more established Arctic tundra elsewhere. Rough calculations showed total emissions and consumptions of these gases across the Arctic were small relative to other sources and sinks due to the small surface area represented by glacier forefields. We have demonstrated that glacier forefields can consume and emit halocarbons despite their young age and low soil development, particularly when cyanobacterial mats are present.”

(2) Define the terms proglacial and forefield for this audience.

Thank you for pointing this out. For simplicity we have decided to just use one of these terms (“glacier forefield” and sometimes more simply “forefield”) and so have made changes throughout the manuscript to remove the “proglacial” term. “Forefield” is now defined where it first appears in the manuscript on page 1, line 18-19:

“…we measured halocarbon fluxes across the glacier forefield (the area between the present day position of a glacier’s ice-front and that at the last glacial maximum)…”
(3) Radiocarbon dating at the tundra site indicated a date of exposure of 1850-1926 BP (before present?), so it is not clear where the "approximately 1950 year old" age comes from (abstract and elsewhere).

The tundra age of “approximately 1950 years old” was calculated as the age from the present day (specifically, the date of the fieldwork, 2017), i.e. the radiocarbon age, which is dated from 1 January 1950, plus the difference between 1950 and 2017. This was to keep the approximate ages of all land surfaces consistent with each other, as some of the surfaces are younger than the year 1950 and therefore have ages estimated from the year fieldwork was conducted. The age from today (rather than from BP) of the tundra would be 1917-1993 years old, which we approximated at 1950 years old. This has been clarified in the text on page 4, line 19-20:

“Radiocarbon dating near site tundra (~70 m west) has provided a date of exposure of 1850-1926 BP (Before Present, defined as 1st January 1950 by the radiocarbon age scale; Hodkinson et al., 2003). This is equivalent to 1917-1993 years older (or approximately 1950 years) than the year of analysis (2017).”

(4) Line 4 of intro: this statement is not true for CH3Cl and CH3Br until you describe them as "the most important *natural* sources of chlorine and bromine to the troposphere".

Thank you for pointing this out, the description has now been corrected in the manuscript as follows (page 2, line 4):

“Methyl chloride (CH3Cl) and methyl bromide (CH3Br) are the most important natural sources of chlorine (16%) and bromine (50%) to the troposphere and are important contributors to stratospheric ozone loss (Carpenter et al., 2014).”

(5) It is not explicitly clear if the ballast synthetic air which was drawn from to maintain pressure in the chambers during sampling was the "zero air" mentioned earlier, and if this air was de-humidified and CO2-free? I wonder if some inconsistent changes in fluxes during the 2-hr experiments might have been caused by changes in CO2 concentrations and humidity in the chamber.

The synthetic air used was grade 5.0 so it was de-humidified and CO2 free (with a purity of 99.999%). This has been clarified in the manuscript where the zero air is first mentioned in the manuscript (page 6, line 8-9):

“All sample bags were flushed three times with Grade 5.0 synthetic zero air (dry and CO2-free) prior to use, with laboratory testing indicating this removed any background contamination.”

(6) Consider in Figure 7 highlighting somehow the fluxes discussed in this paper.

Thank you for this suggestion. The proglacial fluxes analysed in this paper have been highlighted in the manuscript figure on page 29.
Responses to anonymous referee #2

(1) The flux values in the abstract need some context, e.g., how significant are they in terms of sources or sinks or how do they compare with other measurements if available.

We thank the reviewer for this comment. Following similar comments from the other reviewer, we decided to re-draft the abstract without focusing on actual flux values. We have also included a comment on how the measured fluxes relate to other sources and sinks in the Arctic. The changed text is now as follows (page 1, lines 22-30):

“Bromoform (CHBr₃) and dibromomethane (CH₂Br₂) have rarely been measured from terrestrial sources but were here found to be emitted across the forefield. Novel measurements conducted on terrestrial cyanobacterial mats covering relatively young surfaces showed similar measured fluxes to the oldest, vegetated tundra sites for CH₃Cl, CH₃Br and CH₃I (which were consumed) and for CHCl₃ and CHBr₃ (which were emitted). Consumption rates of CH₃Cl and CH₃Br and emission rates of CHCl₃ from tundra and cyanobacterial mat sites were within the ranges reported from older and more established Arctic tundra elsewhere. Rough calculations showed total emissions and consumptions of these gases across the Arctic were small relative to other sources and sinks due to the small surface area represented by glacier forefields. We have demonstrated that glacier forefields can consume and emit halocarbons despite their young age and low soil development, particularly when cyanobacterial mats are present.”

(2) Were there any lab tests of potential impacts on storing the air samples in the vials or bags prior to analysis?

The bags used for collection of the halocarbon samples were tested prior to use by flushing (three times) and then filling with the standard followed by storage in the same conditions as the sample bags for later analysis. Small changes were detected but are negligible compared to the overall changes measured in the chambers: the average change (n = 4) over 20 hours (maximum time between sampling and analysis) was 0.002 nmol CH₃Cl, -0.00001 nmol CH₃Br, 0.00001 CH₃I, 0.001 nmol CHCl₃, 0.00002 CHBr₃, 0.00001 CH₂Br₂.

Tests were not done on the extainer vials for this study. However, a study by Faust and Liebig (2018) measured no significant changes in CH₄ and CO₂ concentrations for 15 mL extainers over 28 days when stored at +4 °C. The next time-point at which the extainers were tested was after 84 days with concentrations for CO₂ and CH₄ found to be 0.6-14.4 % lower and up to 22% higher, respectively. However, the authors found that all extainers after 84 days had a ‘dent‘ in the septa.
Here, the samples stored in exetainers were analysed between 7 and 36 days after sampling. Although 32 of 150 samples in this study were analysed after more than the 28 days, they were stored for significantly less time than the 84 day period used in the Faust and Liebig (2018) study. Additionally, no ‘dents’ in the septa was not found in any exetainers analysed in this study. Therefore, it is reasonable to assume that storage up to 36 days in this study had negligible impacts on the gas concentrations inside the exetainers.

The following changes have been made in the manuscript to address the above:

Page 5, lines 27-29: “Exetainers were stored (within 4 hours of sampling) and transported at +4 °C until analysis in the UK within 36 days. Exetainers have previously been shown to be suitable for storage of CO$_2$ and CH$_4$ for at least 28 days, but not as long as 84 days (Faust and Liebig, 2018), and therefore we consider the storage time of up to 36 days to have had minimal impact on the measured concentrations.”

Page 6, line 18-21: “Tests conducted on the sample bags found detectable but very small changes in gas concentrations 20 hours after being flushed with the standard (+0.002 nmol CH$_3$Cl, -0.00001 nmol CH$_3$Br, +0.00001 CH$_3$I, +0.001 nmol CHCl$_3$, +0.00002 nmol CHBr$_3$, +0.00001 nmol CH$_3$Br).”

(3) On p. 4, line 19 the radiocarbon age is 1850-1926 for the tundra site, but the abstract says approximately 1950 year old tundra.

The tundra age of “approximately 1950 years old” was calculated as the age from the present day (specifically, the date of the fieldwork, 2017), i.e. the radiocarbon age, which is dated from 1 January 1950, plus the difference between 1950 and 2017. This was to keep the approximate ages of all land surfaces consistent with each other, as some of the surfaces are younger than the year 1950 and therefore have ages estimated from the year fieldwork was conducted. The age from today (rather than from BP) of the tundra would be 1917-1993 years old, which we approximated at 1950 years old. This has been clarified in the text on page 4, line 19-20:

“Radiocarbon dating near site tundra (~70 m west) has provided a date of exposure of 1850-1926 BP (Before Present, defined as 1st January 1950 by the radiocarbon age scale; Hodkinson et al., 2003). This is equivalent to 1917-1993 years older (or approximately 1950 years) than the year of analysis (2017).”
Consumption of CH$_3$Cl, CH$_3$Br and CH$_3$I and emission of CHCl$_3$, CHBr$_3$ and CHBr$_2$ from the forefield of a retreating Arctic glacier

Moya L. Macdonald1, Jemma L. Wadham1, Dickon Young2, Chris R. Lunder3, Ove Hermansen3, Guillaume Lamarche-Gagnon1, Simon O’Doherty2

1 School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
2 School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
3 Norwegian Institute for Air Research (NILU), Kjeller, NO-2027, Norway

Correspondence to: Moya L. Macdonald (m.macdonald@bristol.ac.uk)

Abstract.

The Arctic is one of the most rapidly warming regions of the Earth, with predicted temperature increases of 5 - 7 °C and the accompanying extensive retreat of Arctic glacial systems by 2100. Retreating glaciers will reveal new land surfaces for microbial colonisation, ultimately succeeding to tundra over decades to centuries. An unexplored dimension to these changes is the impact upon the emission and consumption of halogenated organic compounds (halocarbons). Halocarbons are involved in several important atmospheric processes, including ozone destruction, and despite considerable research, uncertainties remain in the natural cycles of some of these compounds. Using flux chambers, we measured halocarbon fluxes across the glacier forefield (the area between the present day position of a glacier’s ice-front and that at the last glacial maximum) of a High Arctic glacier in Svalbard, spanning recently-exposed sediments (<10 years), to approximately 1950 year old tundra. Forefield land surfaces were found to consume methyl chloride (CH$_3$Cl) and methyl bromide (CH$_3$Br), with both consumption and emission of methyl iodide (CH$_3$I) observed. Bromoform (CHBr$_3$) and dibromomethane (CH$_2$Br$_2$) have rarely been measured from terrestrial sources but were here found to be emitted across the forefield. Novel measurements conducted on terrestrial cyanobacterial mats covering relatively young surfaces showed similar measured fluxes to the oldest, vegetated tundra sites for CH$_3$Cl, CH$_3$Br and CH$_3$I (which were consumed) and for CHCl$_3$ and CHBr$_3$ (which were emitted).

Consumption rates of CH$_3$Cl and CH$_3$Br and emission rates of CHCl$_3$ from tundra and cyanobacterial mat sites were within the ranges reported from older and more established Arctic tundra elsewhere. Rough calculations showed total emissions and consumptions of these gases across the Arctic were small relative to other sources and sinks due to the small surface area represented by glacier forefields. We have demonstrated that glacier forefields can consume and emit halocarbons despite their young age and low soil development, particularly when cyanobacterial mats are present.
1 Introduction

Despite being present at only low concentrations in the atmosphere (part per trillion, ppt), halocarbons play an important role in the destruction of ozone by supplying halogens to the stratosphere and the troposphere (Butler, 2000; Mellouki et al., 1992; Montzka et al., 2011). Methyl chloride (CH₃Cl) and methyl bromide (CH₃Br) are the most important natural sources of chlorine (16%) and bromine (50%) to the troposphere and are important contributors to stratospheric ozone loss (Carpenter et al., 2014). After CH₃Cl, chloroform (CHCl₃) is the next largest natural carrier of chlorine. Bromoform (CHBr₃) and dibromomethane (CH₂Br₂) are the most abundant short-lived brominated compounds and contribute ~ 4-35 % of bromine to the stratosphere (Montzka et al., 2011). Methyl iodide (CH₃I) is the most important very-short lived iodinated gas species in the atmosphere with a lifetime of ~ 7 days (Montzka et al., 2011). Some of the aforementioned gases have anthropogenic sources, many of which have reduced in magnitude under the Montreal Protocol (Carpenter et al., 2014). This has increased the relative importance of the natural sources of these halocarbons. The contribution of halocarbons to atmospheric processes makes it important to fully constrain present day sources, and their likely change under future climate change scenarios.

Most natural sources of halocarbons involve biological processes driven by plants, algae and fungi, with methyl halides (CH₃X; X = Cl, Br, I) generated as a by-product of methyltransferase activity and polyhalomethanes (e.g. CHCl₃, CHBr₃, CH₂Br₂) produced as a by-product of haloperoxidase activity (Manley, 2002). Marine biogenic sources are predominantly driven by macro- and micro-algae and are particularly important for CHBr₃ and CH₂Br₂ which are considered to be exclusively marine (Laturnus et al., 1998; Montzka et al., 2011; Sturges et al., 1993; Tokarczyk and Moore, 1994). The other halocarbons studied here (CH₃X, CHCl₃) also have a wide range of terrestrial biogenic sources, including tropical and temperate forests, temperate peatlands and Arctic tundra (Farhan Ul Haque et al., 2017; Forczek et al., 2015; Rhew et al., 2008; Simmonds et al., 2010).

Although biological sources of halocarbons dominate, abiotic sources are also possible, including emissions from open oceans (Chuck et al., 2005; Stemmler et al., 2014), oxidation of soil organic matter, and degradation of leaf litter and plants (Derendorp et al., 2012; Keppler et al., 2000; Wishkerman et al., 2008). The major, non-atmospheric, natural sinks of the halocarbons are the oceans (primarily abiotic) and bacterial degradation in soils (Nadalig et al., 2014; Shorter et al., 1995; Ziska et al., 2013). The bacterial soil sink has been identified in wide ranging habitats from temperate forests to the tundra (e.g. Khan et al., 2012; Teh et al., 2009). Despite this considerable research, uncertainties remain around the magnitudes of natural sources and sinks of halocarbons due in part to large variation around mean fluxes caused by spatial and temporal variability (e.g. Dimmer et al., 2001; Leedham et al., 2013; Montzka and Reimann, 2011; Stemmler et al., 2014). Reduction of the uncertainties and increased understanding of the processes influencing natural halocarbon fluxes are important for predicting future change.

A previously unstudied environment for halocarbon fluxes is the young soil found on the forefields of retreating glaciers. As the Arctic warms, increasing areas of land are being exposed by ongoing glacial retreat, a process that is forecast to continue...
throughout the 21st century (ACIA, 2005; Graversen et al., 2008). The newly exposed sediment is colonised by microbes such as heterotrophic bacteria and fungi, CO₂- and nitrogen-fixing cyanobacteria and nitrogen-fixing diazotrophs who fix nutrients into the developing soil (Bradley et al., 2014; McCann et al., 2016). Soil stabilisation on newly exposed glacier forefields (i.e., prior to widespread plant colonisation) is primarily driven by cyanobacterial colonisation and the subsequent formation of soil crusts (Hodkinson et al., 2003). Through nutrient-fixing and soil stabilisation processes, the microbial community enables the succession of higher plants, eventually leading to a tundra-type ecosystem for High Arctic locations (e.g., Hodkinson et al., 2003; Moreau et al., 2008).

Despite the forecasting of enhanced glacial retreat, trace gas emissions from glacier forefields have not been well-investigated with studies primarily focusing on CO₂ fluxes, particularly from higher plants on older surfaces, or CH₄ fluxes (Chiri et al., 2015; Muraoka et al., 2008). There have been no studies on halogenated trace gas fluxes from the forefield environment and how they might be affected by the accelerated change occurring in the Arctic. With the expansion of glacier forefields through increasing glacial retreat in the coming decades, understanding the processes occurring in these soils is timely. To investigate the impact of soil development and the associated microbial to plant succession on halogenated trace gas fluxes, we conducted in situ flux measurements of CH₃Cl, CH₃Br, CH₃I, CHCl₃, CHBr₃ and CH₂Br₂ at five sites spanning newly exposed soils (exposed <10 years ago) to established tundra (exposed approximately 1950 years ago) in front of a high Arctic glacier.

2 Study site
2.1 General description of the location
Midtre Lovenbreen is a small (5.4 km²) valley glacier situated on the northern side of the Brøggerhalvoya Peninsula, in northwestern Svalbard (78° 53’ N, 12° 04’ E). The glacier has been in near-constant negative mass balance since measurements began in 1968, and probably since at least the 1930s (Kohler et al., 2007). Warming mean annual temperatures since the 1920s has resulted in approximately 1.1 km of glacial retreat from a prominent moraine to its current position 1.8 km from the fjord edge (Fig. 1). Between 1966 and 1990, this retreat resulted in the exposure of 2.3 km² of land, and is a process that continues today (Moreau et al., 2008). The exposed area is characterised by the dominance of large rock fragments (> 5 cm diameter) and is influenced by glacial runoff with intermittent and shifting meltwater channels. The progression of the community assemblages along the glacier forefield chronosequence has occurred at slower rates than are typical, with cyanobacterial crust and lichens still prevalent beyond 150 years of exposure (Hodkinson et al., 2003). Vascular plants and bryophytes are present sporadically, and increasingly, with exposure age. The area experiences a maritime polar climate. The mean air temperature at the weather station in nearby Ny-Ålesund in July 2017, when this study was undertaken, was 6.1 °C (Norway MET, 2017). Mean summer soil temperatures (~ 2mm below surface) on the forefield have been measured at 7-9 °C (Hodkinson et al., 2003).
2.2 Specific descriptions of the sites

Five different land surface types were studied in four different locations along a transect between the glacial snout and the fjord (Fig. 1). The sites had different vegetation types and coverage (Fig. 2). The exposure ages of the sites (in years before 2017) were estimated from dates obtained by 14C dating and aerial photography in other studies (Hodkinson et al., 2003; Moreau et al., 2008). The site nearest the glacier’s snout (site snout) had an exposure age of approximately 5 years and was characterised by bare sediment, with little to no visible signs of life (Fig. 2a). Approximately 100 metres from the glacier’s snout, the second site (site pond mat) was located on the margins of a dried-up (by July) snow-melt pond in a small depression between the moraines. Around the margins of the pond, cyanobacterial mats had begun to form (Fig. 2b). The surrounding moraines were still largely barren. The pond mat site is estimated to have been exposed for around 20 years. The third and fourth sites were located near the middle of the transect on an expanse of relatively flat land behind (~south) the prominent Little Ice Age moraine (Fig. 1). Site established mat was located on the extensive cyanobacterial mats which cover large expanses of the flatter land (Fig. 2d). A site immediately adjacent to the mats where the mats had been disturbed by snow melt flowing from ponds (site disturbed mat) was also studied as a direct comparison (Fig. 2c). The exposure age of site established mat and disturbed mat was estimated at 100 years. The final site (site tundra) was located about 200 m from the coast (Fig. 2e). At this site, small bluffs of limestone and siltstone provided some shelter from the shifting nature of the glacial runoff rivers which otherwise hamper colonisation of much of the flood plain between the moraines and the fjord. Site tundra had a soil depth of about 15 cm and 100 % vegetation coverage. Dominant species included Bryophyta spp. and Carex rupestris, Salix polaris and Racomitrium lanuginosum. Radiocarbon dating near site tundra (~70 m west) has provided a date of exposure of 1850-1926 BP (Before Present, defined as 1st January 1950 by the radiocarbon age scale; Hodkinson et al., 2003). This is equivalent to 1917-1993 years older (or approximately 1950 years) than the year of analysis (2017).

3 Methods

3.1 Flux experiments

Four custom-made, cylindrical, Perspex flux chambers (0.029 m³) composed of a collar (0.07 m height) and top (0.22 m height, Fig. 2f) were deployed for gas analysis between the 25th and 31st July 2017. Preliminary experiments were conducted near site established mat in 2016 to determine the impact on gas fluxes of covering the chambers with a reflective material so that the experiments were conducted in the dark. The tests showed no statistical difference (2-sample t-test; Sect. 3.5) between covered and uncovered chambers (conducted in duplicates) for mean fluxes of CH₃Cl, CH₃Br and CH₃I (Fig. 3; other halocarbons not analysed, experiment conducted over 5 hours). Despite there being no statistical difference in gas concentration change, the covered chambers were used for the main experiments in 2017 to prevent over-heating when in direct sunlight, therefore minimising the influence of heat on the soil processes involved in the fluxes. The collar was embedded in the sediment surface prior to sampling (at least 18 hrs) to allow gases released/ absorbed from breaking the surface to equilibrate with the
background air concentrations. At site *tundra*, where plant roots were abundant, a small knife was used to cut through the roots as the collar alone could not break through the surface. An integrated “trough” on the collar was filled with deionised water (14-18 MΩ-cm) to provide a leak-tight seal with the upper section of the chamber (Fig. 2f). A fan (24 m³ h⁻¹; San Ace 60) was operated continuously during incubation to ensure the chamber air remained mixed. Tinytag temperature loggers (Gemini Data Loggers) were fixed to the underside of the chamber lid.

Two sampling ports, constructed from polypropylene BSP fittings, Luer-lock stop-cocks, and 20 cm polypropylene tubing (port A only, Fig. 2f), enabled gas sampling to be conducted 1 and 2 hours after sealing the chamber. Two types of gas sampling were conducted; first, 3.7 mL samples were taken for CO₂ and CH₄ analysis in the laboratory in Bristol, UK; second, 2.5 L samples were taken for halocarbon analysis by GCMS at the UK station in Svalbard. Sampling was conducted with four replicates (four chambers). Each site was analysed on a different day, with sites *snout* and *pond-mat* analysed once (4 replicates), and sites *mat*, *disturbed mat*, and *tundra* analysed twice (two separate days of four replicates each, total of eight replicates). Chambers and collars were washed with deionised water and dried with paper towels between sites to minimise contamination.

Both a laboratory and a field blank test of the flux chamber equipment was conducted by placing the chambers onto aluminium-foil trays and filling the inside of the chamber collar with a 1 cm deep layer of de-ionised water to create a seal. For the field blank tests, the aluminium-foil trays were placed on wooden boards (to provide a flat surface) on the ground near to site *tundra*. The blank tests were conducted with four replicates and gases were measured as in Sect. 3.2 and 3.3.

3.2 CO₂ and CH₄ sampling and analysis

CO₂ and CH₄ were sampled in duplicate at each time point using a glass gas-tight syringe (Hamilton). Samples were taken from the ambient air (time 0) and from the chamber headspace via port B (Fig. 2f, time 1 and 2). 5.5 mL of air was drawn through the tap using the syringe and flushed to ambient prior to withdrawing a further 5.5 mL of sample into the syringe. 1.5 mL of the sample was used to flush a syringe filter (0.2 μm) and needle. The remaining 4 mL of sample was aseptically injected into a 3.7 mL evacuated vial (Exetainer®; Labco) via the flushed 0.2 μm syringe-filter. Exetainers were stored (within 4 hours of sampling) and transported at +4 °C until analysis in the UK within 36 days. Exetainers have previously been shown to be suitable for storage of CO₂ and CH₄ for at least 28 days, but not as long as 84 days (Faust and Liebig, 2018), and therefore we consider the storage time of up to 36 days to have had minimal impact on the measured concentrations.

Exetainer samples were injected into an Agilent 7890A gas chromatograph (GC) fitted with a methaniser (at 395 °C) and an FID (flame ionising detector, at 300 °C). Separation of methane (CH₄) and carbon dioxide (CO₂) was achieved using a
molecular sieve 5A, 60-80 mesh, 8 ft x 1/8-inch column, held at 30 °C for 4 minutes, before being ramped at 50 °C per minute to 180 °C. Calibration standards (mixed air; BOC) were run twice daily. The percentage variance, limit of quantification and limit of detection for each gas is displayed in Table 1. Concentrations of the samples were calculated from a linear regression line (r >0.99, n=5) of manual dilutions of certified (± 5 %) standards with 5.0 grade Argon (BOC) fitted with an in-line gas desiccator. The Ideal Gas Law was used to convert gas concentrations to molar amounts which were then corrected for dilution.

3.3 Halocarbon sampling and analysis

2.5 L air samples for the analysis of halocarbons were taken using a small pump (SKC, Twin Port Pocket Pump) at 250 mL min\(^{-1}\) into 3 L Tedlar gas tight bags (polypropylene fittings, SKC). All sample bags were flushed three times with Grade 5.0 synthetic zero air (dry and CO\(_2\)-free) prior to use, with laboratory testing indicating this removed any background contamination. The length of sampling time (ten minutes) required the chambers to be sealed approximately twelve minutes apart to allow time for sampling. A sample of ambient air was taken between the sealing of the first and second chambers and again between the sealing of the third and fourth chambers. An average of the mixing ratios of two ambient measurements was used as time 0 for the four chambers. Headspace analysis of each chamber was taken after 1 and 2 hours through the extended tubing of port A to further ensure mixing of the chamber air (Fig. 2f). A 3 L sample bag flushed and filled with the synthetic air was connected to port B during sampling to maintain ambient pressure within the chamber and prevent air being drawn through the soil. 50 mL of chamber air was flushed through the port A tubing and the pump prior to taking the 2.5 L sample. Sample bags were kept in the dark until analysis (within <20 hours) at the UK station in Ny-Ålesund. Tests conducted on the sample bags found detectable but very small changes in gas concentrations 20 hours after being flushed with the standard (+0.0002 nmol CH\(_3\)Cl, -0.00001 nmol CH\(_3\)Br, +0.00001 CH\(_3\)I, +0.001 nmol CHCl\(_3\), +0.00002 nmol CHBr\(_3\), +0.00001 nmol CH\(_2\)Br\(_2\)).

Analysis of halocarbons with part per trillion (ppt) atmospheric concentrations was conducted with a custom-built adsorption-desorption system (ADS; developed by the University of Bristol; Simmonds et al., 1995) connected to an automated gas chromatograph mass spectrometer (GCMS). 1.5 L of whole-air sample was drawn through a Nafion permeation drier (continuous counter-purge of dry 5.0 ultra grade synthetic air at 170 mL min\(^{-1}\)) before being condensed onto an absorbent filled microtrap held at -50 °C using electrical resistance (Peltier device). The concentrated sample was desorbed by raising the microtrap to 240 °C using direct ohmic heating. The sample was carried through a fused silica transfer line (100 °C) by 5.0 grade Helium, purified by a Universal Trap, into a Hewlett Packard 6890A Gas Chromatograph. Separation of methyl-chloride (CH\(_3\)Cl), methyl-bromide (CH\(_3\)Br), methyl-iodide (CH\(_3\)I), dibromomethane (CH\(_2\)Br\(_2\)), chloroform (CHCl\(_3\)) and bromoform (CHBr\(_3\)) was achieved using a 25 m capillary GC column (Varian, PoraBOND Q, 320 μm i.d., 5 μm film thickness) which was held at 40 °C for 3 minutes, ramped at 22 °C min\(^{-1}\) to 84 °C and held for 1 minute, then ramped at 22 °C min\(^{-1}\) to 250 °C.
where it is held for 37.73 minutes (total time: 49 minutes). Samples were identified from their fragmentation spectra using a Hewlett Packard 5973 Mass Spectrometer Detector (quadrupole at 150 °C, source at 230 °C) scanning for selected ion masses (Table 1). Bromochloromethane (CH$_2$BrCl) and diiodomethane (CH$_2$I$_2$) were also scanned for (target ions of 128 and 268, respectively; qualifier ions of 130 and 141, respectively). CH$_2$BrCl was present in only trace amounts in the standard (below the limit of detection) and was thus not quantifiable. CH$_2$I$_2$ is discussed in this manuscript based on relative changes to the peak area. CH$_3$I was not present in the standard. This is likely due to its exceptionally short atmospheric lifetime (0.003 days; Law et al., 2006) meaning its highly unlikely to persist in the ambient atmosphere, from which the standard was made. CH$_3$I was not detected during the experiments either, which follows with previous research that has only identified its production in marine environments, particularly by macroalgae and sea-ice microalgae (Carpenter et al., 2000, 2007).

Quantification of compounds was determined using GCWerks software (gcwerks.com) from the average peak area of the two closest standard analyses, which were run every second sample. The standard was cryo-filled from the ambient air on 11th January 2017 at the Norwegian Zeppelin Observatory (operated by the Norwegian Institute for Air Research, NILU), 2 km south of Ny-Ålesund at 475 m a.s.l. on Zeppelin Mountain. The standard was calibrated on the Zeppelin Medusa (part of the Advanced Global Atmospheric Gases Experiment (AGAGE; Prinn et al., 2018)) using tertiary standards linked to the primary standards prepared at Scripps Institution of Oceanography (SIO) for CH$_3$I and CH$_3$Br (SIO-05 calibration scale), and for CHCl$_3$ (SIO-98 calibration scale). CH$_3$I, CHBr$_3$ and CH$_3$Br$_2$ are calibrated via AGAGE tank comparisons carried out in Boulder, Colorado against National Oceanic and Atmospheric Administration (NOAA) calibration scales (CH$_3$I, NOAA-2004; CHBr$_3$, NOAA-2003; CH$_3$Br$_2$, NOAA-2003) using SIO tanks T-005B, T-009B and T-102B. Due to the increased number of steps to transfer these calibration scales, flux calculations for these three species have an additional error associated with them. The detection limit (three times the baseline noise), limit of quantification (variance) and standard concentration for each halocarbon is displayed in Table 1. The Ideal Gas Law was used to convert gas concentrations to molar amounts. The dilution from the synthetic air bag used to maintain ambient pressure during sampling was corrected for by accounting for the moles of gas removed during sampling at each time point. The results are presented as daily fluxes in nanomoles per metre squared of land surface per day (nmol m$^{-2}$ d$^{-1}$). Daily fluxes were calculated from the change in the number of moles of gas present in the headspace over the first hour of the experiment, corrected for the mean change in moles during the first hour of the field blank tests. These mean blank changes were: $+0.02$ nmol CH$_3$I m$^{-2}$; $+0.01$ nmol CH$_3$Br m$^{-2}$; -0.003 nmol CH$_3$I m$^{-2}$; -0.03 nmol CHCl$_3$ m$^{-2}$; -0.01 nmol CHBr$_3$ m$^{-2}$; -0.002 nmol CH$_3$Br$_2$ m$^{-2}$. Mean daily fluxes are presented ± 1 standard deviation. The daily fluxes were calculated from the change in moles in 1 hour because the majority of the 2 hour total change occurred within the first hour. For example, 78 to 90 % of the initial moles of CH$_3$I and CH$_3$Br present in the chamber were consumed within the first hour at sites established mat and tundra, with only 0.01 to 4 % of additional consumption in the second hour. For the gases that were emitted, a similar pattern emerged where the proportion of gas emitted in the first hour of the total amount of gas emitted over the 2 hour experiment was an average of 59 % of CHCl$_3$, 61 % of CHBr$_3$ and 60 % of CH$_3$Br$_2$ at sites established mat and tundra. Presumably the slowdown in the rate of change after 1 hour was due to reactants being consumed
from the air trapped inside the chamber. Because of this, we advocate that our daily flux rates (nmol m\(^{-2}\) d\(^{-1}\)) are a minimum estimate.

3.4 Physical, chemical and biological sampling and analysis

3.4.1 In-field measurements and sampling

The internal chamber temperature was recorded at 5 minute intervals (Tinytag loggers; Gemini) and an average was calculated for the 2 hour duration of each experiment. At the end of the incubation, the chamber tops were carefully removed without disturbing the sediment surface. Aliquots of sediment (~1 g) from the centre of each collar were taken aseptically using 15 mL sterile falcon tubes. These samples were frozen at -20 °C within 4.5 hrs of sampling and were transported and stored at this temperature until analysis of cell numbers in Bristol within 55 days or less.

After the sterile samples were conducted, a soil moisture sensor (ML3 ThetaProbe, accuracy of ±1 %) was used to measure the volumetric water content of the sediment in each quarter (0.03 m\(^2\)) of the chamber. Small cores (~ 4 cm deep) of the sediment were taken from the centre of two opposite quarters of the chambers’ footprint. The cored samples were broken up and dried for 20 hours at 60 °C prior to transport to the UK for soil texture, total carbon (TC) content, total nitrogen (TN) content, and organic matter (OM) content analyses.

In the centre of each chamber, a corer was used to determine the depth of the water table. In some cases the water table could not be reached due to the presence of high numbers of large (> 5 cm diameter) rocks in the near sub-surface which were not practical to dig through.

3.4.2 Organic matter, total nitrogen, total carbon and soil texture

Prior to OM, TC and TN content and soil texture analyses, plant roots (present at site *tundra*) and pieces of cyanobacterial mat (present at site *established mat*) were removed with tweezers from the dried samples. Additionally, a sieve was used to remove small roots (> 2 mm) from the site *tundra* samples but it was not possible to remove roots smaller than this.

Samples for OM, TC and TN content analyses were re-dried at 105 °C for 19 hours to ensure removal of water. Approximately 4 g of a known weight of the dried-sample from each quarter-chamber core was then furnace at 450 °C for 5 hours to determine the OM content (weight %) by mass loss on ignition. The larger weight of sample used here meant that some very small roots were likely present in these samples and may inflate the values. In comparison, TC and TN content was analysed on less than 20 mg of sample meaning no root matter was likely to be present.
An Elemental Analyser 1110 fitted with a TCD (temperature controlled detector) was used to measure percentage weight of TC and TN in an 8 to 19 mg, < 250 µm, well-mixed aliquot of the re-dried core sample by flash heating to 1000 ºC. TC and TN contents were quantified using a certified Aspartic acid standard containing 36.14 % C and 10.49 % N. This method has an LOD of 0.01 % for both TC and TN and a precision of 0.06 % for TC and 0.01 % for TN (n=6) as determined from a soil standard containing 2.29 % TC and 0.21 % TN.

To determine the heterogeneity and average size of grains at each site, the remaining approximately 10 g of re-dried core sample was sieved to determine the percentage weight of the sample with grain sizes greater and smaller than 2 mm.

3.4.3 Bacterial abundance

Counts of bacteria were conducted after methodology detailed by Bradley et al., (2016). Briefly, upon analysis, the samples were defrosted and 100 mg sub-sampled into sterile microcentrifuge tubes (1.5 mL, Eppendorf). The sample was diluted with 932 µL of Milli-Q (MQ) water (0.2 µm filtered) and fixed in 68 µL of 0.2 µm filtered 37 % formaldehyde (final concentration of 2.5 %). Samples were vortexed for 10 seconds (s) and sonicated for 1 minute at 30 ºC to disaggregate soil particles and separate the cells from them. The sample was then vortexed for 3 s with 10 µL of fluorochrome DAPI (4',6-diamidino-2 phenylindole) prior to being incubated for 10 minutes in the dark. The stained sample was vortexed for 10 s and 100 µL of this was filtered through a black Polycarbonate filter paper (0.2 µm pore size, 25 mm diameter) and then rinsed with 250 µL of MQ water (0.2 µm filtered). Bacterial cells were counted under UV light at 1000 X magnification using an Olympus BX41 microscope. MQ water (0.2 µm filtered) was used to wash the filtering apparatus between each sample. Blank controls, to which no soil or sediment was added, were dispersed throughout the samples. Ten random grids (each 10³ µm²) were counted per sample. The number of cells per gram of wet weight sample was calculated. Cell numbers for the blank controls were below 50 cells mL⁻¹.

3.5 Statistical analysis

Differences between mean halocarbon fluxes from different sites were determined at the 95% confidence level (p-values < 0.05) using pair-wise Welch two sample t-tests conducted in R (version 3.02.1, 2015). Correlations between halocarbon fluxes and the physical, chemical and biological variables are estimated and presented using the “corrplot” package in R (Wei and Simko, 2017). An average value per chamber was calculated for the physical and chemical variables where multiple analyses were conducted at each chamber (OM, TC, TN and texture; n=2). Matrices were produced from the data for all sites combined and from the data for three individual sites: disturbed mat, established mat and tundra. The individual site matrices were generated because of the disparity in land surface “type” between sites which results in large variation in physical, chemical
and biological variables. Bacterial cell numbers were excluded as a variable for the “within site” correlation matrices because the four measurements conducted per site were deemed too few to be included in the analysis. Similarly, matrices were not produced for sites snout and pond-mat which only had four halocarbon flux data points each.

3.6 Calculation of regional fluxes

3.6.1 Calculation of total glacier forefield fluxes in the Arctic

To determine if halocarbon fluxes from glacier forefields were important regionally, we calculated an Arctic forefield total flux. First, we assumed an averaged flux for each halocarbon across the Midtre Lovenbreen forefield by subdividing the land surface into thirds. The first third is represented by fluxes from sites snout and pond-mat, the middle by fluxes from sites disturbed and established mat, and the final third by fluxes from site tundra. This gave an average forefield flux of -62 nmol CHCl₃ m⁻² d⁻¹, -1.0 nmol CHBr₃ m⁻² d⁻¹, -0.04 nmol CHI m⁻² d⁻¹, 56 nmol CHClBr m⁻² d⁻¹, 0.5 nmol CHBr₃ m⁻² d⁻¹ and 0.4 nmol CH₂Br₂ m⁻² d⁻¹. The total area of glacier forefields across the Arctic has not been measured. Therefore, we assume that the size of Midtre Lovenbreen’s forefield (2.7 x 10⁶ m²) is representative and combine this area with an estimated 9996 land terminating glaciers (minimum elevation > 50 m above sea level) located above 60⁰N (WGMS, 2012), to calculate a total Arctic forefield land surface area of 2.7 x 10¹⁰ m². The estimated Arctic forefield land surface area was combined with the average forefield halocarbon fluxes and an assumed growing season of 100 days (with negligible fluxes out with this time) to calculate the regional source and sink of each halocarbon in moles and tonnes per year. The growing season length of 100 days was determined as the approximate average number of days with no ground snow-cover (as determined by others e.g. Bekku et al. (2003)) measured at Ny-Ålesund weather station from 2009-2017 (102 ± 26 days; Gjelten, 2018). We assume that the net flux of all gases is zero when outside of the growing season due to snow-cover, low light (including no light during polar night) and low temperatures which would inhibit or reduce the rate of consumption or production processes in the soils to negligible or near-negligible rates. This would follow results from studies on other gas fluxes from soils during winter, e.g. CO₂ consumption was determined to be 1-2 orders of magnitude lower in winter than in summer in Alaskan tundra (Welker et al., 2000). However, the confirmation of halocarbon fluxes outside of the growing season cannot be definitively determined without further field studies.

3.6.2 Calculation of Arctic tundra fluxes

For the halocarbons (CHBr₃ and CH₂Br₂) that have not been measured on tundra before, we calculate an Arctic tundra flux based on calculations by Rhew et al. (2007) as follows. We assume that the growing season lasts 100 days (with negligible fluxes out with this time, see Sect 3.6.1) and that the area of the Arctic tundra is 7.3 x 10¹² m² (Matthews, 1983). By assuming our site tundra fluxes are broadly representative of tundra as a whole, the average fluxes of CH₂Br₂ and CHBr₃ measured at
site tundra in nmol m$^{-2}$ d$^{-1}$ are combined with the Arctic tundra area and growing season length to calculate an annual Arctic flux in moles of gas per year, which was converted to Gigagrams of gas per year.

4 Results

4.1 Physical, chemical and biological differences between sites

The environmental context for the halocarbon fluxes measured here was provided by the inter- and intra-site variation of the following physical, chemical and biological parameters (Fig. 4). Volumetric water content and water table depth both varied between and within sites with highest water content at site tundra (50% v/v) but shallowest water tables at site disturbed mat (Fig. 4 a-b). The texture of the sediment in the top 5 cm at the sites illustrated the heterogeneity of the moraine and fluvial outwash landscape, with near 100% grains < 2 mm in diameter representing low-energy and sheltered environments at sites tundra and pond-mat compared to more variation at the other three sites (Fig. 4c).

The chemical and biological parameters describe the increasing soil development with distance from the glacier’s snout, and therefore with exposure age. For example, bacterial cell abundances increased with distance from the glacier’s snout, with highest mean abundances at sites established mat and tundra of 3.2 x 108 cells [g sediment]$^{-1}$, compared with 0.6 x 108 cells [g sediment]$^{-1}$ at site snout (Fig. 4g). The highest soil contents of OM, TC and TN were all measured at site tundra (Fig. 4d-f). Net emission of CO$_2$ was seen at the pond-mat, established mat and tundra sites, with fluxes spanning zero at the snout and disturbed-mat sites. CH$_4$ emission was highest at site pond-mat with some consumption measured at site tundra.

4.2 Halocarbon fluxes

The behaviour of the halocarbons over each surface type is broadly dictated by the compound type: mono-halogenated compounds (CH$_3$Cl, CH$_3$Br, CH$_3$I) were either consumed or fluctuated around zero, whereas polyhalomethanes (CHBr$_3$, CHCl$_3$, CH$_2$Br$_2$) were emitted from all surfaces (Fig. 5). The mono-halogenated compounds were strongly and consistently drawn down at sites established mat and tundra with mean fluxes of -106 ±7 and -126 ±4 nmol m$^{-2}$ d$^{-1}$, respectively for CH$_3$Cl, -1.7 ±0.1 and -1.8 ±0.04 nmol m$^{-2}$ d$^{-1}$, respectively for CH$_3$Br and -0.10 ±0.03 and -0.13 ±0.03 nmol m$^{-2}$ d$^{-1}$, respectively for CH$_3$I. A minor drawdown of CH$_3$Cl (-11 ±5 nmol m$^{-2}$ d$^{-1}$) and CH$_3$Br (-0.3 ±0.1 nmol m$^{-2}$ d$^{-1}$) occurred at site pond-mat, with near zero fluxes at site snout. Large variations in CH$_3$I were recorded at sites snout, pond-mat and disturbed mat.

The polyhalomethanes were emitted from all surfaces, although the emission was relatively small at site snout. For CHCl$_3$, the site with the highest mean flux of 105 ±42 nmol m$^{-2}$ d$^{-1}$ was site established mat. However, due to the variation of CHCl$_3$,
fluxes, this was not statistically different from the mean *tundra* flux of 74 ±33 nmol m⁻² d⁻¹ (p-value = 0.1). Fluxes of CHBr₃ were similarly varied, with the highest mean emission from site *disturbed-mat* of 0.7 ± 0.3 nmol m⁻² d⁻¹ being statistically similar to the flux at site *tundra* of 0.6 ± 0.1 nmol m⁻² d⁻¹ (p-value = 0.6). The highest mean flux of CH₂Br₂ was from site *tundra* (0.8 ±0.3 nmol m⁻² d⁻¹), with a smaller mean flux at sites *established-mat, disturbed-mat* and *pond-mat* (all three had a mean flux of 0.2 nmol m⁻² d⁻¹). CH₂BrCl was unquantified (Sect. 3.3) but was found to be emitted from all sites at similar relative magnitudes.

4.3 Relationships between halocarbon fluxes and physical, chemical and biological variables

To understand the different physical, chemical and biological factors associated with the halocarbon fluxes, correlations between them are presented in Fig. 6. Some of the chemical, physical and biological variables were strongly related to site location because the five sites differed in key factors such as vegetation cover and type. For example, OM, TN and TC contents were considerably higher at site *tundra* than the other sites (Fig. 4d-f). Some halocarbon fluxes also showed site-dependent variation such as the strong consumption of CH₃Cl and CH₃Br at site *established-mat* and *tundra* compared to minor drawdown at the other sites. Because of the differences in physical variables and halocarbon fluxes at each site, we calculated correlation matrices for sites *disturbed-mat, established-mat* and *tundra* separately (Fig. 6b-d). The difference between the correlations across all sites (Fig. 6a) compared with the correlations at individual sites (Fig. 6b-d) showed that relationships between the different variables are not always consistent across sites.

4.3.1 Halocarbon intercorrelations

The two groups of halocarbons, the methyl halides (CH₃Cl, CH₃Br, CH₃I) and the polyhalomethanes (CHBr₃, CHCl₃, CH₂Br₂), show similar patterns of correlation (Fig. 6a). The methyl halides were all positively correlated with each other ($r > 0.62$, $p < 0.05$), as were the polyhalomethanes, but more weakly ($r > 0.54$; correlations with CHCl₃ were not significant, $p > 0.05$). All correlations between the two groups were negative ($-0.18 < r < -0.62$; insignificant for CHBr₃ due to the weakness of the correlation; $0 > r > -0.2$, $p > 0.05$). The negative correlation between the two groups indicated that, broadly, increased consumption of mono-halogenated compounds (i.e. more negative fluxes) correlated with increased production of poly-halogenated compounds.

The relationships within and between these two groups (methyl halides and polyhalomethanes) did not always persist across the three individual site analyses. For example, at site *disturbed mat*, all the halocarbons except CH₃I were positively correlated (Fig. 6b) suggesting higher emission of the polyhalomethanes occurred with lower consumption of CH₃Cl and CH₃Br, contrary to the all-site relationship. Furthermore, there were instances where correlations across all sites appeared to be driven by the
large size of their relationship at one site. For example, the weak positive correlation across all sites between the haloforms (CHX; X = Cl, Br), CHBr and CHCl (r = 0.29), was inflated by their strong positive correlation at site disturbed mat (r = 0.98) which masked their negative correlation at sites established mat and tundra (r = -0.29 and -0.57, respectively). The results from the individual site analyses demonstrate the importance of investigating differences in halocarbon patterns by small scale geography.

4.3.2 Correlations of methyl halides and chemical, physical and biological variables

Across all sites, the mono-halogenated compounds were negatively correlated with OM, TC, TN and bacterial cell numbers with the strongest correlation for CHCl (r < -0.60), and weakest for CHI (r < -0.39), indicating greater methyl halide consumption (i.e. more negative fluxes) occurred with higher concentrations of OM, TC, TN and bacterial cells in the sediment/soil. This was largely driven by high methyl halide consumption at sites established mat and tundra where OM, TC, TN and bacterial cell contents were highest. The relationship broadly persisted at site established mat (Fig. 6c), but not at sites disturbed mat and tundra (Fig. 6b, d). Across all sites, the methyl halides were negatively correlated with water content and water table depth (r < -0.45; CHI and water table depth are insignificant) showing higher methyl halide consumption (i.e. lower fluxes) where water contents were higher, but the water table deeper. CHCl and CHBr were negatively correlated with CO2 (r = -0.41 and -0.45, respectively) indicating increased consumption correlated with CO2 fluxes tending from consumption to production (i.e. becoming more positive). The opposite relationship was seen with CH4 (r = 0.43 and 0.37), broadly indicating increased CHCl and CHBr consumption occurred with smaller CH4 fluxes, i.e. tending towards consumption.

4.3.3 Correlations of polyhalomethanes and chemical, physical and biological variables

Compared to the methyl halides, the polyhalomethanes (CHCl, CHBr and CH2Br2) generally showed opposite and weaker correlations with positive correlations with OM, TC, TN contents, bacterial cell numbers and water content (Fig. 6a). However, many of the correlations were not significant for the three gases. Across all sites, CHCl and CHBr were not strongly or significantly correlated with any variable (-0.4 < r < 0.4, p > 0.05) except bacterial cell numbers with CHCl (r = 0.67) and TC content (r = 0.41) and water content (r = 0.56) with CHBr. However CH2Br2 was strongly positively correlated with water, OM, TC and TN contents (r > 0.7), showing that increased emission of CH2Br2 was correlated with increased OM, TC, TN and water contents. CH2Br2 was negatively correlated with CH4 contents (r = -0.41) indicating greater CH2Br2 emission when CH4 fluxes tended towards consumption (i.e. lower fluxes). Similarly to the methyl halide compounds, some of the all-site relationships for the polyhalomethanes were also present within an individual site and others were not (Fig. 6 b-d). For example, an interesting intra-site trend at site disturbed mat is the very strong positive correlation between the three polyhalomethanes and temperature and OM content (r > 0.9).
5 Discussion

5.1 Influence of exposure age on halocarbon fluxes from the forefield

Terrestrial halocarbon fluxes are predominantly driven by biological processes (e.g. Amachi et al., 2001; Dimmer et al., 2001; Redeker and Kalin, 2012), and a lower prevalence of abiogenic processes which often involve oxidation of organic matter (Huber et al., 2009; Keppeler et al., 2000). Both of these processes would suggest that increasing soil development would be an important driver of halocarbon fluxes. As such, immature soils, such as those exposed by retreating ice, may be assumed to have minor trace gas fluxes in comparison to more developed soils with established biota. Further, one might expect an increase in flux magnitude as the soil develops with increasing exposure age, i.e. with greater distance from the glacier terminus. Our study does indicate that some soil development is required for most halocarbon fluxes, with the lowest mean fluxes of all gases (except for CH$_3$I) measured at the youngest site (site snout, ~5 years), which has no vegetation and very little organic matter (0.1% of soil). Whereas, site tundra, the oldest site (approximately 1950 years exposure), with full coverage of vegetation, high bacterial cell numbers (3.2×10^8 cells [g sediment]$^{-1}$), and more soil development (e.g. 6.0% OM content) had the highest mean consumption of CH$_3$Cl, CH$_3$Br and CH$_3$I, and the highest mean emission of CH$_2$Br$_2$. However, there were exceptions to this trend which imply that soil development is not the only driver of halocarbon fluxes. For example, consumption rates of CH$_3$Cl, CH$_3$Br and CH$_3$I at site established mat were similar to those seen at site tundra, despite the large difference in soil development (TC, TN and OM contents; Fig. 4). Further, fluxes at sites established mat and tundra of CH$_3$Cl (-106 ± 7 and -126 ± 4 nmol m$^{-2}$ d$^{-1}$, respectively) and CH$_3$Br (-1.7 ± 0.1 and -1.8 ± 0.04 nmol m$^{-2}$ d$^{-1}$, respectively) were within the range measured at a well-established coastal tundra site in Alaska where flooded and drained sites had respective mean fluxes of -14 to -620 nmol m$^{-2}$ d$^{-1}$ for CH$_3$Cl and +1.1 to -9.8 nmol m$^{-2}$ d$^{-1}$ for CH$_3$Br (Rhew et al., 2007). However, fluxes of CH$_3$I at site tundra and established mat (-0.13 ± 0.03 and -0.10 ± 0.03 nmol m$^{-2}$ d$^{-1}$) were negative, contrasting a mean emission of 4.0 nmol m$^{-2}$ d$^{-1}$ measured from Alaskan tundra (Rhew et al., 2007; Fig. 7).

This pattern whereby sites with younger, less-developed soils have similar fluxes to the older and developed soil of site tundra also occurred for CHCl$_3$ and CHBr$_3$ where the highest mean fluxes were measured at site established mat and site disturbed mat, respectively, but were statistically similar to the flux measured at site tundra ($p = 0.1$, 0.6, respectively). This is even more surprising for site disturbed mat which is completely bare of vegetation and has comparatively low bacterial cell numbers (Fig. 4g). Terrestrial fluxes of CHBr$_3$ have rarely been measured (see Sect. 5.2), whereas CHCl$_3$ emissions have been recorded, including from the Alaskan tundra where the average flux was 45 nmol m$^{-2}$ d$^{-1}$ (Rhew et al., 2008). Mean emissions of CHCl$_3$ were larger at sites tundra and established mat and similar at site disturbed mat (74, 106 and 43 nmol m$^{-2}$ d$^{-1}$, respectively).

Considerable variability of CHCl$_3$ fluxes were measured, with the range for site tundra of 23 to 128 nmol m$^{-2}$ d$^{-1}$ and the range for site established mat of 64 to 183 nmol m$^{-2}$ d$^{-1}$. This variability in CHCl$_3$ fluxes is less than, but comparable to, the variation measured at the Alaskan tundra of <1 to 260 nmol m$^{-2}$ d$^{-1}$ (Rhew et al., 2008). We have demonstrated that younger surfaces can be sources of CHCl$_3$ and CHBr$_3$ and sinks of CH$_3$I and CH$_2$Br$_2$ despite their lesser soil development and lower microbial...
and plant presence. In particular, it appears the presence of cyanobacterial mats negates the requirement for a more developed soil. To our knowledge, no studies have been conducted upon halogenated trace gas fluxes from cyanobacteria mats or freshwater cyanobacteria, although marine cyanobacteria have been suggested to be involved in production of CH$_2$Br$_2$, CHBr$_3$ and CH$_3$I (Karlsson et al., 2008; Roy et al., 2011). Determining if cyanobacteria themselves, or other microorganisms present in the mat are responsible for the elevated fluxes was beyond the scope of this study.

5.2 Terrestrial emission of typically marine-origin brominated compounds

A second novel finding of this study was the emission of CHBr$_3$ and CH$_2$Br$_2$ across the glaciogenic forefield, with very small emissions at site snout, but more appreciable fluxes at all other sites (Fig. S5e-f). CHBr$_3$ and CH$_2$Br$_2$ are typically attributed to marine sources (Law et al., 2006). However, there have been limited observations of emission of both compounds from terrestrial environments. CHBr$_3$ has been observed to be emitted from rice paddies, with algae in the water column as the suggested source, however a rice-mediated production mechanism was not discounted (Redeker et al., 2003). CH$_2$Br$_2$ emissions have been observed from wet temperate peatlands, with no production mechanism suggested (Dimmer et al., 2001). Emission of CHBr$_3$ has been observed, but not quantified, from the transitional terrestrial-marine environment of a coastal wetland, where it was shown to be abiogenic in origin (Wang et al., 2016). Further, abiogenic production of CHBr$_3$ through the oxidation of organic matter by Fe(III) and H$_2$O$_2$ when halide ions are present has been documented in a laboratory based soil study (Huber et al., 2009). The largest flux of CH$_2$Br$_2$ is measured at site tundra which is analogous to an Arctic peatland ecosystem, and thus complements the emissions measured from temperate peatlands in Ireland (Dimmer et al., 2001). Our results provide further evidence of the emission of these two compounds in a terrestrial environment, and the first evidence of terrestrial emission of these compounds in the Arctic.

5.3 Controls on halocarbon fluxes across the forefield

5.3.1 Biological consumption of methyl halides and abiogenic production of CH$_3$I

Methyl halides were primarily consumed on the glacier forefield, with all three compounds consistently consumed at sites established mat and tundra but with fluxes of CH$_3$I in both directions at sites snout, pond-mat and disturbed mat. The strong inter-correlations between different methyl halides suggest a similar consumption mechanism, particularly between CH$_3$Cl and CH$_3$Br. Strong correlations between CH$_3$I and CH$_3$Br have been found elsewhere, including in the Alaskan tundra, with similar suggestions of common consumption mechanisms or common limiting factors (Rhew et al., 2007). We suggest that the consumption of all three methyl halides observed across the forefield is driven by prokaryotic degradation, which is supported by methyl halide fluxes being correlated with bacterial cell concentrations ($r < -0.52$) and net microbial respiration (CO$_2$ emission; $r < -0.41$, not significant for CH$_3$I). Both biogenic and abiogenic (through organic matter oxidation) soil production mechanisms of CH$_3$I have previously been demonstrated (Amachi et al., 2001; Keppler et al., 2000). However, these mechanisms are not strongly supported here as CH$_3$I is emitted at the sites (snout, pond-mat, disturbed mat) with the lowest
bacterial concentrations and lowest organic matter contents (0.1-0.6 %). Identifying the CH$_3$I production mechanism would require further study.

5.3.2 Inconclusive influence of water content on methyl halide fluxes

Several studies have identified the importance of soil water content for CH$_3$X fluxes, with very low water contents limiting biological activity and high water contents limiting the mass transfer of reactants during CH$_3$X formation and degradation (Khan et al., 2012; Rhew et al., 2010; Teh et al., 2009). We find that increasing water content was correlated to greater consumption of CH$_3$X across all sites, despite high water contents (> 40 % v/v). This is driven largely by high water contents at site _tundra_ where the highest consumption of CH$_3$X was found, presumably due to the more developed soils and biota at this site. Within site _tundra_ the relationship with water content persists, in contrast to the Alaskan tundra studies which found that decreasing water content was the key factor causing increased consumption of CH$_3$Cl and CH$_3$Br (Teh et al., 2009). Our results are not consistent with this finding perhaps due to the noise caused by a small within-site sample size (n = 8) coupled with a smaller range of water volumes measured here (40-60 %, compared to < 30 to > 70 % in the Alaskan study). Further, the relationship between CH$_3$X and water content implied greater consumption in more _anoxic_ soils, however, higher consumption of CH$_3$X was found to occur where fluxes of CH$_4$ are tending towards the aerobic process of consumption, as found in the Alaskan tundra (Rhew et al., 2007). The contradiction between water content and aerobic CH$_4$ consumption shown here further indicates that more within-site data is required, as the disparity in the CH$_3$X fluxes of the different sites drives the all-site relationships.

5.3.3 Biogenic and abiogenic production of polyhalogenated species

Biogenic production mechanisms of CHCl$_3$, CHBr$_3$, and CH$_2$Br$_2$ are shared (haloperoxidase activity), as is the abiogenic production mechanism of the haloforms (CHX$_3$; Huber et al., 2009; Manley, 2002). If either biogenic or abiogenic processes were the sole source of the polyhalogenated species, then we would expect that, at least, CHX$_3$ fluxes would be correlated. However, CHCl$_3$ and CHBr$_3$ are not well correlated across all sites ($r = 0.29$, $p > 0.05$) suggesting different sources of these compounds within or between sites. Here, CHCl$_3$ is strongly correlated to bacterial cell numbers, but CHBr$_3$ is not, which tentatively suggests that CHCl$_3$ is produced biologically. At sites _established mat_ and _tundra_, CHCl$_3$ and CHBr$_3$ were not significantly correlated suggesting multiple sources or a possible unknown consumption process. There is no evidence prior to this study that terrestrial or freshwater cyanobacteria are involved in halocarbon production. However, marine cyanobacteria have been implicated in the production of CHBr$_3$ and CH$_2$Br$_2$ and the bromoperoxidase enzyme has been identified in some marine species (Johnson et al., 2011; Karlsson et al., 2008). The highest emissions of CH$_3$Br$_2$ at site _tundra_, could be due to a different microbial community make-up or a plant-mediated process. We suggest that a possible mixture of abiogenic and biogenic production mechanisms are responsible for CHCl$_3$ and CHBr$_3$ emissions, whereas CH$_2$Br$_2$ emissions seem more likely to be driven biologically.
5.4 Glacier forefields as a source and sink of halocarbons?

Determining the local or regional importance of forefield halocarbon fluxes would require further study into diurnal, seasonal and spatial variations. However, estimations of the yearly regional source or sink of each gas is still worthwhile, particularly for CHBr3 and CH2Br2 for which no prior fluxes have been measured from terrestrial Arctic environments. We calculate an Arctic tundra source of 0.11 and 0.09 Gg Br yr⁻¹ for CHBr3 and CH2Br2, assuming that no production occurs outside of the growing season (Sect. 3.6.2). The sources are minor compared to the estimated global sources of 120-820 Gg Br yr⁻¹ for CHBr3 and 57-100 Gg Br yr⁻¹ for CH2Br2, which are primarily oceanic in origin (Carpenter et al., 2014; Engel et al., 2018). To determine if our tundra source has regional significance, we estimate the proportion of the global flux that may occur in the Arctic assuming the global source is equally distributed over the earth’s surface, and using an Arctic surface area (area north of the Arctic circle) of 4% of the earth’s total. The tundra source would be an estimated 0.3-2 % of CHBr3 and 2-4 % of CH2Br2 of the estimated total Arctic source of 5-33 Gg Br yr⁻¹ for CHBr3 and 2-4 Gg Br yr⁻¹ for CH2Br2. Further, global sources are dominantly marine, and although Arctic macroalgae are a source of both gases (Laturnus, 1996), polar oceans as a whole have been suggested to be a sink (e.g. Chuck et al., 2005; Ziska et al., 2013; Fig. 7). Therefore, a terrestrial Arctic source could be more regionally important than estimated here.

For the other halocarbons analysed across the glacier forefield, we calculated a potential regional forefield flux from an estimated Arctic forefield land area (Sect. 3.6.1). Small net sinks of 8 tonnes yr⁻¹ of CHCl3, 0.2 tonnes yr⁻¹ of CHBr3, 0.01 tonnes yr⁻¹ of CH3I, and small net sources of 18 tonnes yr⁻¹ of CHCl3, 0.2 tonnes yr⁻¹ of CHBr3 and 0.3 tonnes yr⁻¹ of CHBr3 were calculated. All of these are minor compared to global fluxes, due to the relatively small area of land covered by glacier forefields. Fluxes from the Alaskan tundra, which were similar to our fluxes for established mat and tundra, were found to be regionally important, where they represent the equivalent of approximately 20-25 % and 10-15 % of the seasonal variation in the Arctic troposphere of CHCl3 and CHBr3, respectively (Rhew et al., 2007). However, our estimated forefield land surface area is 2 orders of magnitude smaller than the estimated area of Arctic tundra (7.3 x 10¹² m²) meaning even within the Arctic troposphere the glacier forefield sink of CHCl3 and CHBr3 is insignificant.

Although our daily fluxes are likely an underestimate (due to calculation from concentration change over 1 hour, after the rate of change had slowed; Sect. 3.3), the magnitude of this underestimate will not be large enough to alter the significance of the total gas fluxes regionally. Despite all halocarbons studied here appearing to represent only minor fluxes globally and regionally, this study has shown the potential for younger surfaces to be involved in halocarbon flux processes which may become more important due to expansion of these surfaces under future warming.
6 Conclusions

We present the first measurements of halocarbon fluxes from glacier forefield land surfaces, showing an overall net sink of CH₃Cl, CH₃Br and CH₃I and net source of CHCl₃, CHBr₃ and CH₂Br₂. Relatively young, under-developed soils exposed by glacial retreat can have similar fluxes of halocarbons to older, more developed soils, particularly where cyanobacterial mats have formed. We have shown that surfaces covered in these mats are sinks of CH₃Cl, CH₃Br, CH₃I and sources of CHCl₃ and CHBr₃. The latter two gases also show appreciable fluxes even from bare sediment adjacent to cyanobacterial mats. This is the first research known to us conducted on terrestrial cyanobacteria, and additionally we have provided rare terrestrial flux measurements of CHBr₃ and CH₂Br₂. Future work should: identify if cyanobacteria themselves or other microbes are responsible for the high fluxes over the mats; improve the spatial and temporal distribution of these measurements, including conducting measurements outside the growing season; conduct gas analyses at less than 1 hour intervals to reduce the suspected underestimation of the flux calculations; and identify if other terrestrial environments emit CHBr₃ and CH₂Br₂, particularly in areas where the fluxes might be higher (i.e. in more developed and more active soils) and therefore more regionally important. The significance of glacier forefield fluxes may become more important in the future with continuing change in the Arctic and the resultant retreat of glacial systems and exposure of land.

7 Data availability

Raw data supporting the conclusions and used to create the figures of this manuscript are available at doi: 10.6084/m9.figshare.8081129

8 Author contributions

MLM and J LW conceived the study. MLM, DY and GLG conducted the field work. SO, CL and OH supplied resources integral to the fieldwork. MLM conducted the analysis with assistance from DY. MLM prepared the manuscript with review and comments provided by all authors.

9 Competing Interests

The authors declare that they have no conflict of interest.

10 Acknowledgements

We would like to thank Nathan Chribmas for assistance in the field, and Nicholas Cox and Malcolm Airey for logistical support at the UK Arctic Research Station in Svalbard. Dr. Fotis Sgouridis is also thanked for laboratory support in the LOWTEX
Laboratory at the University of Bristol. This work was funded by a GW4+ Doctoral Training Partnership studentship awarded to MLM by the Natural Environment Research Council [NE/L002434/1], with additional funding from an SSF Arctic Field Grant awarded to MLM and CL [257104/E10].

References

Rhew, R. C., Teh, Y. A. and Abel, T.: Methyl halide and methane fluxes in the northern Alaskan coastal tundra, J. Geophys.

Figure 1: Locations of sites snout (A), pond mat (B), disturbed mat (C), established mat (D) and tundra (E) on the forefield of Midtre Lovenbreen glacier (white). The moraine field is denoted in dark grey, the maximum extent of which marks the furthest extent of the glacier during the Little Ice Age. Data used to create the base map from: Norwegian Polar Institute (2014).
Figure 2: The visible differences in land-surface type and colonising species at site snout (a), pond-mat (b), disturbed mat (c), established mat (d) and tundra (e), and a schematic diagram of the flux chamber’s design showing sampling ports, fan and temperature logger (f). The width of the chamber collar in (a)-(e) is 0.39 m.
Figure 3: Comparison of the gas fluxes (nmol m⁻² d⁻¹) in un-darkened (light) and darkened (dark) chambers for CH₃Cl (a), CH₃Br (b), CH₃I (c) from preliminary experiments in 2016. Error bars show the standard deviation.
Figure 4: Variation at each site of soil water content (a), water table depth (b), weight % of grains < 2 mm diameter (c), organic matter content (d), total carbon content (e), total nitrogen content (f), bacterial cell numbers (g), CO₂ flux (h) and CH₄ flux (i). Horizontal black bar represents the median, red diamonds the mean for each site, open circles are outliers. “dist. mat” is site disturbed mat, “est. mat” is site established mat. Water table was not measurable for site pond-mat due to rocky ground.
Figure 5: Daily fluxes (nmol m$^{-2}$ d$^{-1}$) at each site of CH$_3$Cl (a), CH$_3$Br (b), CH$_3$I (c), CHCl$_3$ (d), CHBr$_3$ (e), CH$_2$Br$_2$ (f). Red diamonds represent the mean flux for each site. “dist. mat” is site disturbed mat, “est. mat” is site established mat.
Figure 6: Correlations between halocarbon fluxes and the chemical, physical and biological variables across all sites (a), site disturbed mat (b), site established mat (c) and site tundra (d). White stars indicate correlations with 95% confidence ($p < 0.05$).
Figure 7: Schematic diagram summarising natural sources and sinks for the 6 halocarbons of interest in polar regions with fluxes measured in this manuscript (8 and 9 highlighted in orange). The sources/ sinks are as follows: (1) UV photolysis sink, (2) reaction with OH• sink, (3) photochemistry in snow source, (4) microbial activity in snow source, (5) sea-ice microalgae source, (6) open ocean sink, (7) macroalgae source, (8) forefield sink, (9) forefield source, (10) tundra source, (11) tundra sink. (CH₃X = CH₃Cl, CH₃Br, CH₃I). References for the presence of each flux is as follows: 1, 2 (see Montzka et al. (2013) for review), 3 (Swanson et al., 2007), 4 (Redeker et al., 2017), 5 (Laturus et al., 1998; Sturges et al., 1993), 6 (Stemmmer et al., 2014; Ziska et al., 2013), 7 (Laturus, 1996, 2001), 8 and 9 (this study), 10 (Albers et al., 2017; Rhew et al., 2008), 11 (Rhew et al., 2007).
Table 1: The standard concentration, limit of quantification (standard deviation, st. dev.) and limit of detection (LOD) for each gas analysed, with the target ion and qualifier ion(s) (m/z; mass/charge) shown for gases analysed by GCMS. (*) ppt for the halocarbons, ppm for CO\textsubscript{2} and CH\textsubscript{4}. (NA) not applicable to the method of measurement. “equi.” is short for equivalent.

<table>
<thead>
<tr>
<th>Units</th>
<th>CH\textsubscript{3}Cl</th>
<th>CH\textsubscript{3}Br</th>
<th>CH\textsubscript{3}I</th>
<th>CHCl\textsubscript{3}</th>
<th>CHBr\textsubscript{3}</th>
<th>CH\textsubscript{2}Br\textsubscript{2}</th>
<th>CO\textsubscript{2}</th>
<th>CH\textsubscript{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target ion</td>
<td>m/z</td>
<td>52</td>
<td>94</td>
<td>142</td>
<td>83</td>
<td>171</td>
<td>174</td>
<td>NA</td>
</tr>
<tr>
<td>Qualifier ion(s)</td>
<td>m/z</td>
<td>50</td>
<td>96</td>
<td>127</td>
<td>85</td>
<td>173, 175</td>
<td>93, 95</td>
<td>NA</td>
</tr>
<tr>
<td>Standard conc.</td>
<td>ppt / ppm*</td>
<td>530</td>
<td>6.4</td>
<td>0.47</td>
<td>16.7</td>
<td>2.8</td>
<td>1.3</td>
<td>405.6</td>
</tr>
<tr>
<td>St. dev. (n=49)</td>
<td>%</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1.7</td>
</tr>
<tr>
<td>St. dev.</td>
<td>nmol m-2</td>
<td>0.1</td>
<td>0.007</td>
<td>0.0001</td>
<td>0.002</td>
<td>0.0008</td>
<td>0.0002</td>
<td>0.02</td>
</tr>
<tr>
<td>LOD</td>
<td>nmol m-2 d-1</td>
<td>2</td>
<td>0.02</td>
<td>0.003</td>
<td>0.05</td>
<td>0.02</td>
<td>0.005</td>
<td>0.5</td>
</tr>
<tr>
<td>LOD, equi.</td>
<td>nmol m-2 d-1</td>
<td>0.01</td>
<td>0.003</td>
<td>0.0001</td>
<td>0.002</td>
<td>0.004</td>
<td>0.0009</td>
<td>0.003</td>
</tr>
<tr>
<td>LOD, equi.</td>
<td>nmol m-2 d-1</td>
<td>0.3</td>
<td>0.07</td>
<td>0.003</td>
<td>0.04</td>
<td>0.09</td>
<td>0.02</td>
<td>0.07</td>
</tr>
</tbody>
</table>