
Responses to reviews of “Technical Note: Equilibrium droplet

size distributions in a turbulent cloud chamber with uniform

supersaturation” by Krueger (acp-2019-932)

1 Reviewer Comments 1

The author thanks Reviewer 1 for his/her careful reading of the manuscript and helpful
suggestions and comments. All were incorporated.
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Printer-friendly version

Discussion paper

Specific Comments

Size distribution at r = ra

From Eq. (9), it can be written as below

v(ra) =
ra

⇠

Z ra

r0

A(r)dr.

On the other hand, from the general solution Eq. (12),

v(r) = Drexp(�Cr4/4).

Does this mean that Eq. (9) can be related to Eq. (12) by substituting r = ra in Eq.
(12)? I think it might be informative for readers if the author adds an explanation on
how Eq. (9) is connected to the general solution Eq. (12).

Nominal supersaturation in Fig. 6

In page 14, line 4, the author cites Rogers and Yau (1989) and explains that the crit-
ical radius for injected NaCl particles is about r⇤ ⇠ 0.6µm. I think the same textbook
also gives an estimation of the critical supersaturation for those particles and I expect
it to be about S⇤ ⇠ 0.1%. On the other hand, according to Figure 6, the inferred nom-
inal mean supersaturations for the Pi-chamber experiments with two largest number
densities of cloud droplets are smaller than 0.01% (Snominal < 0.01%). This seems
somehow strange, because aerosol particles cannot be activated to cloud droplets if
the supersaturation Snominal is much smaller than the critical supersaturation S⇤. Does
the author have possible explanations for this apparent discrepancy? If so, providing
those explanations in the manuscript might be helpful for readers.

C3

RESPONSE: Eq. (12) is now solved for D when r = ra. The resulting expression is
given by Eq. (13) which contains the boundary condition, v(ra)/ra given by Eq. (9). The
link between Eq. (12) and Eq. (9) should now be clear.
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On the other hand, from the general solution Eq. (12),

v(r) = Drexp(�Cr4/4).

Does this mean that Eq. (9) can be related to Eq. (12) by substituting r = ra in Eq.
(12)? I think it might be informative for readers if the author adds an explanation on
how Eq. (9) is connected to the general solution Eq. (12).

Nominal supersaturation in Fig. 6

In page 14, line 4, the author cites Rogers and Yau (1989) and explains that the crit-
ical radius for injected NaCl particles is about r⇤ ⇠ 0.6µm. I think the same textbook
also gives an estimation of the critical supersaturation for those particles and I expect
it to be about S⇤ ⇠ 0.1%. On the other hand, according to Figure 6, the inferred nom-
inal mean supersaturations for the Pi-chamber experiments with two largest number
densities of cloud droplets are smaller than 0.01% (Snominal < 0.01%). This seems
somehow strange, because aerosol particles cannot be activated to cloud droplets if
the supersaturation Snominal is much smaller than the critical supersaturation S⇤. Does
the author have possible explanations for this apparent discrepancy? If so, providing
those explanations in the manuscript might be helpful for readers.

C3RESPONSE: This comment motivated an important extension to the original study.
The apparent discrepancy occurs because the analytic solution omits droplet curvature
and solute effects, and therefore exhibits no dependence on aerosol properties, and does
not have a critical supersaturation. In response, I modified the manuscript extensively in
section 6.

On page 15, I gave a more complete characterization of the aerosol size distributions
used in the cloud chamber and stated that “The potential impacts of both droplet curvature
and solute effects on comparisons of analytic and measured DSDs will be discussed below,
in section 6.2.”

I added section 6.2 (pages 17–19) on inferred mean supersaturation and droplet ac-
tivation. In this section, I noted that 99% of the injected aerosol particles have a dry
diameter less than about 170 nm. The critical supersaturation for a NaCl particle with
a dry diameter of 170 nm is 0.052%. I also noted that 6 DSDs in Figure 6 have inferred
supersaturations less than 0.052%. The rest of section 6.2 discusses the implications of this
situation. I discussed the following possibilities (excerpted from the revised manuscript):

1. Neglecting droplet curvature and solute effects in the analytic DSD governing equa-
tion produces significant underestimates of the inferred supersaturations. It could be
that once curvature and solute effects are included in the droplet growth equation,
the inferred mean supersaturations for all 11 measured DSDs will be large enough to
activate at least the largest of the injected aerosols.

To investigate this possibility, we used the droplet growth equation, both with and
without the curvature and solute terms included, in the Monte Carlo model described
in section 3 to calculate mean droplet radius versus supersaturation for 100 super-
saturation values (Figure 8). Figure 8 shows that the mean droplet radius is smaller
when these terms are included, for the same fixed supersaturation. This is due to
the slower initial growth of the droplets. The differences in mean radius are largest
for supersaturations slightly larger than the critical supersaturation.

2



How do the curvature and solute terms affect the inferred supersaturation? For a
given droplet radius, the inferred supersaturation is larger with solute and curva-
ture terms included. In our specific case, Figure 8 suggests that a measured DSD
(r > 2.5 µm only) with a mean radius of about 4.4 µm or larger could have been
activated and grown with a fixed supersaturation of 0.055%. Figure 6 shows that
this requirement excludes the measured DSDs with the 5 smallest mean radii.

2. Even after including droplet curvature and solute effects, the inferred supersatura-
tions of the 5 measured DSDs with the smallest mean radii are less than the critical
supersaturation of the largest of the injected aerosols. In this case, we conclude that
there must have been supersaturation fluctuations somewhere in the cloud chamber
that exceeded the critical supersaturation for at least the larger injected aerosols.
There are two possible situations:

(a) Large supersaturation fluctuations occur only near the bottom and top bound-
aries of the cloud chamber, as is typical of Rayleigh-Bénard convection. In this
case, it could be that activated droplets are transported away from the bound-
aries and then continue to grow consistent with inferred mean supersaturations
calculated with droplet curvature and solute effects included. This scenario is
analogous to droplets growing in a cumulus updraft: The droplets are activated
by relatively large supersaturations just above cloud base, but then continue to
grow in lower supersaturations at higher levels (Rogers and Yau 1989).

(b) Droplet growth in the chamber for these DSDs is primarily or entirely due to
supersaturation fluctuations throughout the cloud chamber. In this case, the
analytic DSD solution, which assumes that there are no supersaturation fluctu-
ations, is not valid. Chandrakar et al. (2020b) found that analytic solutions for
DSDs when mean supersaturation is absent (but fluctuations are present) have
nearly the same shape as DSDs for no supersaturation fluctuations. As a result,
it is difficult to distinguish the two cases based only on the consistency of the
moments.

I also revised the conclusions by adding the following text to pages 25–26:

We found that neglecting the curvature and solute terms in the droplet
growth rate equation can sometimes affect the inferred supersaturations. For a
given droplet radius, the inferred supersaturation is larger with solute and cur-
vature terms included. Calculations with a Monte Carlo model with solute and
curvature terms included suggest that for the aerosols injected into the cloud
chamber, a measured DSD (r > 2.5 µm only) with a mean radius of about 4.4
µm or larger could have been activated and grown with a fixed supersaturation
of 0.055%. This excludes the DSDs with the 5 smallest mean radii. To produce
these DSDs, there must have been supersaturation fluctuations somewhere in
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the cloud chamber that exceeded the critical supersaturation for at least the
larger injected aerosols.
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Technical Corrections

1. p. 3, Sec 2.3, line 1 : u/h�t = k1r
2/h�t �! (u/h)�t = (k1r

2/h)�t
2. p. 4, line 6 : k1r

2/h�t �! (k1r
2/h)�t

3. p. 9, Figs. 3 & 4, y-axis : pdf(µm)�1) �! pdf((µm)�1) or pdf(µm�1)

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-932,
2019.

C4

All done.

2 Reviewer Comments 2

The author thanks Reviewer 2 for his/her careful reading of the manuscript and helpful
suggestions and comments. Essentially all were incorporated.

Minor Comments

Sec. 2.4 I believe that Srivastava (1991) also requires some recognition in this subsection.
He investigated, also analytically, the mean, standard deviation, and dispersion of
droplet spectra, including the effects of droplet surface tension.

Srivastava (1991) is now cited in section 2.1 (p. 3, line 9).

P. 4, ll. 28 ff. A supersaturation of 10 % is relatively high for a typical cloud. For plotting
the analytical solutions, a more realistic value of 0.1 % is used. I suggest to also use
this lower supersaturation in the Monte-Carlo calculations of section 3. However,
this will not change any conclusions.

Done. (Figures 1 and 2 replaced.)

P. 5, ll. 11–12 I would emphasize that the “stochastic nature of the droplet fallout pro-
cess” includes the assumed stochastic rearrangements of the droplets along the z-axis,
i.e., turbulent motions, since the sedimentation process itself is deterministic.

Done. (P. 5, last sentence.)

Sec. 4.2 It is possible to speed up the derivation of w(s) using v(r). . .

Replaced original derivation with this one (Sec. 4.2, pp. 7–8).

Eqs. (12) and (17) Because Eqs. (12) and (17) clearly violate the assumptions v(r0) =
w(s0) = 0, it might be helpful to state—again—that the analytical solutions are only
defined for r > ra > r0 > 0 and s > sa > s0 > 0.

Done. (P. 8. line 12).
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P. 7, l. 10 The first term of the equation contains one minus sign too much.

Eq. no longer included because of comment on Sec 4.2.

Eq. (26) Also this deviation can be shortened: . . .

Done. (Eq. (22) on p. 10.)

P. 21, l. 20 The usual citation for the phase relaxation timescale is Squires (1952).

Replaced. (P. 25, line 10.)

Technical Comments

Review of “Technical Note: Equilibrium droplet size distributions in a turbulent cloud chamber with 
uniform supersaturation” by Krueger (acp-2019-932) 
 
The submitted study investigates steady-state droplet size distributions in a turbulent environment. 
These distributions, including several moments and other quantities, are derived analytically by 
considering the microphysical processes of droplet growth by diffusion and their removal by 
sedimentation, as well as an (artificial) droplet production term. These theoretical results are 
compared with recent measurements by Chandrakar et al. (2018), adding valuable information for 
the interpretation of the aforementioned measurements but also the quantification of droplet size 
distributions by measurements in general.   
 
All in all, this well-written technical note gives new and interesting insights into the development of 
droplet size distributions. Overall, the manuscript is in an almost publishable state. Nonetheless, I 
have some very minor suggestions below. I fully support the publication of the manuscript in 
Atmospheric Chemistry and Physics.  
 
Minor Comments 
Sec. 2.4: I believe that Srivastava (1991) also requires some recognition in this subsection. He 
investigated, also analytically, the mean, standard deviation, and dispersion of droplet spectra, 
including the effects of droplet surface tension.  

P. 4, ll. 28 ff.: A supersaturation of 10 % is relatively high for a typical cloud. For plotting the analytical 
solutions, a more realistic value of 0.1 % is used. I suggest to also use this lower supersaturation in 
the Mote-Carlo calculations of section 3. However, this will not change any conclusions.   

P. 5, ll. 11 – 12: I would emphasize that the “stochastic nature of the droplet fallout process” includes 
the assumed stochastic rearrangements of the droplets along the z-axis, i.e., turbulent motions, since 
the sedimentation process itself is deterministic. 

Sec. 4.2: It is possible to speed up the derivation of !(#) using %(&).	By acknowledging that % =
*+/*& and ! = *+/*# = *+/*&-, where + is the total number of droplets, we see that *+ =
%	*& = !	*&-. Hence, ! = %/(*&-/*&) = %/(2&) = //2 exp(−4&5/4) = 7 exp(−4#-/4), using 
that 7 = //2 and # = &-.  

Eqs. (12) and (17): Because Eqs. (12) and (17) clearly violate the assumptions %(&8) = !(#8) = 0,	it 
might be helpful to state – again – that the analytical solutions are only defined for & > &< > &8 > 0	 
and # > #< > #8 > 0. 

P. 7, l. 10: The first term of the equation contains one minus sign too much.  

Eq. (26): Also this deviation can be shortened: =(>) = 1 − @(>) with @(>) already derived in Eq. 
(22). 

P. 21, l. 20: The usual citation for the phase relaxation timescale is Squires (1952). 

Technical Comments 
P. 2, l. 26: Throughout the paper, the author uses plural personal pronouns (“we” or “us”). Thus, this 
single “I” feels odd.  

P. 3, l. 27; p. 4, l. 6; p. 4, l. 26: For clarity, add parentheses to the equations for the fall out 
probability: (A/ℎ)Δt and (EF&-/ℎ)Δt instead of A/ℎΔt and EF&-/ℎΔt, respectively. 

P. 4, l. 31; p. 5, l. 9: Since the analytical solution will be introduced further below, I suggest adding a 
“to-be-determined” in front of “analytical solution”. 

P. 6, l. 1: G(&) has been previously introduced as the “production of (activated) droplets from the 
injected aerosol” (p. 3, ll. 8 – 9). Here, it is called the “production of droplets by activation”. Although 
these processes are identical in the described framework, I suggest homogenizing the terminology. 

Eq. (18): I would add a comma (“,”) to the end of the equation.  

Figs. 3 and 4: An opening parenthesis (“(”) is missing in the ordinate title.  

P. 10, l. 14: I would add a comma (“,”) to the end of the equation. 

P. 11, ll. 20 – 22: This comment feels too technical. I would omit it or state this information in a 
footnote. 
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All of these were done except for the last one. The ACP Author’s Guide states that
footnotes should be avoided, as they tend to disrupt the flow of the text. In addition, there
was not a good place to add a footnote.
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