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Abstract. The global oxidation capacity, defined as the tro-
pospheric mean concentration of the hydroxyl radical (OH),
controls the lifetime of reactive trace gases in the atmo-
sphere such as methane and carbon monoxide (CO). Mod-
els tend to underestimate the methane lifetime and CO con-5

centrations throughout the troposphere, which is consistent
with excessive OH. Approximately half of the oxidation
of methane and non-methane volatile organic compounds
(VOCs) is thought to occur over the oceans where oxidant
chemistry has received little validation due to a lack of obser-10

vational constraints. We use observations from the first two
deployments of the NASA ATom aircraft campaign during
July–August 2016 and January–February 2017 to evaluate
the oxidation capacity over the remote oceans and its rep-
resentation by the GEOS-Chem chemical transport model.15

The model successfully simulates the magnitude and ver-
tical profile of remote OH within the measurement uncer-
tainties. Comparisons against the drivers of OH production
(water vapor, ozone, and NOy concentrations, ozone photol-
ysis frequencies) also show minimal bias, with the excep-20

tion of wintertime NOy . The severe model overestimate of
NOy during this period may indicate insufficient wet scav-
enging and/or missing loss on sea-salt aerosols. Large uncer-
tainties in these processes require further study to improve
simulated NOy partitioning and removal in the troposphere,25

but preliminary tests suggest that their overall impact could
marginally reduce the model bias in tropospheric OH. Dur-
ing the ATom-1 deployment, OH reactivity (OHR) below
3 km is significantly enhanced, and this is not captured by
the sum of its measured components (cOHRobs) or by the30

model (cOHRmod). This enhancement could suggest miss-
ing reactive VOCs but cannot be explained by a comprehen-
sive simulation of both biotic and abiotic ocean sources of
VOCs. Additional sources of VOC reactivity in this region
are difficult to reconcile with the full suite of ATom mea-35

surement constraints. The model generally reproduces the
magnitude and seasonality of cOHRobs but underestimates
the contribution of oxygenated VOCs, mainly acetaldehyde,
which is severely underestimated throughout the troposphere
despite its calculated lifetime of less than a day. Missing40

model acetaldehyde in previous studies was attributed to
measurement uncertainties that have been largely resolved.
Observations of peroxyacetic acid (PAA) provide new sup-
port for remote levels of acetaldehyde. The underestimate
in both model acetaldehyde and PAA is present through-45

out the year in both hemispheres and peaks during North-
ern Hemisphere summer. The addition of ocean sources of
VOCs in the model increases cOHRmod by 3 % to 14 % and
improves model–measurement agreement for acetaldehyde,
particularly in winter, but cannot resolve the model summer-50

time bias. Doing so would require 100 Tg yr−1 of a long-
lived unknown precursor throughout the year with significant
additional emissions in the Northern Hemisphere summer.
Improving the model bias for remote acetaldehyde and PAA
is unlikely to fully resolve previously reported model global55

biases in OH and methane lifetime, suggesting that future
work should examine the sources and sinks of OH over land.

1 Introduction

TS1The hydroxyl radical (OH) is the main oxidant respon-
sible for removing trace gases from the atmosphere, and 60

its concentration defines the tropospheric oxidation capac-
ity. OH is primarily produced by the photolysis of ozone in
the presence of water vapor. The lifetimes of key atmospheric
trace gases are governed by how quickly they are removed by
reaction with OH. Oxidation of volatile organic compounds 65

(VOCs) by OH produces tropospheric ozone and fine par-
ticulate matter which are detrimental to human health and
vegetation and impact climate. The oxidation of VOCs, car-
bon monoxide (CO), and methane provides the main sink of
OH in the troposphere. Oxidation of methane and VOCs ac- 70

counts for over half of the global CO production (Duncan et
al., 2007; Safieddine et al., 2017), resulting in a tight cou-
pling of these compounds.

Models generally overestimate global mean tropospheric
OH and its ratio in the Northern Hemisphere to Southern 75

Hemisphere (Naik et al., 2013; Patra et al., 2014). These
biases may be linked to the persistent CO underestimate in
models (Shindell et al., 2006), as prescribing OH from obser-
vations improves simulated CO (Müller et al., 2018). How-
ever, constraining models with observations of ozone and 80

water vapor cannot resolve biases in model OH (Strode et al.,
2015), which is impacted by additional complex factors such
as the chemical mechanism and the ozone photolysis fre-
quency (Nicely et al., 2017). Constraining the performance
of model chemical mechanisms has largely focused on re- 85

gions of strong biogenic and anthropogenic activity (Emmer-
son and Evans, 2009; Yu et al., 2010; Marvin et al., 2017),
but at least half of the oxidation of methane occurs over the
ocean, where models have received little evaluation due to a
lack of observational constraints. 90

The introduction of airborne measurements of OH re-
activity (OHR) provides a method to evaluate the sink of
OH across a range of altitudes and a variety of locations
and chemical environments (Mao et al., 2009; Thames et
al., 2020). Previous work compared surface observations 95

of OHR at a single site to the sum of individually cal-
culated OHR components from measurements (Di Carlo,
2004; Yoshino et al., 2006; Sinha et al., 2008, 2010; Mao
et al., 2010; Dolgorouky et al., 2012; Hansen et al., 2014;
Nakashima et al., 2014; Nölscher et al., 2012, 2016; Ra- 100

masamy et al., 2016; Zannoni et al., 2016, 2017) or from
simple models (Ren et al., 2006; Lee et al., 2009; Lou et al.,
2010; Mogensen et al., 2011; Mao et al., 2012; Edwards et
al., 2013; Kaiser et al., 2016; Whalley et al., 2016). Thames
et al. (2020) found evidence of missing OHR between mea- 105

surements and an observationally constrained box model dur-
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ing the first three ATom deployments. Chen et al. (2019)
compared calculated OHR from a global model to OHR de-
termined from a suite of VOCs but did not have measure-
ments of OHR itself. Ferracci et al. (2018) found that miss-
ing OHR estimated from surface observations could result in5

a small increase in the methane lifetime in a global model.
Safieddine et al. (2017) and Lelieveld et al. (2016) presented
the first global model simulations of OHR but with only qual-
itative comparison to observations. No study has quantita-
tively compared simulated and observed OHR in a global10

model in an effort to constrain the OH sink.
The ATom campaign (Wofsy et al., 2018) provides an

unprecedented opportunity to test models in the remote at-
mosphere with a detailed suite of chemical observations.
We simulate the first two deployments (ATom-1: July–15

Agust 2016, ATom-2: January–February 2017) using the
GEOS-Chem chemical transport model (CTM) as our tool
to explore potential sources of systematic errors that could
explain the community-wide model overestimate in global
mean OH and underestimate of the methane lifetime. We in-20

clude model evaluation with measurements of OHR, a rela-
tively new constraint available for assessing atmospheric ox-
idation capacity. To our knowledge, this is the first quantita-
tive use of this measurement to evaluate a CTM.

2 Description of model and observations25

2.1 The GEOS-Chem model

We use the GEOS-Chem global 3-D CTM in v12.3.0
(https://doi.org/10.5281/zenodo.2620535TS2 ) driven by as-
similated meteorological data from the Goddard Earth Ob-
serving System Modern-Era Retrospective analysis for Re-30

search and Applications, Version 2 (MERRA-2; Gelaro et al.,
2017). The native MERRA-2 model has a horizontal resolu-
tion of 0.5◦×0.625◦ and 72 vertical levels which we degrade
to 2◦× 2.5◦ and 47 vertical levels for use in GEOS-Chem.
The midpoint of the first model layer is 58 m. We use time35

steps of 20 min for chemistry and 10 min for transport as rec-
ommended by Philip et al. (2016). GEOS-Chem includes de-
tailed treatment of HOx–NOx–VOC–halogen–aerosol chem-
istry, with recent improvements for isoprene (Chan Miller et
al., 2017; Fisher et al., 2016; Marais et al., 2016; Travis et al.,40

2016), peroxyacetyl nitrate (PAN) (Fischer et al., 2014), and
halogen chemistry (Sherwen et al., 2016). The production of
organic aerosols is calculated using fixed yields from iso-
prene, monoterpenes, biomass burning, and anthropogenic
fuel combustion (Pai et al., 2020). Aerosol uptake of HO245

is parameterized with a reactive uptake coefficient (γ ) of 0.2
(Jacob, 2000) to produce H2O (Mao et al., 2013). Aerosol
thermodynamic equilibrium is calculated by ISORROPIA II
v2.0 (Pye et al., 2009). Surface methane concentrations are
prescribed monthly using spatially interpolated observations50

from the NOAA GMD flask network. We simulate the 2016–
2017 period with an 18-month initialization.

Global fire emissions at 3-hourly resolution (Mu et al.,
2011) for 2016 and 2017 are from the Global Fire Emissions
Database (GFED4s; van der Werf et al., 2017). The GFED4s 55

burned area (Giglio et al., 2013) includes a parameterization
of small fires (Randerson et al., 2012). Biogenic VOC
emissions are from MEGANv2.1 (Guenther et al., 2012;
Hu et al., 2015TS3 ). Global anthropogenic emissions are
from the Community Emissions Data System (CEDS) 60

inventory (Hoesly et al., 2018), overwritten by ethanol
from the POET inventory (Olivier et al., 2003; Granier
et al., 2005), ethane from Tzompa-Sosa et al. (2017),
and regional inventories for the United States (NEI11v1,
Travis et al., 2016), Canada (CAC, https://www.canada. 65

ca/en/services/environment/pollution-waste-management/
national-pollutant-release-inventory.html, last access: TS4 ),
Mexico (BRAVO, Kuhns et al., 2003), Europe (EMEP,
http://www.emep.int/index.html, last access: TS5 ), Asia
(MIX, Li et al., 2017), and Africa (DICE, Marais and 70

Wiedinmyer, 2016). Lightning emissions are constrained
with satellite data according to Murray et al. (2012) with a
global flash rate of 280 mol NO flash−1 (Marais et al., 2018).
Air–sea exchange is calculated for acetaldehyde (Millet
et al., 2010), acetone (Fischer et al., 2012), and dimethyl 75

sulfide (Breider et al., 2017). All emissions are processed by
the Harvard Emissions Component (HEMCO, Keller et al.,
2014TS6 ). Table 1 gives the 2016 emission budget for CO
and NOx .

The standard simulation includes prescribed methanol 80

concentrations. We expand this simulation to include emis-
sions and chemistry for methanol as well as unsaturated
C2 compounds. Air–sea exchange of methanol is speci-
fied using the methodology of Millet et al. (2008) with a
constant seawater concentration of 142 nM. Terrestrial bio- 85

genic methanol emissions are from MEGANv2.1, and an-
thropogenic and biomass burning emissions are from the
inventories described above. We likewise include biomass
burning and anthropogenic emissions of ethyne (C2H2) and
ethene (C2H4) along with terrestrial biogenic emissions of 90

C2H4. Oxidation of C2H2 by OH proceeds according to the
Master Chemical Mechanism (MCM) v3.3.1 (Jenkin et al.,
1997TS7 , 2015; Saunders et al., 2003TS8 ), via http://mcm.
leeds.ac.uk/MCM (last access: TS9 ). Simplified C2H4 chem-
istry is included based on Lamarque et al. (2012) with an up- 95

dated OH rate constant from the MCM v3.3.1. Table S1 in the
Supplement shows the reactions and species included for un-
saturated C2 compounds. The standard model does not con-
sider the OH reactivity of a subset of organic acids (RCOOH)
from the oxidation of VOCs. We implement oxidation of 100

RCOOH and evaluate the impact of excluding this species,
which is minor, in Table S2 and Fig. S1 in the Supplement.
The model concentration of H2 is fixed at 500 ppt, consistent
with observed H2 from ATom-1 and ATom-2 (520 ppt).
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Table 1. Annual emissions of CO and NOx for 2016 used in the GEOS-Chem simulations.

Emissions category CO, Tg Emissions category NOx , Tg N

Fuel combustion∗ 590 Fuel combustion∗ 32.9
Biomass burning 311 Biomass burning 6.0
NMVOC oxidation 698 Soil emissions 7.8
Methane oxidation 936 Lightning emissions 6.0
Total 2535 Total 52.7

∗ Anthropogenic fossil fuel and biofuel combustion.

The GEOS-Chem global mean tropospheric OH
([OH]GM) is calculated as an air-mass-weighted quantity
below the model tropopause (see http://wiki.seas.harvard.
edu/geos-chem/index.php/Mean_OH_concentration, last
access: TS10 , for the calculation methodology). The [OH]GM5

for 2016 is 11.9×105 molecules cm−3 and the corresponding
methane lifetime(τCH4 ) is 9.0 years. This result is compara-
ble to the multi-model [OH]GM of 11.1×105 molecules cm−3

and τCH4 of 9.7 years from Naik et al. (2013). The best
observationally derived estimate of τCH4 is 11.2± 1.3 years10

(Prather et al., 2012), suggesting a model bias here of 20 %.
We calculate the ratio of total 2016 air-mass-weighted OH
in the Northern (> 0◦ N) to Southern Hemisphere (< 0◦ S) to
be 1.14. This exceeds observationally derived ratios of 0.85
to 0.97 (Montzka et al., 2000; Patra et al., 2014) but is at the15

low end of previous model estimates ranging from 1.13 to
1.42 (Naik et al., 2013).

2.2 Calculated OH reactivity

The atmosphere contains thousands of reactive organic com-
pounds (Goldstein and Galbally, 2007). Transforming the20

concentrations of these compounds and reactive inorganics
to calculated OH reactivity (cOHR) ranks them in order of
their importance as OH sinks. The cOHR from a model
(cOHRmod) can then be compared to cOHR from a suite of
measurements (cOHRobs) where cOHR is defined by Eq. (1).25

cOHR
(

s−1
)
= kOH,CH4 [CH4]+ kOH,CO [CO]

+ kOH,NO2 [NO2]+
∑

kOH,VOC [VOC]+ . . . (1)

Figure 1a shows annual surface cOHRmod for the year 2016
based on the 90 components listed in Table S3. Figure 1b
shows the zonal mean profile below 12 km. Approximately
80 % of air-mass-weighted cOHRmod resides below 3 km.30

The average annual surface cOHRmod is 1.8 s−1, with 40 %
present over the ocean (average of 1.0 s−1). Higher cOHRmod
occurs in coastal outflow regions and the lowest cOHRmod is
present over the Southern Ocean. The maximum cOHRmod
(48 s−1) over northern China is due to high concentrations35

of SO2, NOx , and CO. In the tropics, elevated cOHRmod is
mainly from isoprene, other biogenic species, and CO.

2.3 ATom observations

The NASA ATom field campaign (Wofsy et al., 2018) sam-
pled the remote troposphere with the DC-8 aircraft over the 40

Atlantic and Pacific oceans from approximately 200 m to
12 km altitude in four seasons from 2016 to 2018 with a goal
of improving the representation of trace gases and short-lived
greenhouse gases in models of atmospheric chemistry and
climate. We use data here from the first two deployments 45

(ATom-1 and ATom-2), which sampled winter and summer
conditions in each hemisphere. We consider only observa-
tions over the ocean (73 % of measurements). Flight tracks
for ATom-1 with land crossings removed are shown in Fig. 2;
ATom-2 flight tracks are nearly identical. We sample the 50

model along the flight tracks, and both the model and ob-
servations are averaged to the model grid and time step for
all the following comparisons. The aircraft carried an exten-
sive chemical payload including observations of water vapor,
methane, CO, OH, NOx , VOCs, photolysis frequencies, and 55

OHR. Table 2 describes the observations used in this work.

3 Comparison of simulated and measured OH

We compare observed and simulated OH concentrations to
evaluate whether differences are consistent with the bias in
τCH4 discussed in Sect. 2.1. Figure 3 shows modeled OH 60

sampled along the flight tracks and compared to observed
OH (Table 2) for ATom-1 (boreal summer 2016) and ATom-
2 (boreal winter 2017) in each hemisphere from the lowest
sampled altitude (∼ 200 m) to 10 km. There is no evidence of
a systematic overestimate in modeled OH throughout the tro- 65

posphere. Figure S2 shows similarly good agreement across
the observed frequency distributions of OH concentration.
A model OH overestimate is apparent in the lowest 2 km in
the Northern Hemisphere summer that could indicate exces-
sive OH production or an underestimated sink from emis- 70

sions of ocean VOCs. Global models tend to overestimate
OH against constraints from methyl chloroform observations
(Shindell et al., 2006; Naik et al., 2013; Nicely et al., 2017),
but we find here that tropospheric OH is successfully sim-
ulated within observational uncertainty (74 % to 135 %, 2σ 75

confidence level). This result from a global CTM is consis-
tent with good agreement between OH measurements and
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Table 2. Description of ATom measurements used to evaluate the model simulation.

Measurement Instrument Accuracy Detection limit/ Reference
precision

OHR Airborne Tropospheric 0.8 s−1
±0.4 s−1 Faloona et al. (2004)TS11 ;

Hydrogen Oxides Sensor Mao et al. (2009)
(ATHOS)

Water vapor Diode laser hygrometer 5 % 0.1 % or 50 ppb Diskin et al. (2002);
(DLH) Podolske et al. (2003)

NO1
y NOAA nitrogen oxides 0.05 ppb2 Pollack et al. (2010)TS12 ;

and ozone (NOyO3) Ryerson et al. (1998, 2000)TS13

Photolysis frequencies Charged-coupled device jO3 20 % jO3 10−7 s−1 Shetter and Mueller (1999),
via actinic flux Actinic flux jNO2 12 % jNO2 10−6 s−1 Petropavloskikh et al. TS14 (2007),

Spectroradiometers Hofzumahaus et al. (2004)
(CAFS)

Peroxyacetyl nitrate PAN and trace 10 % 2 ppt ±10 % Elkins et al. (2001);
(PAN) Hydrohalocarbon Wofsy et al. (2011)

ExpeRiment (PANTHER)

Components of OH reactivity3

CH4 NOAA Picarro 0.6 ppb 0.3 ppb Karion et al. (2013)

CO Harvard Quantum Cascade 3.5 ppb 0.15 ppb McManus et al. (2005) TS15 ;
Laser System (QCLS) Santoni et al. (2014)

H4
2 UAS Chromatograph for 7.5 ppb5 Hintsa et al. (2020)

Atmospheric Trace Species
(UCATS)/PANTHER

NO, NO2, O3 NOAA NOyO3 0.006, 0.03, Pollack et al. (2010);
1.7 ppb2 Ryerson et al. (1998, 2000)

Methyl hydroperoxide, Caltech Chemical ±30%, ±30%, 25, 50, St. Clair et al. (2010)TS16 ;
nitric acid, hydrogen ionization mass ±30%, ±50%, 50, 30, Crounse et al. (2006)
peroxide, peroxyacetic spectrometer (CIMS) ±30% 100 ppt
acid, peroxynitric acid

Formaldehyde NASA In Situ Airborne 10 % 10 ppt Cazorla et al. (2015) TS17 ;
Formaldehyde (ISAF) DiGangi et al. (2011) TS18 ;

Hottle et al. (2009)TS19

Methanol, acetaldehyde, NCAR Trace Organic Gas 30 %, 20 %, 10, 10, 20, Apel et al. (2015) TS20

propane, dimethyl sulfide, Analyzer (TOGA) 30 %, 15 %, 2, 30, 10,
ethanol, acetone, methyl 30 %, 20 %, 2, 20, 2,
ethyl ketone, propanal6, 20 %, 20 %, 0.6, 4, 2
butanal6, toluene, methyl 30 %, 15 %, 2, 2, 4,
vinyl ketone, methacrolein 20 %, 20 % 4 ppt
i-Butane + n-butane + 15 %, 15 %,
i-pentane + n-pentane7 15 %, 15 %

OH, HO2 ATHOS 74 % to 135 % 0.018, 0.2 ppt Faloona et al. (2004);
Brune et al. (2020)

Ethane, benzene UCI Whole air sampler 5 %, 5 % 3, 3 ppt Colman et al. (2001);
(WAS) Simpson et al. (2010)

1 Model NOy is defined as NO+NO2 +HONO+HNO3 +HNO4 + 2×N2O5 +ClNO2 +
∑

PNs+
∑

ANs. 2 Average of 2σ uncertainty for each individual 1 Hz measurement
for ATom-1 and ATom-2. 3 Included in cOHR are observations of species where at least 20 % of the possible available measurements below 3 km are not missing. 4 The
GEOS-Chem concentration of H2 is set to a constant value of 500 ppt. 5 Average of reported error for each individual measurement for ATom-1 and ATom-2. 6 Lumped as > C4
alkanes (ALK4) in GEOS-Chem. 7 Lumped as > C3 aldehydes (RCHO) in GEOS-Chem.

https://doi.org/10.5194/acp-20-1-2020 Atmos. Chem. Phys., 20, 1–28, 2020
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Figure 1. Annual mean 2016 (a) surface (log scale) and (b) zonal mean cOHR calculated from individual model species. The GEOS-Chem
species included in the calculation of cOHR are listed in Table S3.

Figure 2. ATom-1 ocean-only flight tracks colored by altitude.

a box model during NASA’s Pacific Exploratory Mission –
Tropics (PEM-Tropic B) campaign in the clean remote Pa-
cific (Tan et al., 2001) and a similar analysis by Brune et
al. (2020) for ATom 1 through 4.

We calculate the median air-mass-weighted column av-5

erage OH (OHcol) from the median OH concentrations in
Fig. 3 and the total tropospheric air mass over the ocean.
During ATom-1, the modeled OHcol in the Northern (South-
ern) Hemisphere is 4.5(1.4)×106 molecules cm−3 compared
against the observations of 4.4(1.1)× 106 molecules cm−3

10

during ATom-1. Similarly, during ATom-2, OHcol is
0.8(2.8)× 106 molecules cm−3 in the model and 0.9(2.6)×
106 molecules cm−3 in the observations. Median model
OHcol is within 30 % of observations during both deploy-
ments, with the smallest bias in the total column during15

Northern Hemisphere summer when OH is at a maximum.
As discussed above, model OH is overestimated in the low-

est 2 km during this period, but this bias is minimized in
the column average. The observed air-mass-weighted ratio
of Northern to Southern Hemisphere OH, calculated in the 20

same manner as described in Sect. 2, is 2.8 during ATom-1
and 0.2 during ATom-2, indicating a strong seasonality that
the model largely reproduces (ratios of 2.3 and 0.2). This ra-
tio is less than the ratio of OHcol because there is approx-
imately 30 % less air mass over the ocean in the Northern 25

Hemisphere ocean than over the Southern Hemisphere. This
seasonality is masked by calculations performed on an an-
nual mean basis. The seasonality in this ratio reported by
Wolfe et al. (2019) for satellite-derived OH during ATom-
1 and ATom-2 is more modest because they calculate a daily 30

average OH that extends to the tropopause, while here, we
use largely daytime aircraft observations below 10 km.

The model is in good agreement with OH measurements
during ATom, but the uncertainty in the observations is simi-
lar to a recent estimate of the GEOS-Chem model uncertainty 35

for OH of 25 % to 40 % (Christian et al., 2018). In addition,
the lifetime of OH is short (seconds) and atmospheric con-
centrations are highly variable; thus, direct model compari-
son to measured OH is insufficient to demonstrate model skill
in capturing the broader remote oxidation capacity. Agree- 40

ment between the model and observations could also result
from compensating errors in the OH source and sink. We
support the model comparison in Fig. 3 with an evaluation
of the key factors governing OH production and loss mea-
sured by ATom and investigate potential missing sources of 45

VOCs from the ocean during summertime.

4 Constraints on the remote source of OH

In the remote troposphere, OH is primarily produced from
the photolysis of ozone in the presence of water va-
por (Monks, 2005) and is enhanced by nitrogen oxides 50

(NOx) from lightning and transport from continental sources.
Methane, CO, and VOCs provide the main OH sinks (Murray
et al., 2014). We compare the model to ATom-1 and ATom-

Atmos. Chem. Phys., 20, 1–28, 2020 https://doi.org/10.5194/acp-20-1-2020



K. R. Travis et al.: Constraining remote oxidation capacity 7

Figure 3. Median OH concentrations for the Northern Hemisphere (> 0◦ N) and Southern Hemisphere (< 0◦ S) from the ATHOS instrument
described in Table 2 during ATom-1 (July–August 2016) and ATom-2 (January–February 2017) compared against the GEOS-Chem model in
0.5 km altitude bins. The observations have been filtered to remove biomass burning (acetonitrile > 200 ppt) and stratospheric (O3/CO > 1.25)
influence. The dashed lines show the observed 25th–75th percentiles.

Figure 4. The same as Fig. 3 for median water vapor concentrations. Water vapor mixing ratio was measured by the DLH instrument as
described in Table 2.

https://doi.org/10.5194/acp-20-1-2020 Atmos. Chem. Phys., 20, 1–28, 2020



8 K. R. Travis et al.: Constraining remote oxidation capacity

2 observations of the drivers of the tropospheric OH source
(water vapor, ozone, ozone photolysis frequency, NOx) to de-
termine possible broader sources of model bias.

Figure 4 compares observations of water vapor mixing
ratios to the NASA MERRA-2 reanalysis product used by5

the model. MERRA-2 is generally successful at reproduc-
ing observed tropospheric water vapor (Gelaro et al., 2017),
and we also find good agreement compared with ATom-1
and ATom-2 observations throughout the troposphere. We
evaluate the model treatment of the incoming actinic flux10

and the resulting ozone photolysis frequency (j (O1D)) in
Fig. 5. Hall et al. (2018) showed that GEOS-Chem actinic
fluxes in both cloudy and clear skies were well simulated dur-
ing the ATom-1 deployment. Figure 5 confirms the minimal
model bias in j (O1D) and successful representation of the15

observed seasonality with median summertime values below
3 km (∼ 4× 10−5 s−1) approximately 4 times higher than in
winter (∼ 1× 10−5 s−1).

The GEOS-Chem ozone simulation has been extensively
tested against ozonesondes, aircraft, and satellite observa-20

tions and shows no systematic overestimates (Hu et al.,
2017), with the exception of continental surface concentra-
tions (Fiore et al., 2009; Travis et al., 2016). Figure 6 shows
that the highest (54–63 ppb) and lowest (14 ppb) tropospheric
ozone observed during ATom-1 and ATom-2 occurs during25

summer in the mid to upper troposphere and marine bound-
ary layer, respectively. Ozone is less variable in wintertime,
with values between 30 and 50 ppb. The model generally re-
produces the magnitude and shape of the tropospheric ozone
profiles as well as the seasonality observed during both de-30

ployments. There is no evidence of the systematic Northern
Hemisphere ozone bias previously seen in global model eval-
uations (Young et al., 2013) that was suggested as a cause of
excessive OH (Naik et al., 2013). This may be reflected in the
improved model interhemispheric OH ratio (Sect. 2.1) seen35

here over previous studies. Upper tropospheric ozone is over-
estimated in all cases but Northern Hemisphere summer, but
this would not have a large influence on primary OH produc-
tion (or the methane lifetime) at these altitudes (Brune et al.,
2020).40

OH is enhanced in the presence of NOx (≡NO+NO2).
We use NOy here (Fig. 7a) as our constraint as observed
NO2 was generally near the detection limit in both deploy-
ments. We also show NO (Fig. 7b) given its role in secondary
OH production. The model reproduces the maximum in NOy45

that occurs in the Northern Hemisphere upper troposphere in
summertime due to lightning (Marais et al., 2018). Obser-
vations show little variability between summer and winter
NOy in the lower troposphere. Southern Hemisphere NOy
is underestimated in the lowest few kilometers in both sea-50

sons, which could be due to missing ocean production of
methyl nitrate (Fisher et al., 2018). The largest model dis-
crepancy is an overestimate of approximately 70 % in the
Northern Hemisphere wintertime. Observations of NO re-

flect the structure of NOy , with the exception of Northern 55

Hemisphere winter.

Causes of the remote model bias in NOy

Figure 8 shows that the model NOy overestimate in win-
ter is primarily caused by nitric acid (HNO3). Excessive re-
mote HNO3 is a long-standing model deficiency (Bey et al., 60

2001; Staudt et al., 2003; Brunner et al., 2003, 2005). The
model bias identified here is unlikely to result from overesti-
mated continental emissions due to the short lifetime of NOy
against deposition (∼ 3 d in the Northern Hemisphere win-
ter). Models suggest that less than 40 % of emitted NOx in 65

the US is exported downwind (Dentener et al., 2006; Zhang
et al., 2012). However, the standard model configuration here
does not address the large possible bias in the US anthro-
pogenic NOx inventory of ∼ 40% (Anderson et al., 2014;
Travis et al., 2016) or the downward trend in NOx emissions 70

from Asia of ∼ 30% since 2011 (Krotkov et al., 2016). As
expected, scaling Asian and US NOx emissions by these per-
centages improves the model bias in winter by only 15 % be-
low 3 km (Fig. 8). Recent improvements to the simulation
of continental wintertime HNO3 (Jaeglé et al., 2018) would 75

similarly be expected to have a marginal effect in our study
region.

Kasibhatla et al. (2018) showed that acid displacement of
chloride (Cl−) by HNO3 on sea-salt aerosols (SSA) could
resolve model overestimates of gas-phase HNO3 in the ma- 80

rine boundary layer using the GEOS-Chem model. A more
comprehensive simulation of this process was developed
by Wang et al. (2019). Figure 8 shows sensitivity tests
with the mechanism from X. Wang et al. (2019) incorpo-
rated into our simulation in the Northern Hemisphere win- 85

ter. Model HNO3 decreases by approximately 100 ppt below
3 km, which would significantly improve the wintertime NOy
bias in this region, but the free tropospheric bias remains.
The displacement of Cl− described above generates particu-
late nitrate on coarse-mode SSA (NITs). Photolysis of nitrate 90

has been proposed as a source of NOx to the marine bound-
ary layer (Ye et al., 2016; Romer et al., 2018), which might
increase HNO3. We include NITs photolysis at a frequency
of 50 times that of HNO3 (Kasibhatla et al., 2018). Figure 8
shows that this mechanism is consistent with observations of 95

NO and ozone below 3 km and does not increase HNO3 but
increases the free tropospheric NOy bias due to PAN forma-
tion and exacerbates the overestimate in upper tropospheric
ozone during this season.

The difficulty in resolving the bias in wintertime may be 100

due to an overestimate of the NOy lifetime as demonstrated
by our sensitivities discussed above. Luo et al. (2019) pro-
posed a new treatment of model wet scavenging using spa-
tially and temporally varying cloud condensation water con-
tent and an empirical description of HNO3 wet removal. This 105

scheme drastically reduced persistent model biases in nitric
acid and nitrate at the surface in the United States (Zhang et

Atmos. Chem. Phys., 20, 1–28, 2020 https://doi.org/10.5194/acp-20-1-2020
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Figure 5. The same as Fig. 3 for median photolysis frequencies for ozone (j (O1D)). The actinic flux measured by the CAFS instrument is
used to calculate j (O1D) as described in Table 2.

Figure 6. The same as Fig. 3 for median ozone concentrations. Ozone was measured by the NOAA NOyO3 instrument as described in
Table 2.

https://doi.org/10.5194/acp-20-1-2020 Atmos. Chem. Phys., 20, 1–28, 2020



10 K. R. Travis et al.: Constraining remote oxidation capacity

Figure 7. The same as Fig. 3 for median NOy (a) and NO (b) concentrations. NOy and NO were measured by the NOAA NOyO3 instrument
as described in Table 2.

al., 2012; Heald et al., 2012). As shown in Fig. 8, the revised
wet scavenging scheme could fully resolve the remote bias
in HNO3 throughout the troposphere. However, this param-
eterization has only received testing over the surface of the
continental US, and more evaluation is needed before it can5

be adopted widely in models.

We find that scaling NOx , implementing chlorine chem-
istry, and revised wet scavenging (except in Northern Hemi-
sphere winter) have negative impacts on the modeled OHcol
along the flight tracks of −1 %, −7 %, and −4 %, respec- 10

tively. The addition of NITs photolysis to the chlorine chem-
istry simulation increases OHcol by 11 % over the base
model. In Northern Hemisphere winter only, revised wet

Atmos. Chem. Phys., 20, 1–28, 2020 https://doi.org/10.5194/acp-20-1-2020
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Figure 8. Comparison of modeled and observed HNO3, ozone, NOy , and NO with sensitivity studies including scaling emissions from the
US and Asia, improved chlorine chemistry (X. Wang et al., 2019), and the photolysis of particulate nitrate on coarse-mode sea-salt aerosols
(Kasibhatla et al., 2018) as described in Sect. 4.1. HNO3 was measured by the Caltech CIMS; ozone, NOy , and NO were measured by the
NOAA NOyO3 instrument (Table 2).

scavenging increases OHcol by 16 %, possibly due to the ef-
fect of reduced heterogeneous chemistry. Overall, the annual
mean impact of revised wet scavenging from our preliminary
sensitivity tests is a−3 % reduction in global mean air-mass-
weighted OH and a+2 % increase in the model methane life-5

time. These preliminary sensitivities suggest that resolving
the model wintertime NOy bias in the Northern Hemisphere
could marginally reduce the overestimates of global mean
OH on an annual basis if the photolysis frequency of NITs
is smaller than 50 times the rate of HNO3 photolysis. Recent10

work from the NASA KORUS-AQ field campaign found that
a rate of 1 to 30 might be more consistent with observational
constraints (Romer et al., 2018).

Overall, the main drivers of remote tropospheric OH pro-
duction in our base-case simulation are in good agreement15

with observations from the first two ATom deployments, with
the exception of an NOy overestimate in the Northern Hemi-
sphere wintertime. Acid displacement of Cl− by HNO3 on
SSA (Kasibhatla et al., 2018; X. Wang et al., 2019) may
somewhat improve remote HNO3 below 3 km, but if the re-20

sulting NITs undergoes photolysis at a rate of 50 times that of
HNO3 (Kasibhatla et al., 2018), the impact on remote NOy
may be lessened due to the formation of PAN. Both mecha-
nisms require significant further study as tropospheric halo-
gen sources and chemistry and the photolysis frequency of25

NITs are highly uncertain. A new parameterization of wet
scavenging (Luo et al., 2019) would greatly improve mod-
eled remote HNO3 and NOy but requires further testing and
evaluation of its broader impacts on atmospheric chemistry.

5 Constraints on the remote sink of OH30

The primary sinks of tropospheric OH are CO, methane,
and VOCs; OHR measurements represent the sum effect of
these species. Previous aircraft measurements of OHR pro-
vided evidence of missing reactivity in the remote atmo-
sphere linked to unknown highly reactive VOCs (Mao et al.,35

2009). During ATom, Thames et al. (2020) measured OHR

over the Atlantic and Pacific oceans and determined that
missing OHR also correlated with oxygenated VOCs, sug-
gesting the presence of unknown ocean emissions. We com-
pare directly measured OHR during the ATom-1 and ATom- 40

2 deployments to calculated OHR (cOHRobs) according to
Eq. (1) from the full ATom measurement suite and from the
model (cOHRmod) sampled along the flight path. Table 2 de-
scribes the observations used to calculate cOHR.

Figure 9 shows the comparison of OHR and cOHR from 45

the model and observations. The observed cOHR is typically
less than observed OHR. Along the flight tracks, cOHRobs
and cOHRmod show good agreement and strong correlation
(r2
= 0.95 for ATom-1 and ATom-2). The model underes-

timates cOHRobs by 10 % to 12 % in the lowest 3 km; we 50

discuss this difference below. The measured relationship be-
tween OHR and cOHRobs is weaker (r2

= 0.53 for ATom-1,
r2
= 0.56 for ATom-2) and cOHRobs is less than OHR be-

low 3 km by 0.2 to 0.4 s−1. Thames et al. (2020) showed
that median missing reactivity (between OHR and an ob- 55

servationally constrained box model) below 4 km during the
ATom-1, ATom-2, and ATom-3 deployments was between
0.2 and 0.8 s−1. They provided statistical evidence that while
near the level of the instrument accuracy, missing OHR in
the marine boundary layer was statistically significant. We 60

find that missing OHR is not associated with acetonitrile
or CO (r2 < 0.06), indicating that biomass burning is not
the cause. Acetaldehyde in Northern Hemisphere summer
has the strongest relationship with missing OHR (r2

= 0.19,
p value� 0.01, Fig. S3), which suggests a potential role 65

for unmeasured reactive VOCs or their oxidation products
from the ocean, as also suggested by Read et al. (2012) and
Thames et al. (2020).

Ocean emissions of VOCs have been suggested as a source
of remote secondary organic aerosols (Gantt et al., 2010; 70

Kim et al., 2017; Mungall et al., 2017), but their impact on
remote reactivity has not been quantified. Our base simula-
tion, described in Sect. 2.1, only includes air–sea exchange of
acetone, acetaldehyde, methanol, and dimethyl sulfide. We

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

https://doi.org/10.5194/acp-20-1-2020 Atmos. Chem. Phys., 20, 1–28, 2020



12 K. R. Travis et al.: Constraining remote oxidation capacity

Figure 9. The same as Fig. 3 for median OHR. OHR was measured by the ATHOS instrument as described in Table 2. The calculation of
cOHR in the model and observations includes the species described in Table 2. In order to allow for a point-by-point comparison of cOHR
in the model and observations, missing values are filled in the observational components of cOHR using linear interpolation. All calculated
reactivity values are determined using the temperature and pressure of the ATHOS instrument inlet, which differ from ambient values. The
sensitivity tests are described in Sect. 5.

Table 3. Biogenic ocean emissions of VOCs.

GEOS-Chem No. of lumped Produces Annual net Reference for seawater
species2 species acetaldehyde? emissions (Tg C) concentration

ALD2 1 Yes 10.15 Millet et al. (2010)
MOH 1 No −1.56 Personal communication, D. Millet TS21

ACET 1 No −75.74 Fischer et al. (2012)
LIMO 1 Yes 0.04 Hackenberg et al. (2017)TS22

MTPA 3 Yes 0.05 Hackenberg et al. (2017)
MTPO 2 Yes 0.06 Hackenberg et al. (2017)
EOH 1 Yes −5.61 Beale et al. (2010) TS23

C2H6 1 Yes 0.34 Plass-Dülmer et al. (1993)
C2H4 1 No 0.75 Plass-Dülmer C. et al. (1993)
PRPE 2 Yes 0.96 Plass-Dülmer C. et al. (1993)
C3H8 1 Yes 0.17 Plass-Dülmer et al. (1993)
ALK4 2 Yes 0.12 Plass-Dülmer et al. (1993)
C2H2 1 No 0.05 Plass-Dülmer et al. (1993)
ISOP 1 Yes 1.64 Arnold et al. (2009)
RCHO 1 Yes 7.47 Singh et al. (2003)
MEK 1 Yes −7.24 Schlundt et al. (2017) TS24

Total net emission −68.35

Total net emission producing acetaldehyde 8.15

1 TS25 Net ocean emissions = upward flux out of the ocean–ocean uptake. 2 More information on the GEOS-Chem species definitions can be found
here: http://wiki.seas.harvard.edu/geos-chem/index.php/Species_in_GEOS-Chem (last access: TS26 ).

Atmos. Chem. Phys., 20, 1–28, 2020 https://doi.org/10.5194/acp-20-1-2020
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determine whether additional compounds emitted from the
ocean, but not generally included in models, could increase
cOHRmod and reconcile the observed discrepancy described
above. We follow the standard methodology for air–sea ex-
change described in Millet et al. (2008) to include emission5

of the species listed in Table 3 using available measured sea-
water concentrations, with the addition of isoprene imple-
mented as a direct emission according to Arnold et al. (2009).
As shown in Table 3, air–sea exchange represents a net sink
of VOCs on an annual basis (−68 Tg C yr−1), but this is10

mainly due to ocean uptake of acetone, which is a negligi-
ble component of cOHR.

Interfacial photochemistry may provide an additional abi-
otic source of VOCs from the ocean. We model abiotic ocean
emissions of VOCs according to Brüggemann et al. (2018)15

by applying species-specific emission factors to the monthly
ocean photochemical potential derived in their study. We use
the emission factor appropriate for the upper bound of this
source according to Brüggemann et al. (2017) (Table S4).
Table 4 provides a breakdown of these additional VOCs with20

a total annual emission of 28 Tg C yr−1.
Figure 10 shows the annual mean impact of all ocean emis-

sions described in Tables 3 and 4 (including an adjustment to
the acetaldehyde seawater concentration described below in
Sect. 5.1) on cOHRmod by turning off those ocean sources25

in a 1-year simulation. Average annual surface cOHRmod
over the ocean increases by 10 % over the base simulation
and 15 % over the simulation with no ocean emissions. The
largest increases occur in regions of higher biogenic activity
along coastlines and in the Southern Ocean due to the adjust-30

ment to acetaldehyde emissions discussed in Sect. 5.1. The
incremental impact of the additional ocean emissions over
the base simulation is shown in Fig. S4. Without any ocean
emissions, global mean OH would be 3 % greater than in the
case with comprehensive treatment of ocean VOCs. Figure 935

shows that along the flight tracks, cOHRmod increases below
3 km by 3 % to 14 %, which reduces the model bias against
cOHRobs. However, the majority of the added species (Ta-
bles 3 and 4) were measured during ATom, would therefore
contribute to cOHRobs, and cannot explain the gap in OHR.40

We evaluate the impact of further expanding the oceanic
source of reactive VOCs to reconcile the discrepancy be-
tween cOHRobs and OHR in a similar manner to Mao et
al. (2009). Here, we test a source of alkanes as previously
suggested by Read et al. (2012), using the model species45

ALK4 (> C4 alkanes) that has a calculated lifetime of less
than 2 d in the Northern Hemisphere summer (kOH = 2.3×
10−12 cm3 molecules−1 s−1 at 298 K). Known alkanes have
been measured in seawater (Plass-Dülmer et al., 1993), but
the implied source is small. Consequently, we use ALK4 for50

testing only. Generating the missing OHR in this way re-
quires an implausibly large oceanic ALK4 source of approx-
imately 340 Tg C yr−1 compared against all other sources of
VOCs in the model (Tables 3 and 4). A sensitivity test with
this source, shown in Fig. 9, largely closes the gap between55

Table 4. Abiotic ocean emissions of VOCs according to Brügge-
mann et al. (2018)1.

GEOS-Chem No. of lumped Produces Annual
species2 species acetaldehyde? emission

(Tg C)

ACET 1 No 10.07
EOH 1 Yes 5.16
ALD2 1 Yes 2.26
MOH 2 No 0.79
RCHO 21 Yes 3.88
ISOP 1 Yes 1.04
PRPE 13 Yes 4.44
MACR 1 Yes 0.42
ACTA 1 Yes 0.10
CH2O 1 No 0.03
XYLE 1 No 0.05
TOLU 1 No 0.04
BENZ 1 No 0.02

Total net emission 28.30

Total net emission producing acetaldehyde 17.30
1 Table S2 shows the emission factor assumed for each species and the lumping
methodology for Table 4. 2 More information on the GEOS-Chem species
definitions can be found here:
http://wiki.seas.harvard.edu/geos-chem/index.php/Species_in_GEOS-Chem (last
access: TS27 ).

cOHRmod and OHR but would result in a 20 % to 50 % re-
duction in OH below 3 km, biasing the model OH simulation
(Fig. 3) and degrading model NOy (Fig. 7) due to increased
PAN formation.

Thames et al. (2020) found that a partial recycling of OH 60

would be required to maintain consistency with observed OH
and HO2 during ATom when adding an unknown source of
reactivity. If the unknown VOC we suggest includes some
OH recycling in its oxidation mechanism and does not pro-
duce PAN, the model bias in OH could be mitigated. We 65

use isoprene as our test of a more reactive VOC that in-
cludes OH recycling by scaling the ALK4 emission source
by the reaction rate of isoprene with OH to obtain a more rea-
sonable emission source of approximately 9 Tg C yr−1. Fig-
ure 9 shows that this source actually has a minimal impact on 70

cOHRmod of no more than 0.1 s−1. Only one-third in summer
and two-thirds in winter of the additional cOHRmod from the
ocean source of ALK4 are attributable to ALK4; the rest is
due to CO, acetaldehyde, and other aldehydes from both in-
creased chemical production and longer lifetimes from sup- 75

pressed OH. Therefore, a larger source of even a reactive
VOC like isoprene is required to close the gap in missing
OHR. Reconciling cOHRmod and OHR is therefore difficult
using the existing suite of ATom measurement constraints
and possible known precursors; further investigation of the 80

accuracy of the OHR measurements in challenging remote
conditions may be needed.

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

https://doi.org/10.5194/acp-20-1-2020 Atmos. Chem. Phys., 20, 1–28, 2020

http://wiki.seas.harvard.edu/geos-chem/index.php/Species_in_GEOS-Chem


14 K. R. Travis et al.: Constraining remote oxidation capacity

Figure 10. Impact of all ocean emissions (Tables 3 and 4) on annual simulated 2016 surface cOHR as described in the text.

Figure 11. Median observed and modeled OHR and cOHR (see text) below 3 km in the Northern Hemisphere (> 0◦ N) and Southern Hemi-
sphere (< 0◦ S) during ATom-1. The “Other” category is the following species as described in Table 2: ethanol, propane, ethane, acetone,
> C3 aldehydes, methyl ethyl ketone, methyl vinyl ketone, methacrolein, benzene, toluene, > C4 alkanes, peroxyacetic acid, peroxynitric
acid, dimethyl sulfide, nitric acid, NO, and NO2. The diameter of each pie chart is scaled relative to the maximum cOHR for ATom-1.

We also assess whether the model accurately represents
the components of cOHRobs and explore potential additional
sources of missing cOHRmod. Figures 11 and 12 show the
components of median cOHR in the base simulation below
3 km for each deployment. The composition of cOHRmod is5

generally consistent with cOHRobs. CO and methane make
up half or greater of both cOHRobs and cOHRmod. There is
no systematic underestimate in CO reactivity as might be ex-
pected from the general model bias described by Shindell et

al. (2006), with the exception of a 9 % underestimate dur- 10

ing Northern Hemisphere winter when the lifetime of CO is
longer and biases in continental sources could have a larger
impact. During the ATom-1 deployment, cOHRobs is 50 %
higher in the Northern Hemisphere (summer) than in the
Southern Hemisphere (winter) primarily due to the increase 15

in methyl hydroperoxide (MHP) concentrations. During the
ATom-2 deployment, cOHRobs is 60 % higher in the North-
ern Hemisphere (winter) than in the Southern Hemisphere

Atmos. Chem. Phys., 20, 1–28, 2020 https://doi.org/10.5194/acp-20-1-2020
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(summer) due to the large contribution of CO in Northern
Hemisphere wintertime. The model successfully represents
the observed seasonality during both deployments but under-
estimates cOHRobs by 12 % in the Northern Hemisphere and
9 % in the Southern Hemisphere.5

The difference between measured and simulated cOHR is
mainly due to differences between measured and simulated
OVOCs. These compounds contribute on average 25 % to
cOHRobs but 17 % to cOHRmod. The largest difference in re-
activity is from acetaldehyde. Differences between simulated10

and measured MHP (Fig. S5) are also important and could re-
flect an error in the MHP lifetime (Müller et al., 2016). How-
ever, interferences in the MHP measurement in the bound-
ary layer (Supplement, Sect. S6TS28 ) have yet to be resolved,
and therefore we do not further evaluate causes of underesti-15

mated MHP here. We do consider potential missing sources
of model acetaldehyde constrained by the ATom measure-
ments over the ocean and assess their impact on simulated
OH and CO in Sect. 5.1.

Evaluation of the remote sources of acetaldehyde20

Inability to reconcile remote acetaldehyde observations with
models is a long-standing problem (Singh et al., 2001., 2003;
Millet et al., 2010; Nicely et al., 2016). Singh et al. (2001)
proposed that a large, diffuse, and as-yet unknown source of
OVOCs such as acetaldehyde must exist in the troposphere25

to solve this discrepancy. Read et al. (2012) determined that
missing cOHRmod from OVOCs (mainly acetaldehyde) in
the marine tropical atmosphere, possibly from terrestrial or
ocean sources of alkanes, could cause up to an 8 % underes-
timation of the methane lifetime. Nicely et al. (2016) showed30

that constraining a box model with observed acetaldehyde re-
duced tropospheric column OH by 9 % and that this acetalde-
hyde bias was present across eight different CTMs. There-
fore, understanding the source of missing acetaldehyde may
be part of the cause of the multi-model bias in the methane35

lifetime and global mean OH.
Figure 13 compares the model simulation of acetaldehyde

against observations. Average observed concentrations peak
in the Northern Hemisphere during ATom-1 with an aver-
age mixing ratio of 230 ppt below 3 km and 100 ppt above40

3 km despite a lifetime of only several hours in summer.
The maximum model underestimate occurs during this pe-
riod. Observed concentrations are at a minimum during the
ATom-2 deployment, indicating a strong seasonality in the
source. In each deployment, concentrations remain as high45

as 70 to 100 ppt as far south as 60◦ S (Fig. S6), which the
model does not reproduce. There is no apparent difference in
model bias between observations over the Atlantic or Pacific
Ocean (Fig. S7). The model underestimates acetaldehyde on
average by 60 to 90 % (50 to 200 ppt) below 3 km and does50

not capture the observed elevated levels throughout the tro-
posphere.

In earlier studies, measurement uncertainties prevented in-
terpretation of model–measurement disagreements in the re-
mote atmosphere, including difficulties in background sub- 55

traction (Apel et al., 2008), with uncertainties as high as
70 ppt (Apel et al., 2003), which hindered analysis of clean
conditions. The ATom measurement uncertainty is reduced
to 10 ppt/20 % (Table 2) and does not have the biases present
in previous campaigns (S. Wang et al., 2019). Studies have 60

also disputed whether observed acetaldehyde was compat-
ible with observed PAN due to the significant role of ac-
etaldehyde as a PAN precursor through production of the
peroxyacetyl (PA) radical (Singh et al., 2001, 2003; Millet
et al., 2010). Global simulations estimate that acetaldehyde 65

is responsible for approximately 40 % of PA radical produc-
tion (Fischer et al., 2014), which would be even larger if ac-
etaldehyde is severely underestimated by models. Reaction
of the PA radical with HO2 is more prevalent in remote en-
vironments and produces peroxyacetic acid (PAA) preferen- 70

tially over PAN, making PAA a more useful constraint for
the conditions sampled by ATom. Figure 14 shows the aver-
age model underestimate of PAA below 3 km of 70 % to 90 %
(60 to 250 ppt). The model biases for PAA and acetaldehyde
both peak with similar magnitude during Northern Hemi- 75

sphere summer. Figure 15 shows the model comparison with
PAN, which is generally well simulated during this period.

S. Wang et al. (2019) used an observationally constrained
box model to show that the levels of acetaldehyde observed
during ATom are required to explain the observed PAA. The 80

reaction rate of PAA + OH may be 3 times larger (Wu et al.,
2017) than the maximum value used by S. Wang et al. (2019),
which could result in even better agreement between PAA
and acetaldehyde in the marine boundary layer. We evaluate
the standard GEOS-Chem acetaldehyde budget, described 85

in detail by Millet et al. (2010), against available ATom
observations. The 2016 model budget for the base simula-
tion is provided in Table 5. Acetaldehyde is produced from
oxidation of VOCs (ethane, propane, ≥C4 alkanes, ≥C3
alkenes, isoprene, ethanol) and is directly emitted from the 90

ocean, terrestrial plant growth, biomass burning, and anthro-
pogenic activities. The model parameterization of acetalde-
hyde ocean emissions is dependent on satellite-based obser-
vations of colored dissolved organic matter (CDOM) (Millet
et al., 2010). 95

The model free tropospheric bias suggests that long-lived
oxidation of VOCs must be underestimated due to the short
lifetime of acetaldehyde (< 1 d). The longest-lived precur-
sor VOCs in the model are ethane (2 months) and propane
(2 weeks). Ethane has the highest concentration of any mea- 100

sured non-methane VOC during ATom, with an average of
1.5 ppb below 3 km during the Northern Hemisphere win-
ter. The model underestimates average ethane and propane
below 10 km by approximately 25 % and 60 %, respectively
(Figs. S8 and S9), which could be due to underestimated 105

natural geologic and fossil fuel emissions (Dalsøren et al.,
2018). However, the oxidation of these species is too slow
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16 K. R. Travis et al.: Constraining remote oxidation capacity

Figure 12. Same as Fig. 10 but for ATom-2. The diameter of each pie chart is scaled relative to the maximum cOHR for ATom-2.

Figure 13. The same as Fig. 3 for median acetaldehyde profiles. Acetaldehyde was measured by the TOGA instrument as described in
Table 2. The sensitivity studies are described in Sect. 5.1.

to provide the missing model acetaldehyde and would only
marginally increase remote background levels even if it was
produced at higher yield at low NOx (model yields are ∼
50% for ethane and ∼ 20% for propane, Millet et al., 2010).
The chemical mechanism used for these species is provided5

in Table S5. One or more precursors able to resolve the model
acetaldehyde bias must therefore be present at higher cu-

mulative concentrations than ethane or propane. Modeled
ALK4, parameterized as a butane–pentane mixture, main-
tains a high acetaldehyde yield at low NOx and has a shorter 10

lifetime (∼ 5 d), contributing to a larger perturbation to at-
mospheric acetaldehyde levels than ethane or propane for a
given concentration change. The sensitivity test adding sub-
stantial ALK4 emissions from the ocean described in Sect. 4

Atmos. Chem. Phys., 20, 1–28, 2020 https://doi.org/10.5194/acp-20-1-2020
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Table 5. Model sources of acetaldehyde in 2016.

Sources (Tg yr−1)∗ Millet et al. This
(2010) work

Photochemical production 128 166
Net ocean emission 57 22
Terrestrial plant growth 23 26
+ decay
Biomass burning 3 3
Anthropogenic 2 2
emission

Total source 213 219

∗ Emissions are given in Tg of acetaldehyde per year for
comparison to Millet et al. (2010). These totals are for the baseline
model simulation described in Sect. 2.1.

would not resolve the free tropospheric bias in the Northern
Hemisphere but would result in a 40 % overestimate below
1 km. Furthermore, ALK4 is too short-lived to substantially
perturb the remote atmosphere from a continental source;
thus, the potential missing acetaldehyde precursors (from ei-5

ther a marine or terrestrial source) must have a longer life-
time.

As shown in Table 5, primary ocean emissions of ac-
etaldehyde in the base simulation (22 Tg yr−1) are lower
than previous work (57 Tg yr−1), likely due to updates to the10

model parameterization of the water transfer velocity (John-
son, 2010). Additional independent estimates of the ocean
source are also much larger (34 to 42 Tg yr−1, Read et al.,
2012; S. Wang et al., 2019). However, an increased primary
ocean source would not address the bias in the free tropo-15

sphere or in winter when biogenic activity from CDOM is
zero in the model at high latitudes. Ship-borne measurements
generally measure non-zero acetaldehyde seawater concen-
trations of approximately 5 nM (Read et al., 2012), and a
recent trans-Atlantic campaign found that acetaldehyde con-20

centrations from 47◦ S to 50◦ N did not always correlate with
levels of CDOM (Yang et al., 2014). Therefore, we set a
minimum seawater concentration of 5 nM in the model pa-
rameterization regardless of CDOM level. This change adds
2 Tg C yr−1 in emissions and increases concentrations over25

the remote ocean in winter by up to 50 ppt.
Figure 13 shows the combined effect of adding new ocean

VOCs in Sect. 5 and improving the seawater parameteri-
zation described above on modeled acetaldehyde (labeled
“Improve Ocean VOCs”). Although the direct ocean source30

in this work is lower than previous estimates as described
above, the secondary source from precursor VOCs is en-
hanced. Of the additional marine VOCs described in Sect. 5,
25 Tg C yr−1 produce acetaldehyde as an oxidation product
(Tables 3 and 4). This is compared to 12 Tg C yr−1 of direct35

emissions in the base model. These sources substantially in-
crease average modeled acetaldehyde below 3 km, with the
largest improvement during winter (60 to 90 ppt) when at-

mospheric lifetimes are longer and the influence of the ocean
can extend aloft. In summer, the average model increase be- 40

low 3 km is only 20 to 40 ppt due to higher OH concentra-
tions. Recent work over North America suggested that free
tropospheric VOCs may be underestimated due to errors in
model vertical mixing (Chen et al. 2019), but in Northern
Hemisphere summer slower mixing would not be expected 45

to compensate for the short lifetime of acetaldehyde in this
region (∼ 5 h). Thus, the pervasive model bias in the free tro-
posphere cannot be explained by an increase in known direct
or indirect ocean sources.

Photodegradation of organic aerosols (OA) is another po- 50

tential source of oxygenated VOCs such as acetaldehyde to
the troposphere (Kwan et al., 2006; Epstein et al., 2014;
Wong et al., 2015; S. Wang et al., 2019). The source of sec-
ondary organic aerosols (SOA) is uncertain and has been
suggested to be up to 4 times larger than current estimates 55

given an implied underestimate of the photochemical loss
term (Hodzic et al., 2016). We test the potential impact of
the maximum possible source of acetaldehyde from photo-
chemical loss of OA by increasing the overall model pro-
duction of SOA by a factor of 4 to maximize the impact of 60

Reaction (R2) below. We apply a photolysis frequency for
OA of 4× 10−4JNO2 (Hodzic et al., 2015) to Reactions (R1)
and (R2) as an upper limit and describe the formulation of
Reactions (R1) and (R2) below.

OCPI+hυ = 0.5ALD2 (R1) 65

SOAS+hυ = 0.66SOAS+ALD2 (R2)

The model species OCPI and SOAS represent the majority of
simulated OA in the remote atmosphere. OCPI is aged (hy-
drophilic) organic carbon (12 g C mol−1) and SOAS is SOA
from all emissionsCE1 categories (150 g mol−1). Both are as- 70

sumed for the purposes of the sensitivity tests here to have an
OA/OC ratio of 2.1. In Reaction (R1), one molecule of car-
bon (0.5 ALD2) is produced per reaction. In Reaction (R2),
one acetaldehyde molecule (ALD2) is produced per reaction.
The resulting impact on acetaldehyde is only appreciable in 75

the Northern Hemisphere winter (Fig. 13), when modeled
aerosol amounts are highest and the lifetime of acetaldehyde
is long. Given that this test represents an upper limit, we con-
clude that photolysis of organic aerosols cannot provide a
sufficient source of acetaldehyde to reconcile the model with 80

observations.
We consider whether an entirely unknown VOC with mod-

erate lifetime and a high yield of acetaldehyde at low NOx
could resolve the free tropospheric model bias. We emit such
a species with a lifetime of approximately 1 month against 85

oxidation by OH, emissions of 100 Tg yr−1 from either an-
thropogenic, biomass burning, or ocean sources, and a yield
of one acetaldehyde molecule per reaction with OH. We do
not test a terrestrial biogenic source here but expect the re-
sults would be similar to the biomass burning case. These 90

simulations result in average tropospheric concentrations of 1
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18 K. R. Travis et al.: Constraining remote oxidation capacity

Figure 14. The same as Fig. 3 for median peroxyacetic acid (PAA) profiles. PAA was measured by the Caltech CIMS instrument as described
in Table 2. The sensitivity studies are described in Sect. 5.1.

Figure 15. The same as Fig. 3 for median peroxyacetyl nitrate (PAN) profiles. PAN was measured by the PANTHER instrument as described
in Table 2. The sensitivity studies are described in Sect. 5.1.
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to 5 ppb. The effect of the unknown VOC is compatible with
the model simulation of OH (unlike the addition of oceanic
ALK4 needed to reconcile OHR observations as described
in Sect. 5). The maximum cOHRmod of this species is small
(< 0.03 s−1). The impact on modeled acetaldehyde (Fig. 13)5

is generally similar across all three source categories due
to the long lifetime of this precursor. As shown in Figs. 13
and 14, the addition of this unknown VOC modestly im-
proves the simulation of acetaldehyde and PAA everywhere,
but a large residual underestimate in Northern Hemisphere10

summer remains. The impact on PAN is minor, with the ex-
ception of Northern Hemisphere winter (Fig. 15), but this
is likely driven by the model overestimate in NOy (Fig. 7,
Sect. 4.1).

Emission inventories of VOCs are known to be incom-15

plete, for example neglecting emissions from volatile con-
sumer products (McDonald et al., 2018) or failing to identify
as much as half of emitted VOCs from biomass burning (Ak-
agi et al. 2011), both of which peak in summer. The average
emission factor for unidentified VOCs from biomass burning20

roughly corresponds to 75 Tg yr−1, similar to our sensitiv-
ity tests of 100 Tg yr−1 described above. However, recent at-
tempts to quantify these unidentified VOCs (Stockwell et al.,
2015; Koss et al., 2018) find that newly identified compounds
tend to be too reactive to impact the remote atmosphere, as25

needed here; however, this work is ongoing and future efforts
should investigate potential precursors of acetaldehyde that
could be transported to the remote atmosphere. The missing
source of precursor VOCs would need to have substantial ad-
ditional summertime emissions above and beyond the sensi-30

tivity tests shown in Fig. 13 to address the Northern Hemi-
sphere summertime bias. The required magnitude of this per-
turbation is difficult to reconcile within known measurement
and emission uncertainty constraints.

6 Conclusions35

The detailed set of chemical information available from
the ATom field campaign provides the most comprehen-
sive dataset ever collected to evaluate models in the remote
atmosphere. The sampling strategy of collecting observa-
tions throughout the troposphere in multiple seasons is ide-40

ally suited for improving our understanding of tropospheric
chemistry in a poorly observed region of the atmosphere. We
use the first two deployments of the ATom field campaign
during July–August 2016 and January–February 2017 to in-
vestigate sources of bias in model simulations of OH. Global45

models such as the GEOS-Chem CTM used here tend to
overestimate the loss of methane by OH and underestimate
CO, which provides the main tropospheric sink of OH. Com-
parisons of the model with observations from the first two
ATom deployments do not show systematic bias in the simu-50

lation of OH or the drivers of remote OH production (water

vapor, photolysis of ozone, ozone, and NOy), with the excep-
tion of wintertime NOy , which is overestimated by 70 %.

The model overestimate of wintertime NOy is largely at-
tributable to nitric acid. This bias is not due to an anthro- 55

pogenic inventory overestimate but may reflect insufficient
wet scavenging as well as loss to sea-salt aerosols by ni-
tric acid, although the former mechanism may be counter-
acted by photolysis of the resulting nitrate aerosols. The im-
pact of resolving this wintertime NOy bias is uncertain but 60

could marginally reduce the model overestimate of OH. Fu-
ture work should improve constraints on these mechanisms,
which have all received only preliminary validation, and
carefully examine their impact in the context of broader at-
mospheric chemistry, particularly NOy partitioning through- 65

out the troposphere.
We present the first comparison of measured OH reactivity

(OHR) from aircraft with a global model to evaluate the tro-
pospheric sink of OH. We calculate OH reactivity (cOHRobs)
from relevant species observed during ATom and compare 70

this to cOHR from the model (cOHRmod). Measured OHR
is higher than cOHRobs by approximately 0.2 to 0.4 s−1 be-
low 3 km. This missing OHR correlates with acetaldehyde
during summer, indicating a potential source of missing re-
active VOCs, similar to the findings of Mao et al. (2009) and 75

S. Wang et al. (2020). The addition of a comprehensive set
of ocean emissions of VOCs increases global mean cOHR by
10 % but cannot reproduce the observed OHR enhancement
during ATom-1. Adding sufficient alkanes to the model to
resolve this bias requires an improbably large ocean source 80

(340 Tg C yr−1) and would degrade the model simulation of
OH and NOy . Only one-third of the increase in cOHR in
summer in this test is due to the alkanes; the rest is from
oxidation products and changes in OH. Therefore, a more re-
active VOC would still need to be emitted in large amounts. 85

The model successfully simulates the seasonality and
hemispheric gradient in cOHR but has a persistent under-
estimate of up to 12 % in the lowest 3 km, primarily due
to missing model acetaldehyde. The model does not under-
estimate CO, with the exception of Northern Hemisphere 90

winter, which has been previously recognized by Kopacz et
al. (2010) and attributed to underestimated fossil fuel emis-
sions. The inability to reproduce observations of remote ac-
etaldehyde was first observed during the PEM-Tropics cam-
paign (Singh et al., 2001, 2003; Millet et al., 2010), but 95

the measurement was uncertain. Improvements in measure-
ment precision and the accompanying measurement of PAA
during ATom (S. Wang et al., 2019) strengthen the conclu-
sion that there is a large amount of acetaldehyde present in
the atmosphere that cannot be explained by current mod- 100

els. We investigate possible underestimates in known sources
of acetaldehyde, including emissions of VOCs from anthro-
pogenic, biomass, or oceanic sources or production from
the photolysis of organic aerosols. No known source can
fully resolve the bias in acetaldehyde throughout the tropo- 105

sphere, and particularly in the Northern Hemisphere sum-
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mer. We consider the possibility that there is a large, diffuse
source of unknown VOCs by implementing 100 Tg yr−1 of
such a compound from ocean, biomass burning, or anthro-
pogenic sources. This hypothetical source modestly reduces
the model acetaldehyde bias and is compatible with the simu-5

lation of OH and cOHR; however, an additional source is re-
quired to resolve the largest bias in the Northern Hemisphere
summer. Errors or omissions in the oxidation mechanism of
known VOCs could be another source of bias. For example,
significant uncertainties exist in peroxy radical (RO2) chem-10

istry for large RO2 molecules (Praske et al., 2017), although
the flux of carbon through a minor pathway would have to be
large, restricting the possible known sources. Further labo-
ratory and field observations are needed to understand which
precursors and sources could lead to the sustained production15

of acetaldehyde observed during ATom and prior campaigns.
This study demonstrates that long-standing model biases

in global mean OH are unlikely to be due to errors in sim-
ulating tropospheric chemistry over the ocean. This implies
that a large bias must be present in OH production or loss20

over land and future work should focus on evaluating con-
tinental OH sources and sinks. Errors in modeled OH were
recently investigated by Strode et al. (2015), and when over-
estimates related to production terms were corrected, model
OH remained too high in the Northern Hemisphere, suggest-25

ing that future studies should focus on errors in OH loss.
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