Supplemental Information

Section 1. Model variables included in the calculation of Figure. 1

GEOS-Chem Species ¹	Species description
ACET	Acetone
ACTA	Acetic acid
ALD2	Acetaldehyde
ALK4	>C ₄ alkanes
BENZ	Benzene
Br2	Molecular bromine
BrO	Bromine monoxide
C2H2	Ethyne (Acetylene)
C2H4	Ethylene
C2H6	Ethane
С3Н8	Propane
CH2Br2	Dibromomethane
CH2Cl2	Dichloromethane
CH2O	Formaldehyde
CH3Br	Methyl bromide
CH3Cl	Methyl chloride
CH3I	Methyl iodide
CH4	Methane
CHBr3	Bromoform
CHCl3	Chloroform
C12	Molecular chlorine
ClNO2	Nitryl chloride
ClNO3	Chlorine nitrate
ClO	Chlorine monoxide
СО	Carbon monoxide
DMS	Dimethyl sulfide
ЕОН	Ethanol
ETHLN	Ethanal nitrate
GLYC	Glycoaldehyde
GLYX	Glyoxal
H2	Molecular hydrogen
H2O2	Hydrogen peroxide
HAC	Hydroxyacetone

Table S1. Variables included in the calculated OH reactivity shown in Figure 1.

GEOS-Chem Species ¹	Species description
HBr	Hydrobromic acid
HC187	Epoxide oxidation product m/z 187-189
HC1	Hydrochloric acid
НСООН	Formic acid
HI	Hydrogen iodide
HNO2	Nitrous acid
HNO3	Nitric acid
HNO4	Peroxynitric acid
HO2	Hydroperoxy radical
HOC1	Hypochlorous acid
HOI	Hypoiodous acid
HONIT	2nd generation monoterpene organic nitrate
HPALD	Hydroperoxyaldehydes
I2	Molecular iodine
IEPOXA	trans-β isoprene epoxydiol
IEPOXB	cis-β isoprene epoxydiol
IEPOXD	δ isoprene epoxydiol
IMAE	C ₄ epoxide from oxidation of PMN
IPMN	Peroxymethacryloyl nitrate (MPAN) from isoprene oxidation
ISN1	Nighttime isoprene nitrate
ISOP	Isoprene
ISOPNB	Isoprene nitrate Beta
ISOPND	Isoprene nitrate Delta
LIMO	Limonene
LVOC	Gas-phase low-volatility non-IEPOX product of ISOPOOH (RIP) oxidation
MACR	Methacrolein
MACRN	Nitrate from MACR
MAP	Peroxyacetic acid
MEK	Methyl ethyl ketone
MGLY	Methylglyoxal
MOBA	5C acid from isoprene
МОН	Methanol
MONITS	Saturated 1st generation monoterpene organic nitrate
MONITU	Unsaturated 1st generation monoterpene organic nitrate
MHP	Methylhydroperoxide
MTPA	Lumped monoterpenes (α-pinene, β-pinene, sabinene, carene)

GEOS-Chem	Species description
Species	Tomission tomission land and a single of the second terms of te
MIPO	l'erpinene, terpinolene, myrcene, ocimene, other monoterpenes
MVK	Methyl vinyl ketone
MVKN	Nitrate from MVK
NO	Nitric oxide
NO2	Nitrogen dioxide
NO3	Nitrate radical
NPMN	Non-isoprene peroxymethacryloyl nitrate (MPAN)
03	Ozone
OClO	Chlorine dioxide
ОН	Hydroxyl radical
PROPNN	Propanone nitrate
PRPE	$\geq C_3$ alkenes
R4N2	≥C ₄ alkylnitrates
RCHO	≥C ₃ aldehydes
RIPA	1,2-ISOPOOH (Peroxide from RIO2)
RIPB	4,3-ISOPOOH (Peroxide from RIO2)
RIPD	$\delta(1,4 \text{ and } 4,1)$ -ISOPOOH (Peroxide from RIO2)
SO2	Sulfur dioxide
TOLU	Toluene
XYLE	Xylene

¹ For more information, visit <u>http://wiki.seas.harvard.edu/geos-</u> chem/index.php/Species_in_GEOS-Chem

Section 2. Emission factors used to generate Table 4.

Table S2. Emission factor assumed for each species and the lumping methodology for Table 4.

PTR- TOF- MS	# car bon s	Species Identified	Assumed species	GEOS - Chem specie s	EF ¹ , product ion / 10 ⁷ molec. mW ⁻¹ s ⁻¹	EF*1E ⁷ *C arbons*12 gC mmol ⁻¹	EF*1E ⁷ *molecu lar weight	Matla b Tool (Tg/yr)
42.034	2	C2H3N (acetonitril e)	Acetonitrile					27.131 8
59.047	3	C3H6O (acetone or propanal?)	Acetone	ACET	77.391	2.79E+10	4.49E+1 0	16.300 6

PTR-	#	Species	Assumed	GEOS	EF ¹ ,	EF*1E ⁷ *C	EF*1E ⁷	Matla
TOF-	car	Identified	species	-	product	arbons*12	*molecu	b Tool
MS	bon			Chem	ion / 10 ⁷	gC mmol ⁻¹	lar	(Tg/yr
	S			specie	molec.		weight)
				S	mW ⁻¹ s ⁻¹			
47.048	2	C2H6O	Ethanol	EOH	59.672	1.43E+10	2.75E+1	10.014
		(ethanol)					0	2
45.032	2	C2H4O	Acetaldehyd	ALD2	26.127	6.27E+09	1.15E+1	4.1974
		(acetaldeh	e				0	
		yde)						
33.034	1	CH4O	Methanol	MOH	16.375	1.97E+09	5.25E+0	1.9302
		(methanol)					9	
73.061	4	C4H8O	2-	RCHO	4.63	2.22E+09	3.34E+0	1.2067
		(butanal)	methylpropa				9	
			nal					
69.067	5	C5H8	Isoprene	ISOP	4.788	2.87E+09	3.26E+0	1.1801
		(isoprene)					9	
57.032	3	C3H4O	Acrolein	RCHO	5.355	1.93E+09	3.00E+0	1.0904
		(acrolein)					9	
43.054	3	C3H6	Propene	PRPE	6.593	2.37E+09	2.77E+0	1.0121
							9	
57.067	4	C4H8	Butene	PRPE	4.058	1.95E+09	2.28E+0	0.8265
		(butene)					9	
83.08	6	C6H10	Cyclohexen	PRPE	2.317	1.67E+09	1.90E+0	0.6875
		(cyclohexe	e				9	
		ne)						
71.045	4	C4H6O	Methacrolei	MAC	2.397	1.15E+09	1.68E+0	0.6082
		(methacrol	n	R			9	
		ein)						
127.101	8	C8H14O	2-octenal	PRPE	1.178	1.13E+09	1.49E+0	0.535
							9	
85.059	5	C5H8O	2-	RCHO	1.575	9.45E+08	1.32E+0	0.4794
			Methylbut-				9	
			3-yn-2-ol					
87.075	5	C5H10O	Pentanal	RCHO	1.46	8.76E+08	1.26E+0	0.4535
							9	
70.061	4	C4H7N	Butyronitril	NA	1.7	8.16E+08	1.17E+0	0.4249
			e				9	
41.038	3	C3H4	Cycloprope	PRPE	2.761	9.94E+08	1.11E+0	0.404
			ne				9	
111.104	8	C8H14	Cyclooctene	PRPE	1.01	9.70E+08	1.11E+0	0.4003
							9	
97.094	7	C7H12	Cyclohepten	PRPE	1.023	8.59E+08	9.83E+0	0.3533
			e				8	
51.043	1	CH6O2	Methanol-	MOH	1.895	2.27E+08	9.48E+0	0.3459
			hydrate				8	

PTR-	#	Species	Assumed	GEOS	EF ¹ ,	EF*1E ⁷ *C	EF*1E ⁷	Matla
TOF-	car	Identified	species	-	product	arbons*12	*molecu	b Tool
MS	bon			Chem	ion / 10 ⁷	gC mmol ⁻¹	lar	(Tg/yr
	S			specie	molec.		weight)
				S	mW ⁻¹ s ⁻¹			
113.088	7	C7H12O	2-heptenal	RCHO	0.796	6.69E+08	8.92E+0	0.3227
							8	
43.017	2	C2H2O	NA	NA?	1.904	4.57E+08	8.00E+0	0.2916
		(ketene)					8	
71.077	5	C5H10	1-pentene	PRPE	1.041	6.25E+08	7.30E+0	0.2637
							8	
129.116	8	C8H16O	3-octanone	RCHO	0.545	5.23E+08	6.98E+0	0.2533
							8	
61.026	2	C2H4O2	Acetic acid	ACTA	1.134	2.72E+08	6.81E+0	0.246
							8	
109.093	8	C8H12	1,5-	PRPE	0.546	5.24E+08	5.90E+0	0.214
			cyclooctadie				8	
	_		ne					
143.128	9	C9H18O	5-nonanone	RCHO	0.398	4.30E+08	5.66E+0	0.2042
101.000		G (1110 G		DOLLO	0	4.0.07.000	8	0.0010
101.088	6	C6H12O	2-	RCHO	0.564	4.06E+08	5.64E+0	0.2019
			methylpenta				8	
(2.0.41	2	COLLOO	nal	DOUO	0.004	0.105+00	5 40 E + 0	0.1070
63.041	2	C2H6O2	Ethylene	КСНО	0.884	2.12E+08	5.48E+0	0.1979
107.042	7	0711(0	glycol	DCHO	0 514	4 225 + 0.9	8 5.45E+0	0.1047
107.042	/	C/H6O	Benzaldehy	КСНО	0.514	4.32E+08	5.45E+0	0.194/
121.05(0	C01100	de	DCHO	0.421	4.14E+00	5 17E+0	0 1057
121.056	8	C8H8U		KCHU	0.431	4.14E+08	5.1/E+0	0.1857
			aldobydo				0	
87.030	Λ	C4H6O2		PCHO	0 503	2 85E+08	5 10E+0	0 1832
07.039	4	C4110O2	1,4-	KCHO	0.393	2.85E+08	5.10E+0 8	0.1652
			2-butyne				0	
141 112	9	C9H16O	trans_?_	RCHO	0 359	3 88F+08	5 03E+0	0 1812
171.112	,	CJIIIOO	nonenal	Keno	0.557	5.00L+00	5.05L+0 8	0.1012
95 079	7	C7H10	Cyclopentyl	PRPE	0.532	4 47E+08	5 01E+0	0 1798
55.075	,	0/1110	acetylene		0.552		5.01L+0 8	0.1790
111 072	7	C7H10O	Dicycloprop	RCHO	0 445	3 74E+08	4 90E+0	0 1783
1111072	,	0,11100	vlmethanon	neme	01110	517 12 00	8	011705
			e				Ũ	
101.052	5	C5H8O2	Acetvlaceto	RCHO	0.461	2.77E+08	4.61E+0	0.1658
			ne				8	
139.108	9	C9H14O	Isophorone	RCHO	0.332	3.59E+08	4.59E+0	0.1638
	-		1				8	
153.114	1	C10H16O	α-pinene	RCHO	0.281	3.37E+07	4.27E+0	0.1529
			oxide				8	

PTR-	#	Species	Assumed	GEOS	EF ¹ ,	EF*1E ⁷ *C	EF*1E ⁷	Matla
TOF-	car	Identified	species	-	product	arbons*12	*molecu	b Tool
MS	bon			Chem	ion / 10 ⁷	gC mmol ⁻¹	lar	(Tg/yr
	S			specie	molec.		weight)
		G (1110 G		S	$mW^{-1}s^{-1}$			0.4.4.0
99.074	6	C6H10O	2-hexenal	RCHO	0.405	2.92E+08	3.97E+0 8	0.1449
123.106	9	C9H14	Cyclohexyla llene	PRPE	0.311	3.36E+08	3.80E+0 8	0.1361
77.055	3	C3H8O2	2- methoxyeth anol	RCHO	0.445	1.60E+08	3.38E+0 8	0.1237
81.065	6	С6Н8	1,3- cyclohexadi ene	PRPE	0.355	2.56E+08	2.84E+0 8	0.1041
125.087	8	C8H12O	4- Acetylcyclo hexene	RCHO	0.218	2.09E+08	2.71E+0 8	0.0982
84.082	5	C5H9N	Pentanenitri le	NA	0.271	1.63E+08	2.25E+0 8	0.081
115.102	7	C7H14O	2-heptanone	RCHO	0.191	1.60E+08	2.18E+0 8	0.078
31.019	1	CH2O (formaldeh yde)	Formaldehy de	CH2O	0.704	8.45E+07	2.11E+0 8	0.0775
67.051	5	C5H6 (cyclopent adiene)	1,3- cyclopentad iene	PRPE	0.291	1.75E+08	1.92E+0 8	0.0694
121.085	5	С5Н12О3	2- (hydroxyme thyl)-2- methyl-1,3- propanediol	NA	0.154	9.24E+07	1.85E+0 8	0.0648
68.048	4	C4H5N	pyrrole	NA	0.247	1.19E+08	1.66E+0 8	0.0607
58.036		NA	NA	NA	0.289	0.00E+00	1.65E+0 8	0.06
107.077	8	C8H10	Xylenes	XYLE	0.149	1.43E+08	1.58E+0 8	0.0573
72.046	3	C3H5NO	NA	NA	0.206	7.42E+07	1.46E+0 8	0.054
56.054	3	C3H5N	NA	NA	0.226	8.14E+07	1.24E+0 8	0.046
83.044	5	С5Н6О	NA	NA	0.15	9.00E+07	1.23E+0 8	0.0444

PTR-	#	Species	Assumed	GEOS	EF ¹ ,	EF*1E ⁷ *C	EF*1E ⁷	Matla
TOF-	car	Identified	species	-	product	arbons*12	*molecu	b Tool
MS	bon			Chem	ion / 10 ⁷	gC mmol ⁻¹	lar	(Tg/yr
	S			specie	molec.		weight)
				S	mW ⁻¹ s ⁻¹			
49.01	1	CH4S	NA	NA	0.235	2.82E+07	1.13E+0	0.042
							8	
60.079	3	C3H9N	NA	NA	0.187	6.73E+07	1.10E+0	0.0407
							8	
93.063	7	C7H8	Toluene	TOLU	0.116	9.74E+07	1.07E+0	0.0398
							8	
151.099	1	C10H14O	NA	NA	0.07	8.40E+06	1.05E+0	0.0377
							8	
141.079	8	C8H12O2	NA	NA	0.067	6.43E+07	9.39E+0	0.0352
							7	
73.024	3	C3H4O2	NA	NA	0.125	4.50E+07	9.00E+0	0.0339
							7	
135.075	9	C9H10O	NA	NA	0.067	7.24E+07	8.98E+0	0.0337
							7	
97.059	6	C6H8O	NA	NA	0.092	6.62E+07	8.84E+0	0.0312
							7	
79.05	6	С6Н6	Benzene	BENZ	0.092	6.62E+07	7.18E+0	0.0254
		(benzene)					7	
44.022	2	C2H3O	NA	NA	0.136	3.26E+07	5.85E+0	0.022
							7	
108.043	6	C6H5NO	NA	NA	0.045	3.24E+07	4.82E+0	0.0193
							7	
58.065	3	C3H7N	NA	NA	0.084	3.02E+07	4.79E+0	0.0166
							7	
137.084	9	C9H12O	NA	NA	0.017	1.84E+07	2.31E+0	0.0098
							7	

¹Emission factor from (Brüggemann et al., 2017) Table S2 for biofilms on day 6.

Section 3. Distributions of observed and modeled OH.

Figure S1. Frequency distributions of OH from the model and observations filtered as described in Figure 3.

Section 4. Sensitivity studies describing potential mechanisms to resolve the model NO_y bias in winter in the Northern Hemisphere.

Figure S2. Comparison of modeled and observed HNO₃, ozone, NO_y and NO with sensitivity studies including scaling emissions from the U.S. and Asia, improved chlorine chemistry (Wang X. et al., 2019) and the photolysis of particulate nitrate on coarse-mode seasalt aerosol (Kasibhatla et al., 2018) as described in Section 4. HNO₃ was measured by the Caltech CIMS, ozone, NO_y and NO were measured by the NOAA NO_yO₃ instrument (Table 2). The base model run and sensitivity studies used here are from a different model version (v11) as described by Wang et al. (2019) and were not optimized for simulating the ATom deployments.

Section 5. Incremental impact of additional ocean emissions over the baseline model simulation.

Figure S3. Impact of additional ocean emissions (Tables 3 and 4) over the baseline model (which includes methanol, acetone, and acetaldehyde) on annual simulated 2016 surface cOHR as described in the text.

Section 6. Zonal average plots of acetaldehyde for each deployment.

Figure S4. Zonal mean acetaldehyde gridded to the model resolution along the flight tracks over the ocean. Acetaldehyde is measured by the TOGA instrument as described in Table 2.

Figure S5. Acetaldehyde comparison split at 70°W to represent the Pacific and Atlantic oceans, respectively. Acetaldehyde is measured by the TOGA instrument as described in Table 2.

Section 7. Model comparison with observed ethane and propane.

Figure S6. The same as Figure 3 for median ethane profiles. Ethane is measured by the UCI Whole Air Sampler (WAS) instrument as described in Table 2.

Figure S7. The same as Figure 3 for median propane profiles. Propane is measured by the Trace Organic Gas Analyzer (TOGA) instrument as described in Table 2.

Reaction	Rate				
С2Н6					
C2H6 +OH→ETO2 +H2O	7.66E-12 exp(-1020/T)				
C2H6 +NO3→ETO2 +HNO3	1.4E-18				
ETO2 +NO→ALD2 +NO2 +HO2	2.6E-12 exp(365/T)				
ETO2 + HO2→ETP	7.4E-13 exp(700/T)				
$ETO2 + MO2 \rightarrow 0.75CH2O$	3E-13				
+0.75ALD2 +HO2 +0.25MOH					
+0.25EOH					
ETO2 +ETO2→2ALD2 +2HO2	4.1E-14				
ETO2 +ETO2→EOH +ALD2	2.7E-14				
ETO2 + MCO3→MO2 +ALD2	$1.68\text{E}-12 \exp(500/\text{T})$				
$+HO2 + \{CO2\}$					
ETO2 + MCO3→ACTA +ALD2	$1.87E-13 \exp(500/T)$				
$ETP+hv \rightarrow OH+HO2+ALD2$					
ETP +OH→0.64OH +0.36ETO2	5.18E-12 exp(200/T)				
+0.64ALD2					
C3H8					
C3H8 +OH→B3O2	$k1=7.6E-12 \exp(-585/T); k2=5.87*(300/T)^{0.64} \exp(-816/T);$				

Table S3. GEOS-Chem Ethane and Propane Chemistry (Adapted from Safieddine et al., 2017)

	K=k1 / (1+k2)
C3H8 +OH→A3O2	$k1=7.60E-12 \exp(-585/T); k2=0.17*(300/T)^{-0.64} \exp(816/T)$
	K = k1 / (1 + k2)
A3O2 +NO→NO2 +HO2 +RCHO	2.9E-12 exp(350/T)
A3O2 +HO2→RA3P	2.91E-13exp(1300/T)[1-exp(-0.245*n)], n=3
A3O2 +MO2→HO2 +0.75CH2O	5.92E-13
+0.75RCHO +0.25MOH+0.25ROH	
A3O2+ MCO3 → MO2 +RCHO	1.68E-12 exp(500/T)
$+HO2 + \{CO2\}$	
$A3O2 + MCO3 \rightarrow ACTA + RCHO$	1.87E-13 exp(500/T)
B3O2 +NO→NO2 +HO2 +ACET	2.7E-12 exp(350/T)
B3O2 +HO2→RB3P	2.91E-13exp(1300/T)[1-exp(-0.245*n)],n=3
B3O2 +MO2→0.5HO2 +0.5ACET	8.37E-14
+0.25ACET+0.75CH2O+0.25MOH	
+0.25ROH +0.5HO2 +0.021{CO2}	
B3O2 +MCO3→MO2 +HO2	1.68E-12 exp(500/T)
$+ACET + \{CO2\}$	
B3O2 +MCO3→ACET +ACTA	1.87E-13 exp(500/T)
RA3P +OH→0.64OH +0.36A3O2	5.18E-12 exp(200/T)
+0.64RCHO	
RB3P +OH→0.791OH	8.78E-12 exp(200/T)
+0.209B3O2 +0.791ACET	
$RA3P+hv \rightarrow OH+HO2+RCHO$	
$RB3P+hv \rightarrow OH+HO2+ACET$	

Section 8. Description of chemistry added to GEOS-Chem for unsaturated C2 compounds and organic acids.

Chemistry added to GEOS-Chem. **Table S4.**

Species added

C2H2 = IGNORE; {C2H2; Acetylene} = IGNORE; {C2H4; Ethene} C2H4 = IGNORE; {HOCH2CH2O2; Peroxy radical from C2H4} EO2 EO = IGNORE; {HOCH2CH2O; from C2H4} **Chemistry added** C2H2 + OH = GLYX + OH: C2H2 + OH = HCOOH + CO + HO2: C2H4 + OH = 0.750EO2 + 0.500CH2O + 0.250HO2: GCKMT15(); EO2 + NO = EO + NO2: 1.00E-14; EO + O2 = GLYC + HO2: C2H4 + O3 = CH2O + 0.120HO2 + 0.500CO +0.120OH + 0.500HCOOH:

GCKMT17(0.636); GCKMT17(0.364); GCKMT15(); GCARR(4.2E-12,0.0E+00,180.0); 1.00E-14; GCARR(1.2E-14,0.0E+00, -2630.); {Lamarque et al., 2012} In GEOS-Chem, RCOOH, or organic acids produced during VOC oxidation, do not themselves undergo further oxidation and thus are a loss of carbon in the model. We test the impact of this loss by parameterizing RCOOH as propionic acid from the MCMv3.3.1.

Table S5.	
Species added	
$RCOOH = IGNORE; \{C2H5C(O)OI$	H; > C2 organic acids
RCO2 = IGNORE; {Peroxy from R	COOH}
Chemistry added	
RCOOH + OH = RCO2:	GCARR(1.2E-12, 0.0E+00, 0.0);
RCO2 + HO2 = ETP:	GCARR(4.3E-12, 0.0E+00, 870.0);
RCO2 + NO = ALD2 + HO2 + NO2:	GCARR(2.55E-12, 0.0E+00, 380.0);

Figure S8. One-month test of the impact of RCOOH on surface cOHR, including the chemistry described above.

Section 9. Description of MHP Interference

Recent laboratory work has shown methanediol (HOCH2OH, hydrated formaldehyde) is detected efficiently in the Caltech CIMS instruments at the same signals used to quantify MHP. Under high water vapor mixing ratios, as found in the lower atmosphere, HOCH2OH is likely detected in the Caltech CIMS with substantially greater efficiency than MHP on a molar basis, thus potentially amplifying the interference. Work is ongoing to better understand and quantify this issue.

Figure S9. The same as Figure 3 for median methyl hydroperoxide profiles. Methyl hydroperoxide is measured by the Caltech CIMS instrument as described in Table 2.