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Abstract. 

The volatility distribution of the organic compounds present in SOA at different conditions is a key quantity that has to be

captured  in  order  to  describe  SOA  dynamics  accurately.  The  development  of  the  filter  inlet  for  gases  and  aerosols

(FIGAERO) and its coupling to chemical ionization mass spectrometer (CIMS) has enabled near simultaneous sampling of

gas  and  particle  phases  of  secondary  organic  aerosol  (SOA)  through thermal  desorption  of  the  particles.  The  thermal

desorption data has  recently been  shown to be interpretable  as  a  volatility  distribution with the use of  positive matrix

factorization  (PMF)  method.  Similarly,  volatility  distribution  can  be  inferred  from  isothermal  particle  evaporation

experiments, when  the particle size change measurements are analyzed with process modelling techniques. In this study we

compare the volatility distributions that are retrieved from FIGAERO-CIMS and particle size change measurements during

isothermal particle evaporation with process modelling techniques. We compare the volatility distributions at two different

relative humidity (RH) and two oxidation condition. At high RH conditions, where particles are in a liquid state, we show

that the volatility distributions derived the two ways are comparable within reasonable assumption of uncertainty in the

effective saturation mass concentrations that are derived from FIGAERO-CIMS data. At dry conditions we demonstrate the

volatility  distributions  are  comparable  in  one  oxidation  condition  and  in  the  other  oxidation  condition  the  volatility

distribution derived from the PMF analysis shows considerably more high volatility matter than the volatility distribution

inferred from particle size change measurements. We also show that the Vogel-Tammann-Fulcher equation together with a

recent glass transition temperature parametrization for organic compounds and PMF derived volatility distribution estimate

are consistent with the observed isothermal evaporation under dry conditions within the reported uncertainties. We conclude

that  the FIGAERO-CIMS measurements  analyzed  with the PMF method are a  promising method for  inferring  organic

compounds’ volatility distribution, but care has to be taken when the PMF factors are interpreted. Future process modelling

studies about SOA dynamics and properties could benefit from simultaneous FIGAERO-CIMS measurements.
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1 Introduction

Aerosol particles have varying effects on health, visibility and climate (Stocker et al., 2013). Organic compounds comprise a

substantial amount of atmospheric particulate matter (Jimenez et al., 2009; Zhang et al., 2007) of which a major fraction is of

secondary  origin,  i.e.,  low-volatility  organic  compounds  formed  from  oxidation  reactions  between  volatile  organic

compounds  (VOCs)  and  ozone,  hydroxyl  radicals  and  nitrate  radicals  (Hallquist  et  al.,  2009).  The  aerosol  particles

containing these kind of oxidation products are called secondary organic aerosols (SOA) as opposed to primary organic

aerosols i.e. organic particles emitted directly to the atmosphere.  VOC oxidation reactions result in thousands of different

organic compounds (Goldstein and Galbally, 2007). A recent review by Glasius and Goldstein, (2016) pointed out that our

understanding of SOA is still lacking especially on formation and deposition, and their response to different physicochemical

properties of the organic compounds such as volatility. In addition, also the phase state of the organic compounds has been

shown to play a role in the SOA dynamics (Reid et al., 2018; Shiraiwa et al., 2017; Yli-Juuti et al., 2017; Renbaum-Wolff et

al., 2013; Virtanen et al., 2010)

 

The physicochemical  properties of organic aerosols can be studied directly and indirectly.  The Aerodyne Aerosol mass

spectrometer (AMS, Canagaratna et al., 2007; DeCarlo et al., 2006; Jayne et al., 2000) enabled direct and online composition

measurements  of  atmospheric  particles  for  the  first  time.  Combining  AMS  data  with  statistical  dimension  reduction

techniques such as factor analysis and positive matrix factorization  (PMF; Zhang et  al.,  2011, 2007, 2005; Paatero and

Tapper, 1994) allowed researchers to draw conclusion on sources and types of atmospheric organic particulate matter from

the relatively complex mass spectra data.

The chemical ionization mass spectrometer (CIMS; Lee et al., 2014) coupled with the Filter Inlet for Gases and AEROsols

(FIGAERO-CIMS, Lopez-Hilfiker et al., 2014) is a prominent online technique to study both the gas and particle phases of

SOA. During particle phase measurements, a key advantage over the AMS is the softer chemical ionization that retains much

more of the molecular information of the compound than the electron impact ionization used in the AMS. Typically the

collection of the particulate mass is conducted at room temperature which minimises the loss of semi-volatile compounds

during collection. In addition to the overall chemical composition, the gradual desorption of the particulate mass from the

FIGAERO filter yields the thermal desorption behaviour of each detected ion, i.e.,  it  is a direct  measure of each ion’s

volatility.  FIGAERO-CIMS measurements have been carried out in both laboratory and field environments to study SOA

composition from different VOC precursors and in both rural and polluted environments (Breton et al., 2018; Huang et al.,

2018; Lee et al., 2018; D’Ambro et al., 2017; Lopez-Hilfiker et al., 2015). However, the volatility information in these data

sets have barely been used.
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Besides direct mass spectrometer measurements, SOA properties have been inferred indirectly from growth (e.g. Pathak et

al., 2007 and references therein)  and isothermal evaporation (Buchholz et al., 2019a; D’Ambro et al., 2018; Yli-Juuti et al.,

2017; Wilson et al., 2015; Vaden et al., 2011) measurements. The complexity of the organic compounds in these studies can

be alleviated with the use of a volatility basis set (Donahue et al., 2006), where organic compounds are grouped based on

their (effective) saturation concentration. However as, for example,  Vaden et al., (2011) and Yli-Juuti et al., (2017) have

both shown that the volatility basis sets derived from SOA growth experiments results in too fast SOA evaporation compared

to measured evaporation rates when used as input in process models. This raises a need for alternative methods to derive

organic aerosol volatility against which the volatilities inferred from the direct particle size measurements can be compared

to.

Recently, Buchholz et. al., (2019b) demonstrated that the FIGAERO-CIMS measurements during particle evaporation can be

mapped to volatility distribution of organic compounds by conduction a PMF analysis. On the other hand,  Tikkanen et al.,

(2019) showed  that  the  volatility  distribution  can  be  inferred  from  isothermal  particle  evaporation  measurements  by

optimizing evaporation model input to match the measured evaporation rate at different humidity conditions. In this study,

we compare these two approaches for varying oxidation and particle water content conditions. Our main research questions

are  1)  Are  the  volatility  distributions  derived  from  particle  size  change  during  isothermal  evaporation  and  from  the

FIGAERO-CIMS measurements comparable? 2) How to interpret the PMF results of FIGAERO-CIMS data in terms of

volatility? 3) Can a recent published glass transition temperature parametrization (DeRieux et al., 2018) combined with the

PMF analysis be used to model particle phase mass transfer limitation observed in evaporation at dry conditions, i.e., in the

absence of particle phase water? 

2 Methods

2.1 Experimental particle evaporation data

The experimental data we use is the same as reported in Buchholz et al., (2019a,b). We briefly summarize the measurement

setup below. We generated the particles with a Potential Aerosol Mass (PAM) reactor (Kang et al., 2007; Lambe et al., 2011)

from the reaction of α-pinene with O3 and OH at three different oxidation levels (average oxygen-to-carbon O:C ratios of

0.53, 0.69, and 0.96). We focus on the lowest O:C (0.53) and medium O:C (0.69) experiments in this work. We chose a

monodisperse particle population (mobility diameter dp = 80 nm) with two nano tandem type differential mobility analyzers

(nano-DMA; TSI inc., Model 3085) from the initial polydisperse particle population. The size selection diluted the gas phase

initiating particle evaporation. The monodisperse aerosol was left to evaporate in a 100 L stainless steel residence time

chamber (RTC). We measured the particle size distribution during the evaporation with a scanning mobility particle sizer

(SMPS; TSI inc.,  Model 3082+3775).  The RTC filling took approximately 20 minutes and we performed the first  size
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distribution measurement at the middle of the filling interval. To obtain short residence time data (data before 10 minutes of

evaporation) we added a bypass to the RTC which led the sample directly to the SMPS. By changing the length of the bypass

tubing, we were able to measure the particle size distribution between 2 s and 160 s of evaporation. We measured the

isothermal  evaporation  up to  4  – 10 hours  depending  on the  measurement.  We performed  the  measurements  for  each

oxidation level both at high relative humidity (RH = 80%) and at dry conditions (RH < 2 %). The change in particle size

with respect to time are called evapograms. In an evapogram, the horizontal axis presents evaporation time and vertical axis

shows the evaporation factor (EF), i.e., measured particle diameter divided by the initially selected particle diameter.

To classify the oxidation level of the particles, we derived the average O:C ratio from composition measurements with a

High-Resolution  Time-Of-Flight  Aerosol  Mass  Spectrometer  (AMS,  Aerodyne  Research  Inc.).  Further,  we  conducted

detailed  particle  composition  measurements  with  an  Aerodyne  Research  Inc.  FIGAERO,  Lopez-Hilfiker  et  al.,  2014)

coupled with a chemical ionization mass spectrometer (CIMS) with iodide as the reagent ion (Aerodyne Research Inc., Lee

et al., 2014).  In the FIGAERO inlet, particles are first collected on a PTFE filter. Then the collected particulate mass desorbs

slowly due to gradually heated nitrogen flow which is then transported into the CIMS for detection. We derive the average

chemical composition of the particles by integrating the detected signal of each ion over the whole desorption interval. For

each ion, the change of detected signal with desorption temperature is called thermogram and generally, the temperature at

the maximum of the thermogram (Tmax) is correlated to the volatility of the detected ion. Similar to Bannan et al., (2019) and

Stark et al., (2017), we calibrated the Tmax - volatility relationship using compounds with known vapour pressure.

We collected  particle for  FIGAERO-CIMS analysis at two different stages of the evaporation. We refer to these stages as

either  “fresh”  or  “RTC” samples.  The fresh  samples  were  collected  for  30  minutes  directly  after  the  selection  of  the

monodisperse population. The RTC samples were collected after 3 to 4 hours of evaporation in the RTC for 75 minutes. The

collected particulate mass was 140–260 ng and 20–70 ng for fresh and RTC samples,  respectively.  More details about

sample collection, desorption parameters, and data analysis can be found in Buchholz et al., (2019a).

2.2 The volatility distribution

We represent the myriad of organic compound in the SOA particles with a one-dimensional volatility basis set (1D VBS,

below only VBS,  Donahue et al., 2006). VBS groups the organic compounds into ‘bins’ based on their effective (mass)

saturation  concentration  C*,  defined  as  the  product  of  the  compounds  activity  coefficient  and  saturation  concentration.

Generally, a bin in the VBS represents the amount of organic material in the particle and gas phases. In our study, the walls

of the RTC have been shown to work as an efficient sink for gaseous organic compounds (Yli-Juuti et al., 2017). Thus, we

can assume that the gas phase in our experimental setup does not contain organic compounds, i.e., the amount of organic

matter in a bin is the amount in the particle phase. To distinguish from a traditional VBS that groups the organic compounds

to bins where there is a decadal  difference in C* between two adjacent  bins, we call the VBS in our work a volatility
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distribution (VD). We present the amount of material  in each VD bin as dry mole fractions,  i.e.,  mole fractions of the

organics, excluding water. In the analysis presented below, we assign properties to each VD bin (e.g. molar mass) treating

each  bin as  if  it  consisted of  only a single organic compound with a single set  of  properties.  We label  these pseudo-

compounds as “VD compounds” to distinguish them from real organic compounds. The physicochemical properties of each

VD compound are listed in Table 1 as well as the ambient conditions of each evaporation experiment.

2.3 Deriving volatility distribution from an evapogram

We followed the similar approach as in Yli-Juuti et al., (2017) and Tikkanen et al., (2019) to derive a VD at the start of the

evaporation from an evapogram. To model the evaporation at high RH, we used a process model (liquid-like evaporation

model, hereafter LLEVAP) that assumes a liquid-like particle, i.e., a particle where there are no mass transfer limitations

inside the particle and where the rate of change of the mass of a VD compound in the particle phase can be calculated

directly from the gas phase concentrations of this VD compound near the particle surface and far away from the particle

(Vesala et al.,  1997; Lehtinen and Kulmala,  2003; Yli-Juuti et al.,  2017). In this case,  the main properties defining the

evaporation rate are the saturation concentrations of each VD compound and their amount in the particle.

We used the LLEVAP model to characterize the volatility ranges interpretable from the evaporation measurements. We

calculated  the limits by modelling evaporation of a hypothetical  particle  that  consists of  one organic compound at  dry

conditions iterating the range of  log10  (C*) values from -5   to 5. We determined the minimum C* value with “detectable

evaporation”, i.e., at least 1% change in particle diameter during the evaporation time (up to 6 h) and the maximum C* value

before “complete evaporation” occurred, i.e., 99% evaporation within 10 s. The minimum  log10  (C*) calculated with this

method  was  -3  μgm-3  and  the  maximum  log10  (C*)  was  2.  We  then  modelled  the  particle  composition  with  six  VD

compounds with C* values between these minimum and maximum values. Each VD compounds has a decadal difference in

C* to adjacent VD compounds (the traditional VBS). We note that based on this analysis all the compounds with  log 10 (C*) <

-3 will not evaporate during the experimental time scale. This means that any compounds with lower C * than this threshold

will be assigned to the  log10 (C*)= -3 VD compound. Similarly, any compound with log10 (C*) > 2  will be classified into the

log10 (C*)= 2 VD compound or not be detected at all due to evaporating almost entirely before the first measurement point.

We calculated the dry particle mole fraction of each VD compound at the start of the evaporation by fitting the evaporation

predicted with the process model to the measured evapograms. Our goal was to minimize the mean squared error in vertical

direction between the experimental data and the LLEVAP output. We used the Monte Carlo Genetic Algorithm (MCGA,

Berkemeier et al., 2017; Tikkanen et al., 2019) for the input optimization.  In the optimization, we set the population size to

be 400 candidates, number of elite members to 20 (5% of the population), number of generations to 10, and number of

candidates drawn in the Monte  Carlo (MC) part to 3420 which corresponds to half of the total process model evaluations
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done during the optimization. We performed the optimization 50 times for each evapogram and selected the best fit VD

estimate for further analysis.

The VD derived from the evapograms are hereafter referred to as the VDevap. The initial composition of the SOA particles in

the dry and wet experiments were the same and can be described by the same fitted VDevap as the particles were generated at

the same conditions in the PAM and only the evaporation conditions changed. 

2.4 Deriving volatility distribution from FIGAERO-CIMS measurement

As shown by Bannan et al., (2019) and Stark et al., (2017), the peak desorption temperature, Tmax, can be used together with

careful calibration to link desorption temperatures from the FIGAERO filter to C * values for the detected ions. In principle,

this would allow us to assign one C* value to each ion thermogram. But this assumes that one detected ion characterized by

its exact mass is indeed just one compound. In practice, this is not always the case and for some ion thermograms a bimodal

structure or distinct shoulders/broadening are visible. This can be caused by isomers of different volatility which cannot be

separated even by high resolution mass spectra. 

Another complication arises due to the thermal desorption process delivering the collected aerosol mass into the CIMS.

Especially multi-functional, and hence low volatility compounds may thermally decompose before they desorb from the

filter, and thus be detected as smaller ions. The apparent desorption temperature is then determined by the thermal stability

of the compound and not its volatility. Typically, this decomposition processes start at a minimum temperature and will not

create a well-defined peak shape (Buchholz et al.,  2019b,  Schobesberger  et al.,  2018) presumably because an observed

decomposition  product  may  have  multiple  sources,  especially  when  including  all  isomers,  and  the  ion  signal  for  the

respective composition may overlap with the signal of isomers derived from true desorption. E.g., a true constituent of the

SOA  particle  may  give  rise  to  an  observed  main  thermogram  peak,  but  it  may  be  broadening  and/or  tailing  if  a

decomposition product has the same composition. By ignoring this and simply using the Tmax values, the true volatility of the

SOA particle constituents will be overestimated, i.e., the derived VD will be biased towards higher C* bins.

To  separate  the  multiple  sources  possibly  contributing  to  each  ion  thermogram  (isomers  and  thermal  decomposition

products), we applied Positive Matrix Factorisation (PMF, Paatero and Tapper, 1994) to the FIGAERO-CIMS data set. PMF

is a well-established mathematical technique in atmospheric science mostly used to identify the contribution of different

sources of aerosol particles or trace gases in the atmosphere. PMF represents the measured matrix of time-series of mass

spectra,  X, as a linear combination of a (unknown) number of constant source profiles,  F, with varying contributions over

time, G:

X=G⋅F+E (1)
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E is a matrix containing the residuals between the measured (X) and the fitted data (G F⸱ ). Values for G and F are found by

minimising this residual, Eij, scaled by the corresponding measurement error, Sij, for each ion i at each time j

Q=∑
i=1

m

∑
j=1

n

(
Ei , j
S i , j ) (2)

Each row in F contains a factor mass spectrum and each column in G holds the corresponding time series of contribution by

each factor. In the case of FIGAERO-CIMS data, the time series is equivalent to the desorption temperature ramp during the

thermogram, and will be called “mass loading profile” below. The absolute values (temperature or time) are irrelevant for the

performance of PMF as the “x values” are only used to determine the order of the data points but have no influence on the

model output (Paatero and Tapper, 1994). This allowed us to combine multiple separate thermogram measurements into one

data set and conducting a PMF analysis. This simplified the comparison of factors between measurements. More details

about the PMF method in the specific case of FIGAERO-CIMS data can be found in Buchholz et al., (2019b).

Once the PMF algorithm was applied to the FIGAERO-CIMS data we calculated the VD from the mass loading matrix G.

We interpolated each factor’s mass loading profile with a resolution of 100 sample points between two temperature steps to

gain sufficient statistics for further analysis. Tmax was determined as the temperature of the maximum of the factor mass

loading series. We integrated the factor mass loading profile and defined the temperatures where the value of the integral

reaches 25% and 75% of its maximum value. This temperature interval formed the factors desorption temperature range. We

converted the Tmax value into a C* value and the desorption temperature range into a C* range with the parametrization based

derived from calibration measurements with organic compounds with known C* values.

C*=
exp (α+βT factor )M org

RT ambient
109 (3)

where C*
 is the effective saturation concentration in units μgm-3, Morg is the molar mass of the organic compound assumed to

be Morg = 0.2 kg mol-1, R is the universal gas constant Tfactor is the temperature in mass loading profile and Tamibent  is the

ambient temperature where the evaporation happens (see Table 1),  α and β are the fitted coefficients from the calibration

data  α=(3.739±0.618)  and  β=(-0.135±0.009)  K-1.  We  applied  the  lower  and  higher  bounds  of  the  fitting  coefficients

uncertainty when we calculated the minimum and maximum for the allowed C* values in Sect 3.3. Finally, the signal fraction

of each factor was calculated by dividing the integral of a factor’s signal over the whole temperature range with the sum of

integrals of all factors’  signals.  We compare this signal  fraction to dry mole fraction in the VDevap.  We refrained from

converting the counts per second signal into moles as no adequate transmission and sensitivity measurements were available

for the used FIGAERO-CIMS setup. We refer the volatility distribution calculated from the PMF data as VDPMF later in this

work.
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With the Tmax calibration, we can calculate the minimum and maximum C* values that can be resolved from a FIGAERO

thermogram. The desorption temperature was ramped between 27 °C and 200 °C, but defined peaks (and thus T max values

can be detected only between 30 and 180 °C. Thus, the resolvable log10 (C*) values range from 1.7 to -11.1. It has to be kept

in mind that strictly this calibration only applies to the Tmax values of a single ion thermogram.

2.5 Modelling particle viscosity at dry conditions

To model the mass transfer limitations observed in the evaporation measurements at dry conditions (Buchholz et al., 2019a)

we used the Kinetic multilayer model for gas particle interactions (KM-GAP;  Shiraiwa et al.,  2012) with modifications

described in  Yli-Juuti et al.,  (2017) and Tikkanen et al.,  (2019).  The main modifications to the original model was that

during evaporation the topmost layer (the quasi static surface layer) merges with the first bulk layer if the thickness of the

layer is smaller than 0.3 nm. We calculated the viscosity at each layer of the particle as

log10(ηj)=∑
i=1

N

Xmole ,i , j log10(bi),  (4)

where Xmole,i,j is the mole fraction of the VD compound i in layer j and bi is a coefficient that describes the contribution of 

each VD compound to the overall viscosity.

Since we generated the particles in the same environment (PAM chamber) and only evaporated th at different conditions, the

VD at the start of the evaporation derived from high RH data represents also the composition at the start of the evaporation at

dry conditions. Then we can use the best fit VDevap from the high RH data as input for KM-GAP and fit the b i values in Eq.

(4) to the dry data set. We set the minimum and maximum allowed values for b i to 10-15
 and 1020, respectively. To estimate

the bi  values when modelling the evaporation with VDPMF at dry conditions, we calculated these bi terms using the mass

spectra of each factor (F in Eq. 1) and the Vogel-Tammann-Fulcher (VTF) equation (DeRieux et al., 2018; Angell, 2002,

1995) 

ηi=η∞exp (
T 0 ,iD

T−T0 , i ) , (5)

where ηi is the viscosity of a VD compound / PMF factor i which can be seen as a proxy for bi in an ideal solution, η∞ is the

viscosity at infinite temperature, T0,i is the Vogel temperature of i, and D is a fragility parameter. Setting η∞ = 10-5
  Pa s and

η(Tg) = 1012 Pa s  (e.g. DeRieux et al., 2018; Gedeon, 2018), where Tg is the glass transition temperature of a compound

yields 
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T 0 ,i≈
39.14T g , i
39.14+D

. (6)

We calculated Tg for  every  compound in the PMF mass spectra  with a  parametrization for  SOA matter  developed by

DeRieux et al.,  (2018). We then computed Tg for each PMF factor as a mass fraction weighted sum of glass transition

temperatures of individual compounds (DeRieux et al., 2018; Dette et al., 2014). Based on the Tg,i for each PMF factor we

calculated the viscosity of each PMF factor with Eqs. (5) and (6) and used them as an approximation for b i. We used fragility

parameter value D = 10 according to DeRieux et al., (2018).

3 Results

In this section we first focus on the high RH experiments where evaporation is modelled with the LLEVAP model. We will

first compare  VDevap  and VDPMF when the C* of a PMF factor is determined from the factor’s Tmax. Then, we compare the

volatility distributions where the C*  of a PMF factor is determined as the range from the 25th and 75th percentile desorption

temperatures. Lastly, we compare the volatility distributions at dry conditions.

3.1 PMF solution interpretation

Figure S1 and Fig S2 show all  mass  loading profiles  derived  from FIGAERO-CIMS measurements  of  evaporation  of

medium and low O:C particles at high RH. The corresponding factor mass spectra can be found in Fig. S3 and Fig. S4. A

key step in any PMF analysis is determining the “right” number of factors as this can affect the interpretation of the results.

A 7-factor solution was chosen for the medium O:C cases and a 9-factor solution for the low O:C ones (see Buchholz 2019b

for details). Two additional factors in the low O:C case were needed to capture a contamination on the FIGAERO filter

during the dry, fresh sample (factors LC1 and LC2 in Fig. S1 and Fig. S2). As these two factors were clearly an artefact

introduced by the FIGAERO filter sampling, we omitted their contribution from the data set for the following analysis. From

careful comparison of the factor profiles and mass spectra with filter blank measurements, we determined that factor MB1 in

medium O:C case and factor LB1 in low O:C case describe the filter/instrument background and are thus also excluded from

the VD comparison presented below.

Factors 1-5 in both O:C cases  exhibit a monomodal peak shape and can thus be characterised by their T max values, factor

MD1 in medium O:C case and factor LD1 in low O:C case needs to be investigated more closely, as its factor mass spectrum

and the sometimes bimodal mass loading profile suggest that this factor contains compounds stemming from both direct

desorption (desorption T<100 °C) and thermal decomposition (desorption T >100 °C, see Buchholz et al., 2019b for details).

To account for this, the factor is split into two with the first half containing the signal from desorption temperature below

100  °C (factor  M/LD1a)  and  the  second  half  containing  that  above  100  °C (factor  M/LD1b).  We treat  these  factors

separately. We note that now the latter half of the split factor is dominated by thermal decomposition products so that the

9

250

255

260

265

270

275

https://doi.org/10.5194/acp-2019-927
Preprint. Discussion started: 14 November 2019
c© Author(s) 2019. CC BY 4.0 License.



apparent desorption temperature is actually the temperature at which thermal decomposition leads to products which desorb

at this temperature. This apparent desorption temperature is thus a lower limit for the decomposing parent compound, i.e.,

the true volatility of these parent compounds is even lower. However, the desorption temperatures are so high that they lead

to log10(C*) < -3  and are thus below the comparable range for VDevap. Figure 1 (high RH data) and Fig. S5 (dry condition

data)  show the mass loading profiles derived from FIGAERO-CIMS measurements  of medium and low O:C particles’

evaporation after we excluded the contamination and background factors and split the decomposition factors.

3.2 Volatility distribution comparison at high RH based on factor Tmax

To compare VDevap and VDPMF, we need to determine the time interval in the evapogram that the VDPMF represents. We

collected the fresh samples directly after the size selection. As the particles were collected on a filter for 30 minutes, the

collected sample represents particles that have evaporated from 0 up to 30 minutes in the organic vapour free air. We note

that  this  is  different  from  the  standard  FIGAERO-CIMS  sample  collection  where  particles  are  collected  in  a  quasi-

equilibrium with the surrounding gas phase and no significant evaporation occurs  (Lopez-Hilfiker et al., 2014). For RTC

samples, we need to consider also that not all particles have evaporated for the same time due to the filling of the RTC for ca.

20 minutes. We determined the minimum time the particles have evaporated in the RTC as the time when we started the

sample collection minus the RTC filling time. We determined the maximum evaporation time in the RTC to be the time

when we stopped the sample collection plus the filling time. These minimum and maximum comparison times are shown in

Table 2 and they are referred to as minimum and maximum (sample) evaporation time. In addition, we also compare the

volatility distributions at the middle of the sample collection interval, i.e., the mean (sample) evaporation time.

Figure 2 shows VDevap and VDPMF  for medium (Fig. 2a-b) and low O:C (Fig. 2c-d) particles at  high RH. In the VDPMF

calculated from Tmax, values of each factor (black crosses), the factors fall into three different volatility classes within our

chosen particle size and experimental time scale: practically non-volatile (log10(C*) ≤ -2, slightly volatile ( -2 < log10(C*) ≤ 0,)

and volatile (log10(C*) > 0). We use these three volatility classes to compare the volatility distributions in Fig. 3 where each

VD compound are grouped to these three volatility classes. Figure 3 presents the VDPMF where C* of each factor is calculated

from the Tmax value and compares this VDPMF to what VDevap is at the minimum, mean and maximum time FIGAERO samples

had evaporated.

After the volatility class grouping is applied, we see that there is an excess amount of matter in the highest volatility class

(volatility class 3) of the VDPMF compared to the VDevap in all the cases. With the fresh samples (Fig. 3a and Fig. 3c), the

VDPMF seems to be the closest to the VDevap at the very start of the evaporation. With the RTC samples (Fig. 3b and Fig. 3d)

the VDPMF does not directly match any of the VDevap. For particles with medium O:C, VDPMF shows more contribution of

volatility class 2 and less of in volatility class 1 compared to VDevap.
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To investigate the observed discrepancy more detailed, we used the VDPMF as an input for the LLEVAP model and calculated

the corresponding isothermal evaporation behavior (i.e. the evapogram). We show these simulated evapograms in Fig. 4a for

the medium O:C case and in Fig 4b for low O:C condition together with the simulated evapogram calculated using VD evap as

an input for the LLEVAP model. The derived VDPMF represents the particle composition averaged over the sample collection

interval. To account for this, we run the model by starting the evapogram simulations calculated with VD PMF either at the

start of this interval (minimum isothermal evaporation before sample collection), at the mean (mean isothermal evaporation

before  sample  collection),  or  at  the  end  (maximum  isothermal  evaporation  before  sample  collection).  The  simulated

evapograms calculated with VDPMF of  the fresh samples  do not match the measured evapograms,  while the evapogram

calculated with VDevap agrees well with the experimental evapogram (black lines in Fig. 4), as we expected since this was the

goal  of  the VDevap determination.  If  we take  the VDPMF of  the fresh  samples’  as  the particle  composition at  minimum

evaporation time, the simulated evaporation is slower than the measured evaporation (light blue lines in Fig. 4). If VDPMF is

set  to  be  the particle  composition at  mean or  maximum evaporation  time the simulated  evaporation  is  faster  than  the

measured one. 

Figure 4 shows also the simulated evapograms calculated with VDPMF of the RTC samples (light brown lines in Fig. 4). in

these cases, the particles size decreases little within the simulation time scale. With medium O:C particles, the simulated

evaporation matches better to the measured evaporation than the simulations calculated with the VD PMF of the fresh sample

although the simulated evapograms shows a slightly higher rate  of  evaporation than what  is  measured.  With low O:C

particles, the evaporation calculated with VDPMF is too fast. The shape of the evapogram does not match the measured one.

3.3 Applying desorption range to characterize the volatility of PMF factors

The Tmax value is a practical choice for the characteristic temperature of the desorption process. However, as we saw on Sect.

3.1 the VDPMF calculated from the peak desorption temperatures did not produce the measured evapogram when used as an

input to the LLEVAP model. Working under the assumption that all material collected on the FIGAERO filter, including the

higher volatility material, is detected in the CIMS and then captured in the PMF analysis we will relax the assumption that

the volatility of the factor is characterized strictly by the  Tmax value of the factor and investigate the VDPMF  further. We will

explore how the VDPMF changes when the desorption temperature and the resulting C* are interpreted to contain uncertainty

and  if  the  VDPMF considering  these  uncertainty  ranges  is  consistent  with  the  observed  isothermal  evaporation.  The

uncertainty  in  the  desorption  temperature  raises  from  the  facts  that  compounds  volatilise  from  the  FIGAERO  filter

throughout the heating and, therefore, one value might not be adequate to characterize the C * of a factor and that each PMF

factor contains multiple compounds with distinct C*.
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We calculated the 25th and 75th percentiles of the desorption temperatures of each factor  and converted them to effective

saturation concentrations as described in section 2.4 (see diamond markers in Fig. 1). We show the resulting C* ranges in Fig.

2 as horizontal solid lines where the line colour matches the factor’s colour in Fig. 1. We then ran MCGA optimization by

setting a number of compounds equal to the number of PMF factors, molar fraction for each compound at the FIGAERO-

CIMS sampling time fixed to the molar fraction of corresponding factor and set the C* as the optimized variables restricted to

the  range  corresponding  to  the  25th and  75th percentile  desorption temperature.  In  the  optimization  the  goodness-of-fit

statistics was calculated as a mean squared error similar to the determination of VDevap.

As the fresh samples were collected between 0 and 30 minutes from the start of the evaporation, we sought for a fitting set of

C* values  for for evaporation starting at 0, 15, 30 minutes. Due to scarcity of particle size measurements at collection time of

the RTC sample, we will apply this analysis only to the VDPMF of the RTC sample at its minimum evaporation time. In each

optimization we set the initial particle diameter to be the same as what is simulated with VD evap. We derived 50 C* estimates

for both samples and each evaporation time. From these 50 estimates we chose the best fit evapogram. We refer to these

optimized volatility distributions as VDPMF,opt to separate them from the VDPMF  where we used Tmax to characterize C*  of a

PMF factor.

We show the optimized  C* values  forming VDPMF,opt in Table 3 for  all  the studied cases.  Figure 5a shows the best  fit

evaporation simulations calculated with VDPMF,opt of the medium O:C fresh sample. All the simulated evapograms resemble

the experimental evapogram and evapogram calculated with VDevap. Figure 5b shows the simulated evapograms calculated

with VDPMF,opt for low O:C samples. The evapograms initialized at 0 min and15 min match the experimental evapogram and

the simulated evapogram using VDevap as input. The evapogram using VDPMF,opt starting from the point of 30 minutes of

isothermal evaporation does not match the measured evapogram but shows faster evaporation than the measurements. 

For finding the VDPMF,opt for the low O:C RTC sample starting at minimum sample evaporation time (168 minutes) we

needed to exclude factor LD1a from the calculations to be able to derive the VDPMF,opt. As Buchholz et al., (2019b)  reported,

the mass spectrum of factor LD1a is dominated by compounds that come from the FIGAERO filter / instrument background.

In low O:C RTC sample factor L1a is present at such high relative signal strength that its mole fraction is significant to other

factors even though the absolute signal strength does not change drastically between the fresh and the RTC sample. The high

relative  contribution  of  factor  LD1a  is  most  probably  due  to  the  low amount  of  organic  matter  available  for  sample

collection. 

Overall, these results demonstrate that the fresh and RTC samples can describe the composition of the evaporating particles,

when uncertainty in the desorption temperature are considered.
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3.4 Comparison of the volatility distribution of the fresh and RTC sample at high RH

In this section we compare VDPMF,opt of the fresh samples to VDPMF of the RTC sample to study are the two VD comparable.

We compare the two VD at the mean evaporation time of the RTC sample. We calculated the evapograms with VDPMF,opt  of

the fresh sample starting from different sample evaporation times and recorded the mole fraction of each factor at mean

evaporation time of the RTC sample (216 minutes for medium O:C particles and 211 minutes for low O:C particles). Figure

6a and Fig. 6c show this comparison for both medium O:C and low O:C particles where the factors are grouped  to the three

volatility classes described in Sect. 3.2. To ensure that the factors are grouped to the same volatility classes for each studied

VD, we used the C* values of the VDPMF,opt at mean sample evaporation time as basis according to which the grouping is

done.

Assuming that the fresh sample represents particles from the middle of the sampling interval (mean evaporation time), the

compositions simulated based on the VDPMF,opt  of the fresh samples are comparable to the corresponding VDPMF of the RTC

sample in both oxidation conditions.  In both O:C levels, the VDPMF,opt of minimum fresh sample evaporation time show

higher contribution of volatility class 2 and lower contribution of volatility class 1 than the VDPMF of the RTC sample.

Contrary,  the  VDPMF,opt of  maximum fresh  sample  evaporation  time  in  the  medium  O:C  case  (Fig.  6a)  shows  higher

contribution of volatility class 1 and lower contribution of volatility class 2 than the VDPMF of the RTC sample. These results

show that even though we calculated the VDPMF,opt starting from the minimum and maximum possible sample evaporation

time,  the  VDPMF,opt of  the  fresh  samples  are  consistent  with  the  RTC samples  only  if  the  VD PMF,opt represents  particle

composition around the middle of the sample collection interval.

3.5 Volatility distribution comparison at dry condition

Next, we analysed the evaporation experiments under dry conditions where the evaporation rate was reduced compared to

the  high  RH conditions.  We interpreted  this  difference  as  an  indication  of  particle  phase  diffusion  limitations  at  dry

conditions (Yli-Juuti et al., 2017). Using the initial particle composition information obtained from the high RH experiments

and the FIGAERO-CIMS data, we explored the effect of particle viscosity on the evaporation process. 

First, we investigated the range of particle viscosities that are required to explain the observed slower evaporation at dry

conditions. For this, we simulated the particle evaporation in dry conditions based only on the evapogram data. We used the

VDevap (i.e., the initial particle composition obtained by optimizing mole fractions of VD compounds with respect to the

observed evapogram at high RH) as the initial condition for the simulations and optimized the b i values (Eq. 3) for each VD

compound. The best fit simulation from this optimization agrees well with the observed size decrease in the dry experiments

for both low and medium O:C particles (Fig. 8, black line). Based on these simulations the viscosity of the particles need to

13

375

380

385

390

395

400

405

https://doi.org/10.5194/acp-2019-927
Preprint. Discussion started: 14 November 2019
c© Author(s) 2019. CC BY 4.0 License.



increase from below 105 Pa s to approximately 108 Pa s during the evaporation in order to explain the evaporation rate

observed for the dry particles. 

Second, we tested the performance of the composition dependent viscosity parameterization by DeRiuex et al. (2018) used

together with the PMF results. For this, we calculated the volatility distribution, VD PMF,dry, based on the Tmax values of the

factors from the fresh sample of the evaporation experiment at dry conditions (in the same way as VD PMF for the high RH

case). The mole fraction of each factor was calculated from the mass loading profile giving the initial mole fraction of each

VD compound for the simulations. We assigned this VDPMF,dry as the particle composition at the mean evaporation time of the

fresh sample, i.e. 15 minutes, and simulated the particle evaporation from there onwards. The particle size at the beginning

of the simulation (i.e. at 15 minutes of evaporation) was taken from the above simulations optimized based only on the

evapogram data,  which fitted well with the measurements.  We calculated the viscosity parameter b i value for each VD

compound as described in Section 2.5 based on the mass spectra of the factor and the parameterization by DeRieux et al.

(2018). This resulted in too high viscosity for particles to evaporate in practise at all during the length of the experiment for

both low and medium O:C particles (black dashed line in Fig. 8). Therefore, we also made a simulation where the viscosity

parameter bi value for each factor was calculated based on the viscosity parameterization by setting the T g values of all

compounds 30 K lower than the parametrization predicted, which is in line with the uncertainties reported by DeRiuex et al.

(2018). In this case the simulated evaporation was faster than observed (grey dashed line in Fig. 8). This suggest that the

observed evaporation rate at dry conditions and the viscosity parametrization by DeRieux et al. (2018) may be consistent

with each other within the uncertainty range of the viscosity parametrization and the uncertainty range of the C * of PMF

factors.

Similar to Fig. 3, we show in Fig. 7 the comparison of VDPMF,dry (C* from Tmax) to the VDevap at dry conditions with the VD

compounds grouped into the three volatility classes. We show the mass loading profiles and the volatility distributions at dry

conditions in Fig. S5 and Fig. S6. For medium O:C particles, VDPMF,dry calculated both from fresh and RTC sample have

slightly more contribution of volatility classes 2 and 3 and less of volatility class 1 compared to the corresponding VD evap.

For low O:C particles, the VDPMF,dry differs substantially from the VDevap: considerably more matter is in the highest volatility

class (class 3) than in the lowest volatility class (class 1) especially in the case of the fresh sample. Overall, the VDPMF,dry

suggests higher volatility compared to the VDevap. Therefore, the underestimation of the evaporation rate when using the

VDPMF,dry together  with  the  viscosity  parameterization  (black  dashed  line  in  Fig.  8)  originates  from the  high  estimated

viscosity. 

As a third investigation on the viscosity, we used again the PMF results of the fresh sample at dry conditions to initialize the

particle composition in the model at the mean fresh sample evaporation time, i.e., at 15 minutes. Also at this time, the mole

fraction of each factor were calculated from the mass loading profile giving the initial mole fraction of each VD compound
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for the simulations. Then, using the MCGA algorithm together with the KM-GAP model, we estimated the b i coefficient and

C* of each VD compound by optimizing the KM-GAP simulated evapogram to the measured evapogram at dry condition.

This way we obtained both the initial volatility distribution (VDPMF,dry,opt) and viscosity parameters bi simultaneously.  For this

optimization, we restricted the C* values of the factors based on the 25th and 75th percentile of the desorption temperature of

the factors, similarly as done above for VDPMF,opt, and the viscosity parameter bi values based on the DeRieux et al. (2018)

parameterization. The bi values calculated with the original parametrization by DeRieux et al., (2018) were set as the upper

limit for bi values. The lower limit for bi values were calculated by setting the glass transition temperature of each compound

30 K lower than the parametrization predicted. As above, also in these simulations the initial particle size was taken from the

simulations where optimization was based on only the evapogram data. For medium O:C particles it was possible to find a

set of C* and bi values that produced an equally good match to experimental data as the VDevap produced (purple line in Fig.

8a). For low O:C particles, the match to experimental data was slightly weaker than with the VDevap (yellow line in Fig. 8b).  

Figure 6b shows the comparison of the measured and simulated particle composition, on the basis of the three volatility

classes,  at  RTC  sample  collection  time  for  the  dry  experiments  for  low  and  medium  O:C  particles.  The  measured

composition is the VD calculated from PMF results of RTC sample at dry conditions and the optimized C* values of the

factors from the corresponding dry experiment were used for these VD. The simulated particle composition is taken from the

optimized model run (optimized VDPMF,opt,dry and bi) at the mean RTC sample collection time similar to the high RH cases

presented in Fig. 6a and Fig. 6c. For medium O:C particles the measured and simulated composition at mean of the RTC

collection time are in agreement. For low O:C particles there is a clear discrepancy: the measurements imply a much larger

relative  contribution from the volatility  class  1  and  a  smaller  contribution from the volatility  class  2  compared  to  the

simulations. This inconsistency may be related to the rather high viscosities in the simulations. The viscosity of the low O:C

particles in this optimized simulation was rather high, η  >108 Pa s, throughout the evaporation, slowing the evaporation of

the higher volatility compounds. Similar evaporation curve could be obtained with lower viscosity and lower volatilities of

the compounds.

4 Discussion

VDPMF and VDPMF,dry capture qualitatively the evaporation dynamics well in all studied cases. For the VDPMF  of the fresh

samples, the first and second factor desorb at low heating temperatures (below 100 °C) indicating that these factors represent

organic compounds that evaporate almost completely from the particles in the experimental time scale of our isothermal

evaporation experiments. In the RTC samples, these factors show significantly lower or non-existing signal strength relative

to the other factors. The factors that desorb at high temperatures show increase in the relative signal strength in the RTC

samples compared to the fresh samples which is consistent with the expected increase in relative contribution of lower

volatility compounds along evaporation.
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At high RH, the VDPMF that was derived from Tmax of each factors mass loading profile did not produce evapogram similar

to the measured ones, when the VDPMF was used as an input to the LLEVAP model. This reflects the sensitivity of particle

evaporation to the C* values and suggest that the VDPMF is not directly applicable as a particle composition estimate for

detailed particle dynamics study. When we allowed uncertainty in the C* values of each factor we were able to explain most

of the discrepancy between the simulated and measured evapograms. The simulated evapograms, after optimizing the C * of

each factor from their appropriate ranges, are close to the experimental values at all other cases except in the low O:C case

when the VDPMF is interpreted to represent particles at the end of fresh sample’s collection interval (maximum evaporation

time). 

Even though we assumed a quite large uncertainty range for the desorption temperature of each factor, the resulting C *

estimates range in most cases around one order of magnitude. In the cases where the C * range is higher and a factor has high

enough signal, the estimated C* values in VDPMF,opt are closer to the C* calculated from Tmax of the factor than the extremes of

the range (e.g. factor 2 and factor 4 in medium O:C high RH experiments). This highlights the fact that even though the C *

estimated  from  Tmax  did  not  produce  exactly  comparable  evapograms,  the  C* values  that  produce  correct  evaporation

dynamics are not far away from those derived from the Tmax values.

We note that care has to be taken when PMF results are transferred to volatility distributions, especially with regard to

separating the contribution of instrument background and contamination from the true sample. When the sample mass was

low (in the low O:C RTC sample) we noticed that the first half of the bimodal (factor LD1a) resulted in a high mole fraction

even though the absolute signal strength of the factor did not change between the fresh and the RTC sample, which is usually

an indication that this signal is caused by instrument background. Factor LD1a affects the VD calculations only when the

collected mass is low. Removing this factor from the low O:C RTC sample allowed us to derive VDPMF,opt that produces an

evapogram similar to the experiment. The signal strength of this factor was low enough in all other cases to not affect the

overall VD estimation.

VDPMF,dry of the fresh sample in low O:C case showed noticeably higher amount of high volatility matter than VD evap. We

cannot explain these differences with a single factor like in the low O:C high RH RTC sample case since in dry conditions

multiple high volatility factors show up in the PMF solution. This discrepancy between the volatility distributions is not

expected and raises a need for further studies on the role of viscosity and possible particle phase chemistry to SOA particle

dynamics.  Future  studies  should  investigate  the  possibility  of  chemical  reactions  that  modify  the  volatility  of  organic

compounds and how viscosity is described in process models.
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5 Conclusions

We  compared  volatility  distributions  derived  from  FIGAERO-CIMS  measurements  with  PMF  analysis  to  volatility

distributions derived from fitting a process model to match measured size change of particles during isothermal evaporation.

In all studied experimental data sets we were able to capture the measured evaporation with the fitting method. With high

RH experiments, VDPMF deviated from VDevap especially when the FIGAERO samples were collected at the early stages of

the evaporation. However, qualitatively, both types of VD evolved similarly, i.e., the fraction of lower volatility compounds

increased, and the fraction of higher volatility compounds decreased during the particles’ evaporation.

The volatility distribution from PMF at high RH matched the experimental values better when we interpreted the volatility of

each factor as a range of possible C* values and optimized the C* values from these ranges with respect to the measurements.

At dry conditions, we were able to simulate the evapograms based on the PMF results using the VTF equation and glass

transition temperature parametrization of DeRieux et al., (2018) when both C* and viscosity parameters where optimized and

allowed  to  contain  reasonable  uncertainties.  For  medium O:C  particles  also  the  simulated  composition  evolution  was

consistent  with  the  measurements.  However,  for  low  O:C  particles  the  measured  composition  at  the  later  stages  of

evaporation suggested considerably higher volatility than the simulations.

Based on our analysis we conclude that using the PMF method with FIGAERO-CIMS thermogram data is good estimating

the volatility distribution of organic aerosols when the organic compounds present in the particle phase have low volatilities

with respect to the sample collection and analysis time scale. Specifically, VDPMF is useful for extracting information about

organic compounds that do not evaporate during the evaporation measurements at room temperature. VDPMF is applicable to

detailed particle dynamics studies when desorption temperature of the factor is characterized with a range around the Tmax

value. Furthermore, combining VDPMF,opt with detailed process modelling and input optimization could allow quantification

of  other  physical  or  chemical  properties  of  organic  aerosols  since  the  FIGAERO-CIMS  data  constrains  the  particle

composition and effectively decreases the search space that needs to be explored with global optimization methods.

Code availability: The process models and the version of the MCGA used in this study can be acquired upon request from

the corresponding author. 
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Table 1: The ambient conditions and properties of the organic compounds used in estimating the VDevap. The variables are,

from top to bottom, temperature (T) during the evaporation, relative humidity (RH), gas phase diffusion coefficient (Dg,org),

molar mass (M), particle phase density (ρ), particle surface tension (σ) and mass accommodation coefficient (α).

Variable Medium O:C 

High RH

Low O:C

High RH

Medium O:C  

dry

Low O:C 

dry

T (K) 293.85 293.75 293.75 293.35

RH (%) 82.4 83.5 0 0

Da
gas (cm2 s-1) 0.05 0.05 0.05 0.05

M (g mol-1) 200 200 200 200

ρ (kg m-3) 1200 1200 1200 1200

σ (mN m-1)   40 40 40 40

α   1 1 1 1
a) The gas phase diffusion coefficients are scaled to correct temperatures by multiplying with a factor  of (T/273.15) 1.75  (Reid

et al., 1987)
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Table 2: Minimum, mean and maximum time that the particles have evaporated during the FIGAERO sample collection. All

times are relative to the start of RTC filling.

Sample Minimum evaporation time 

(min)

Mean evaporation time 

(min)

Maximum evaporation time 

(min)

 Medium O:C high RH fresh   0   15   30
 Medium O:C high RH RTC   173   216   259
 Medium O:C dry fresh   0   15   30
 Medium O:C dry RTC   170   213   256
 Low O:C high RH fresh   0   15   30
 Low O:C high RH RTC   168   211   254
 Low O:C dry fresh   0   15   30

Low O:C dry RTC 152 195 238
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Table 3: The best fit C* values for medium O:C and low O:C high RH experiments when C* values of PMF factors  were

optimized with respect to the measured isothermal evaporation. For each experiment three different results are given which

correspond to simulations initialized with the PMF mole fraction at the minimum, mean and maximum time that the particles

have evaporated during the sample collection (See Table 2). The C* values are rounded to two significant digits and are in

μgm-3. C* values below 10-3 μgm-3  are not reported explicitly since the evapogram fitting method is not sensitive to these

values.

Medium

O:C  fresh

sample

min evap.

time

Medium

O:C  fresh

sample

mean evap.

time

Medium

O:C  fresh

sample

max evap.

time

Medium

O:C RTC

sample 

min evap

time

Low O:C

fresh

sample

min evap.

time

Low O:C

fresh

sample

mean evap.

time

Low O:C

fresh

sample

max  evap.

time

Low O:C

RTC

sample 

min evap

time

Factor M1/L1 9.79·10-1 5.36 ·10-1 3.07 ·10-1 3.06 ·10-1 9.76 ·10-1 1.92 ·10-1 1.92 ·10-1 <10-3

Factor M2/L2 6.10 2.32 ·10-1 7.01 ·10-2 9.41·10-2 12.61 7.98 ·10-1 8.15 ·10-1 1.65·10-1

Factor M3/L3 1.68 ·10-1 2.37 ·10-2 9.49 ·10-3 9.50 ·10-2 2.90 ·10-1 2.57 ·10-2 2.48 ·10-2 7.32 ·10-2

Factor M4/L4 1.39 ·10-2 < 10-3 < 10-3 < 10-3 5.52 ·10-2 2.65 ·10-3 2.65 ·10-3 2.14 ·10-2

Factor M5/L5 < 10-3 < 10-3 < 10-3 < 10-3 1.14 ·10-2 1.55·10-3 < 10-3 7.33 ·10-3

Factor D1a 70.14 10.86 1.67 ·10-2 11.82 59.73 7.48 ·10-1 7.34 ·10-1 /

Factor D1b < 10-3 < 10-3 < 10-3 < 10-3 < 10-3 < 10-3 < 10-3 < 10-3
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Figure  1: Main PMF mass loading profiles for high RH conditions a) medium O:C fresh sample, b) medium O:C RTC

sample, c) low O:C fresh sample, d) low O:C RTC sample. Black crosses indicate the peak desorption temperature T max and

diamonds mark the 25th and 75th percentiles of the factors area.
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Figure 2:  Volatility distributions in high RH experiments determined from model fitting (VDevap) and PMF analysis (VDPMF)

on FIGAERO-CIMS data for a) medium O:C fresh sample, b) medium O:C RTC sample, c) low O:C fresh sample, d) low

O:C RTC sample. VDevap is shown for the best fit simulation (grey bars). The different grey shades show the VD evap in the

simulation at  minimum, mean and maximum time that  the particles  have  evaporated  when the FIGAERO sample was

collected  (see  Table  2).  Black  crosses  show  the  log10(C*)  calculated  for  each  PMF  factor  from  the  peak  desorption

temperature Tmax. The horizontal colored lines show the range of log10(C*) calculated from the 25th and 75th percentiles of

each PMF factors mass loading profile. 
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Figure 3: Comparison of VDPMF and VDevap in high RH experiments. The VD compounds are grouped into three different

volatility classes. Min, mean and max evaporation time refer to the FIGAERO sample collection times presented in Table 2.

The volatility classes are 1:  log(C*) ≤ -2, 2: -2 < log(C*) < 0, 3: log(C*) > 0.  a) medium O:C fresh sample, b) medium O:C

RTC sample, c) low O:C fresh sample, d) low O:C RTC sample.
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Figure 4: Evapograms showing the high RH measured evaporation factors (circles) and their uncertainty in time, LLEVAP

simulated evapograms calculated using the best fit VDevap (black solid lines) and LLEVAP simulated evapograms calculated

with VDPMF (turquoise solid lines for VDPMF of fresh sample and light brown solid lines for VDPMF RTC sample. a) medium

O:C b) low O:C.
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Figure  5: Evapograms showing the high RH measured evaporation factors  (circles) and their uncertainty in time (black

whiskers)  and the best  fit  simulated evapogram calculated  with VDevap (black solid line).  Other  lines show the best  fit

simulated evapogram calculated with VDPMF,opt. a) medium O:C, b) low O:C.
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Figure  6:  Comparison of   VDPMF,opt (VDPMF,opt,dry for  subfigures  b and  c)  of the fresh  samples  to  VDPMF   (VDPMF,dry for

subfigures b and c) of RTC samples at the mean time of the collection interval of the RTC sample. The subscripts min, mean

and max refer to the points from the fresh sample collection interval from where the VDPMF,opt simulations were initialised

(see Table 2). The volatility classes are 1:  log(C*) ≤ -2, 2: -2 < log(C*) < 0, 3: log(C*) > 0. a) medium OC high RH samples,

b) medium O:C low RH samples, c) low O:C high RH samples d) low O:C low RH samples.
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Figure 7: Comparison of VDPMF,dry and VDevap in dry condition experiments where the VD compounds are grouped into three

volatility classes. Min, mean and max evaporation time refer to the FIGAERO sample collection times presented in Table 2.

The volatility classes are 1:  log(C*) ≤ -2, 2: -2 < log(C*) < 0, 3: log(C*) > 0.  a) medium O:C fresh sample, b) medium O:C

RTC sample, c) low O:C fresh sample, d) low O:C RTC sample.
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Figure 8: Evapogram showing the measured isothermal evaporation of a) medium O:C particles b) low O:C particles at dry

conditions and their uncertainty in time (red and yellow markers and black whiskers) and the best fit simulated evapogram

calculated with VDevap (black solid line). Purple and yellow solid lines show the best fit simulated evapograms calculated

with VDPMF,opt,dry   assuming that the FIGAERO sample represents particles at mean of the sample collection interval (see

Table 2). Black and grey dashed lines show the VDPMF,dry simulated evapograms where particle viscosity is calculated using

the VTF equation and glass transition temperature Tg according  to DeRieux et  al.,  (2018) (black dashed line)  or Tg is

calculated according DeRieux et al., (2018) and 30 K is subtracted from the Tg value (grey dashed line).
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