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Abstract. 

The volatility distribution of the organic compounds present in secondary organic aerosol (SOA) at different conditions is a

key quantity that has to be captured in order to describe SOA dynamics accurately. The development of the filter inlet for

gases  and aerosols  (FIGAERO) and its  coupling to a  chemical  ionization mass spectrometer  (CIMS) has  enabled near

simultaneous  sampling  of  gas  and  particle  phases  of  SOA  through  thermal  desorption  of  the  particles.  The  thermal

desorption data has been recently shown to be interpretable as a volatility distribution with the use of the positive matrix

factorization  (PMF)  method.  Similarly,  volatility  distributions  can  be  inferred  from  isothermal  particle  evaporation

experiments, when the particle size change measurements are analyzed with process modelling techniques. In this study, we

compare the volatility distributions that are retrieved from FIGAERO-CIMS and particle size change measurements during

isothermal particle evaporation with process modelling techniques. We compare the volatility distributions at two different

relative humidity (RH) and two oxidation condition. In high RH conditions, where particles are in a liquid state, we show

that the volatility distributions derived via the two ways are similar within reasonable assumption of uncertainty in the

effective saturation mass concentrations that are derived from FIGAERO-CIMS data. In dry conditions, we demonstrate that

the volatility distributions are comparable in one oxidation condition, and in the other oxidation condition the volatility

distribution derived from the PMF analysis shows considerably more high volatility matter than the volatility distribution

inferred from particle size change measurements. We also show that the Vogel-Tammann-Fulcher equation together with a

recent glass transition temperature parametrization for organic compounds and PMF derived volatility distribution estimate

are consistent with the observed isothermal evaporation under dry conditions within the reported uncertainties. We conclude

that the FIGAERO-CIMS measurements analyzed with the PMF method are a promising method for inferring the volatility

distribution of organic compounds, but care has to be taken when the PMF factors are analyzed. Future process modelling

studies about SOA dynamics and properties could benefit from simultaneous FIGAERO-CIMS measurements.
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1 Introduction

Aerosol particles have varying effects on health, visibility and climate (Stocker et al., 2013). Organic compounds comprise a

substantial amount of atmospheric particulate matter (Jimenez et al., 2009; Zhang et al., 2007) of which a major fraction is of

secondary  origin,  i.e.,  low-volatility  organic  compounds  formed  from  oxidation  reactions  between  volatile  organic

compounds  (VOCs)  and  ozone,  hydroxyl  radicals  and  nitrate  radicals  (Hallquist  et  al.,  2009).  The  aerosol  particles

containing these kind of oxidation products are called secondary organic aerosols (SOA) as opposed to primary organic

aerosols i.e., organic particles emitted directly to the atmosphere.  VOC oxidation reactions result in thousands of different

organic  compounds  (Goldstein  and  Galbally,  2007).  There  exist  gaps  in  the  knowledge  especially  on  formation  and

deposition  of  SOA  as  well  as  how  the  processes  are  affected  by  changing  physicochemical  properties  such  as

volatility(Glasius and Goldstein, 2016). In addition, the phase state of the organic compounds has also been shown to play a

role in SOA dynamics (Reid et al., 2018; Shiraiwa et al., 2017; Yli-Juuti et al., 2017; Renbaum-Wolff et al., 2013; Virtanen

et al., 2010)

 

The physicochemical  properties of organic aerosols can be studied directly and indirectly. The Aerodyne Aerosol Mass

Spectrometer  (AMS,  Canagaratna  et  al.,  2007;  DeCarlo  et  al.,  2006;  Jayne  et  al.,  2000) enabled  direct  and  online

composition measurements  of  atmospheric  particles  for  the  first  time.  Combining AMS data  with statistical  dimension

reduction techniques such as factor analysis and positive matrix factorization (PMF; Zhang et al., 2011, 2007, 2005; Paatero

and Tapper, 1994) allowed researchers to draw conclusions on sources and types of atmospheric organic particulate matter

from the relatively complex mass spectra data.

The Chemical Ionization Mass Spectrometer (CIMS; Lee et al., 2014) coupled with the Filter Inlet for Gases and AEROsols

(FIGAERO-CIMS, Lopez-Hilfiker et al., 2014) is a prominent online measurement device to study both the gas and particle

phases of SOA. During particle phase measurements, a key advantage over the AMS is the softer chemical ionization that

retains much more of the molecular information of the compound than the electron impact ionization used in the AMS.

Typically, the collection of the particulate mass is conducted at room temperature which minimizes the loss of semi-volatile

compounds during collection. In addition to the overall chemical composition, the gradual desorption of the particulate mass

from the FIGAERO filter yields the thermal desorption behavior of each detected ion, i.e., it is a direct measure of each ion’s

volatility.  FIGAERO-CIMS measurements have been carried out in both laboratory and field environments to study SOA

composition from different VOC precursors and in both rural and polluted environments (Breton et al., 2018; Huang et al.,

2018; Lee et al., 2018; D’Ambro et al., 2017; Lopez-Hilfiker et al., 2015). However, the volatility information in these data

sets have barely been used.
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Besides direct mass spectrometer measurements, SOA properties have been inferred indirectly from growth (e.g. Pathak et

al., 2007 and references therein)  and isothermal evaporation (Buchholz et al., 2019a; D’Ambro et al., 2018; Yli-Juuti et al.,

2017; Wilson et al., 2015; Vaden et al., 2011) measurements. The complexity of organic compounds in these studies can be

alleviated with the use of a volatility basis set (Donahue et al., 2006), where organic compounds are grouped based on their

(effective)  saturation  concentration.  However,  the  experimental  setup  also  defines  the  range  of  C* values  that  can  be

estimated from the data. Vaden et al., (2011) and Yli-Juuti et al., (2017) have both shown that the volatility basis sets derived

from SOA growth  experiments  result  in  too  fast  SOA evaporation  compared  to  measured  evaporation  rates  when  the

volatility basis set is used as input for process models. Possible reasons for such discrepancies include the different C* ranges

to which the SOA growth and SOA evaporation experiments are sensitive to and the role of vapor wall losses in SOA growth

experiments. This raises a need for alternative methods to derive organic aerosol volatility against which the volatilities

inferred from the direct particle size measurements can be compared to.

Recently, Buchholz et. al., (2019b) demonstrated that the FIGAERO-CIMS measurements during particle evaporation can be

mapped to a volatility distribution of organic compounds by conducting a PMF analysis. On the other hand, Tikkanen et al.,

(2019) showed  that  the  volatility  distribution  can  be  inferred  from  isothermal  particle  evaporation  measurements  by

optimizing the evaporation model input to yield the measured evaporation rate at different humidity conditions. In this study,

we compare these two approaches for varying oxidation and particle water content conditions. Our main research questions

are  1)  Are  the  volatility  distributions  derived  from  particle  size  change  during  isothermal  evaporation  and  from  the

FIGAERO-CIMS measurements similar? 2) How should the PMF results of FIGAERO-CIMS data be interpreted in terms of

volatility? 3) Can a recently published glass transition temperature parametrization (DeRieux et al., 2018) combined with the

PMF analysis be used to model particle phase mass transfer limitations observed for the evaporation in dry conditions, i.e., in

the absence of particle phase water? 

2 Methods

2.1 Experimental particle evaporation data

The experimental data we use is the same as reported in Buchholz et al., (2019a,b). We briefly summarize the measurement

setup below. We generated the particles with a Potential Aerosol Mass (PAM) reactor (Kang et al., 2007; Lambe et al., 2011)

from the reaction of  α-pinene with O3 and OH at three different oxidation levels (average oxygen-to-carbon O:C ratios of

0.53, 0.69, and 0.96). We focus on the lowest O:C (0.53) and medium O:C (0.69) experiments in this work. The closer

analysis of the high O:C experiments suggests particle phase reactions during the evaporation (Buchholz et al., 2019a,b). To

avoid the uncertainty that would arise from unknown particle phase reactions, we chose not to include the high O:C data in

our analysis.
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We selected a monodisperse particle population (mobility diameter dp  = 80 nm) with two nano tandem type differential

mobility analyzers (nano-DMA; TSI inc., Model 3085) from the initial polydisperse particle population. The size selection

diluted the gas phase initiating particle evaporation. The monodisperse aerosol was left to evaporate in a 100 L stainless-steel

residence time chamber (RTC). We measured the particle size distribution during the evaporation with a scanning mobility

particle sizer (SMPS; TSI inc., Model 3082+3775). The RTC filling took approximately 20 minutes and we performed the

first size distribution measurement in the middle of the filling interval. To obtain short residence time data (data before 10

minutes of evaporation) we added a bypass to the RTC which led the sample directly to the SMPS. By changing the length

of the bypass tubing, we were able to measure the particle size distribution between 2 s and 160 s of evaporation. We

measured the isothermal evaporation up to 4 – 10 hours depending on the measurement. We performed the measurements for

each oxidation level both at high relative humidity (RH = 80%) and at dry conditions (RH < 2 %). The change in particle

size with respect to time are called evapograms. In an evapogram, the horizontal axis presents evaporation time and the

vertical axis shows the evaporation factor (EF), i.e., the measured particle diameter divided by the initially selected particle

diameter.

To classify the oxidation level of the particles, we derived the average O:C ratio from composition measurements with a

High-Resolution  Time-Of-Flight  Aerosol  Mass  Spectrometer  (AMS,  Aerodyne  Research  Inc.).  Further,  we  conducted

detailed  particle  composition  measurements  with  an  Aerodyne  Research  Inc.  FIGAERO,  (Lopez-Hilfiker  et  al.,  2014)

coupled with a chemical ionization mass spectrometer (CIMS) with iodide as the reagent ion (Aerodyne Research Inc., Lee

et al.,  2014).  Previous studies using FIGAERO-CIMS with iodide as the reagent ion found 50% or better mass closure

compared to more established methods of quantifying OA mass (albeit with high uncertainties;  Isaacman-VanWertz et al.,

(2017);  Lopez-Hilfiker  et  al.,  (2016)).  Therefore,  it  appears  that  the bulk of  reaction  products  expected  from  α-pinene

oxidation contains the functional groups required for detection by our FIGAERO-CIMS.

In the FIGAERO inlet, particles are first collected on a PTFE filter. Then the collected particulate mass desorbs slowly due

to a gradually heated nitrogen flow. The desorbed gaseous compounds are then transported into the CIMS for detection. We

derived the average chemical composition of the particles by integrating the detected signal of each ion over the whole

desorption interval. For each ion, the change of detected signal with desorption temperature is called a thermogram and

generally, the temperature at the maximum of the thermogram (Tmax) is correlated to the volatility of the detected ion. Similar

to Bannan et al., (2019) and Stark et al., (2017), we calibrated the Tmax - volatility relationship using compounds with known

vapour pressure. The calibration procedure is described in the supplementary material.

We collected  particles for FIGAERO-CIMS analysis at two different stages of the evaporation. We refer to these samples

as either “fresh” or “RTC” samples. The fresh samples were collected for 30 minutes directly after the selection of the
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monodisperse population. The RTC samples of the residual particles were collected for 75 minutes after 3 to 4 hours of

evaporation in the RTC. The collected particulate mass was 140–260 ng and 20–70 ng for the fresh and the RTC samples,

respectively. More details about sample collection, desorption parameters, and data analysis can be found in Buchholz et al.,

(2019a).

2.2 The volatility distribution

We represent the myriad of organic compound in the SOA particles with a one-dimensional volatility basis set (1D VBS,

below only VBS, Donahue et al., 2006). The VBS groups the organic compounds into ‘bins’ based on their effective (mass)

saturation  concentration  C*,  defined  as  the  product  of  the  compounds activity  coefficient  and  saturation concentration.

Generally, a bin in the VBS represents the amount of organic material in the particle and gas phases. In our study, the walls

of the RTC have been shown to work as an efficient sink for gaseous organic compounds (Yli-Juuti et al., 2017). Thus, we

can assume that the gas phase in our experimental setup does not contain organic compounds, i.e., the amount of organic

matter in a bin is the amount in the particle phase. To distinguish from a traditional VBS that groups the organic compounds

to bins such that there is a decadal difference in C* between two adjacent bins, we call the VBS in our work a volatility

distribution (VD). We present the amount of material in each VD bin as the dry mole fraction, i.e., the mole fraction of the

organics, excluding water. In the analysis presented below, we assign properties to each VD bin (e.g. molar mass) treating

each bin as if it consisted of only a single organic compound with a single set of properties. The physicochemical properties

of each VD bin are assumed to be the same. These properties and the ambient conditions of each evaporation experiment are

listed in Table 1.

2.3 Deriving volatility distribution from an evapogram

We followed the similar approach as in Yli-Juuti et al., (2017) and Tikkanen et al., (2019) to derive a VD at the start of the

evaporation from an evapogram. To model the evaporation at high RH, we used a process model (liquid-like evaporation

model, hereafter LLEVAP) that assumes a liquid-like particle, i.e., a particle where there are no mass transfer limitations

inside the particle and where the mass flux of a VD bin in the particle phase can be calculated directly from the gas phase

concentrations of the  VD bin near the particle surface and far away from the particle  (Vesala et al., 1997; Lehtinen and

Kulmala, 2003; Yli-Juuti et al.,  2017). In this case,  the main properties defining the evaporation rate are the saturation

concentrations of each VD bin and their relative amount in the particle.

We used the LLEVAP model to characterize the volatility range that can be interpreted from the evaporation measurements.

We  calculated  the  range  by  modelling  evaporation  of  a  hypothetical  particle  that  consists  of  one  organic  compound

evaporating in dry conditions. We calculated the evaporation for  the range of  log 10 (C*) values from -5  to 5. We determined

the minimum C* value to be the value that still showed “detectable evaporation”, i.e., at least 1% change in particle diameter

during the evaporation time (up to 6 h) and the maximum C* value to be the value before “complete evaporation” occurred,
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i.e., 99% particle diameter change within the first 10 s. The minimum  log10 (C*) calculated with this method was -3  and the

maximum log10  (C*) was 2. We then modelled the particle composition with six  VD bins with C* values between these

minimum and maximum values. Each VD bin has a decadal difference in C* to adjacent VD bin (like in the traditional VBS).

We note that based on this analysis all the compounds with  log10 (C*) < -3 will not evaporate during the experimental time

scale. This means that any compounds with lower C* than this threshold will be assigned to the  log10  (C*)= -3  VD bin.

Similarly, any compound with log10 (C*) > 2  will be classified into the  log10 (C*)= 2 VD bin or not be detected at all due to

evaporating almost entirely before the first measurement point.

We calculated the dry particle  mole fraction  of  each  VD bin at  the start  of  the evaporation  by fitting the evaporation

predicted with the process model to the measured evapograms. Our goal was to minimize the mean squared error in vertical

direction between the experimental data and the LLEVAP output. We used the Monte Carlo Genetic Algorithm (MCGA,

Berkemeier et al., 2017; Tikkanen et al., 2019) for the input optimization.  In the optimization, we set the population size to

be 400 candidates, number of elite members to 20 (5% of the population), number of generations to 10, and number of

candidates drawn in the Monte  Carlo (MC) part to 3420 which corresponds to half of the total process model evaluations

done during the optimization. We performed the optimization 50 times for each evapogram and selected the best fit VD

estimate for further analysis.

The VD derived from the evapogram is hereafter referred to as the VDevap. The initial composition of the SOA particles in the

dry and wet experiments were the same and can be described by the same fitted VDevap as the particles were generated at the

same conditions in the PAM and only the evaporation conditions changed. 

2.4 Deriving volatility distribution from FIGAERO-CIMS measurement

As shown by Bannan et al., (2019) and Stark et al., (2017), the peak desorption temperature, Tmax, can be used together with

a careful calibration to link desorption temperatures from the FIGAERO filter to C* values for the detected ions. In principle,

this would allow us to assign one C* value to each ion thermogram. But this assumes that one detected ion characterized by

its exact mass is indeed just one compound. In practice, this is not always the case and for some ion thermograms a bimodal

structure or distinct shoulders/broadening are visible. This can be caused by isomers of different volatility which cannot be

separated even by high resolution mass spectra. 

Another complication arises due to the thermal desorption process delivering the collected aerosol mass into the CIMS.

Especially, multi-functional, and hence low volatility compounds may thermally decompose before they desorb from the

filter, and thus be detected as smaller ions. The apparent desorption temperature is then determined by the thermal stability

of the compound and not its volatility. Typically, this decomposition processes start at a minimum temperature and will not

create a well-defined peak shape (Buchholz et al.,  2019b,  Schobesberger et al.,  2018) presumably because an observed
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decomposition  product  may  have  multiple  sources,  especially  when  including  all  isomers,  and  the  ion  signal  for  the

respective composition may overlap with the signal of isomers derived from true desorption. For example, a true constituent

of the SOA particle may give rise to an observed main thermogram peak, but it  may be broadening and/or tailing if a

decomposition product has the same composition. By ignoring this and simply using the Tmax values, the true volatility of the

SOA particle constituents will be overestimated, i.e., the derived VD will be biased towards higher C* bins.

One more potential source of bias is our implicit assumption of a constant sensitivity of the CIMS towards all compounds,

which follows from the lack of calibration measurements for our datasets (which indeed is a challenging endeavour; e.g.,

Isaacman-VanWertz et al., (2018)). It is plausible that less volatile compounds tend to be detected at higher sensitivity (Iyer

et  al.,  2016;  Lee  et  al.,  2014), up  to  a  kinetic  limit  sensitivity.  Consequently,  a  volatility  distribution  derived  from

FIGAERO-CIMS thermograms may be biased towards lower volatility (C* bins), at least for compositions not associated

with thermal decomposition.

To  separate  the  multiple  sources  possibly  contributing  to  each  ion  thermogram  (isomers  and  thermal  decomposition

products), we applied the Positive Matrix Factorization (PMF, Paatero and Tapper, 1994) to the FIGAERO-CIMS data set.

PMF is  a  well-established  mathematical  technique  in  atmospheric  science  mostly  used  to  identify  the  contribution  of

different sources of aerosol particle constituents or trace gases in the atmosphere. PMF represents the measured matrix of

time-series of mass spectra, X, as a linear combination of a (unknown) number of constant source profiles, F, with varying

contributions over time, G:

X=G⋅F+ E (1)

E is a matrix containing the residuals between the measured (X) and the fitted data (G F⸱F ). Values for G and F are found by

minimizing this residual, Eij, scaled by the corresponding measurement error, Sij, for each ion i at each time j

Q=∑
i=1

m

∑
j=1

n

(
Ei , j

S i , j
) (2)

Each row in F contains a factor mass spectrum and each column in G holds the corresponding time series of contribution by

each factor. In the case of FIGAERO-CIMS data, the time series is equivalent to the desorption temperature ramp during the

thermogram and will be called “mass loading profile” below. The absolute values (temperature or time) are irrelevant for the

performance of PMF as the “x values” are only used to determine the order of the data points but have no influence on the

model output (Paatero and Tapper, 1994). This allowed us to combine multiple separate thermogram measurements into one

data set and conduct a PMF analysis. This simplified the comparison of factors between measurements. More details about

the PMF method in the specific case of FIGAERO-CIMS data can be found in Buchholz et al., (2019b).
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Once the PMF algorithm was applied to the FIGAERO-CIMS data we calculated the VD from the mass loading matrix G.

Due to the very low signal strength of many ions, the CIMS data had been averaged over 20 s leading to enhance the

reliability of the high-resolution analysis. This leads to an average desorption temperature difference ΔTdesorp  ≈ 4°C between

two adjacent data points. To overcome this coarse Tdesorp grid, we interpolated each factor’s mass loading profile with a

resolution of 100 sample points between two temperature steps to gain sufficient statistics for further analysis. T max was

determined as the temperature at the maximum signal in the factor mass loading profile. We integrated the factor mass

loading profile and defined the temperatures where the value of the integral reaches 25% and 75% of its maximum value.

This temperature interval formed the factors desorption temperature range  and the corresponding C* values will be used in

Sect.  3.3.  We converted  the  Tmax values  into   C*  values  and  the  desorption  temperature  range into a  C*  range with  a

parametrization derived from calibration measurements (see Supplementary material for details) with organic compounds

with known C* values.

C*
=

exp (α+βT factor )M org

R T ambient

109
(3)

where C*
 is the effective saturation concentration in units μgm-3, Morg is the molar mass of the organic compound assumed to

be Morg = 0.2 kg mol-1, R is the universal gas constant, Tfactor (in °C in Eq. 3) is the temperature of the mass loading profile

and Tamibent  (in Kelvin in Eq. 3) is the ambient temperature at which the evaporation happens (see Table 1), α and β are the

fitted coefficients from the calibration data α=(-1.431±0.31) and β=(-0.207±0.006)  °C-1. We applied the lower and higher

bounds of the fitting coefficients’ uncertainty when we calculated the  C*  range in Sect 3.3.  Finally, the signal fraction of

each factor was calculated by dividing the integral of a factor’s signal over the whole temperature range with the sum of

integrals of all factors. We compare this signal fraction to the dry mole fraction in the VDevap. We refrained from converting

the counts per second signal into moles as no adequate transmission and sensitivity measurements were available for the

used FIGAERO-CIMS setup. We refer the volatility distribution calculated from the PMF data using the Tmax values of each

factor as VDPMF later in this work.

With Eq. (3), we can calculate the minimum and maximum C* values that can be resolved from a FIGAERO thermogram.

The desorption temperature was ramped between 27 °C and 200 °C, but defined peaks (and thus Tmax values) can be detected

only between 30 and 180 °C. Thus, the resolvable log10 (C*) values range from 1.6 to -11.9. It has to be kept in mind that

strictly this calibration only applies to the Tmax values of a single ion thermogram.

2.5 Modelling particle viscosity at dry conditions

To model the mass transfer limitations observed in the evaporation measurements at dry conditions (Buchholz et al., 2019a)

we used the kinetic multilayer model for gas particle interactions (KM-GAP;  Shiraiwa et  al.,  2012) with modifications

described in Yli-Juuti et al., (2017) and Tikkanen et al., (2019). The main modification to the original model was that during
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evaporation the topmost layer (the quasi static surface layer) merges with the first bulk layer if the thickness of the layer is

smaller than 0.3 nm. We calculated the viscosity at each layer of the particle as

log10(ηj)=∑
i=1

N

Xmole ,i , j log10(bi),  (4)

where Xmole,i,j is the mole fraction of the VD bin i in layer j and bi is a coefficient that describes the contribution of each VD 

bin to the overall viscosity.

Since we generated the particles in the same environment (PAM chamber) and only the evaporation happened at different

conditions, the VD at the start of the evaporation derived from high RH data represents also the composition at the start of

the evaporation in dry conditions. Then we can use the best fit VDevap from the high RH data as input for KM-GAP and fit

the bi values in Eq. (4) to the dry data set. We set the minimum and maximum allowed values for b i to 10-15
 and 1020,

respectively. To estimate the bi  values when modelling the evaporation with VDPMF in dry conditions, we calculated these bi

terms using the mass spectra of each factor (F in Eq. 1) and the Vogel-Tammann-Fulcher (VTF) equation (DeRieux et al.,

2018; Angell, 2002, 1995) 

ηi=η∞exp (
T 0 ,i D

T−T0 , i
) , (5)

where ηi is the viscosity of the ith VD bin / PMF factor. ηi can be seen as a proxy for bi in an ideal solution. η∞ is the viscosity

at infinite temperature, T0,i is the Vogel temperature of the ith VD bin, and D is a fragility parameter. Setting η∞ = 10-5
 Pa s

and  η(Tg) = 1012 Pa s (e.g. DeRieux et al., 2018; Gedeon, 2018), where Tg is the glass transition temperature of a compound

yields 

T 0 ,i≈
39.14 T g , i

39.14+D
. (6)

We calculated  Tg for  every  compound in the PMF mass spectra  with a  parametrization  for  SOA matter  developed by

DeRieux et al., (2018). This parametrization requires the number of carbon, oxygen and hydrogen atoms to calculate the Tg.

We then computed Tg for each PMF factor as a mass fraction weighted sum of glass transition temperatures of individual

compounds (DeRieux et al., 2018; Dette et al., 2014). Based on the Tg,i of each PMF factor, we calculated the viscosity of

each PMF factor with Eqs. (5) and (6) and used them as an approximation for b i. We used fragility parameter value D = 10 in

the calculations according to DeRieux et al., (2018).
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3 Results

In this section we first focus on the high RH experiments where evaporation is modelled with the LLEVAP model. We will

first compare VDevap to VDPMF for which the C* of a PMF factor is determined from the factor’s Tmax value. Then, we compare

the volatility distributions where the C* of a PMF factor is determined as a range from the 25 th and 75th percentile desorption

temperatures. Lastly, we study the volatility distributions in dry conditions. We investigate the VD both on a qualitative and

quantitative  level.  On  a  qualitative  level  we  compare  the  amount  of  matter  of  different  C* intervals  relevant  for  the

evaporation  process.  On a  quantitative  level  we  study what  is  the  evaporation  behavior  of  the  particles  based  on  the

determined VD and how do they compare to the measured evaporation.

3.1 PMF solution interpretation

Figure S2 shows mass loading profiles derived from the FIGAERO-CIMS measurements of medium and low O:C particles

at high RH. The corresponding factor mass spectra can be found in Fig. S3 and Fig. S4. A key step in any PMF analysis is

determining the “right” number of factors as this can affect the interpretation of the results. We carefully investigated the Q/

Qexp, time series of scaled and unscaled residuals, and the ability of a PMF solution to capture the characteristic behavior of

as many single ion thermograms as possible (see Buchholz 2019b for details). Based on this analysis, a 7-factor solution was

chosen for the medium O:C cases and a 9-factor solution for the low O:C ones. The two additional factors in the low O:C

case were needed to capture a contamination on the FIGAERO filter during the dry, fresh sample (factors LC1 and LC2 in

Fig. S2 and Fig. S4). As these two factors were clearly an artifact introduced by the FIGAERO filter sampling, we omitted

their contribution for the following analysis. From careful comparison of the factor profiles and mass spectra with filter

blank measurements, we determined that factor MB1 in the medium O:C case and factor LB1 in the low O:C case describe

the filter/instrument background and are thus also excluded from the VD comparison presented below.

Factors 1-5 in both O:C cases exhibit a monomodal peak shape and can thus be characterized by their Tmax values. Factor

MD1 in the medium O:C case and factor LD1 in the low O:C case needs to be investigated more closely, as their factor mass

spectrum and the sometimes bimodal mass loading profile suggest, that these factors contain compounds stemming from

both direct desorption (desorption T<100 °C) and thermal decomposition (desorption T>100 °C, see Buchholz et al., 2019b

for  details).  To  account  for  this,  the  factor  is  split  into  two with  the  first  half  containing  the  signal  from desorption

temperatures below 100 °C (factor M/LD1a) and the second half containing that above 100 °C (factor M/LD1b). We treat

these factors separately. We note that now the latter half of the split factor is dominated by thermal decomposition products

so that the apparent desorption temperature is actually the temperature at which thermal decomposition leads to products

which desorb at this temperature. This apparent desorption temperature is thus a lower limit for the decomposing parent

compound, i.e., the true volatility of these parent compounds is even lower. However, the desorption temperatures are so

high that they lead to log10(C*) < -3  and are thus below the comparable range for VDevap. Figure 1 (high RH data) and Fig.
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S10 (dry condition data) show the mass loading profiles derived from FIGAERO-CIMS measurements of medium and low

O:C particles after we excluded the contamination and background factors and split the decomposition factors.

3.2 Volatility distribution comparison at high RH based on factor Tmax

To compare VDevap and VDPMF, we need to determine the time interval in the evapogram that the VDPMF represents. We

collected the fresh samples directly after the size selection. As the particles were collected for 30 minutes, the collected

sample represents particles that have evaporated from 0 up to 30 minutes in the organic vapour free air. We note that this is

different from the standard FIGAERO-CIMS sample collection where the particles are collected in a quasi-equilibrium with

the surrounding gas phase and no significant evaporation occurs  (Lopez-Hilfiker et al., 2014). For RTC samples, we also

need to consider that not all particles have evaporated for the same time due to the filling of the RTC for ca. 20 minutes. We

determined the minimum time the particles have evaporated in the RTC as the time when we started the sample collection

minus the RTC filling time. We determined the maximum evaporation time in the RTC to be the time when we stopped the

sample collection plus the filling time. These minimum and maximum comparison times are shown in Table S1 and they are

referred to as minimum and maximum (sample) evaporation time. The mean (sample) evaporation time is defined to be at

the middle of the sample collection interval. For simplicity, we will show in the main text the results from the analysis where

the FIGAERO-CIMS samples were assumed to represents the particles at the mean sample evaporation time. We show the

analysis where the samples were assumed to represent the particles at minimum and maximum evaporation time in the

supplementary material. The choice of sample evaporation time does not affect the conclusions we draw about the analysis

presented in this section.

Figure 2 shows VDevap and VDPMF for medium (Fig. 2a-b) and low O:C (Fig. 2c-d) particles in high RH experiments. In the

VDPMF calculated from Tmax value of each factor (black crosses), the factors fall into three different volatility classes within

our chosen particle size and experimental time scale: practically non-volatile (log10(C*) ≤ -2), slightly volatile ( -2 < log10(C*)

≤ 0,) and volatile (log10(C*) > 0). We use these three volatility classes to compare the volatility distributions in Fig. 3 where

each VD bin are grouped to these three volatility classes. Figure 3 compares VDPMF  to what VDevap is at the mean time the

FIGAERO samples had evaporated prior to collection. We show the same comparison for the minimum and maximum

evaporation time in Fig. S5 and Fig. S6.

After the volatility class grouping is applied, we see that there are differences between VD evap and VDPMF. With VDPMF of the

fresh samples there are excess amount of matter  in the lowest volatility class (volatility class 1) and less material in the

volatility class 2 compared to VDevap  for both oxidation condition.  In addition, the VDPMF of low O:C fresh sample shows

more material in the highest volatility class (volatility class 3) compared to VDevap.
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To investigate the observed discrepancies further, we used the VDPMF shown in Fig. 2 as an input to the LLEVAP model and

calculated the corresponding isothermal evaporation behavior (i.e. the evapogram). We show these simulated evapograms in

Fig. 4a for the medium O:C case and in Fig. 4b for the low O:C condition together with the simulated evapogram calculated

using VDevap as an input for the LLEVAP model. The simulated evapograms calculated with the VDPMF of the fresh samples

do not match the measured evapograms,  while the evapogram calculated with VDevap agrees  well with the experimental

evapogram (black lines in Fig. 4), as expected since this is the goal of the VDevap determination. The simulation calculated

with the VDPMF of the fresh sample (light blue lines in Fig. 4 for the mean evaporation time and Fig. S7 for other evaporation

times) shows slower evaporation than the observations or the simulation calculated with VDevap. This is consistent with the

results show in Fig. 3 where the VDPMF contained more low volatility material than the VDevap. 

Figure 4 also shows the simulated evapograms calculated with VDPMF of the RTC samples (light brown lines in Fig. 4 and

Fig. S7). in these cases, the particles size decreases little within the simulation time scale. With medium O:C particles, the

simulated evaporation matches the measured evaporation well. With low O:C particles,  the evaporation calculated with

VDPMF is too fast. The shape of the evapogram does not match the measured one.

3.3 Applying desorption range to characterize the volatility of PMF factors

The Tmax value is a practical choice for the characteristic temperature of the desorption process. However, as we saw in Sect.

3.2, the VDPMF calculated from the peak desorption temperatures did not produce the measured evapogram when used as an

input for the LLEVAP model. Working under the assumption that all material collected on the FIGAERO filter, including

the higher volatility material, is detected in the CIMS and then captured in the PMF analysis, we will relax the assumption

that the volatility of the factor is characterized strictly by the Tmax value of the factor and investigate the VDPMF further. We

will explore  how the  VDPMF changes  when  the  desorption  temperature  and  the  resulting  C* are  interpreted  to  contain

uncertainty and if the VDPMF considering these uncertainty ranges is consistent with the observed isothermal evaporation.

The uncertainty in the desorption temperature raises from the facts that compounds volatilize from the FIGAERO filter

throughout the heating and, therefore, one value might not be adequate to characterize the C * of a factor and that each PMF

factor contains multiple compounds with distinct C*.

We calculated the 25th and 75th percentiles of the desorption temperatures of each factor and converted them to effective

saturation concentrations as described in Sect. 2.4 (see diamond markers in Fig. 1). We show the resulting C * ranges in Fig. 2

as horizontal solid lines where the line color matches the color of the factors in Fig. 1. We then ran the MCGA optimization

by setting the number of compounds equal to the number of PMF factors, the molar fraction for each compound at the

FIGAERO-CIMS sampling time fixed to the molar fraction of the corresponding factor and the C* as the optimized variables

restricted to the range corresponding to the 25th and 75th percentile desorption temperature. In the optimization the goodness-

of-fit statistics was calculated as a mean squared error similar to the determination of VDevap.
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As the fresh samples were collected between 0 and 30 minutes from the start of the evaporation, we sought for a fitting set of

C* values  for  evaporation starting at 0, 15 and 30 minutes. Again, we show the results for the mean sample evaporation time

(15 min) in the main text and the  results for the other evaporation times in the supplementary material. Due to scarcity of

particle size measurements at the collection time of the RTC sample, we will apply this analysis only to the VD PMF  of the

RTC sample at its minimum evaporation time. In each optimization, we set the initial particle diameter to be the same as

what is simulated with VDevap. We derived 50 C* estimates for both samples. From these 50 estimates we chose the best fit

evapogram. We refer to these optimized volatility distributions as VDPMF,opt to separate them from the VDPMF  where we used

Tmax to characterize C* of a PMF factor.

We show the optimized C* values forming VDPMF,opt in Table 2 (see Table S2 for results with minimum and maximum

sample evaporation times). Figure 5 shows the best fit evaporation simulations calculated with VDPMF,opt. The other sample

evaporation  times  are  displayed  in  the  supplementary  material  Fig.  S8. For  both  oxidation  condition,  the  simulations

resemble the experimental evapogram and evapogram calculated with  VDevap, although the simulation of the medium O:C

condition shows a 5 times larger goodness-of-fit value compared to the simulation calculated with VDevap.  The evapograms

determined with the VDPMF,opt of the RTC samples agree with the measured evaporation as well.  

Overall, the results demonstrate that the information derived from the fresh and RTC FIGAERO-CIMS samples can describe

the volatility of the evaporating particles, when uncertainties in the desorption temperature are considered.

3.4 Comparison of the volatility distribution of the fresh and RTC sample in high RH conditions

In this section, we compare VDPMF,opt of the fresh samples to VDPMF of the RTC sample to study if the two VD are similar.

We compare the two VD at the mean evaporation time of the RTC sample. We calculated the evapograms with the VDPMF,opt

of the fresh sample as the initial particle composition and recorded the mole fraction of each factor at the mean evaporation

time of the RTC sample (216 minutes for medium O:C particles and 211 minutes for low O:C particles). Figure 6a and Fig.

6c show this comparison for both medium O:C and low O:C particles. The factors are grouped into the three volatility

classes described in Sect. 3.2. In Fig. 6 we show the results from the analysis where VDPMF,opt was optimized by assigning the

fresh  sample  composition  at  the  mean  sample  evaporation  time.  Similar  comparisons  using  minimum  and  maximum

evaporation time of the fresh sample are shown in Fig. S9. To ensure that the factors are grouped to the same volatility

classes for each studied VD, we used the C* values of the VDPMF,opt at the mean sample evaporation time as basis for the

grouping.

The compositions simulated based on the VDPMF,opt of the fresh samples are comparable to the corresponding VDPMF of the

RTC sample in both oxidation conditions (Fig. 6). The agreement is good, especially for the low O:C case for which the
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VDPMF,opt showed a slightly smaller contribution in volatility class 1 and a corresponding higher contribution in volatility

class 2 compared to the VDPMF of the RTC sample (Fig. 6c). For the medium O:C case, the VDPMF,opt predicted a higher

contribution of volatility class 1 and a lower contribution of volatility class 2 compared to VDPMF (Fig 6a). 

These results show that the particle composition measured after few hours of evaporation is consistent with the composition

predicted based on the composition observed at the start of evaporation while considering uncertainties of the interpreted C *

values. 

3.5 Volatility distribution comparison in dry conditions

Next, we analyzed the evaporation experiments in dry conditions where the evaporation rate was reduced compared to the

high RH conditions. We interpreted this difference as an indication of particle phase diffusion limitations in dry conditions

(Yli-Juuti et al., 2017). Using the initial particle composition information obtained from the high RH experiments and the

FIGAERO-CIMS data, we explored the effect of particle viscosity on the evaporation process. Our aim is to test if the slower

evaporation,  presumably  due  to  higher  viscosity  of  the  SOA,  can  be  captured  with  a  recently  developed  viscosity

parametrization  based  on glass  transition temperatures  of  various organic  compounds  (DeRieux et  al.,  2018).  We also

compare the results using the viscosity parametrization to an approach where we fit  both the viscosity and VD to the

evapogram.

First, we investigated the range of particle viscosities that are required to explain the observed slower evaporation in dry

conditions. For this, we simulated the particle evaporation in dry conditions based only on the evapogram data. We used the

VDevap (i.e., the initial particle composition obtained by optimizing mole fractions of VD bins with respect to the observed

evapogram in high RH conditions) as the initial particle composition estimate for the simulations and optimized the b i values

(Eq. 3) for each VD bin. The best fit simulation from this optimization agrees well with the observed size decrease in the dry

experiments for both low and medium O:C particles (Fig. 8, black line). Based on these simulations, the viscosity of the

particles needs to increase from below 105 Pa s to approximately 108 Pa s during the evaporation in order to explain the

evaporation rate observed for the dry particles. 

Second, we tested the performance of the composition dependent viscosity parameterization by DeRiuex et al. (2018) used

together with the PMF results. For this, we calculated the volatility distribution, VD PMF,dry, based on the Tmax values of the

factors from the fresh sample of the evaporation experiment at dry conditions (in the same way as for VDPMF for the high RH

case). The mole fraction of each factor was calculated from the mass loading profile to give the initial mole fraction of each

VD bin for the simulations. We assigned this VDPMF,dry as the particle composition at the mean evaporation time of the fresh

sample, i.e. 15 minutes, and simulated the particle evaporation from there onwards. The particle size at the beginning of the

simulation (i.e. at 15 minutes of evaporation) was taken from the above simulations optimized based only on the evapogram
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data, which fitted well to the measurements. We calculated the viscosity parameter bi value for each VD bin as described in

Section 2.5 based on the mass spectra of the factor and the parameterization by DeRieux et al. (2018). This resulted in too

high viscosity for particles to evaporate in practice at all during the length of the experiment for both low and medium O:C

particles (grey dashed line in Fig. 8). Therefore, we also conducted a simulation where the viscosity parameter b i value for

each factor was calculated based on the viscosity parameterization by setting the Tg values of all compounds 30 K lower than

the parametrization predicted, which is in line with the uncertainties reported by DeRiuex et al. (2018). In this case, the

simulated evaporation was faster than observed for the medium O:C conditions (grey solid line in Fig. 8a) and similar to the

evapogram calculated with the VDevap for low O:C conditions (grey solid line in Fig. 8b). This suggest that the observed

evaporation rate at dry conditions and the viscosity parametrization by DeRieux et al. (2018) may be consistent with each

other within the uncertainty range of the viscosity parametrization and the uncertainty range of the C* of PMF factors.

Similar to Fig. 3, we show in Fig. 7 the comparison of VDPMF,dry (C* from Tmax) to the VDevap in dry conditions and at the

mean sample evaporation time with the VD bins grouped into the three volatility classes. We show the mass loading profiles

and the volatility distributions of  experiments in dry conditions in Fig.  S10 and Fig.  S11. Figure S12 shows the same

comparison as Fig. 7 for other sample evaporation times. For medium O:C particles, VDPMF,dry calculated from the fresh

sample has more contribution of volatility classes 1 and 3 and less of volatility class 2 compared to the corresponding VDevap.

For the low O:C particles, the VDPMF,dry of the fresh sample has more contribution of volatility class 3 and less of volatility

classes 1 and 2  compared to the VDevap. For medium O:C particles, the differences between the VDPMF,dry and VDevap leave

open the possibility that the underestimated evaporation rate calculated using VDPMF,dry is partly a result of inaccuracy in

volatility description and not solely due to the high estimated viscosity.  For the low O:C particles,  the underestimated

evaporation  most  likely  stems  from  the  high  estimated  viscosity  since  VDPMF,dry is  shifted  towards  higher  volatility

compounds than VDevap. 

As a third investigation of the viscosity, we used again the PMF results of the fresh sample in dry conditions to initialize the

particle composition in the model at the mean fresh sample evaporation time. The mole fraction of each factor was calculated

from the mass loading profile giving the initial mole fraction of each  VD bin for the simulations similar to the high RH

analysis. Then, using the MCGA algorithm together with the KM-GAP model, we estimated the b i coefficient and C* of each

VD bin by optimizing the KM-GAP simulated evapogram to the measured evapogram in dry conditions.  This way we

obtained both the initial volatility distribution (VDPMF,dry,opt) and viscosity parameters bi simultaneously. For this optimization,

we restricted the C* values of the factors based on the 25th and 75th percentile of the desorption temperature of the factors

(similarly to what was done above for VDPMF,opt) and the viscosity parameter bi values based on the DeRieux et al. (2018)

parameterization. The bi values calculated with the original parametrization by DeRieux et al., (2018) were set as the upper

limit for the bi values. The lower limit for the bi values were calculated by setting the glass transition temperature of each

compound 30 K lower than the parametrization predicted. As above, in these simulations the initial particle size was also
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taken from the simulations where the optimization was based on only the evapogram data. For both medium and low O:C

particles, it was possible to find a set of C* and bi values that produced an equally good match to experimental data as the

VDevap (purple and yellow lines in Fig. 8).

Figure 6b and Fig. 6d show the comparison of the measured and simulated particle composition, grouped into the three

volatility  classes,  at  the RTC sample collection  time for  the  dry  experiments  for  low and medium O:C particles.  The

measured composition is the VD calculated from the PMF results of the RTC samples in dry conditions. The optimized C *

values of the factors from the corresponding dry experiment were used for these VD. The simulated particle composition is

taken from the optimized model run (optimized VDPMF,opt,dry and bi) at the mean RTC sample collection time similar to the

high RH cases presented in Fig. 6a and Fig. 6c. For low O:C particles there is a clear discrepancy: the VD PMF,dry,opt implies a

much larger relative contribution from the volatility classes 2 and 3 and a smaller contribution from the volatility class 1

compared to the measurements. This inconsistency may be related to the rather high viscosities in the simulations. The

viscosity of the low O:C particles in this optimized simulation was rather high, η  > 108  Pa s, throughout the evaporation,

slowing  the  evaporation  of  the  higher  volatility  compounds.  Similar  evaporation  curve  could  be  obtained  with  lower

viscosity and lower volatilities of the VD bins.

4 Discussion

Qualitatively, VDPMF and VDPMF,dry capture the evaporation dynamics well in all studied cases, although quantitatively there

were discrepancies. For the VDPMF of the fresh samples, the first and second factor desorb at low heating temperatures (below

100 °C) indicating that these factors represent high volatility organic compounds that evaporate almost completely from the

particles in the experimental time scale of our isothermal evaporation experiments. In the RTC samples, these factors show

significantly lower or non-existing signal strength relative to the other factors. The factors that desorb at high temperatures

show an increase in the relative signal strength in the RTC samples compared to the fresh samples which is consistent with

the expected increase in relative contribution of lower volatility compounds along evaporation. These findings indicate that

the FIGAERO-CIMS measurements of  α-pinene SOA  and the applied PMF method  give a good overall picture of the

evolution of the volatility distribution during evaporation.

In addition to the PMF method used here,  also other ways of characterizing SOA compound volatilities or  VBS from

FIGAERO-CIMS  thermograms  have  been  suggested  (e.g.  Stark  et  al.,  2017).  These  include,  for  example,  the  more

straightforward method of  calculating the C* of each detected ion based on their Tmax, using Eq. (3) and lumping them into a

traditional VBS. While such other methods may capture the volatility distributions sufficiently, the benefit of PMF method is

that it offers a new way to understand what happens inside the particles, e.g. during the heating in FIGAERO. Here we have

evaluated this method with respect to its ability to capture the volatilities of SOA.
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At high RH, the VDPMF that was derived from Tmax of each factor’s mass loading profile did not produce evapogram similar

to the measured ones, when the VDPMF was used as an input for the LLEVAP model. This reflects the sensitivity of the

particle evaporation to the C* values and suggest that the VDPMF is not directly applicable as a particle composition estimate

for detailed particle dynamics study. When we allowed uncertainty in the C* values of each factor we were able to explain

most of the discrepancy between the simulated and measured evapograms.  Our results also demonstrate the need for careful

investigation of the representative time of the sample when filter-collected samples are applied for dynamic processes such

as evaporation.

In this study we assumed a quite large uncertainty range for the desorption temperature of each PMF factor and it is not

certain that the determination of VDPMF,opt would be successful if the allowed ranges for C* of PMF factors would be lower.

Thus, there remains work to be done in studying what is the total uncertainty that rises from combining the FIGAERO-CIMS

measurements with the PMF method and to what extent the PMF factors can be thought to represent surrogate organic

compounds for the purpose of detailed SOA dynamics studies. 

We note that care has to be taken when PMF results are transferred to volatility distributions, especially with regard to

separating the contribution of instrument background and contamination from the true sample. When the sample mass was

low (in the low O:C RTC sample) we noticed that the first half of the bimodal (factor LD1a) resulted in a high mole fraction

even though the absolute signal strength of the factor did not change between the fresh and the RTC sample, which is usually

an indication that this signal is caused by instrument background. However, the signal strength of this factor was low enough

in all cases to not affect the overall VD estimation. More details on the interpretation of B- and D-type factors and potential

factor blending can be found in Buchholz et al, (2019b).

In dry conditions, VDPMF,dry of the fresh sample in low O:C case showed noticeably higher amount of high volatility matter

than VDevap. This discrepancy between the volatility distributions is not expected and raises a need for further studies on the

role of viscosity and possible particle phase chemistry to SOA particle dynamics.  Future studies should investigate the

possibility of chemical reactions that modify the volatility of organic compounds and how viscosity is described in process

models.

5 Conclusions

We  compared  volatility  distributions  derived  from  FIGAERO-CIMS  measurements  with  PMF  analysis  to  volatility

distributions derived from fitting a process model to match measured size change of particles during isothermal evaporation.

We compared the two methods for obtaining the volatility distribution data for two different particle compositions and two
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evaporation conditions. The results are promising and suggest that the methods provide volatility distributions that are in

agreement. We note that the data set available here is limited and additional investigations on comparing the methods are

desirable in the future. 

In all studied experimental data sets, we were able to capture the measured evaporation with the fitting method.In high RH

experiments, VDPMF deviated from VDevap especially when the FIGAERO samples were collected at the early stages of the

evaporation. However, qualitatively, both types of VD evolved similarly, i.e., the fraction of lower volatility compounds

increased, and the fraction of higher volatility compounds decreased during the evaporation of the particles. These results

suggest that the changes in FIGAERO-CIMS derived volatility distributions over the isothermal evaporation are consistent

with the observed isothermal evaporation and the detailed SOA dynamics are sensitive for the uncertainties in the C* values.

The volatility distribution derived with the PMF method at high RH agreed with the observed isothermal evaporation better

when we interpreted the volatility of each factor as a range of possible C* values and optimized the C* values within these

ranges with respect to the measurements. These results suggest that the FIGAERO-CIMS measurements combined with

PMF method does not only provide qualitative information of the volatilities of the SOA constituents but it also has potential

for quantitative investigation of the volatility distributions. However,  more work is needed to constrain the uncertainties

rising from the conversion of the FIGAEO-CIMS desorption temperatures to C* values and it should be noted that deriving

the volatilities based on only the Tmax of PMF factors may not be sufficient for representing detailed SOA dynamics.

In dry conditions, we were able to simulate the evapograms based on the PMF results using the VTF equation and the glass

transition temperature parametrization of  DeRieux et al., (2018) if both C* and viscosity parameters where optimized and

allowed to contain reasonable uncertainties.  For both oxidation conditions the measured composition at the later stages of

evaporation suggested considerably lower volatility than the simulations.  These results suggest  that  the tested viscosity

parameterization is not in disagreement with the observed SOA evaporation, however the uncertainties related to the method

are significant from the point of view of simulating SOA dynamics.

Based  on  our  analysis  we  conclude  that  using  the  PMF method  with  FIGAERO-CIMS thermogram data  is  good  for

estimating   the volatility distribution of organic aerosols when the organic compounds present in the particle phase have low

volatilities  with  respect  to  the  sample  collection  and  analysis  time  scale.  Specifically,  VD PMF is  useful  for  extracting

information about organic compounds that do not evaporate during the evaporation measurements at room temperature.

VDPMF is applicable to detailed particle dynamics studies when desorption temperature of the factor is characterized with a

range around the Tmax value. Furthermore, combining VDPMF,opt with detailed process modelling and input optimization could

allow quantification of other physical or chemical properties of organic aerosols since the FIGAERO-CIMS data constrains
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the particle  composition and effectively  decreases  the search  space  that  needs to  be explored with global  optimization

methods.
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Table 1: The ambient conditions and properties of the organic compounds used in estimating the VDevap. The variables are,

from top to bottom, temperature (T) during the evaporation, relative humidity (RH), gas phase diffusion coefficient (Dg,org),

molar mass (M), particle phase density (ρ), particle surface tension (σ)) and mass accommodation coefficient (α). Rows that

only have one value are the same in every column. 

Variable Medium O:C 

High RH

Low O:C

High RH

Medium O:C  

dry

Low O:C 

dry

T (K) 293.85 293.75 293.75 293.35

RH (%) 82.4 83.5 0 0

Da,b
gas (cm2 s-1) 0.05

Mb (g mol-1) 200

ρb (kg m-3) 1200

σ)b (mN m-1)   40

αb   1
a) The gas phase diffusion coefficients are scaled to correct temperatures by multiplying with a factor  of (T/273.15) 1.75  (Reid

et al., 1987)

b) values are chosen to represent a generic organic compound with values similar to other α-pinene SOA studies (e.g. Pathak

et al., 2007; Vaden et al., 2011; Yli-Juuti et al., 2017).
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Table 2: The best fit C* values for medium O:C and low O:C high RH experiments when C* values of PMF factors were

optimized with respect to the measured isothermal evaporation. C* values were optimized by assuming the FIGAERO-CIMS

sample represents particle composition at the mean sample evaporation time for the fresh sample and the minimum sample

evaporation time for the RTC sample. The C* values are rounded to two significant digits and are in units μgm -3. C* values

below 10-3 μgm-3 are not reported explicitly since the evapogram fitting method is not sensitive to these values.

Medium O:C  fresh sample Medium O:C RTC sample Low O:C  fresh sample Low O:C RTC sample 

Factor M1/L1 4.96 ·10-1 36.10 3.06 ·10-1 <10-3

Factor M2/L2 2.89 ·10-1 4.12·10-1 3.55 ·10-1 2.40·10-2 

Factor M3/L3 9.93 ·10-3 4.42 ·10-3 2.87 ·10-2 7.13 ·10-3 

Factor M4/L4 < 10-3 < 10-3 1.54 ·10-3 < 10-3  

Factor M5/L5 < 10-3 < 10-3 < 10-3 < 10-3 

Factor D1a 7.68 · 10-1 69.35 130.03 1.04 · 10-1 

Factor D1b < 10-3 < 10-3 < 10-3 < 10-3
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Figure 1: Main positive matrix factorization (PMF) mass loading profiles for thermal desorption of secondary organic 

aerosol (SOA) from α-pinene at high RH conditions 

a) Fresh sample of medium O:C SOA  

b) Residual particles of medium O:C SOA after 173-259 minutes of evaporation in a residence time chamber (RTC), i.e., the 

RTC sample  

c) Fresh sample of low O:C SOA  

d) Residual particles of low O:C SOA after 168-254 minutes of evaporation in the RTC, i.e. the RTC sample. 

Black crosses indicate the peak desorption temperature Tmax and the diamonds mark the 25th and 75th percentiles of the area of

each factor.
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Figure 2:  Volatility distributions in high RH experiments determined from model fitting (VDevap) and PMF analysis of 

FIGAERO-CIMS data (VDPMF) for the same four cases shown in Fig. 1. 

a) Fresh sample of medium O:C SOA 

b) Residual particles of medium O:C SOA (the RTC sample)

c) Fresh sample of low O:C SOA

d) Residual particles of low O:C SOA (the RTC sample).

VDevap is shown for the best fit simulation (grey bars) at the mean evaporation time of the FIGAERO-CIMS sample. Black 

crosses show the log10(C*) calculated for each PMF factor from the peak desorption temperature Tmax. The horizontal 

coloured lines show the range of log10(C*) calculated from the 25th and 75th percentiles of each PMF factor’s mass loading 

profile. 
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Figure 3: Comparison of VDPMF and VDevap at the mean sample evaporation time in high RH experiments for the same four 

cases shown in Fig. 1.

a) Fresh sample of medium O:C SOA  

b) Residual particles of medium O:C SOA (the RTC sample) 

c) Fresh sample of low O:C SOA 

d) Residual particles of low O:C SOA (the RTC sample).

The VD bins shown in Fig. 2 are grouped into three different volatility classes based on their evaporation tendency with 

respect to the measurement time scale and particle size. The limits for each volatility class are shown at the top and are the 

same for each subfigure. The VDPMF shows lower overall volatility than the VDevap except for subfigure d (RTC sample of 

low O:C SOA) where the VDPMF shows higher overall volatility than the VDevap. 
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Figure  4:  Evapograms of high RH experiments showing the evaporation factors (remaining fraction of the initial particle

diameter;  circles)  and  their  uncertainty  in  time  for  a)  medium O:C  SOA and  b)  low O:C  SOA,  LLEVAP simulated

evapograms calculated using the best  fit  VDevap (black solid lines) and LLEVAP simulated evapograms calculated with

VDPMF (turquoise lines for VDPMF of fresh SOA and light brown lines for simulation with VDPMF of the residual particles

evaporated  173-259 minutes and 168-254 minutes for medium O:C and low O:C SOA, respectively). The evapograms

calculated with the VDPMF of the fresh samples show lower rate of evaporation than the evapogram calculated with the VD evap

consistent with volatility distribution shown in Fig. 3. The evapograms calculated with the VDPMF of the residual particles

(the RTC sample) show a similar rate of evaporation for medium O:C SOA and a faster rate of evaporation for low O:C SOA

compared to evapograms calculated with VDevap similarly consistent with Fig. 3.
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Figure 5: Evapograms of high RH experiments showing the evaporation factors (circles), their uncertainty in time (black 

whiskers), the best fit simulated evapogram calculated with VDevap (black solid line) and the best fit simulated evapograms 

calculated with the volatility distribution where the effective saturation concentration (C*) of each PMF factors are fitted to 

the measurements (VDPMF,opt). 

a) Medium O:C SOA 

b) Low O:C SOA.

The colored solid lines are for the fresh SOA and the dashed lines for the residual particles collected from the RTC after 173-

259 minutes and 168-254 minutes of evaporation for medium O:C and low O:C SOA, respectively. For fitting, the C* of each

PMF factor were allowed values from their respective 25th and 75th percentile desorption temperature shown in Fig. 1.   

All the evapograms calculated with the VDPMF,opt match the measured evaporation highlighting that the volatility distribution 

determined from the FIGAERO-CIMS data with the PMF method can describe the dynamics of evaporating SOA particles 

when uncertainties in the C* of the factors are considered. 
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Figure 6: Comparison of the simulated particle composition (VDPMF,opt, VDPMF,opt,dry) to the particle composition determined 

from the residual particles collected from the RTC (VDPMF/VDPMF,dry) after 173-259 minutes and 168-254 minutes of 

evaporation for medium O:C and low O:C SOA, respectively. The comparison is done at the mean evaporation time of the 

residual particles. The simulated compositions (VDPMF,opt in a and c, VDPMF,opt,dry in b and d) are taken from the best fit 

simulated evapogram obtained from the optimization of the C* values of fresh sample’s PMF factors to the measured 

evapogram. The volatility of individual VD bins are grouped into three volatility classes similar to Fig. 3. The limits for each

volatility class are shown at the top and are the same for each subfigure. The C* values from VDPMF,opt/VDPMF,opt,dry were used 

for corresponding VDPMF/VDPMF,dry when the volatility grouping was calculated in order to ensure the comparability.

a) Medium O:C SOA in high RH experiment

b) Medium O:C SOA in dry condition experiment

c) Low O:C SOA in high RH experiment

d) Low O:C SOA in dry condition experiment.

In the high RH cases (subfigures a and c) the volatility distributions simulated based on VDPMF,opt of the fresh SOA are 

similar to the measured VDPMF, while for the dry condition  cases (subfigures b and d) the volatility distributions simulated 

based on VDPMF,opt,dry show higher volatility than the measured VDPMF.
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Figure 7: Comparison of VDPMF,dry (volatility distribution with C* calculated from the peak desorption temperature, Tmax, of 

each PMF factor) and VDevap (volatility distribution determined by fitting LLEVAP model to measured evapogram) at the 

mean evaporation time of the SOA samples in dry condition experiments. The VD bins are grouped into three volatility 

classes similar to Fig. 3. The limits for each volatility class are shown at the top and are the same for each subfigure.

a) Fresh sample of medium O:C SOA

b) Residual particles of medium O:C SOA after 170-256 minutes of evaporation (the RTC sample)

c) Fresh sample of low O:C SOA

d) Residual particles of low O:C SOA after 152-238 minutes of evaporation (the RTC sample).

The VDPMF,dry shows lower overall volatility than the VDevap for medium O:C SOA. For low O:C SOA the VDPMF,dry shows 

higher volatility for fresh sample and similar volatility compared to the VDevap after 152-238 minutes of evaporation.
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Figure 8: Evapograms showing the measured isothermal evaporation of a) medium O:C SOA b) low O:C SOA in dry 

condition experiments and their uncertainty in time (red and yellow markers and black whiskers) together with the simulated 

evapograms. The best fit simulated evapogram calculated with VDevap (obtained from high RH experiments) and optimizing 

bi is shown with black solid line. Grey lines show the minimum and maximum possible evaporation calculated with VDPMF,dry

(C* of PMF factors calculated from Tmax) at the highest (the original parametrization of DeRieux et al., (2018), grey dashed 

lines) or the lowest (30 K subtracted from the Tg of every ion, grey solid line) studied viscosity. Purple and yellow solid lines

show the best fit simulated evapograms calculated with the optimized VDPMF,opt,dry (based on the assumption that the 

FIGAERO sample represents particles at the mean of the sample collection interval) and bi restricted based on the DeRieux 

et al. (2018) parameterization. The figure shows, similar to Fig. 5, that the volatility distribution determined from the 

FIGAERO-CIMS data with the PMF method is consistent with the measured evaporation of the SOA particles once the 

uncertainty in the effective saturation concentration and the glass transition temperature parametrization of DeRieux et al., 

(2018) are considered. 
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