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Abstract.

The volatility distribution of the organic compounds present in secondary organic aerosol (SOA) at different conditions is a
key quantity that has to be captured in order to describe SOA dynamics accurately. The development of the filter inlet for
gases and aerosols (FIGAERO) and its coupling to a chemical ionization mass spectrometer (CIMS) has enabled near
simultaneous sampling of gas and particle phases of SOA through thermal desorption of the particles. The thermal
desorption data has been recently shown to be interpretable as a volatility distribution with the use of the positive matrix
factorization (PMF) method. Similarly, volatility distributions can be inferred from isothermal particle evaporation
experiments, when the particle size change measurements are analyzed with process modelling techniques. In this study, we
compare the volatility distributions that are retrieved from FIGAERO-CIMS and particle size change measurements during
isothermal particle evaporation with process modelling techniques. We compare the volatility distributions at two different
relative humidity (RH) and two oxidation condition. In high RH conditions, where particles are in a liquid state, we show
that the volatility distributions derived via the two ways are similar within reasonable assumption of uncertainty in the
effective saturation mass concentrations that are derived from FIGAERO-CIMS data. In dry conditions, we demonstrate that
the volatility distributions are comparable in one oxidation condition, and in the other oxidation condition the volatility
distribution derived from the PMF analysis shows considerably more high volatility matter than the volatility distribution
inferred from particle size change measurements. We also show that the Vogel-Tammann-Fulcher equation together with a
recent glass transition temperature parametrization for organic compounds and PMF derived volatility distribution estimate
are consistent with the observed isothermal evaporation under dry conditions within the reported uncertainties. We conclude
that the FIGAERO-CIMS measurements analyzed with the PMF method are a promising method for inferring the volatility
distribution of organic compounds, but care has to be taken when the PMF factors are analyzed. Future process modelling

studies about SOA dynamics and properties could benefit from simultaneous FIGAERO-CIMS measurements.
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1 Introduction

Aerosol particles have varying effects on health, visibility and climate (Stocker et al., 2013). Organic compounds comprise a
substantial amount of atmospheric particulate matter (Jimenez et al., 2009; Zhang et al., 2007) of which a major fraction is of
secondary origin, i.e., low-volatility organic compounds formed from oxidation reactions between volatile organic
compounds (VOCs) and ozone, hydroxyl radicals and nitrate radicals (Hallquist et al., 2009). The aerosol particles
containing these kind of oxidation products are called secondary organic aerosols (SOA) as opposed to primary organic
aerosols i.e., organic particles emitted directly to the atmosphere. VOC oxidation reactions result in thousands of different
organic compounds (Goldstein and Galbally, 2007). There exist gaps in the knowledge especially on formation and
deposition of SOA as well as how the processes are affected by changing physicochemical properties such as
volatility(Glasius and Goldstein, 2016). In addition, the phase state of the organic compounds has also been shown to play a
role in SOA dynamics (Reid et al., 2018; Shiraiwa et al., 2017; Yli-Juuti et al., 2017; Renbaum-Wolff et al., 2013; Virtanen
et al., 2010)

The physicochemical properties of organic aerosols can be studied directly and indirectly. The Aerodyne Aerosol Mass
Spectrometer (AMS, Canagaratna et al., 2007; DeCarlo et al.,, 2006; Jayne et al., 2000) enabled direct and online
composition measurements of atmospheric particles for the first time. Combining AMS data with statistical dimension
reduction techniques such as factor analysis and positive matrix factorization (PMF; Zhang et al., 2011, 2007, 2005; Paatero
and Tapper, 1994) allowed researchers to draw conclusions on sources and types of atmospheric organic particulate matter

from the relatively complex mass spectra data.

The Chemical Ionization Mass Spectrometer (CIMS; Lee et al., 2014) coupled with the Filter Inlet for Gases and AEROsols
(FIGAERO-CIMS, Lopez-Hilfiker et al., 2014) is a prominent online measurement device to study both the gas and particle
phases of SOA. During particle phase measurements, a key advantage over the AMS is the softer chemical ionization that
retains much more of the molecular information of the compound than the electron impact ionization used in the AMS.
Typically, the collection of the particulate mass is conducted at room temperature which minimizes the loss of semi-volatile
compounds during collection. In addition to the overall chemical composition, the gradual desorption of the particulate mass
from the FIGAERQO filter yields the thermal desorption behavior of each detected ion, i.e., it is a direct measure of each ion’s
volatility. FIGAERO-CIMS measurements have been carried out in both laboratory and field environments to study SOA
composition from different VOC precursors and in both rural and polluted environments (Breton et al., 2018; Huang et al.,
2018; Lee et al., 2018; D’ Ambro et al., 2017; Lopez-Hilfiker et al., 2015). However, the volatility information in these data

sets have barely been used.
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Besides direct mass spectrometer measurements, SOA properties have been inferred indirectly from growth (e.g. Pathak et
al., 2007 and references therein) and isothermal evaporation (Buchholz et al., 2019a; D’ Ambro et al., 2018; Yli-Juuti et al.,
2017; Wilson et al., 2015; Vaden et al., 2011) measurements. The complexity of organic compounds in these studies can be
alleviated with the use of a volatility basis set (Donahue et al., 2006), where organic compounds are grouped based on their
(effective) saturation concentration. However, the experimental setup also defines the range of C” values that can be
estimated from the data. Vaden et al., (2011) and Yli-Juuti et al., (2017) have both shown that the volatility basis sets derived
from SOA growth experiments result in too fast SOA evaporation compared to measured evaporation rates when the
volatility basis set is used as input for process models. Possible reasons for such discrepancies include the different C" ranges
to which the SOA growth and SOA evaporation experiments are sensitive to and the role of vapor wall losses in SOA growth
experiments. This raises a need for alternative methods to derive organic aerosol volatility against which the volatilities

inferred from the direct particle size measurements can be compared to.

Recently, Buchholz et. al., (2019b) demonstrated that the FIGAERO-CIMS measurements during particle evaporation can be
mapped to a volatility distribution of organic compounds by conducting a PMF analysis. On the other hand, Tikkanen et al.,
(2019) showed that the volatility distribution can be inferred from isothermal particle evaporation measurements by
optimizing the evaporation model input to yield the measured evaporation rate at different humidity conditions. In this study,
we compare these two approaches for varying oxidation and particle water content conditions. Our main research questions
are 1) Are the volatility distributions derived from particle size change during isothermal evaporation and from the
FIGAERO-CIMS measurements similar? 2) How should the PMF results of FIGAERO-CIMS data be interpreted in terms of
volatility? 3) Can a recently published glass transition temperature parametrization (DeRieux et al., 2018) combined with the
PMF analysis be used to model particle phase mass transfer limitations observed for the evaporation in dry conditions, i.e., in

the absence of particle phase water?

2 Methods

2.1 Experimental particle evaporation data

The experimental data we use is the same as reported in Buchholz et al., (2019a,b). We briefly summarize the measurement
setup below. We generated the particles with a Potential Aerosol Mass (PAM) reactor (Kang et al., 2007; Lambe et al., 2011)
from the reaction of o-pinene with O; and OH at three different oxidation levels (average oxygen-to-carbon O:C ratios of
0.53, 0.69, and 0.96). We focus on the lowest O:C (0.53) and medium O:C (0.69) experiments in this work. The closer
analysis of the high O:C experiments suggests particle phase reactions during the evaporation (Buchholz et al., 2019a,b). To
avoid the uncertainty that would arise from unknown particle phase reactions, we chose not to include the high O:C data in

our analysis.
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We selected a monodisperse particle population (mobility diameter d, = 80 nm) with two nano tandem type differential
mobility analyzers (nano-DMA; TSI inc., Model 3085) from the initial polydisperse particle population. The size selection
diluted the gas phase initiating particle evaporation. The monodisperse aerosol was left to evaporate in a 100 L stainless-steel
residence time chamber (RTC). We measured the particle size distribution during the evaporation with a scanning mobility
particle sizer (SMPS; TSI inc., Model 3082+3775). The RTC filling took approximately 20 minutes and we performed the
first size distribution measurement in the middle of the filling interval. To obtain short residence time data (data before 10
minutes of evaporation) we added a bypass to the RTC which led the sample directly to the SMPS. By changing the length
of the bypass tubing, we were able to measure the particle size distribution between 2 s and 160 s of evaporation. We
measured the isothermal evaporation up to 4 — 10 hours depending on the measurement. We performed the measurements for
each oxidation level both at high relative humidity (RH = 80%) and at dry conditions (RH < 2 %). The change in particle
size with respect to time are called evapograms. In an evapogram, the horizontal axis presents evaporation time and the
vertical axis shows the evaporation factor (EF), i.e., the measured particle diameter divided by the initially selected particle

diameter.

To classify the oxidation level of the particles, we derived the average O:C ratio from composition measurements with a
High-Resolution Time-Of-Flight Aerosol Mass Spectrometer (AMS, Aerodyne Research Inc.). Further, we conducted
detailed particle composition measurements with an Aerodyne Research Inc. FIGAERO, (Lopez-Hilfiker et al., 2014)
coupled with a chemical ionization mass spectrometer (CIMS) with iodide as the reagent ion (Aerodyne Research Inc., Lee
et al., 2014). Previous studies using FIGAERO-CIMS with iodide as the reagent ion found 50% or better mass closure
compared to more established methods of quantifying OA mass (albeit with high uncertainties; Isaacman-VanWertz et al.,
(2017); Lopez-Hilfiker et al., (2016)). Therefore, it appears that the bulk of reaction products expected from «-pinene

oxidation contains the functional groups required for detection by our FIGAERO-CIMS.

In the FIGAERO inlet, particles are first collected on a PTFE filter. Then the collected particulate mass desorbs slowly due
to a gradually heated nitrogen flow. The desorbed gaseous compounds are then transported into the CIMS for detection. We
derived the average chemical composition of the particles by integrating the detected signal of each ion over the whole
desorption interval. For each ion, the change of detected signal with desorption temperature is called a thermogram and
generally, the temperature at the maximum of the thermogram (Twmax) is correlated to the volatility of the detected ion. Similar
to Bannan et al., (2019) and Stark et al., (2017), we calibrated the Ty, - volatility relationship using compounds with known

vapour pressure. The calibration procedure is described in the supplementary material.

We collected particles for FIGAERO-CIMS analysis at two different stages of the evaporation. We refer to these samples

as either “fresh” or “RTC” samples. The fresh samples were collected for 30 minutes directly after the selection of the
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monodisperse population. The RTC samples of the residual particles were collected for 75 minutes after 3 to 4 hours of
evaporation in the RTC. The collected particulate mass was 140-260 ng and 20-70 ng for the fresh and the RTC samples,
respectively. More details about sample collection, desorption parameters, and data analysis can be found in Buchholz et al.,

(2019a).

2.2 The volatility distribution

We represent the myriad of organic compound in the SOA particles with a one-dimensional volatility basis set (1D VBS,
below only VBS, Donahue et al., 2006). The VBS groups the organic compounds into ‘bins’ based on their effective (mass)
saturation concentration C”, defined as the product of the compounds activity coefficient and saturation concentration.
Generally, a bin in the VBS represents the amount of organic material in the particle and gas phases. In our study, the walls
of the RTC have been shown to work as an efficient sink for gaseous organic compounds (Yli-Juuti et al., 2017). Thus, we
can assume that the gas phase in our experimental setup does not contain organic compounds, i.e., the amount of organic
matter in a bin is the amount in the particle phase. To distinguish from a traditional VBS that groups the organic compounds
to bins such that there is a decadal difference in C* between two adjacent bins, we call the VBS in our work a volatility
distribution (VD). We present the amount of material in each VD bin as the dry mole fraction, i.e., the mole fraction of the
organics, excluding water. In the analysis presented below, we assign properties to each VD bin (e.g. molar mass) treating
each bin as if it consisted of only a single organic compound with a single set of properties. The physicochemical properties
of each VD bin are assumed to be the same. These properties and the ambient conditions of each evaporation experiment are

listed in Table 1.

2.3 Deriving volatility distribution from an evapogram

We followed the similar approach as in Yli-Juuti et al., (2017) and Tikkanen et al., (2019) to derive a VD at the start of the
evaporation from an evapogram. To model the evaporation at high RH, we used a process model (liquid-like evaporation
model, hereafter LLEVAP) that assumes a liquid-like particle, i.e., a particle where there are no mass transfer limitations
inside the particle and where the mass flux of a VD bin in the particle phase can be calculated directly from the gas phase
concentrations of the VD bin near the particle surface and far away from the particle (Vesala et al., 1997; Lehtinen and
Kulmala, 2003; Yli-Juuti et al., 2017). In this case, the main properties defining the evaporation rate are the saturation

concentrations of each VD bin and their relative amount in the particle.

We used the LLEVAP model to characterize the volatility range that can be interpreted from the evaporation measurements.
We calculated the range by modelling evaporation of a hypothetical particle that consists of one organic compound
evaporating in dry conditions. We calculated the evaporation for the range of log(C") values from -5 to 5. We determined
the minimum C”" value to be the value that still showed “detectable evaporation”, i.e., at least 1% change in particle diameter

during the evaporation time (up to 6 h) and the maximum C” value to be the value before “complete evaporation” occurred,
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i.e., 99% particle diameter change within the first 10 s. The minimum log,, (C") calculated with this method was -3 and the
maximum log;, (C") was 2. We then modelled the particle composition with six VD bins with C" values between these
minimum and maximum values. Each VD bin has a decadal difference in C" to adjacent VD bin (like in the traditional VBS).
We note that based on this analysis all the compounds with log, (C") < -3 will not evaporate during the experimental time
scale. This means that any compounds with lower C" than this threshold will be assigned to the log, (C")= -3 VD bin.
Similarly, any compound with log, (C") > 2 will be classified into the logi (C")= 2 VD bin or not be detected at all due to

evaporating almost entirely before the first measurement point.

We calculated the dry particle mole fraction of each VD bin at the start of the evaporation by fitting the evaporation
predicted with the process model to the measured evapograms. Our goal was to minimize the mean squared error in vertical
direction between the experimental data and the LLEVAP output. We used the Monte Carlo Genetic Algorithm (MCGA,
Berkemeier et al., 2017; Tikkanen et al., 2019) for the input optimization. In the optimization, we set the population size to
be 400 candidates, number of elite members to 20 (5% of the population), number of generations to 10, and number of
candidates drawn in the Monte Carlo (MC) part to 3420 which corresponds to half of the total process model evaluations
done during the optimization. We performed the optimization 50 times for each evapogram and selected the best fit VD

estimate for further analysis.

The VD derived from the evapogram is hereafter referred to as the VDe.,p. The initial composition of the SOA particles in the
dry and wet experiments were the same and can be described by the same fitted VD, as the particles were generated at the

same conditions in the PAM and only the evaporation conditions changed.

2.4 Deriving volatility distribution from FIGAERO-CIMS measurement

As shown by Bannan et al., (2019) and Stark et al., (2017), the peak desorption temperature, Tma, Can be used together with
a careful calibration to link desorption temperatures from the FIGAERO filter to C” values for the detected ions. In principle,
this would allow us to assign one C” value to each ion thermogram. But this assumes that one detected ion characterized by
its exact mass is indeed just one compound. In practice, this is not always the case and for some ion thermograms a bimodal
structure or distinct shoulders/broadening are visible. This can be caused by isomers of different volatility which cannot be

separated even by high resolution mass spectra.

Another complication arises due to the thermal desorption process delivering the collected aerosol mass into the CIMS.
Especially, multi-functional, and hence low volatility compounds may thermally decompose before they desorb from the
filter, and thus be detected as smaller ions. The apparent desorption temperature is then determined by the thermal stability
of the compound and not its volatility. Typically, this decomposition processes start at a minimum temperature and will not

create a well-defined peak shape (Buchholz et al., 2019b, Schobesberger et al., 2018) presumably because an observed
6
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decomposition product may have multiple sources, especially when including all isomers, and the ion signal for the
respective composition may overlap with the signal of isomers derived from true desorption. For example, a true constituent
of the SOA particle may give rise to an observed main thermogram peak, but it may be broadening and/or tailing if a
decomposition product has the same composition. By ignoring this and simply using the T m.x values, the true volatility of the

SOA particle constituents will be overestimated, i.e., the derived VD will be biased towards higher C" bins.

One more potential source of bias is our implicit assumption of a constant sensitivity of the CIMS towards all compounds,
which follows from the lack of calibration measurements for our datasets (which indeed is a challenging endeavour; e.g.,
Isaacman-VanWertz et al., (2018)). It is plausible that less volatile compounds tend to be detected at higher sensitivity (Iyer
et al.,, 2016; Lee et al.,, 2014), up to a kinetic limit sensitivity. Consequently, a volatility distribution derived from
FIGAERO-CIMS thermograms may be biased towards lower volatility (C" bins), at least for compositions not associated

with thermal decomposition.

To separate the multiple sources possibly contributing to each ion thermogram (isomers and thermal decomposition
products), we applied the Positive Matrix Factorization (PMF, Paatero and Tapper, 1994) to the FIGAERO-CIMS data set.
PMF is a well-established mathematical technique in atmospheric science mostly used to identify the contribution of
different sources of aerosol particle constituents or trace gases in the atmosphere. PMF represents the measured matrix of
time-series of mass spectra, X, as a linear combination of a (unknown) number of constant source profiles, F, with varying
contributions over time, G:
X=G-F+E (@)

E is a matrix containing the residuals between the measured (X) and the fitted data (G-F). Values for G and F are found by

minimizing this residual, Ej, scaled by the corresponding measurement error, S, for each ion i at each time j
m n

o-$ 52
i=1 j=1\9j,j

Each row in F contains a factor mass spectrum and each column in G holds the corresponding time series of contribution by
each factor. In the case of FIGAERO-CIMS data, the time series is equivalent to the desorption temperature ramp during the
thermogram and will be called “mass loading profile” below. The absolute values (temperature or time) are irrelevant for the
performance of PMF as the “x values” are only used to determine the order of the data points but have no influence on the
model output (Paatero and Tapper, 1994). This allowed us to combine multiple separate thermogram measurements into one

data set and conduct a PMF analysis. This simplified the comparison of factors between measurements. More details about

the PMF method in the specific case of FIGAERO-CIMS data can be found in Buchholz et al., (2019b).
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Once the PMF algorithm was applied to the FIGAERO-CIMS data we calculated the VD from the mass loading matrix G.
Due to the very low signal strength of many ions, the CIMS data had been averaged over 20 s leading to enhance the
reliability of the high-resolution analysis. This leads to an average desorption temperature difference ATueson, ~ 4°C between
two adjacent data points. To overcome this coarse Taeop grid, we interpolated each factor’s mass loading profile with a
resolution of 100 sample points between two temperature steps to gain sufficient statistics for further analysis. T max was
determined as the temperature at the maximum signal in the factor mass loading profile. We integrated the factor mass
loading profile and defined the temperatures where the value of the integral reaches 25% and 75% of its maximum value.
This temperature interval formed the factors desorption temperature range and the corresponding C" values will be used in
Sect. 3.3. We converted the Tm.x values into C” values and the desorption temperature range into a C” range with a
parametrization derived from calibration measurements (see Supplementary material for details) with organic compounds
with known C" values.
(OB BT g | M
RT

org 10 9 (3)

ambient

where C’is the effective saturation concentration in units pgm™, M is the molar mass of the organic compound assumed to
be Moy = 0.2 kg mol™, R is the universal gas constant, Tt (in °C in Eq. 3) is the temperature of the mass loading profile
and Tamiene (in Kelvin in Eq. 3) is the ambient temperature at which the evaporation happens (see Table 1), a and  are the
fitted coefficients from the calibration data a=(-1.431+0.31) and B=(-0.207+0.006) °C". We applied the lower and higher
bounds of the fitting coefficients’ uncertainty when we calculated the C”range in Sect 3.3. Finally, the signal fraction of
each factor was calculated by dividing the integral of a factor’s signal over the whole temperature range with the sum of
integrals of all factors. We compare this signal fraction to the dry mole fraction in the VDey.,. We refrained from converting
the counts per second signal into moles as no adequate transmission and sensitivity measurements were available for the
used FIGAERO-CIMS setup. We refer the volatility distribution calculated from the PMF data using the Tw.x values of each

factor as VDpyr later in this work.

With Eq. (3), we can calculate the minimum and maximum C” values that can be resolved from a FIGAERO thermogram.
The desorption temperature was ramped between 27 °C and 200 °C, but defined peaks (and thus T .« values) can be detected
only between 30 and 180 °C. Thus, the resolvable log;, (C") values range from 1.6 to -11.9. It has to be kept in mind that

strictly this calibration only applies to the Twax values of a single ion thermogram.

2.5 Modelling particle viscosity at dry conditions

To model the mass transfer limitations observed in the evaporation measurements at dry conditions (Buchholz et al., 2019a)
we used the kinetic multilayer model for gas particle interactions (KM-GAP; Shiraiwa et al., 2012) with modifications

described in Yli-Juuti et al., (2017) and Tikkanen et al., (2019). The main modification to the original model was that during
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evaporation the topmost layer (the quasi static surface layer) merges with the first bulk layer if the thickness of the layer is

smaller than 0.3 nm. We calculated the viscosity at each layer of the particle as

N
10810(77)=Z Xmole,i,jlogl()(bi)3 4
i=1

where Xo,ij is the mole fraction of the VD bin i in layer j and b; is a coefficient that describes the contribution of each VD

bin to the overall viscosity.

Since we generated the particles in the same environment (PAM chamber) and only the evaporation happened at different
conditions, the VD at the start of the evaporation derived from high RH data represents also the composition at the start of
the evaporation in dry conditions. Then we can use the best fit VD, from the high RH data as input for KM-GAP and fit
the b; values in Eq. (4) to the dry data set. We set the minimum and maximum allowed values for b; to 10" and 10%,
respectively. To estimate the b; values when modelling the evaporation with VDpyr in dry conditions, we calculated these b;
terms using the mass spectra of each factor (F in Eq. 1) and the Vogel-Tammann-Fulcher (VTF) equation (DeRieux et al.,

2018; Angell, 2002, 1995)

T,,D

—_— S5
T-T,, ©)

;= 1.€Xp

where 1); is the viscosity of the ith VD bin / PMF factor. 1; can be seen as a proxy for b; in an ideal solution. n.is the viscosity
at infinite temperature, To; is the Vogel temperature of the ith VD bin, and D is a fragility parameter. Setting n..=10°Pa s
and 1(Tg) = 10" Pa s (e.g. DeRieux et al., 2018; Gedeon, 2018), where Ty is the glass transition temperature of a compound

yields

. 39.14T,
0173914+D"

We calculated T, for every compound in the PMF mass spectra with a parametrization for SOA matter developed by

(6)

DeRieux et al., (2018). This parametrization requires the number of carbon, oxygen and hydrogen atoms to calculate the T,.
We then computed T, for each PMF factor as a mass fraction weighted sum of glass transition temperatures of individual
compounds (DeRieux et al., 2018; Dette et al., 2014). Based on the T,; of each PMF factor, we calculated the viscosity of
each PMF factor with Egs. (5) and (6) and used them as an approximation for b;. We used fragility parameter value D = 10 in

the calculations according to DeRieux et al., (2018).
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3 Results

In this section we first focus on the high RH experiments where evaporation is modelled with the LLEVAP model. We will
first compare VDeysp t0 VDpyr for which the C* of a PMF factor is determined from the factor’s T value. Then, we compare
the volatility distributions where the C” of a PMF factor is determined as a range from the 25™ and 75" percentile desorption
temperatures. Lastly, we study the volatility distributions in dry conditions. We investigate the VD both on a qualitative and
quantitative level. On a qualitative level we compare the amount of matter of different C" intervals relevant for the
evaporation process. On a quantitative level we study what is the evaporation behavior of the particles based on the

determined VD and how do they compare to the measured evaporation.

3.1 PMF solution interpretation

Figure S2 shows mass loading profiles derived from the FIGAERO-CIMS measurements of medium and low O:C particles
at high RH. The corresponding factor mass spectra can be found in Fig. S3 and Fig. S4. A key step in any PMF analysis is
determining the “right” number of factors as this can affect the interpretation of the results. We carefully investigated the Q/
Qexp, time series of scaled and unscaled residuals, and the ability of a PMF solution to capture the characteristic behavior of
as many single ion thermograms as possible (see Buchholz 2019b for details). Based on this analysis, a 7-factor solution was
chosen for the medium O:C cases and a 9-factor solution for the low O:C ones. The two additional factors in the low O:C
case were needed to capture a contamination on the FIGAERO filter during the dry, fresh sample (factors LC1 and LC2 in
Fig. S2 and Fig. S4). As these two factors were clearly an artifact introduced by the FIGAERO filter sampling, we omitted
their contribution for the following analysis. From careful comparison of the factor profiles and mass spectra with filter
blank measurements, we determined that factor MB1 in the medium O:C case and factor LB1 in the low O:C case describe

the filter/instrument background and are thus also excluded from the VD comparison presented below.

Factors 1-5 in both O:C cases exhibit a monomodal peak shape and can thus be characterized by their Twmax values. Factor
MD1 in the medium O:C case and factor LD1 in the low O:C case needs to be investigated more closely, as their factor mass
spectrum and the sometimes bimodal mass loading profile suggest, that these factors contain compounds stemming from
both direct desorption (desorption T<100 °C) and thermal decomposition (desorption T>100 °C, see Buchholz et al., 2019b
for details). To account for this, the factor is split into two with the first half containing the signal from desorption
temperatures below 100 °C (factor M/LD1a) and the second half containing that above 100 °C (factor M/LD1b). We treat
these factors separately. We note that now the latter half of the split factor is dominated by thermal decomposition products
so that the apparent desorption temperature is actually the temperature at which thermal decomposition leads to products
which desorb at this temperature. This apparent desorption temperature is thus a lower limit for the decomposing parent
compound, i.e., the true volatility of these parent compounds is even lower. However, the desorption temperatures are so

high that they lead to logio(C") < -3 and are thus below the comparable range for VDe.. Figure 1 (high RH data) and Fig.
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S10 (dry condition data) show the mass loading profiles derived from FIGAERO-CIMS measurements of medium and low

O:C particles after we excluded the contamination and background factors and split the decomposition factors.

3.2 Volatility distribution comparison at high RH based on factor T.x

To compare VD, and VDpwr, we need to determine the time interval in the evapogram that the VDpyr represents. We
collected the fresh samples directly after the size selection. As the particles were collected for 30 minutes, the collected
sample represents particles that have evaporated from 0 up to 30 minutes in the organic vapour free air. We note that this is
different from the standard FIGAERO-CIMS sample collection where the particles are collected in a quasi-equilibrium with
the surrounding gas phase and no significant evaporation occurs (Lopez-Hilfiker et al., 2014). For RTC samples, we also
need to consider that not all particles have evaporated for the same time due to the filling of the RTC for ca. 20 minutes. We
determined the minimum time the particles have evaporated in the RTC as the time when we started the sample collection
minus the RTC filling time. We determined the maximum evaporation time in the RTC to be the time when we stopped the
sample collection plus the filling time. These minimum and maximum comparison times are shown in Table S1 and they are
referred to as minimum and maximum (sample) evaporation time. The mean (sample) evaporation time is defined to be at
the middle of the sample collection interval. For simplicity, we will show in the main text the results from the analysis where
the FIGAERO-CIMS samples were assumed to represents the particles at the mean sample evaporation time. We show the
analysis where the samples were assumed to represent the particles at minimum and maximum evaporation time in the
supplementary material. The choice of sample evaporation time does not affect the conclusions we draw about the analysis

presented in this section.

Figure 2 shows VDey., and VDpue for medium (Fig. 2a-b) and low O:C (Fig. 2c-d) particles in high RH experiments. In the
VDpwme calculated from Tmax value of each factor (black crosses), the factors fall into three different volatility classes within
our chosen particle size and experimental time scale: practically non-volatile (log:o(C") < -2), slightly volatile ( -2 < log:o(C")
< 0,) and volatile (logio(C") > 0). We use these three volatility classes to compare the volatility distributions in Fig. 3 where
each VD bin are grouped to these three volatility classes. Figure 3 compares VDpyr to what VDe, is at the mean time the
FIGAERO samples had evaporated prior to collection. We show the same comparison for the minimum and maximum

evaporation time in Fig. S5 and Fig. S6.

After the volatility class grouping is applied, we see that there are differences between VD v and VDpyr. With VDpyr of the
fresh samples there are excess amount of matter in the lowest volatility class (volatility class 1) and less material in the
volatility class 2 compared to VDeysp, for both oxidation condition. In addition, the VDpyr of low O:C fresh sample shows

more material in the highest volatility class (volatility class 3) compared to VDeyap.
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To investigate the observed discrepancies further, we used the VDpme shown in Fig. 2 as an input to the LLEVAP model and
calculated the corresponding isothermal evaporation behavior (i.e. the evapogram). We show these simulated evapograms in
Fig. 4a for the medium O:C case and in Fig. 4b for the low O:C condition together with the simulated evapogram calculated
using VDev,p as an input for the LLEVAP model. The simulated evapograms calculated with the VDpwr of the fresh samples
do not match the measured evapograms, while the evapogram calculated with VD..,, agrees well with the experimental
evapogram (black lines in Fig. 4), as expected since this is the goal of the VDey,, determination. The simulation calculated
with the VDpyr of the fresh sample (light blue lines in Fig. 4 for the mean evaporation time and Fig. S7 for other evaporation
times) shows slower evaporation than the observations or the simulation calculated with VDey.p. This is consistent with the

results show in Fig. 3 where the VDpur contained more low volatility material than the VDeyap.

Figure 4 also shows the simulated evapograms calculated with VDpur of the RTC samples (light brown lines in Fig. 4 and
Fig. S7). in these cases, the particles size decreases little within the simulation time scale. With medium O:C particles, the
simulated evaporation matches the measured evaporation well. With low O:C particles, the evaporation calculated with

VDpyr is too fast. The shape of the evapogram does not match the measured one.

3.3 Applying desorption range to characterize the volatility of PMF factors

The Thax value is a practical choice for the characteristic temperature of the desorption process. However, as we saw in Sect.
3.2, the VDpyr calculated from the peak desorption temperatures did not produce the measured evapogram when used as an
input for the LLEVAP model. Working under the assumption that all material collected on the FIGAERO filter, including
the higher volatility material, is detected in the CIMS and then captured in the PMF analysis, we will relax the assumption
that the volatility of the factor is characterized strictly by the T value of the factor and investigate the VDpwme further. We
will explore how the VDpyr changes when the desorption temperature and the resulting C” are interpreted to contain
uncertainty and if the VDpumr considering these uncertainty ranges is consistent with the observed isothermal evaporation.
The uncertainty in the desorption temperature raises from the facts that compounds volatilize from the FIGAERO filter
throughout the heating and, therefore, one value might not be adequate to characterize the C” of a factor and that each PMF

factor contains multiple compounds with distinct C”.

We calculated the 25" and 75" percentiles of the desorption temperatures of each factor and converted them to effective
saturation concentrations as described in Sect. 2.4 (see diamond markers in Fig. 1). We show the resulting C " ranges in Fig. 2
as horizontal solid lines where the line color matches the color of the factors in Fig. 1. We then ran the MCGA optimization
by setting the number of compounds equal to the number of PMF factors, the molar fraction for each compound at the
FIGAERO-CIMS sampling time fixed to the molar fraction of the corresponding factor and the C" as the optimized variables
restricted to the range corresponding to the 25™ and 75" percentile desorption temperature. In the optimization the goodness-

of-fit statistics was calculated as a mean squared error similar to the determination of VDeyap.

12



385

390

395

400

405

410

As the fresh samples were collected between 0 and 30 minutes from the start of the evaporation, we sought for a fitting set of
C" values for evaporation starting at 0, 15 and 30 minutes. Again, we show the results for the mean sample evaporation time
(15 min) in the main text and the results for the other evaporation times in the supplementary material. Due to scarcity of
particle size measurements at the collection time of the RTC sample, we will apply this analysis only to the VD pur of the
RTC sample at its minimum evaporation time. In each optimization, we set the initial particle diameter to be the same as
what is simulated with VDe.p. We derived 50 C” estimates for both samples. From these 50 estimates we chose the best fit
evapogram. We refer to these optimized volatility distributions as VD pur,op to separate them from the VDpyr where we used

Tumax to characterize C*of a PMF factor.

We show the optimized C* values forming VDpwrepx in Table 2 (see Table S2 for results with minimum and maximum
sample evaporation times). Figure 5 shows the best fit evaporation simulations calculated with VD pwme . The other sample
evaporation times are displayed in the supplementary material Fig. S8. For both oxidation condition, the simulations
resemble the experimental evapogram and evapogram calculated with VDey,p, although the simulation of the medium O:C
condition shows a 5 times larger goodness-of-fit value compared to the simulation calculated with VDey.,. The evapograms

determined with the VDpyg o 0f the RTC samples agree with the measured evaporation as well.

Overall, the results demonstrate that the information derived from the fresh and RTC FIGAERO-CIMS samples can describe

the volatility of the evaporating particles, when uncertainties in the desorption temperature are considered.

3.4 Comparison of the volatility distribution of the fresh and RTC sample in high RH conditions

In this section, we compare VDpugop Of the fresh samples to VDpume of the RTC sample to study if the two VD are similar.
We compare the two VD at the mean evaporation time of the RTC sample. We calculated the evapograms with the VD pume,op
of the fresh sample as the initial particle composition and recorded the mole fraction of each factor at the mean evaporation
time of the RTC sample (216 minutes for medium O:C particles and 211 minutes for low O:C particles). Figure 6a and Fig.
6c show this comparison for both medium O:C and low O:C particles. The factors are grouped into the three volatility
classes described in Sect. 3.2. In Fig. 6 we show the results from the analysis where VD pur o, Was optimized by assigning the
fresh sample composition at the mean sample evaporation time. Similar comparisons using minimum and maximum
evaporation time of the fresh sample are shown in Fig. S9. To ensure that the factors are grouped to the same volatility

classes for each studied VD, we used the C” values of the VDpur,op at the mean sample evaporation time as basis for the

grouping.

The compositions simulated based on the VDpwmgp Of the fresh samples are comparable to the corresponding VDeume of the

RTC sample in both oxidation conditions (Fig. 6). The agreement is good, especially for the low O:C case for which the
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VDpumeop: sShowed a slightly smaller contribution in volatility class 1 and a corresponding higher contribution in volatility
class 2 compared to the VDpyr of the RTC sample (Fig. 6¢). For the medium O:C case, the VDpur,o predicted a higher

contribution of volatility class 1 and a lower contribution of volatility class 2 compared to VDpyr (Fig 6a).

These results show that the particle composition measured after few hours of evaporation is consistent with the composition
predicted based on the composition observed at the start of evaporation while considering uncertainties of the interpreted C”

values.

3.5 Volatility distribution comparison in dry conditions

Next, we analyzed the evaporation experiments in dry conditions where the evaporation rate was reduced compared to the
high RH conditions. We interpreted this difference as an indication of particle phase diffusion limitations in dry conditions
(Yli-Juuti et al., 2017). Using the initial particle composition information obtained from the high RH experiments and the
FIGAERO-CIMS data, we explored the effect of particle viscosity on the evaporation process. Our aim is to test if the slower
evaporation, presumably due to higher viscosity of the SOA, can be captured with a recently developed viscosity
parametrization based on glass transition temperatures of various organic compounds (DeRieux et al., 2018). We also
compare the results using the viscosity parametrization to an approach where we fit both the viscosity and VD to the

evapogram.

First, we investigated the range of particle viscosities that are required to explain the observed slower evaporation in dry
conditions. For this, we simulated the particle evaporation in dry conditions based only on the evapogram data. We used the
VDevsp (i-e., the initial particle composition obtained by optimizing mole fractions of VD bins with respect to the observed
evapogram in high RH conditions) as the initial particle composition estimate for the simulations and optimized the b; values
(Eq. 3) for each VD bin. The best fit simulation from this optimization agrees well with the observed size decrease in the dry
experiments for both low and medium O:C particles (Fig. 8, black line). Based on these simulations, the viscosity of the
particles needs to increase from below 10° Pa s to approximately 10° Pa s during the evaporation in order to explain the

evaporation rate observed for the dry particles.

Second, we tested the performance of the composition dependent viscosity parameterization by DeRiuex et al. (2018) used
together with the PMF results. For this, we calculated the volatility distribution, VD pmrary, based on the T values of the
factors from the fresh sample of the evaporation experiment at dry conditions (in the same way as for VDpyr for the high RH
case). The mole fraction of each factor was calculated from the mass loading profile to give the initial mole fraction of each
VD bin for the simulations. We assigned this VDpumray as the particle composition at the mean evaporation time of the fresh
sample, i.e. 15 minutes, and simulated the particle evaporation from there onwards. The particle size at the beginning of the

simulation (i.e. at 15 minutes of evaporation) was taken from the above simulations optimized based only on the evapogram
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data, which fitted well to the measurements. We calculated the viscosity parameter b; value for each VD bin as described in
Section 2.5 based on the mass spectra of the factor and the parameterization by DeRieux et al. (2018). This resulted in too
high viscosity for particles to evaporate in practice at all during the length of the experiment for both low and medium O:C
particles (grey dashed line in Fig. 8). Therefore, we also conducted a simulation where the viscosity parameter b; value for
each factor was calculated based on the viscosity parameterization by setting the T, values of all compounds 30 K lower than
the parametrization predicted, which is in line with the uncertainties reported by DeRiuex et al. (2018). In this case, the
simulated evaporation was faster than observed for the medium O:C conditions (grey solid line in Fig. 8a) and similar to the
evapogram calculated with the VDe,, for low O:C conditions (grey solid line in Fig. 8b). This suggest that the observed
evaporation rate at dry conditions and the viscosity parametrization by DeRieux et al. (2018) may be consistent with each

other within the uncertainty range of the viscosity parametrization and the uncertainty range of the C" of PMF factors.

Similar to Fig. 3, we show in Fig. 7 the comparison of VDpmrary (C* from Tpa) to the VDey, in dry conditions and at the
mean sample evaporation time with the VD bins grouped into the three volatility classes. We show the mass loading profiles
and the volatility distributions of experiments in dry conditions in Fig. S10 and Fig. S11. Figure S12 shows the same
comparison as Fig. 7 for other sample evaporation times. For medium O:C particles, VDpyray calculated from the fresh
sample has more contribution of volatility classes 1 and 3 and less of volatility class 2 compared to the corresponding VD evap.
For the low O:C particles, the VDpurary Of the fresh sample has more contribution of volatility class 3 and less of volatility
classes 1 and 2 compared to the VDeyp. For medium O:C particles, the differences between the VDpumrary and VDey,, leave
open the possibility that the underestimated evaporation rate calculated using VDpwmray is partly a result of inaccuracy in
volatility description and not solely due to the high estimated viscosity. For the low O:C particles, the underestimated
evaporation most likely stems from the high estimated viscosity since VDpuray is shifted towards higher volatility

compounds than VDeyap.

As a third investigation of the viscosity, we used again the PMF results of the fresh sample in dry conditions to initialize the
particle composition in the model at the mean fresh sample evaporation time. The mole fraction of each factor was calculated
from the mass loading profile giving the initial mole fraction of each VD bin for the simulations similar to the high RH
analysis. Then, using the MCGA algorithm together with the KM-GAP model, we estimated the b; coefficient and C” of each
VD bin by optimizing the KM-GAP simulated evapogram to the measured evapogram in dry conditions. This way we
obtained both the initial volatility distribution (VD pwme,ar,0p) and viscosity parameters b; simultaneously. For this optimization,
we restricted the C” values of the factors based on the 25" and 75" percentile of the desorption temperature of the factors
(similarly to what was done above for VDpueex) and the viscosity parameter b; values based on the DeRieux et al. (2018)
parameterization. The b; values calculated with the original parametrization by DeRieux et al., (2018) were set as the upper
limit for the b; values. The lower limit for the b; values were calculated by setting the glass transition temperature of each

compound 30 K lower than the parametrization predicted. As above, in these simulations the initial particle size was also
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taken from the simulations where the optimization was based on only the evapogram data. For both medium and low O:C
particles, it was possible to find a set of C* and b; values that produced an equally good match to experimental data as the

VDevsp (purple and yellow lines in Fig. 8).

Figure 6b and Fig. 6d show the comparison of the measured and simulated particle composition, grouped into the three
volatility classes, at the RTC sample collection time for the dry experiments for low and medium O:C particles. The
measured composition is the VD calculated from the PMF results of the RTC samples in dry conditions. The optimized C "
values of the factors from the corresponding dry experiment were used for these VD. The simulated particle composition is
taken from the optimized model run (optimized VDepwmr,opary and b;) at the mean RTC sample collection time similar to the
high RH cases presented in Fig. 6a and Fig. 6¢c. For low O:C particles there is a clear discrepancy: the VD pmrdry,ope implies a
much larger relative contribution from the volatility classes 2 and 3 and a smaller contribution from the volatility class 1
compared to the measurements. This inconsistency may be related to the rather high viscosities in the simulations. The
viscosity of the low O:C particles in this optimized simulation was rather high, > 10° Pa s, throughout the evaporation,
slowing the evaporation of the higher volatility compounds. Similar evaporation curve could be obtained with lower

viscosity and lower volatilities of the VD bins.

4 Discussion

Qualitatively, VDpwr and VDpyrary capture the evaporation dynamics well in all studied cases, although quantitatively there
were discrepancies. For the VDpyr of the fresh samples, the first and second factor desorb at low heating temperatures (below
100 °C) indicating that these factors represent high volatility organic compounds that evaporate almost completely from the
particles in the experimental time scale of our isothermal evaporation experiments. In the RTC samples, these factors show
significantly lower or non-existing signal strength relative to the other factors. The factors that desorb at high temperatures
show an increase in the relative signal strength in the RTC samples compared to the fresh samples which is consistent with
the expected increase in relative contribution of lower volatility compounds along evaporation. These findings indicate that
the FIGAERO-CIMS measurements of a-pinene SOA and the applied PMF method give a good overall picture of the

evolution of the volatility distribution during evaporation.

In addition to the PMF method used here, also other ways of characterizing SOA compound volatilities or VBS from
FIGAERO-CIMS thermograms have been suggested (e.g. Stark et al., 2017). These include, for example, the more
straightforward method of calculating the C" of each detected ion based on their Tma, using Eq. (3) and lumping them into a
traditional VBS. While such other methods may capture the volatility distributions sufficiently, the benefit of PMF method is
that it offers a new way to understand what happens inside the particles, e.g. during the heating in FIGAERO. Here we have

evaluated this method with respect to its ability to capture the volatilities of SOA.

16



515

520

525

530

535

540

At high RH, the VDpyr that was derived from Trax of each factor’s mass loading profile did not produce evapogram similar
to the measured ones, when the VDpyr was used as an input for the LLEVAP model. This reflects the sensitivity of the
particle evaporation to the C” values and suggest that the VDpyr is not directly applicable as a particle composition estimate
for detailed particle dynamics study. When we allowed uncertainty in the C* values of each factor we were able to explain
most of the discrepancy between the simulated and measured evapograms. Our results also demonstrate the need for careful
investigation of the representative time of the sample when filter-collected samples are applied for dynamic processes such

as evaporation.

In this study we assumed a quite large uncertainty range for the desorption temperature of each PMF factor and it is not
certain that the determination of VDpurq would be successful if the allowed ranges for C* of PMF factors would be lower.
Thus, there remains work to be done in studying what is the total uncertainty that rises from combining the FIGAERO-CIMS
measurements with the PMF method and to what extent the PMF factors can be thought to represent surrogate organic

compounds for the purpose of detailed SOA dynamics studies.

We note that care has to be taken when PMF results are transferred to volatility distributions, especially with regard to
separating the contribution of instrument background and contamination from the true sample. When the sample mass was
low (in the low O:C RTC sample) we noticed that the first half of the bimodal (factor LD1a) resulted in a high mole fraction
even though the absolute signal strength of the factor did not change between the fresh and the RTC sample, which is usually
an indication that this signal is caused by instrument background. However, the signal strength of this factor was low enough
in all cases to not affect the overall VD estimation. More details on the interpretation of B- and D-type factors and potential

factor blending can be found in Buchholz et al, (2019b).

In dry conditions, VDpmeary Of the fresh sample in low O:C case showed noticeably higher amount of high volatility matter
than VDey,p. This discrepancy between the volatility distributions is not expected and raises a need for further studies on the
role of viscosity and possible particle phase chemistry to SOA particle dynamics. Future studies should investigate the
possibility of chemical reactions that modify the volatility of organic compounds and how viscosity is described in process

models.

5 Conclusions

We compared volatility distributions derived from FIGAERO-CIMS measurements with PMF analysis to volatility
distributions derived from fitting a process model to match measured size change of particles during isothermal evaporation.

We compared the two methods for obtaining the volatility distribution data for two different particle compositions and two
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evaporation conditions. The results are promising and suggest that the methods provide volatility distributions that are in
agreement. We note that the data set available here is limited and additional investigations on comparing the methods are

desirable in the future.

In all studied experimental data sets, we were able to capture the measured evaporation with the fitting method.In high RH
experiments, VDpyr deviated from VDeys, especially when the FIGAERO samples were collected at the early stages of the
evaporation. However, qualitatively, both types of VD evolved similarly, i.e., the fraction of lower volatility compounds
increased, and the fraction of higher volatility compounds decreased during the evaporation of the particles. These results
suggest that the changes in FIGAERO-CIMS derived volatility distributions over the isothermal evaporation are consistent

with the observed isothermal evaporation and the detailed SOA dynamics are sensitive for the uncertainties in the C” values.

The volatility distribution derived with the PMF method at high RH agreed with the observed isothermal evaporation better
when we interpreted the volatility of each factor as a range of possible C” values and optimized the C* values within these
ranges with respect to the measurements. These results suggest that the FIGAERO-CIMS measurements combined with
PMF method does not only provide qualitative information of the volatilities of the SOA constituents but it also has potential
for quantitative investigation of the volatility distributions. However, more work is needed to constrain the uncertainties
rising from the conversion of the FIGAEO-CIMS desorption temperatures to C* values and it should be noted that deriving

the volatilities based on only the Trm.x of PMF factors may not be sufficient for representing detailed SOA dynamics.

In dry conditions, we were able to simulate the evapograms based on the PMF results using the VTF equation and the glass
transition temperature parametrization of DeRieux et al., (2018) if both C" and viscosity parameters where optimized and
allowed to contain reasonable uncertainties. For both oxidation conditions the measured composition at the later stages of
evaporation suggested considerably lower volatility than the simulations. These results suggest that the tested viscosity
parameterization is not in disagreement with the observed SOA evaporation, however the uncertainties related to the method

are significant from the point of view of simulating SOA dynamics.

Based on our analysis we conclude that using the PMF method with FIGAERO-CIMS thermogram data is good for
estimating the volatility distribution of organic aerosols when the organic compounds present in the particle phase have low
volatilities with respect to the sample collection and analysis time scale. Specifically, VDpur is useful for extracting
information about organic compounds that do not evaporate during the evaporation measurements at room temperature.
VDpyr is applicable to detailed particle dynamics studies when desorption temperature of the factor is characterized with a
range around the Tr., value. Furthermore, combining VDpur o, With detailed process modelling and input optimization could

allow quantification of other physical or chemical properties of organic aerosols since the FIGAERO-CIMS data constrains
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the particle composition and effectively decreases the search space that needs to be explored with global optimization

methods.
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Table 1: The ambient conditions and properties of the organic compounds used in estimating the VDe.,. The variables are,
from top to bottom, temperature (T) during the evaporation, relative humidity (RH), gas phase diffusion coefficient (Dgorg),
molar mass (M), particle phase density (p), particle surface tension (¢) and mass accommodation coefficient (). Rows that

only have one value are the same in every column.

Variable Medium O:C |Low O:C Medium O:C |Low O:C
High RH High RH dry dry

T (K) 293.85 293.75 293.75 293.35

RH (%) 824 83.5 0 0

D™ (cm?s™) 0.05

MP (g mol ™) 200

p° (kg m®) 1200

o’ (mN m™) 40

o’ 1

9 The gas phase diffusion coefficients are scaled to correct temperatures by multiplying with a factor of (T/273.15)'7 (Reid
et al., 1987)

% values are chosen to represent a generic organic compound with values similar to other a-pinene SOA studies (e.g. Pathak

et al., 2007; Vaden et al., 2011; Yli-Juuti et al., 2017).
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Table 2: The best fit C” values for medium O:C and low O:C high RH experiments when C" values of PMF factors were
optimized with respect to the measured isothermal evaporation. C” values were optimized by assuming the FIGAERO-CIMS
sample represents particle composition at the mean sample evaporation time for the fresh sample and the minimum sample
evaporation time for the RTC sample. The C” values are rounded to two significant digits and are in units pgm™. C” values

625 below 10 ugm™are not reported explicitly since the evapogram fitting method is not sensitive to these values.

Medium O:C fresh sample Medium O:C RTC sample Low O:C fresh sample Low O:C RTC sample

Factor M1/L.1 4.96 10 36.10 3.06 -10 <10
Factor M2/1.2 2.89 -10" 4.12-10" 3.55 -10" 2.40-10°
Factor M3/L3 9.93 -10° 442 -10° 2.87 102 7.13 -10°
Factor M4/L4 <103 <103 1.54-10° <103
Factor M5/L5 <10°® <10° <10° <10°®
Factor D1a 7.68 - 10" 69.35 130.03 1.04 - 10
Factor D1b <103 <10? <10? <103
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Figure 1: Main positive matrix factorization (PMF) mass loading profiles for thermal desorption of secondary organic

aerosol (SOA) from a-pinene at high RH conditions
a) Fresh sample of medium O:C SOA

b) Residual particles of medium O:C SOA after 173-259 minutes of evaporation in a residence time chamber (RTC), i.e., the

RTC sample
¢) Fresh sample of low O:C SOA

d) Residual particles of low O:C SOA after 168-254 minutes of evaporation in the RTC, i.e. the RTC sample.

Black crosses indicate the peak desorption temperature Tp.x and the diamonds mark the 25™ and 75" percentiles of the area of

each factor.
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Figure 2: Volatility distributions in high RH experiments determined from model fitting (VDev.p) and PMF analysis of
FIGAERO-CIMS data (VDpwe) for the same four cases shown in Fig. 1.

a) Fresh sample of medium O:C SOA

b) Residual particles of medium O:C SOA (the RTC sample)

c) Fresh sample of low O:C SOA

d) Residual particles of low O:C SOA (the RTC sample).

VDevap is shown for the best fit simulation (grey bars) at the mean evaporation time of the FIGAERO-CIMS sample. Black
crosses show the logio(C") calculated for each PMF factor from the peak desorption temperature Tpax. The horizontal
coloured lines show the range of log;o(C") calculated from the 25" and 75" percentiles of each PMF factor’s mass loading

profile.
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Figure 3: Comparison of VDpyr and VDeys, at the mean sample evaporation time in high RH experiments for the same four

Volatility class

cases shown in Fig. 1.

a) Fresh sample of medium O:C SOA
b) Residual particles of medium O:C SOA (the RTC sample)
c) Fresh sample of low O:C SOA
d) Residual particles of low O:C SOA (the RTC sample).

The VD bins shown in Fig. 2 are grouped into three different volatility classes based on their evaporation tendency with
respect to the measurement time scale and particle size. The limits for each volatility class are shown at the top and are the

same for each subfigure. The VDpur shows lower overall volatility than the VDe.., except for subfigure d (RTC sample of

2
Volatility class

low O:C SOA) where the VDpyr shows higher overall volatility than the VDeyap.
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Figure 4: Evapograms of high RH experiments showing the evaporation factors (remaining fraction of the initial particle
diameter; circles) and their uncertainty in time for a) medium O:C SOA and b) low O:C SOA, LLEVAP simulated
evapograms calculated using the best fit VD, (black solid lines) and LLEVAP simulated evapograms calculated with
VDpur (turquoise lines for VDpyr of fresh SOA and light brown lines for simulation with VDpyr of the residual particles
evaporated 173-259 minutes and 168-254 minutes for medium O:C and low O:C SOA, respectively). The evapograms
calculated with the VDpur of the fresh samples show lower rate of evaporation than the evapogram calculated with the VD eyap
consistent with volatility distribution shown in Fig. 3. The evapograms calculated with the VDpyr of the residual particles

(the RTC sample) show a similar rate of evaporation for medium O:C SOA and a faster rate of evaporation for low O:C SOA

compared to evapograms calculated with VD..,, similarly consistent with Fig. 3.
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Figure 5: Evapograms of high RH experiments showing the evaporation factors (circles), their uncertainty in time (black
whiskers), the best fit simulated evapogram calculated with VD, (black solid line) and the best fit simulated evapograms
calculated with the volatility distribution where the effective saturation concentration (C") of each PMF factors are fitted to
the measurements (VDpwmr,opt)-

a) Medium O:C SOA

b) Low O:C SOA.

The colored solid lines are for the fresh SOA and the dashed lines for the residual particles collected from the RTC after 173-
259 minutes and 168-254 minutes of evaporation for medium O:C and low O:C SOA, respectively. For fitting, the C” of each
PMF factor were allowed values from their respective 25" and 75" percentile desorption temperature shown in Fig. 1.

All the evapograms calculated with the VDpy o, match the measured evaporation highlighting that the volatility distribution
determined from the FIGAERO-CIMS data with the PMF method can describe the dynamics of evaporating SOA particles

when uncertainties in the C” of the factors are considered.
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Figure 6: Comparison of the simulated particle composition (VDpwmr,op;; VDemE,opeary) t0 the particle composition determined

from the residual particles collected from the RTC (VDpme/VDpmrary) after 173-259 minutes and 168-254 minutes of

evaporation for medium O:C and low O:C SOA, respectively. The comparison is done at the mean evaporation time of the

residual particles. The simulated compositions (VDpumr,epin @ and ¢, VDpumg,pary in b and d) are taken from the best fit

simulated evapogram obtained from the optimization of the C” values of fresh sample’s PMF factors to the measured

evapogram. The volatility of individual VD bins are grouped into three volatility classes similar to Fig. 3. The limits for each

volatility class are shown at the top and are the same for each subfigure. The C" values from VDpwg,opt/ VDpmr oprary Were used

for corresponding VDpme/VDpwmray When the volatility grouping was calculated in order to ensure the comparability.

a) Medium O:C SOA in high RH experiment

b) Medium O:C SOA in dry condition experiment
¢) Low O:C SOA in high RH experiment

d) Low O:C SOA in dry condition experiment.

In the high RH cases (subfigures a and c) the volatility distributions simulated based on VDo, Of the fresh SOA are

similar to the measured VDpme, while for the dry condition cases (subfigures b and d) the volatility distributions simulated

based on VDpur piary Show higher volatility than the measured VDpye.
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Figure 7: Comparison of VDpyr 4y (volatility distribution with C" calculated from the peak desorption temperature, Tmax, Of
each PMF factor) and VD..., (volatility distribution determined by fitting LLEV AP model to measured evapogram) at the
mean evaporation time of the SOA samples in dry condition experiments. The VD bins are grouped into three volatility
classes similar to Fig. 3. The limits for each volatility class are shown at the top and are the same for each subfigure.

a) Fresh sample of medium O:C SOA

b) Residual particles of medium O:C SOA after 170-256 minutes of evaporation (the RTC sample)

¢) Fresh sample of low O:C SOA

d) Residual particles of low O:C SOA after 152-238 minutes of evaporation (the RTC sample).

The VDpumray shows lower overall volatility than the VDey., for medium O:C SOA. For low O:C SOA the VDpyg ary Shows

higher volatility for fresh sample and similar volatility compared to the VD, after 152-238 minutes of evaporation.
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Figure 8: Evapograms showing the measured isothermal evaporation of a) medium O:C SOA b) low O:C SOA in dry

condition experiments and their uncertainty in time (red and yellow markers and black whiskers) together with the simulated
evapograms. The best fit simulated evapogram calculated with VD, (obtained from high RH experiments) and optimizing
b; is shown with black solid line. Grey lines show the minimum and maximum possible evaporation calculated with VDpyg ary
(C" of PMF factors calculated from Tr.x) at the highest (the original parametrization of DeRieux et al., (2018), grey dashed

lines) or the lowest (30 K subtracted from the T, of every ion, grey solid line) studied viscosity. Purple and yellow solid lines

show the best fit simulated evapograms calculated with the optimized VDpug,opiary (based on the assumption that the

FIGAERO sample represents particles at the mean of the sample collection interval) and b; restricted based on the DeRieux

et al. (2018) parameterization. The figure shows, similar to Fig. 5, that the volatility distribution determined from the

FIGAERO-CIMS data with the PMF method is consistent with the measured evaporation of the SOA particles once the

uncertainty in the effective saturation concentration and the glass transition temperature parametrization of DeRieux et al.,

(2018) are considered.
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